Vol. 211, No. 1, 2003

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Cyclic properties of Volterra operator

Fernando León-Saavedra and Antonio Piqueras-Lerena

Vol. 211 (2003), No. 1, 157–162
Abstract

A bounded linear operator T defined on a Hilbert space H is said to be supercyclic if there exists a vector x H such that the set {λTnx : n , λ } is dense in H. In the present work, two open questions posed by N. H. Salas and J. Zemánek respectively, are solved. Namely, we will exhibit that the classical Volterra operator V and the identity plus Volterra operator I + V are not supercyclic.

Milestones
Received: 12 August 2002
Published: 1 September 2003
Authors
Fernando León-Saavedra
Departamento de Matemáticas
Universidad de Cádiz
C/ Sacramento 82, 11003–Cádiz
Spain
Antonio Piqueras-Lerena
Departamento de Matemáticas
Universidad de Cádiz
C/ Sacramento 82, 11003–Cádiz
Spain