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For a left noetherian ring Λ, we establish a bijective corre-
spondence between equivalence classes of cotilting Λ-modules
which are not necessarily finitely generated, and torsion pairs
(T , F) for the category of finitely generated Λ-modules with
Λ ∈ F . In the second part of this paper, we give a complete
classification of all cotilting modules over a tame hereditary
artin algebra.

Introduction.

The concept of a tilting module was introduced by Brenner and Butler for
the category of finitely generated modules over a finite dimensional algebra
[5]. More recently, various authors studied tilting and cotilting modules in
the category of all modules over arbitrary associative rings. For example,
Göbel and Trlifaj classified the cotilting modules over the ring Z of integers
[14].

In this paper we concentrate on the representation theory of a finite di-
mensional algebra Λ. Our aim is to show that all cotilting modules are
relevant when one studies the category modΛ of finitely generated modules.
More specifically, we establish a correspondence between cotilting Λ-modules
which are not necessarily finitely generated, and torsion pairs for modΛ.

In the second part of this paper we give a complete classification of all
cotilting modules over a finite dimensional tame hereditary algebra. Note
that new cotilting modules which are not equivalent to finitely generated
ones arise only if Λ is of infinite representation type. The tame hereditary
algebras are of infinite type and their modules are fairly well understood.
In fact, the category of modules over a tame hereditary algebra shares a
lot of properties with the category of modules over a Dedekind domain.
It is therefore tempting to choose the tame hereditary algebras to give for
the first time a complete classification of all cotilting modules for a finite
dimensional algebra of infinite representation type.
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Let us recall from [7] the definition of a cotilting module of injective
dimension at most 1 for an associative ring Λ. We denote by ModΛ the
category of all left Λ-modules. For a module T , let ProdT be the category
of all direct summands in any product of copies of T . A Λ-module T is
called cotilting module if the following1 hold:
(C1) The injective dimension of T is at most 1.
(C2) Ext(Tα, T ) = 0 for every cardinal α.
(C3) There exists an injective cogenerator Q and an exact sequence 0 →

T ′′ → T ′ → Q→ 0 with T ′, T ′′ in ProdT .
(C4) T is pure-injective.
By definition, two cotilting modules T and T ′ are equivalent if ProdT =
ProdT ′.

We have the following general result about cotilting modules:

Theorem A. Let Λ be a left noetherian ring. There exists a bijection be-
tween:

– Torsion pairs (T ,F) for modΛ such that Λ ∈ F , and
– equivalence classes of cotilting modules.

A torsion pair (T ,F) corresponding to a cotilting module T satisfies F =
{X ∈ modΛ | Ext(X, T ) = 0}.

From now on assume that Λ is a tame hereditary finite dimensional al-
gebra [18]. In order to formulate the classification of all cotilting modules
we need to recall a few well-known facts. We denote by R the category of
finitely generated regular modules. This is an abelian category and we write
P for the set of isoclasses of simple objects in R. For each S ∈ P, let [S]
denote the equivalence class of S with respect to the smallest equivalence
relation on P satisfying S ∼ S′ if Ext(S, S′) 6= 0. For each S ∈ P and
n ∈ N, let Sn be the unique indecomposable object in R of length n satisfy-
ing Hom(S, Sn) 6= 0, and S−n denotes the unique indecomposable object of
length n satisfying Hom(S−n, S) 6= 0. There are chains of monomorphisms
S = S1 → S2 → . . . and chains of epimorphisms · · · → S−2 → S−1 = S for
each S ∈ P. The corresponding Prüfer module is the colimit S∞ = lim−→Sn

whereas the adic module is S−∞ = lim←−S−n (which is often denoted by Ŝ).
Moreover, there is a unique generic module G, that is, G is indecomposable
of infinite length and has finite length over End(G).

For a module M , we denote by indec M the set of isoclasses of indecom-
posable direct summands of M . If M is pure-injective, then there is a unique
family (Mi)i∈I of modules Mi ∈ indec M such that M is the pure-injective
envelope of

∐
i Mi. The well-known classification of the indecomposable

pure-injectives over a tame hereditary algebra allows us to classify all cotilt-
ing modules.

1Recently, Silvana Bazzoni has shown that (C1)-(C3) implies (C4).
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Theorem B. Let Λ be a tame hereditary algebra and let T be a pure-
injective Λ-module.

(1) Suppose all indecomposable direct summands are finitely generated.
Then T is a cotilting module if and only if the number of non-iso-
morphic indecomposable direct summands of T equals the number of
simple Λ-modules and Ext(T ′, T ′′) = 0 for all T ′, T ′′ ∈ indec T .

(2) Suppose there is an indecomposable direct summand which is not finite-
ly generated. Then T is a cotilting module if and only if the following
hold:
– Each indecomposable direct summand of T is either generic or of

the form Sn for some S ∈ P and some n ∈ N ∪ {−∞,∞}.
– For each S ∈ P, let IS be the set of non-isomorphic indecompos-

able direct summands of T which are of the form S′n for some
n ∈ N ∪ {−∞,∞} and some S′ ∈ [S]. Then card IS = card[S]
and Ext(T ′, T ′′) = 0 for all T ′, T ′′ ∈ IS.

(3) Two cotilting modules T1 and T2 are equivalent if and only if indec(T1q
G) = indec(T2 qG).

The paper is organized as follows: In Section 1 we establish the bijective
correspondence between cotilting modules and torsion pairs. In addition, we
include a generalization to locally noetherian Grothendieck categories. From
Section 2 onwards, we restrict ourselves to tame hereditary algebras. First,
we recall briefly the classification of the pure-injective modules. Then we
describe the selforthogonal pure-injective modules. A cotilting module is a
selforthogonal module which is maximal with respect to this property. This
observation is the basis of our classification of all cotilting modules which
is completed in Section 3. Each cotilting module which is not equivalent
to a finitely generated one is the pure-injective envelope of a direct sum∐
T TT where T runs through the set of tubes in the category of regular

modules. Each summand TT can be viewed as a cotilting object in some
appropriate Grothendieck category, and a detailed description is given in
the final Section 4.

1. A correspondence for cotilting modules.

Let Λ be an associative k-algebra over some commutative ring k. Through-
out we assume that Λ is left noetherian. Let ModΛ be the category of (left)
Λ-modules, and let modΛ denote the full subcategory which is formed by all
finitely generated modules. To simplify our notation, we write Hom(−,−)
and Ext(−,−) for the functors HomΛ(−,−) and Ext1Λ(−,−), respectively.
We fix a minimal injective cogenerator I for Mod k and write D = Homk(−,
I) for the usual duality between left and right Λ-modules.
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Now fix a Λ-module M . We define Prod M to be the full subcate-
gory of all direct summands of products of copies of M . The full sub-
category formed by all submodules of modules in ProdM is denoted by
CogenM . The perpendicular category of M is by definition the full subcate-
gory ⊥M = {X ∈ Mod Λ | Ext(X, M) = 0}. We call M selforthogonal (more
precisely, product-selforthogonal) if Ext(Mα,M) = 0 for every cardinal α.
A selforthogonal module M is maximal selforthogonal if ProdM ⊆ ProdN
implies ProdM = ProdN for every selforthogonal module N .

Let C ⊆ modΛ be a subcategory. Then we denote by lim−→C the full
subcategory formed by the filtered colimits of objects in C.

1.1. A correspondence. In this section we establish a correspondence be-
tween cotilting modules and certain torsion pairs for mod Λ. We start with
some preparations.

Lemma 1.1. Let X ⊆ Mod Λ be a subcategory which is closed under taking
subobjects and filtered colimits. Let C = X ∩modΛ. Then X = lim−→C.

Proof. Clear, since every module is a filtered colimit of its finitely generated
submodules. �

Recall that a torsion pair (T ,F) for an abelian category A is a pair of
full subcategories such that Hom(T, F ) = 0 for all T ∈ T , F ∈ F , and every
object X ∈ A has a subobject tX ∈ T with X/tX ∈ F .

Lemma 1.2. Let (T ,F) be a torsion pair for modΛ. Then (lim−→T , lim−→F)
is a torsion pair for ModΛ.

Proof. See [9]. �

We need to recall some more terminology. To this end fix a category
A and some subcategory X . Given an object M in A, a map X → M
is called right X -approximation of M provided that X belongs to X and
the induced map Hom(X ′, X) → Hom(X ′,M) is surjective for all X ′ in
X . A right approximation f : X → M is minimal if every endomorphism
g : X → X satisfying f ◦ g = f is an isomorphism. The subcategory X is
contravariantly finite if every object in A admits a right X -approximation.

Lemma 1.3. Let X ⊆ Mod Λ be a subcategory which is closed under taking
subobjects, extensions, products, and filtered colimits. Then every Λ-module
M has a minimal right X -approximation MX → M . The kernel of this
approximation is pure-injective. Moreover, MX is pure-injective provided
that M is pure-injective.

Proof. We use an idea from [16, Section 2]. Choose a left DX -approximation
DM → DX which exists by [16, Lemma 2.1], and denote by C its cokernel.
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Apply the duality and take the pullback along the natural map M → D2M :

0 // DC // Y
f //

��

M

��
0 // DC // D2X // D2M .

Note that Y belongs to X since D2X ⊆ X by [16, Lemma 4.4]. The con-
struction implies that f is a right X -approximation of M . A minimal right
X -approximation MX → M exists since X is closed under filtered colimits;
see [11, p. 207]. It is well-known that any module of the form DX is pure-
injective. Therefore the kernel of MX → M is pure-injective since it is a
direct summand of DC. The natural map M → D2M is a pure monomor-
phism. This implies the map splits if M is pure-injective. In this case MX
is a direct summand of D2X and therefore pure-injective. �

The next proposition describes a construction for cotilting modules. In
[2], a similar result is proved under the additional hypothesis that X is
contravariantly finite.

Proposition 1.4. Let X ⊆ Mod Λ be a subcategory which is closed un-
der taking subobjects, extensions, products, and filtered colimits. Suppose
in addition Λ ∈ X . Then there exists a Λ-module T having the following
properties:

(1) There exists an exact sequence 0 → T ′′ → T ′ → Q → 0 such that
T = T ′ q T ′′ and Q is an injective cogenerator;

(2) T is pure-injective and idT ≤ 1;
(3) X = CogenT = ⊥T ;
(4) X ∩ X⊥ = ProdT .

Proof. (1) We apply Lemma 1.3 to construct T . Choose an injective cogen-
erator Q and let 0 → T ′′ → T ′ → Q → 0 be an exact sequence such that
T ′ → Q is a minimal right X -approximation. Define T = T ′ q T ′′. Note
that T ′′ ∈ X⊥ by Wakamatsu’s lemma. Thus T ∈ X⊥.

(2) T is pure-injective by Lemma 1.3. To show id T ≤ 1, take an arbitrary
Λ-module M and choose an exact sequence 0 → X1 → X0 → M → 0 with
Xi ∈ X which exists by Lemma 1.3. Now apply Hom(−, T ) to see that
Ext2(M,T ) = 0 since Ext(X , T ) = 0.

(3) Let M be a Λ-module and M → Qα a monomorphism. The map
M → Qα factors through the map (T ′)α → Qα if M ∈ ⊥T . Therefore
⊥T ⊆ CogenT . We have CogenT ⊆ X since T belongs to X and X is closed
under taking subobjects and products. Finally, X ⊆ ⊥T since T ∈ X⊥.

(4) We have Prod T ⊆ X ∩X⊥ since X and X⊥ are closed under products.
Let M ∈ X ∩ X⊥. Choose a left ProdT -approximation f : M → Tα which
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is a monomorphism since X = CogenT . Now apply Hom(−, T ) to see that
Coker f belongs to ⊥T = X . Thus M → Tα splits. �

Theorem 1.5. Let Λ be a left noetherian ring. There exists a bijection
between:

– Torsion pairs (T ,F) for modΛ such that Λ ∈ F , and
– equivalence classes of cotilting modules.

A cotilting module T corresponding to a torsion pair (T ,F) satisfies

ProdT = (lim−→F) ∩ (lim−→F)⊥ and ⊥T ∩modΛ = F .

Remark 1.6. Suppose Λ is an artin algebra. Then a cotilting module T
is equivalent to a finitely generated cotilting module if and only if F =
⊥T ∩modΛ is contravariantly finite in mod Λ. This follows from the corre-
spondence for cotilting modules in [3].

Proof of Theorem 1.5. Let (T ,F) be a torsion pair for modΛ. Then X =
lim−→F is closed under taking subobjects, extensions, products, and filtered
colimits by Lemma 1.2. Thus we get a cotilting module T satisfying ProdT
= X ∩ X⊥ by Proposition 1.4.

Conversely, let T be a cotilting module. Then ⊥T = lim−→F for F =
⊥T ∩modΛ by Lemma 1.1. Thus we obtain a torsion pair (T ,F) for modΛ
since X is a torsion-free class for Mod Λ. It is straightforward to check that
the maps (T ,F) 7→ T and T 7→ (T ,F) are mutually inverse. �

1.2. Perpendicular categories. Our next aim is to show that ⊥M is
closed under taking products for a pure-injective module M with idM ≤ 1.
For this we need to assume that Λ is left artinian. We start with some
preparations.

Lemma 1.7. Let F ⊆ modΛ be a subcategory which is closed under taking
subobjects and extensions. Let T be the subcategory formed by all M ∈
modΛ satisfying Hom(M,F) = 0. Then (T ,F) is a torsion pair for modΛ.

Proof. Each finitely generated module M has a minimal submodule tM such
that M/tM belongs to F . For this we use that M is artinian and that F is
closed under subobjects. The submodule tM belongs to T since F is closed
under extensions. �

Each torsion-free class in ModΛ is closed under taking products. We have
therefore the following consequence:

Proposition 1.8. Let Λ be left artinian. Suppose X ⊆ Mod Λ is a subcate-
gory which is closed under taking subobjects, extensions, and filtered colimits.
Then X is closed under taking products.

Proof. Let F = X ∩ modΛ. Then we have X = lim−→F by Lemma 1.1,
which is a torsion-free class by Lemma 1.7 and 1.2. Thus X is closed under
products. �
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Our application about perpendicular categories is based on the following
well-known fact:

Lemma 1.9. Let {Mi} be a filtered system of modules and N be a pure-
injective module. Then Ext(lim−→Mi, N) ∼= lim←−Ext(Mi, N).

Corollary 1.10. Let Λ be left artinian. Suppose M is a pure-injective mod-
ule of injective dimension at most 1. Denote by F the class of finitely gen-
erated modules in ⊥M . Then ⊥M = lim−→F . Moreover, ⊥M is closed under
taking products.

1.3. Complements. Next we discuss when a selforthogonal module T has
a complement T ′ such that T q T ′ is a cotilting module. This problem has
been studied before, for instance in [1]. Here we use Corollary 1.10 and get
some new result. We need the following well-known lemma which is based
on a construction due to Bongartz:

Lemma 1.11. Let T be a selforthogonal module and Q be an injective co-
generator. Suppose ⊥T is closed under taking products. Then there exists a
module T ′ having the following properties:

(1) There exists an exact sequence 0 → Tα → T ′ → Q → 0 for some
cardinal α.

(2) T q T ′ is selforthogonal and ⊥T = ⊥(T q T ′).
(3) If T is pure-injective, then T ′ is pure-injective.

Proof. We sketch the proof for the convenience of the reader. The crucial
idea is that of a universal extension [4, 8]. That is, take the product of all
exact sequences in Ext(Q,T ) and let α = card(Ext(Q,T )). Now take the
pullback along the codiagonal map Q→ Qα, to obtain a sequence

0 −→ Tα −→ T ′ −→ Q −→ 0.

Clearly, ⊥T = ⊥(T q T ′). The construction of the universal extension im-
plies Ext(T ′, T ) = 0. Thus T q T ′ is selforthogonal.

The last assertion follows from the following fact: A module M satisfying
(C1)-(C3) in the definition of a cotilting module is pure-injective if and only
if ⊥M is closed under taking filtered colimits and pure submodules; see
Proposition 5.7 in [16]. �

Corollary 1.12. Let Λ be left artinian. Suppose T is a pure-injective mod-
ule of injective dimension at most 1 satisfying Ext(T, T ) = 0. Then there
exists a module T ′ such that T q T ′ is a cotilting module.

1.4. A generalization. The correspondence in Theorem 1.5 can be gen-
eralized as follows: Let A be a locally noetherian Grothendieck category,
that is, A is a Grothendieck category and has a generating set of noetherian
objects. Recall that a set G of objects generates an additive category C if for
every nonzero map f in C we have Hom(G, f) 6= 0 for some G ∈ G. Next we
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recall that an object X in A is pure-injective if every pure exact sequence
ε : 0 → X → Y → Z → 0 splits. Here, ε is pure exact if Hom(A, ε) is an
exact sequence for every noetherian object A in A. Finally, we say that an
object T in A is a cotilting object if T satisfies the conditions (C1)-(C4).

Theorem 1.13. Let A be a locally noetherian Grothendieck category and
denote by noethA the full subcategory formed by all noetherian objects.
There exists a bijection between:

– Torsion pairs (T ,F) for noethA such that F generates noethA, and
– equivalence classes of cotilting objects.

A cotilting object T corresponding to a torsion pair (T ,F) satisfies

ProdT = (lim−→F) ∩ (lim−→F)⊥ and ⊥T ∩ noethA = F .

Proof. The proof is essentially the same as that of Theorem 1.5. However,
it remains to explain the analogue of the duality D between left and right
modules which is used in the proof of Lemma 1.3. To this end let C =
noethA and denote by (Cop,Ab) the category of additive functors F : Cop →
Ab. The functor

A −→ (Cop,Ab), X 7→ Hom(−, X)|C ,
identifies A with the full subcategory of left exact functors Cop → Ab; see
[12]. The duality D = HomZ(−, Q/Z) induces a duality between (Cop,Ab)
and (C,Ab) via the assignment F 7→ D ◦F . It is straightforward to check
that the proof of Lemma 1.3 works with this duality. �

2. Selforthogonal modules.

Throughout the rest of this paper we assume that Λ is a tame hereditary
algebra. We refer to Ringel’s Rome notes [18] for basic facts about the
representation theory of tame hereditary algebras. In this section we discuss
pure-injective Λ-modules which are selforthogonal. A basic tool are the
following Auslander-Reiten formulas:

D Ext(X, M) ∼= Hom(M, τX) and Ext(M,X) ∼= D Hom(τ−1X, M)

which are valid for every Λ-module M and every finitely generated module
X; see [10]. Here, τX denotes the dual of transpose of X.

2.1. Pure-injectives. Let Ind Λ denote the set of isoclasses of indecompos-
able pure-injective Λ-modules and let indΛ be the set of finitely generated
objects in IndΛ. The classification of indecomposable pure-injectives is well-
known:

IndΛ = indΛ ∪ {S∞ | S ∈ P} ∪ {S−∞ | S ∈ P} ∪ {G}.
The category of finitely generated modules decomposes into three subcate-
gories: The preprojectives P, the preinjectives I, and the regular modules
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R. The category R is abelian and a Λ-module is called quasi-simple if it is a
simple object in R. The following picture indicates the direction of nonzero
maps between indecomposable pure-injectives:

G

  B
BB

BB
BB

B

S−∞

==zzzzzzzz

!!D
DD

DD
DD

D
S∞

  A
AA

AA
AA

A

P

==zzzzzzzz
// R

>>||||||||
// I.

Proposition 2.1. Let M be a pure-injective module. Then there exists a
family of indecomposable pure-injective modules (Mi)i∈I such that M is a
pure-injective envelope of

∐
i∈I Mi. The Mi are unique up to isomorphism;

they are, up to isomorphism, precisely the indecomposable direct summands
of M .

Proof. See Proposition 8.33 and Theorem 8.53 in [15]. �

The description of the pure-injectives has some useful consequences.

Lemma 2.2. Let M be a pure-injective module. then ⊥M =
⋂

N
⊥N where

N runs through all indecomposable direct summands of M .

Proof. This follows immediately from Proposition 2.1. Write M = E(
∐

i Mi)
as the pure-injective envelope of a coproduct of indecomposables. Then we
have

⋂
i

⊥Mi = ⊥

(∏
i

Mi

)
⊆ ⊥M ⊆

⋂
i

⊥Mi

since M is a direct summand of
∏

i Mi. �

The following result simplifies the description of the pure-injective Λ-
modules which are selforthogonal:
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Corollary 2.3. For a pure-injective module M the following are equivalent:

(1) Ext(M,M) = 0;
(2) Ext(M ′,M ′′) = 0 for all indecomposable direct summands M ′,M ′′ of

M ;
(3) M is selforthognal, that is, Ext(Mα,M) = 0 for every cardinal α.

Proof. We know from Corollary 1.10 that ⊥M is closed under taking prod-
ucts. Writing M = E(

∐
i Mi) as the pure-injective envelope of a coproduct

of indecomposables, we see that ⊥M contains M since M is a direct sum-
mand of

∏
i Mi. �

2.2. Extensions between indecomposables. We construct non-split ex-
tensions between some indecomposable pure-injectives.

Lemma 2.4. Let S be a quasi-simple module, then there is a (non-split)
exact sequence

0 −→ (τS)−∞ −→
∐

G −→ S∞ −→ 0.(2.1)

Proof. Let r ∈ N be the minimal number such that τ rS = S. There is a
system of exact sequences

0 // Sr
// Sr+1

//

��

S1
//

��

0

0 // Sr
// Sr+2

//

��

S2
//

��

0

0 // Sr
// Sr+3

//

��

S3
//

��

0

...
...

...

which induces an exact sequence 0 → Sr → S∞
f→ S∞ → 0 with Ker fn =

Snr for all n ∈ N. It is well-known that the inverse limit of the system

· · · f−→ S∞
f−→ S∞

f−→ S∞
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is a coproduct of copies of G. Using the formula Snr = (τS)−nr, we obtain
the following system of exact sequences:

...

��

...
f

��

...

0 // (τS)−3r
//

��

S∞
f3

//

f

��

S∞ // 0

0 // (τS)−2r
//

��

S∞
f2

//

f

��

S∞ // 0

0 // (τS)−1r
// S∞

f1

// S∞ // 0.

Take inverse limits to obtain the required sequence. It is exact because the
system is surjective, and thus the Mittag-Leffler condition (see e.g., [19]) is
satisfied. �

Lemma 2.5. Let M be an indecomposable pure-injective module which is
not finitely generated.

(1) Ext(M,Q) 6= 0 for every nonzero preprojective module Q.
(1) Ext(J,M) 6= 0 for every nonzero preinjective module J .

Proof. First we assume M = S∞. It is well-known that for any preprojective
module Q there is a nonzero map to a module in every tube. Thus there
is a nonzero map τ−1Q → S′r → S′∞ for some quasi-simple S′ ∼ S. The
Auslander-Reiten formula implies Ext(S′∞, Q) 6= 0. Suppose S = τnS′.
There exists an exact sequence 0 → Sn → S∞ → S′∞ → 0 which induces
a monomorphism Ext(S′∞, Q) → Ext(S∞, Q) since Hom(Sn, Q) = 0. Thus
Ext(S∞, Q) 6= 0.

Now let J be preinjective and suppose there is a nonzero map S′r → τJ for
some quasi-simple S′ ∼ S. We find an epimorphism Sn → S′r for some n ∈ N.
Thus Ext(J, Sn) 6= 0 by the Auslander-Reiten formula. The exact sequence
0 → Sn → S∞ → (τ−nS)∞ → 0 induces a monomorphism Ext(J, Sn) →
Ext(J, S∞) since Hom(J, (τ−nS)∞) = 0. Thus Ext(J, S∞) 6= 0.

The statements for S−∞ follow from the statements for S∞ by duality.
More precisely, we have S−∞ = D((DS)∞), and we combine this fact with
the formula Ext(M,DN) ∼= Ext(N,DM) which is valid for all modules M
and N .

It remains to consider the generic module G. This case reduces to the
previous cases since the exact sequence (2.1) induces monomorphisms
Ext(S∞, Q)→ Ext(

∐
G, Q) and Ext(J, (τS)−∞)→ Ext(J,

∐
G). �

Next we compute the perpendicular categories for Prüfer modules and
the generic module.
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Lemma 2.6. Let M be the generic or a Prüfer module. Then ⊥M =
lim−→(P ∪R).

Proof. There is a torsion pair (I,P∪R) for the category of finitely generated
Λ-modules. We have that P and R belong to ⊥M , whereas I ∩ ⊥M = 0 by
Lemma 2.5. Thus ⊥M = lim−→(P ∪R) by Corollary 1.10. �

We need to know when Ext(M,N) vanishes for indecomposable pure-
injective modules M and N .

Lemma 2.7. Let M and N be indecomposable pure-injective Λ-modules
which are not finitely generated. Then Ext(M,N) 6= 0 if and only if there
are quasi-simples S ∼ S′ in P such that M ∼= S∞ and N ∼= S′−∞.

Proof. Suppose first that S ∼ S′ are quasi-simples in P. The exact sequence
(2.1) induces an injective map

Hom(τS∞, S′∞) −→ Ext(τS∞, τS′−∞) ∼−→ Ext(S∞, S′−∞)

since Hom(S∞, G) = 0. Thus Ext(S∞, S′−∞) 6= 0 follows since there is a
nonzero map τS∞ → S′∞.

Now suppose N =G or N = S∞ for some quasi-simple S. Then Ext(M,N)
= 0 by Lemma 2.6 since S′∞ ∈ lim−→R and S′−∞ ∈ lim−→P for each quasi-simple
S′. For M = G, use the exact sequence (2.1).

Finally, let N = S−∞. We have Ext(S′−∞, N) = 0 for each quasi-simple
S′ since P ⊆ ⊥N . Now assume S′ 6∼ S. Then Ext(τ iS′, S−∞) = 0 for all
i ≥ 0 by Lemma 4 in [10]. Therefore Ext(S′n, S−∞) = 0 for all n ≥ 1. Thus
Ext(S′∞, N) ∼= lim←−Ext(S′n, N) = 0. Using again the exact sequence (2.1),
we see that Ext(G, N) = 0. �

We need also a statement which involves finitely generated modules.

Lemma 2.8. Let S and S′ be quasi-simples such that S 6∼ S′. Then
Ext(Sn, S′m) = 0 for all n, m ∈ N ∪ {−∞,∞}.

Proof. Observe that for each n ∈ N the module Sn is a submodule of S∞
and a quotient of S−∞. Now the assertion follows from Lemma 2.7 since
Ext(−,−) is right exact. �

3. Cotilting modules.

3.1. A characterization. In this section we prove our main result about
cotilting modules for tame hereditary algebras. First we show that cotilting
modules are precisely the maximal objects among all selforthogonal modules.
This observation leads to some useful characterizations.
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Proposition 3.1. The following are equivalent for a pure-injective Λ-modu-
le T :

(1) T is a cotilting module;
(2) T is maximal selforthogonal.

Proof. (1)⇒ (2): First observe that that ⊥T ⊆ CogenT . To see this, denote
by Q an injective cogenerator for ModΛ and let X be a module in ⊥T . There
is a monomorphism X → Qα. Consider the pullback

0 // T ′ // Y //

��

X //

��

0

0 // T ′ // T ′′ // Qα // 0

with T ′, T ′′ in ProdT . The upper sequence splits and we obtain a monomor-
phism X → T ′′.

Now assume X is a module such that T qX is selforthogonal. Since X
is in CogenT , we can choose a left ProdT -approximation of X, to get an
exact sequence

ξ : 0 −→ X −→ T ′ −→ Y −→ 0
that remains exact when one applies Hom(−, T ) to it. Therefore one gets
that Y is also in ⊥T . Then there is an exact sequence

0 −→ Y −→ T ′′ −→ Z −→ 0

with T ′′ ∈ ProdT . We apply Hom(−, X) to this sequence and obtain
Ext(Y, X) = 0 since id X ≤ 1. Thus ξ splits. This means X belongs to
ProdT , so T is maximal selforthogonal.

(2) ⇒ (1): First observe that ⊥T is closed under taking products by
Corollary 1.10. Now apply Lemma 1.11. �

Having shown that cotilting modules are maximal selforthogonal modules,
we can apply our results about selforthogonal modules. First we separate
the finitely generated cotilting modules from those having indecomposable
summands which are not finitely generated.

Proposition 3.2. Let T be a cotilting module with a finitely generated pre-
projective or preinjective direct summand. Then T is equivalent to a finitely
generated cotilting module.

Proof. Apply Lemma 2.5. �

Next we introduce for each tube T in the category of regular modules the
T -component of a module and use this to characterize the cotilting modules.

Let X = P/∼ be the set of equivalence classes of quasi-simples. Note
that we obtain a decomposition R =

∐
σ∈X Tσ of R into connected abelian

categories, where each quasi-simple S belongs to Tσ for σ = [S]. The cate-
gories Tσ are usually called tubes and cardσ is called the rank of the tube
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Tσ. We say that a pure-injective module M belongs to a tube T if every
indecomposable direct summand of M is of the form Sn with S ∈ T and
n ∈ N ∪ {−∞,∞}. The subcategory formed by all modules belonging to
T is denoted by T . Given a pure-injective module M and a tube T , we
define the T -component MT of M to be a maximal direct summand of M
belonging to T . Note that MT is unique up to isomorphism.

Proposition 3.3. Let T be a pure-injective module without a nonzero fini-
tely generated preprojective or preinjective direct summand. Then the fol-
lowing are equivalent:

(1) T is a cotilting module;
(2) each TT is maximal selforthogonal among all modules in T .

Proof. (1) ⇒ (2): We know from Proposition 3.1 that T is maximal self-
orthogonal. In particular, each TT is selforthogonal. Assume there is a tube
T such that TT is not maximal selforthogonal. Then there exists X in T
with X not in ProdTT such that TT q X is selforthogonal. The module
X has no extensions with the direct summands of T belonging to different
tubes, by Lemma 2.8. It follows from Corollary 2.3 that T qX is selforthog-
onal in Mod Λ, since T has no preprojective or preinjective summands. This
is a contradiction.

(2) ⇒ (1): First observe that T has an indecomposable direct summand
which is not finitely generated. This follows from the fact that for each tube
T of rank 1, TT has no finitely generated summands.

Next we need to show that T is selforthogonal. By Corollary 2.3, it
is sufficient to show Ext(T ′, T ′′) = 0 for indecomposable direct summands
T ′, T ′′ of T . If T ′ and T ′′ belong to different tubes, then it follows from
Lemma 2.8 that Ext(T ′, T ′′) = 0. If they belong to the same tube, then
Ext(T ′, T ′′) = 0 by the assumption on TT .

Assume T is not a cotilting module. Using Lemma 1.11, we find a pure-
injective module X such that T q X is a cotilting module. Choose an
indecomposable direct summand X ′ of X which does not belong to Prod T .
It follows from Proposition 3.2 that X ′ is neither preprojective nor preinjec-
tive since T has an indecomposable summand which is not finitely generated.
Thus X ′ belongs to a tube T . It follows that TT q X ′ is a selforthogonal
module in T . A contradiction. �

Remark 3.4. Given a tube T , one can show that the modules in T are
precisely the filtered limits and the filtered colimits of modules in T .

3.2. Selforthogonal modules in tubes. Fix a tube T of rank r. We say
that a pure-injective module M belonging to T is of Prüfer type if M has no
adic module as a direct summand. Analogously, M is of adic type if M has
no Prüfer module as a direct summand. Next we define a bijection M 7→M∨
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between the modules of Prüfer and adic type in T . To this end number the
quasi-simples S(1), . . . , S(r) in T such that τ jS(i) = S(i+j) for i, j ∈ Zr. If
M = S(i)n is indecomposable, let M∨ = S(−i)−n. If M = E(

∐
i Mi) with

all Mi indecomposable, let M∨ = E(
∐

i M
∨
i ).

Lemma 3.5. The map M 7→M∨ induces a bijection between the modules of
Prüfer type and the modules of adic type in T . Moreover, M is selforthogonal
if and only if M∨ is selforthogonal.

Proof. It follows immediately from the definition that M∨∨ ∼= M for all
M ∈ T . Therefore M 7→ M∨ induces a bijection between the modules of
Prüfer and adic type.

The rest follows from Lemma 3.6 given below. In addition, we use
Corollary 2.3 which says that a pure-injective module M is selfortogonal
if Ext(M ′,M ′′) = 0 for all indecomposable direct summands M ′,M ′′ of
M . �

Lemma 3.6. Let i, j ∈ Zr and n, m ∈ N∪{∞}. Then Ext(S(i)n, S(j)m) =
0 if and only if Ext(S(−j)−m, S(−i)−n) = 0.

Proof. First observe that S−n = D((DS)n) for any quasi-simple S. The
assertion follows from the formula Ext (DM, DN) ∼= Ext (N, D2M)
which is valid for all modules M and N ; it is a consequence of the for-
mula Ext(M,DN) ∼= Ext(N,DM). In addition, one uses that D2(S∞) is a
coproduct of copies of S∞. �

Each tube T gives rise to a locally finite Grothendieck category lim−→T .
Using Theorem 1.13, we can classify its cotilting objects and get a description
of the selforthogonal modules of Prüfer type. This leads to the following
result which is taken from [6]:

Proposition 3.7. Let M be a selforthogonal module of Prüfer type belong-
ing to a tube T . Then M is maximal among all selforthogonal modules in
T if and only if the number of indecomposable non-isomorphic direct sum-
mands of M equals the rank of T .

Proposition 3.7 extends to arbitrary selforthogonal modules belonging to
tubes.

Corollary 3.8. Let M be a selforthogonal module belonging to a tube T .
Then M is maximal among all selforthogonal modules in T if and only if
the number of indecomposable non-isomorphic direct summands of M equals
the rank of T .

Proof. Each selforthogonal module is of Prüfer or of adic type. This follows
from Lemma 2.7. Now use Proposition 3.7 and Lemma 3.5. �
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3.3. The main theorem. We are now in the position to prove our main
result about tame hereditary algebras.

Theorem 3.9. Let Λ be a tame hereditary algebra and let T be a pure-
injective Λ-module.

(1) Suppose all indecomposable direct summands are finitely generated.
Then T is a cotilting module if and only if the number of non-isomor-
phic indecomposable direct summands of T equals the number of simple
Λ-modules and Ext(T ′, T ′′) = 0 for all T ′, T ′′ ∈ indec T .

(2) Suppose there is an indecomposable direct summand which is not fini-
tely generated. Then T is a cotilting module if and only if the following
hold:
– Each indecomposable direct summand of T is either generic or of

the form Sn for some S ∈ P and some n ∈ N ∪ {−∞,∞}.
– For each tube T , let IT be the set of non-isomorphic indecomposable

direct summands of T which are of the form Sn for some n ∈ N ∪
{−∞,∞} and some quasi-simple S ∈ T . Then card IT equals the
rank of T and Ext(T ′, T ′′) = 0 for all T ′, T ′′ ∈ IT .

(3) Two cotilting modules T1 and T2 are equivalent if and only if indec(T1q
G) = indec(T2 qG).

Proof. (1) This is a well-known result from [4].
(2) Assume first T is a cotilting module with a summand which is not

finitely generated. Then there are no preprojective or preinjective direct
summands, by Proposition 3.2. It follows that all direct summands of T
are either generic or of the form Sn for some quasi-simple S ∈ P and some
n ∈ N ∪ {−∞,∞}. Now fix a tube T and consider the T -component TT
of T . Proposition 3.3 implies that TT is maximal selforthogonal among all
modules in T . Thus card IT equals the rank of T by Corollary 3.8.

Suppose now T is a module such that each direct summand of T is ei-
ther generic or of the form Sn for some quasi-simple S ∈ P and some
n ∈ N ∪ {−∞,∞}. Suppose also that card IT equals the rank of T and
Ext(T ′, T ′′) = 0 for all T ′, T ′′ ∈ IT . It follows from Corollary 2.3 that TT
is selforthogonal for each tube T . Moreover, Corollary 3.8 implies that TT
is maximal selforthogonal among all modules in T . Thus T is a cotilting
module by Proposition 3.3.

(3) Recall the well-known fact that any finitely generated indecomposable
module X arises as a direct summand of a product

∏
i Mi if X is a direct

summand of one of the Mi. It is therefore sufficient to consider statement
(3) in case T1 and T2 are both not finitely generated. All one needs to
show is that the generic module G is the only indecomposable module not
in indec T that can occur in ProdT , for a cotilting module T which is not
finitely generated. Let T1 ∼ T2 and suppose M is in indec T2, but not in
indec T1. Then T = M q T1 is cotilting. Assume M is not generic. Then
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there is a tube T such that M is in T . It follows that TT is not selforthogonal.
This contradiction shows M is generic. �

For the Kronecker algebra, there are no finitely generated selforthogo-
nal regular modules. We obtain therefore the following description of all
cotilting modules, up to equivalence:

Corollary 3.10. Let T be a cotilting module over a Kronecker algebra.
Then T is equivalent to one of the following:

– A finitely generated preinjective cotilting module,
– a finitely generated preprojective cotilting module,
– a cotilting module of the form(∐

S∈P′

S∞

)
q E

( ∐
S∈P′′

S−∞

)
for some partition P′ ∪ P′′ of P.

4. The maximal selforthogonal objects in tubes.

Let us complete the characterization of the cotilting modules over a tame
hereditary algebra. To this end we describe the maximal selforthogonal mod-
ules belonging to a tube. In [6], a complete combinatorial description of the
maximal selforthogonal objects of Prüfer type is given. Using Lemma 3.5,
one also gets a description of the maximal selforthogonal objects of adic
type.

Let T be a tube of rank r in ModΛ. Let S(1), S(2), . . . , S(r) be the quasi-
simples, ordered such that τ jS(i) = S(i + j) for i, j ∈ Zr. The ray vector of
a module M in T is an r-tuple (a1, a2, . . . , ar) of nonnegative integers such
that M has exactly ai indecomposable direct summands with quasi-socle
S(i).

Proposition 4.1. Let T be a tube of rank r. For each r-tuple (a1, a2, . . . , ar)
of nonnegative integers with

∑
i ai = r, there is exactly one maximal self-

orthogonal object T of Prüfer type in T with this m-tuple as its ray vector.

We refer to [6] for the proof; it also gives an algorithm how to find a
maximal selforthogonal object with a given ray-vector.

Given a module M in T , the coray vector of M is an r-tuple (b1, b2, . . . , br),
where bi is the number of indecomposable direct summands in M with quasi-
top isomorphic to S(i).

Proposition 4.2. Let T be a tube of rank r. For each r-tuple (b1, b2, . . . , br)
of nonnegative integers with

∑
i bi = m, there is exactly one maximal self-

orthogonal object T of adic type in T , with this r-tuple as its coray vector.
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Proof. The correspondence M 7→ M∨ assigns to a maximal selforthogonal
object of Prüfer type and with ray vector (a1, a2, . . . , ar), a maximal self-
orthogonal object of adic type and with coray vector (ar−1, ar−2, . . . , ar). �
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