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We consider normal Markovian cocycles on a von Neu-
mann algebra which are adapted to a Fock filtration. Ev-
ery such cocycle k which is Markov-regular and consists of
completely positive contractions is realised as a conditioned
∗-homomorphic cocycle. This amounts to a stochastic gener-
alisation of a recent dilation result for norm-continuous nor-
mal completely positive contraction semigroups. To achieve
this stochastic dilation we use the fact that k is governed by
a quantum stochastic differential equation whose coefficient
matrix has a specific structure, and extend a technique for
obtaining stochastic flow generators from Markov semigroup
generators, to the context of cocycles. Number/exchange-free
dilatability is seen to be related to locality in the case where
the cocycle is a Markovian semigroup. In the same spirit
unitary dilations of Markov-regular contraction cocycles on
a Hilbert space are also described. The paper ends with a
discussion of connections with measure-valued diffusion.

0. Introduction.

Let (Pt)t≥0 be an ultraweakly continuous completely positive contraction
semigroup on a von Neumann algebra M. A natural problem is to seek
a dilation of P. This has various interpretations (see e.g., [EvL], [Vin],
[Küm], [Sa1], [Bha]); the following is a minimum: A family (jt)t≥0 of
normal ∗-homomorphisms of M into a larger algebra N , equipped with a
conditional expectation E : N → M, such that E ◦ jt = Pt. One usually
further requires j to satisfy a semigroup law. From a physical point of view
it is in many situations appropriate to choose the algebra N , to be of the
form M⊗ Bk where Bk = B(Γk) and Γk is the symmetric Fock space over
L2(R+; k) for some Hilbert space k (see e.g., [AAFL]). In this case the
dilation is of Evans-Hudson type ([EH1]) if E is chosen to be the vacuum
expectation and if j satisfies a quantum stochastic (QS) differential equation
of the form

djt = jt ◦ φα
β dΛβ

α(t), j0(a) = a⊗ 1,(0.1)
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in which Λ denotes the matrix of fundamental QS integrators ([HuP], [Par],
[Mey]) and φ is the coefficient matrix of a bounded sesquilinear map k̂×k̂→
B(A), both defined with respect to some basis of the noise dimension space
k. This kind of stochastic dilation satisfies a cocycle relation (with respect
to the shift of the quantum noise) rather than a semigroup law, however
combining j with the shift does result in a semigroup on M⊗ Bk. In the
recent paper [GS] it is shown that an E-H dilation exists when the semigroup
P has bounded generator. A coordinate-free formulation of QS calculus is
given in [GS], using Hilbert W ∗-modules, and this copes well with the fact
that the noise dimension space k required for the dilation may in general be
nonseparable.

This dilation picture has the following natural generalisation: Let B0
J =

B(ΓJ,k0) where ΓJ,k0 is the symmetric Fock space over L2(J ; k0) for a subin-
terval J of R+ and a Hilbert space k0, writing simply B0 when J = R+. Then
B0 carries the filtration of subalgebras (B0

[0,t[)t≥0 and the semigroup of shifts
σ = (σt : B0 → B0

[t,∞[ ⊂ B
0)t≥0. Suppose that k = (kt :M→M⊗B0)t≥0 is

an ultraweakly continuous family of completely positive (CP) normal con-
tractions which is adapted to the filtration and is a cocycle with respect to
the semigroup of shifts:

ks+t = k̂s ◦ σs ◦ kt, k0(a) = a⊗ 1,

where k̂s is the normal extension of ks to a map M⊗ B0
[s,∞[ → M⊗ B

0

([LW2]). Is there a Hilbert space k ⊃ k0 and a ∗-homomorphic cocycle
j = (jt : M → M ⊗ Bk)t≥0 satisfying a QS differential equation of the
form (0.1), such that E0 ◦ jt = kt where E0 is now the conditional expecta-
tion which averages out the quantum noise provided by the supplementary
Hilbert space k	k0? In other words, subject to regularity, can every CP con-
traction cocycle be realised as a conditioned ∗-homomorphic cocycle? Note
that averaging out all of the noise from such a Markovian cocycle yields an
ultraweakly continuous CP contraction semigroup (Pt = E ◦ kt)t≥0, called
the Markov semigroup of the cocycle.

The unity of these ideas is further brought out by the recent paper [LW2]
where, following [Bra], every such cocycle k which is Markov-regular (that
is, whose Markov semigroup P is norm-continuous) is seen to satisfy a QS
differential equation of the form (0.1). In the deterministic case the cocy-
cle reduces to a semigroup and the equation is dPt = Pt ◦ θ0

0 dt, simply
expressing the fact that the semigroup has bounded generator θ0

0. We are
therefore addressing a stochastic generalisation of the dilation problem for
CP contraction semigroups.

In the present paper we give an affirmative answer to the dilation prob-
lem for normal Markov-regular CP contraction cocycles on a von Neumann
algebra which are adapted to the Fock filtration, thus extending the results
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of [GS]. The construction is based on the infinitesimal structure of CP flows
obtained in [LiP] and [LW1], combined with the techniques introduced in
[GS] to obtain a stochastic flow generator from the generator of a CP con-
traction semigroup. We also consider the dilation problem for Markovian
contraction cocycles on a Hilbert space. Again every such cocycle that is
Markov-regular is governed by a QS differential equation, this time of the
Hudson-Parthasarathy type:

dXt = XtF
α
β dΛβ

α(t), X0 = 1,(0.2)

for a matrix F of bounded operators on the Hilbert space ([LW2], [HuL]);
moreover the structure of the matrix is once again completely characterised
([LW1], [Fag], [Mo2]).

The plan of the paper is as follows: In Section 1 the basic terminology
of quantum stochastic calculus, flows and cocycles is reviewed, and some
key results are recalled. Section 2 reviews a characterisation of nonnegative
(2 × 2) operator matrices that is used in the construction of the dilations,
and in Section 3 the structure theorems for CP, and CP contraction, flow
generators are refined to a form which facilitates stochastic dilation. The
∗-homomorphic dilations of CP contraction cocycles on a von Neumann al-
gebra, and the unitary dilations of contraction cocycles on a Hilbert space,
are constructed in Sections 4 and 6 respectively. In Section 5 CP contrac-
tion cocycles which have ∗-homomorphic stochastic dilations involving no
number/exchange processes are characterised, and the connection with lo-
cality for quantum dynamical semigroups is discussed. The final section
contains a discussion of how these ideas might be applied to the theory of
measure-valued diffusions.

Dilation for CP flows in a rather different sense arise in the work of
Belavkin ([Be2]). There the question raised is one of implementing a CP
flow k by conjugation with a solution of a Hudson-Parthasarathy equation of
the form (0.2): kt(a) = Xt(a⊗ 1)X∗

t — the flow being on the full algebra of
operators on a Hilbert space. In this connection the implementation of CP
flows on a von Neumann algebra, by inner perturbations of a ∗-homomorphic
flow (in the spirit of [EH2]), is treated elsewhere ([GLW]).

1. Notation, terminology and background results.

The symmetric Fock space Γ(H) over a Hilbert space H enjoys the exponen-
tial property Γ(H1 ⊕ H2) = Γ(H1) ⊗ Γ(H2), where the natural isomorphism
identifying the two spaces is most economically described in terms of expo-
nential vectors: ε(f1, f2) ←→ ε(f1) ⊗ ε(f2) ([Par]). For a Hilbert space k
and subinterval J of R+ we denote Γ(L2(J ; k)) by ΓJ,k, the algebra of all
bounded operators on ΓJ,k by BJ,k and the vacuum vector ε(0) in ΓJ,k by ΩJ,k,
abbreviating these to Γk,Bk and Ωk when J = R+. Two instances of the ex-
ponential property that will be important for us are when k is an orthogonal
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sum of Hilbert spaces k0 and k1 and when R+ is a disjoint union of intervals
J1 and J2. Thus Γk = Γk0 ⊗ Γk1 ,Bk = Bk0 ⊗ Bk1 and Bk0 = Bk0 ⊗ 1 ⊂ Bk;
Γk = ΓJ1,k ⊗ ΓJ2,k,Bk = BJ1,k ⊗ BJ2,k and BJ1,k = BJ1,k ⊗ 1 ⊂ Bk (where
1 denotes the relevant identity operator) are all identifications that will be
invoked without comment.

Let A be a unital C∗-algebra acting on an initial Hilbert space h. In
[LW1] and [LW2] the noise dimension space k is assumed to be separable,
the quantum stochastic calculus with infinite degrees of freedom developed
there being that initiated by Mohari and Sinha ([MoS]). An orthonormal
basis (ei)i≥1 of k is fixed, and the matrix of quantum stochastic integrators
[Λα

β ]α,β≥0 is defined in terms of these vectors. They fall into four distinct
classes: Λ0

0 is the time component; Λi
0 = Ai, the ith annihilation component

(i ≥ 1); Λ0
j = A†

j , the jth creation component (j ≥ 1); and Λi
j = N i

j ,
the (i, j)th number/exchange (also called gauge or preservation) component
(i, j ≥ 1). The generator of a quantum stochastic flow is then a (possibly
infinite) matrix θ = [θα

β ] with entries in B(A). We write MD(B(A)), where

D = 1 + dim k, for the collection of these mapping matrices, and k̂ for the
Hilbert space C⊕ k. The Hilbert spaces h⊗ k̂ and ⊕γ≥0h may be identified
by use of the fixed basis (adding e0 = 1 ∈ C to give a basis of k̂). If θ is the
stochastic generator of a CP contraction flow then the θα

β are components,
with respect to this basis, of a bounded linear map, also denoted θ, from A
into A′′ ⊗ B(k̂) ([LW1], Theorem 5.2). Whenever we use this identification
and introduce components we shall use the Einstein summation convention
and sum over repeated indices; greek indices running from 0, roman indices
from 1.

This global boundedness property of CP contraction flow generators con-
nects with the approach in [GS] where QS calculus is reformulated in a
coordinate free manner using Hilbert W ∗-modules. The modules encoun-
tered in [GS] are all of the form M⊗ B(k0; k1), for Hilbert spaces k0 and
k1, and von Neumann algebra M. Such a module may be characterised as
the set {T ∈ B(h ⊗ k0; h ⊗ k1) : (a′ ⊗ 11)T = T (a′ ⊗ 10) ∀a′ ∈ M′}, and
coincides with the closure ofM⊗alg.B(k0; k1) in the weak, ultraweak, strong
and ultrastrong topologies. We denote the topological dual of k by k∗ and,
since B(C; k) is naturally identified with k, we writeM⊗k forM⊗B(C; k).

Globally bounded mapping matrices on a C∗-algebra A will be written in
block matrix form:

θ =
[
τ α
χ ν − ι

]
(1.1)

where τ ∈ B(A), α : A → A′′ ⊗ k∗, χ : A → A′′ ⊗ k and ν, ι : A → A′′ ⊗B(k)
are such that θ ∈ MD(B(A)). Throughout the paper ι denotes the map
ι(a) = a ⊗ 1k for the relevant k, and θ̂ denotes the transformed mapping
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matrix

θ̂ =
[
τ α
χ ν

]
.(1.1)′

For a subspace k0 of the noise dimension space k, the vacuum conditional
expectation E0 : A′′ ⊗ Bk → A′′ ⊗ Bk0 is given by E0[c] = E∗cE where E is
the isometry h⊗ Γk0 3 ξ 7→ ξ ⊗ Ωk⊥0

∈ h⊗ Γk. When k0 = {0} it is denoted
simply by E.

Processes on a C∗-algebra A with separable noise dimension space k are
defined in generality in [LW1]. Here, apart from in Theorem 3.1, we are
exclusively concerned with contraction processes, that is pointwise weakly
measurable families of contractions k = (kt)t≥0 which are adapted to the
Fock filtration: kt : A → A′′⊗B[0,t[,k⊗ 1 ⊂ A′′⊗Bk. When A is a von Neu-
mann algebra, k is called normal if each map kt is normal. Fock-adapted
Markovian cocycles k on a C∗-algebra A are defined in [LW2], following
Bradshaw who defined normal ∗-homomorphic cocycles on a von Neumann
algebra by (1.2) below ([Bra]). They are required to satisfy a Feller property
which includes invariance of the algebra under the maps Pt = E ◦kt (t ≥ 0),
which comprise the Markov semigroup of k. A Markovian CP contraction
cocycle is called Markov-regular when its Markov semigroup is norm con-
tinuous. For normal CP contraction processes k on a von Neumann algebra
M, the cocycle condition reads

ks+t = k̂s ◦ σs ◦ kt (s, t ≥ 0),(1.2)

where σs is the right shift M ⊗ Bk → M ⊗ B[s,∞[,k ⊂ M ⊗ Bk, and k̂s

is the normal extension of the map M⊗alg. B[s,∞[,k → M ⊗ Bk given by
a ⊗ b 7→ ks(a)(1 ⊗ b). In the case where A is a von Neumann algebra, k is
one-dimensional and k is normal, unital and ∗-homomorphic, the following
result was established by Bradshaw ([Bra]). It has been extended to a class
of such cocycles whose Markov semigroup is only assumed to be ultraweakly
continuous in [AcM].

Theorem 1.1 ([LW2]). Let k be a CP contraction process on a unital C∗-
algebra A, with separable noise dimension space k. Then the following are
equivalent :

(i) k is a Markov-regular cocycle.
(ii) k weakly satisfies a QS differential equation of the form

dkt = kt ◦ θα
β dΛβ

α(t), k0(a) = a⊗ 1(1.3)

for a mapping matrix θ ∈ MD(B(A)).
In this case k satisfies the equation strongly and θ defines a (completely)
bounded operator A → B(h⊗ k̂). Moreover, if A is a von Neumann algebra
then k is normal if and only if θ is.
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In view of this result we use the terminology Markovian cocycle and sto-
chastic flow interchangeably. Let k and j be a pair of contraction processes
on A with noise dimension spaces k0 and k respectively, where k0 is a sub-
space of k. We shall call j a stochastic dilation of k if

kt = E0 ◦ jt (t ≥ 0).

Thus, in this terminology, if k is a Markovian cocycle with associated Markov
semigroup P then k is a stochastic dilation of P. When j and k are processes
that satisfy QS differential equations of the form (1.3) with noise dimension
spaces k and k0 ⊂ k respectively, it is easy to determine when j is a stochastic
dilation of k by inspecting their generators.

Lemma 1.2. Let θ : A → A′′ ⊗ B(k̂0) and φ : A → A′′ ⊗ B(k̂) be bounded
mapping matrices that weakly generate contraction flows k and j, with noise
dimension spaces k0 and k = k0 ⊕ k1 respectively. Then j is a stochastic
dilation of k if and only if φ has block matrix form

φ =
[
θ ∗
∗ ∗

]
.(1.4)

Proof. If j is a stochastic dilation of k then, for all u, v ∈ h and f0, g0 ∈
L2(R+; k0),

〈uε(f0), kt(a)vε(g0)〉 = 〈uε(f0, 0), jt(a)vε(g0, 0)〉.
Applying the first fundamental formula of quantum stochastic calculus to
each side, differentiating the resulting expressions at t = 0, and varying the
test functions f0 and g0 reveals that φ has the form (1.4). Conversely, if φ
has the form (1.4) then the process E0 ◦ j is also a weak solution of the QS
differential equation satisfied by k. Thus by uniqueness of solutions ([LW1],
Theorem 3.1) k = E0 ◦ j. �

For a unital C∗-algebra A acting on the Hilbert space h, a representation
(π,H) of A, and operators R ∈ B(h;H) and H ∈ B(h) we write δR,π and
LR,π,H for the operators given by

δR,π(a) = Ra− π(a)R,

LR,π,H(a) = R∗π(a)R− 1
2{R

∗R, a}+ i[H, a].

Thus δR,π : A → B(h;H) is a π-derivation, and LR,π,H : A → B(h) satisfies

∂LR,π,H(a, b) = δR,π(a)∗δR,π(b) + a∗R∗π(1)⊥Rb(1.5)

where, for a linear map τ : A → B(h), ∂τ : A×A → B(h) is the sesquilinear
map defined by

∂τ(a, b) = τ(a∗b)− a∗τ(b)− τ(a∗)b + a∗τ(1)b.

The map τ is called real if it satisfies τ † = τ , where τ † is defined by τ †(a) =
τ(a∗)∗. The following result in contained in [ChE]:
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Theorem 1.3. Let (τ, ρ, H, δ) consist of a map τ ∈ B(A), a representa-
tion (ρ,H) of A, and a ρ-derivation δ : A → B(h;H) satisfying ∂τ(a, b) =
δ(a)∗δ(b) and δ(1) = 0. Then there is an operator R ∈ B(h;H) which lies in
the ultraweak closure of Lin{δ(a)b : a, b ∈ A} and an element h ∈ A′′ such
that

δ(·) = δR,ρ(·) and τ(·) = LR,ρ,h(·) + 1
2{τ(1), ·}.

If τ is real then h may be chosen so that h = h∗.

2. Nonnegative operator matrices.

In this section we recall a characterisation of nonnegative operator block
matrices that will be exploited in the construction of dilations. Parts (a)
and (b) of the lemma below are classical and can be traced back as far as
Schur — see [FoF], p. 547 for historical comments. We include a proof for
the convenience of the reader. Part (c) is the special case required for the
following section.

Lemma 2.1. Let T ∈ B(H1 ⊕ H2) for Hilbert spaces H1 and H2.

(a) The following are equivalent :
(i) T ≥ 0.
(ii) In block matrix form

T =
[

A A1/2V D1/2

D1/2V ∗A1/2 D

]
(2.1)

where A,D ≥ 0 and V ∈ B(H2;H1) is a contraction.
(b) There is a representation (2.1) in which

Ker V ⊃ Ker D and RanV ⊂ RanA;(2.2)

this V is unique.
(c) If the Hilbert spaces are of the form H ⊗ h1 and H ⊗ h2 respectively,

and T belongs to C ⊗ B(h1 ⊕ h2) for a von Neumann algebra C acting
on H, then the unique contraction V satisfying (2.1) and (2.2) belongs
to the W ∗-module C ⊗ B(h2; h1).

Proof. If (a)(ii) holds then T may be written[
A1/2 0

0 D1/2

]{[
V
1

] [
V ∗ 1

]
+

[
1− V V ∗ 0

0 0

]}[
A1/2 0

0 D1/2

]
which is manifestly nonnegative.
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Conversely, if T is nonnegative with block matrix form
[

A B
C D

]
then obvi-

ously A,D ≥ 0 and C = B∗. By the Cauchy-Schwarz inequality,

|〈ξ,Bη〉|2 =
∣∣∣∣〈(

ξ
0

)
, T

(
0
η

)〉∣∣∣∣2
≤

〈(
ξ
0

)
, T

(
ξ
0

)〉 〈(
0
η

)
, T

(
0
η

)〉
= ‖A1/2ξ‖2 ‖D1/2η‖2.

First note that this implies that

‖Bη‖ ≤ ‖A1/2‖ ‖D1/2η‖ ∀η ∈ H2,

from which it follows that there is a (unique) operator J ∈ B(H2;H1) satis-
fying

B = JD1/2 and Ker J ⊃ Ker D1/2.

Now substitute this back into the Cauchy-Schwarz estimate:

|〈J∗ξ, D1/2η〉| ≤ ‖A1/2ξ‖ ‖D1/2η‖.

Since RanJ∗ = (KerJ)⊥ ⊂ (KerD1/2)⊥ = RanD1/2, this implies that

‖J∗ξ‖ ≤ ‖A1/2ξ‖ ∀ξ ∈ H1,

from which it follows that there is a (unique) contraction W ∈ B(H1;H2)
satisfying

J∗ = WA1/2 and Ker W ⊃ Ker A1/2.

Since W also satisfies RanW = RanJ∗, if we put V = W ∗ then we have
B = JD1/2 = A1/2V D1/2 and KerV = (RanW )⊥ = Ker J ⊃ Ker D1/2 =
Ker D. Also RanV ⊂ (KerW )⊥ ⊂ (KerA1/2)⊥ = RanA1/2 = RanA, so
(a)(ii) follows along with the first part of (b).

The uniqueness of V subject to (2.2) follows from the identity

〈A1/2ξ, V D1/2η〉 =
〈(

ξ
0

)
, T

(
0
η

)〉
.

Under the conditions of (c) obviously A ∈ C ⊗ B(h1) and D ∈ C ⊗ B(h2).
Moreover

〈(c′ ⊗ 11)A1/2ξ, V (d′ ⊗ 12)D1/2η〉 =
〈

(c′ ⊗ 1)
(

ξ
0

)
, T (d′ ⊗ 1)

(
0
η

)〉
for c′, d′ ∈ C′, where 11, 12 and 1 are the identities on h1, h2 and h1 ⊕ h2

respectively; it follows that V ∈ C ⊗ B(h2; h1). �
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3. Structural form for a flow generator.

In this section we refine the characterisation of CP flow generators on a
unital C∗-algebra A found in [LiP] and [LW1] in such a way that, when
A is a von Neumann algebra and the flow is a normal contraction flow, the
constituents of the generator may be used to determine a ∗-homomorphic
stochastic dilation. The refinement uses the technique introduced in [GS]
for dilating CP contraction semigroups.

Fix a separable noise dimension space k0, with basis (ei)i≥1. To begin
with we do not assume that k is a contraction flow. Therefore (when k0

is infinite dimensional), its generator θ need not be bounded, and we must

work with its components θα
β . Following (1.1)′ write

[
τ χ†j
χi νi

j

]
for the (2×2)

matrix of maps

[
θ0
0 θ0

j

θi
0 θ̂i

j

]
, i, j ≥ 1 when θ is real. Let h00 be the subspace

of ⊕γ≥0h = h ⊗ k̂0 consisting of vectors with only finitely many nonzero
components with respect to the chosen basis.

Theorem 3.1. Let θ be a mapping matrix on the unital C∗- algebra A that
weakly generates a stochastic flow k.

(a) The following are equivalent :
(i) k is completely positive.
(ii) θ is real and there is a quintuple R = (h, π, h, d, {wj}) consisting

of a Hilbert space h, a ∗-homomorphism π : A → A′′ ⊗ B(h) and
operators h = h∗ ∈ A′′, d ∈ A′′ ⊗ h and wj ∈ A′′ ⊗ h, j ≥ 1, such
that[

τ(a) χ†j(a)
χi(a) νi

j(a)

]
=

[
L(a) + 1

2{t, a} δ†(a)wj + a(cj)∗

w∗
i δ(a) + cia w∗

i π(a)wj

]
(3.1i)

π(1)d = d and π(1)wj = wj ∀j(3.1ii)

Ranπ(1) = H(3.1iii)

where t = τ(1), ci = χi(1), δ = δd,π,L = Ld,π,h and H = H0 with

H0 = Lin
{
δ(a)u0 + π(a)wju

j : a ∈ A, (uα) ∈ h00

}
.

(b) If R1 and R2 are quintuples satisfying (3.1) then there is a unique
partial isometry V : h⊗ h1 → h⊗ h2 satisfying

V ∗V = π1(1); V V ∗ = π2(1)(3.2i)

π2(a) = V π1(a)V ∗; δ2 = V δ1; w2
j = V w1

j .(3.2ii)

Moreover V ∈ A′′ ⊗ B(h1; h2).
(c) If A is a von Neumann algebra and R is a quintuple satisfying (3.1),

then the representation (π, h⊗ h) is normal if and only if each θα
β is.
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Proof. The implication (a)(ii)⇒ (a)(i) is contained in [LW1], Theorem 4.1.

(a)(i) ⇒ (a)(ii): Suppose that k is completely positive. Then, by The-
orem 4.1 of [LW1], θ is real and there is a quadruple Q = (ρ,H, γ, {Wi})
consisting of a representation (ρ,H) of A, a ρ-derivation γ : A → B(h;H)
and a family of operators {Wi : i ≥ 1} in B(h;H) such that[

∂τ(a, b) χ†j(a)
χi(a) νi

j(a)

]
=

[
γ(a)∗γ(b) γ†(a)Wj + aχ†j(1)

W ∗
i γ(a) + χi(1)a W ∗

i ρ(a)Wj

]
(3.3i)

ρ is unital(3.3ii)

H = H0(3.3iii)

where H0 = Lin{γ(a)u0 + ρ(a)Wiu
i : a ∈ A, (uα) ∈ h00}. For each uni-

tary u′ ∈ A′ define bounded linear operators γu′ : A → B(h;H) and
W u′

j ∈ B(h;H) by γu′(a) = γ(a)u′ and W u′
j = Wju

′, and note the following
relations:

γu′(a)∗γu′(b) = u′
∗
∂τ(a, b)u′ = ∂τ(a, b) = γ(a)∗γ(b);

(W u′
i )∗γu′(a) = u′

∗
W ∗

i γ(a)u′ = u′
∗(χi(a)− χi(1)a)u′ = W ∗

i γ(a);

(W u′
i )∗ρ(a)W u′

j = u′
∗
W ∗

i ρ(a)Wju
′ = u′

∗
νi

j(a)u′ = νi
j(a);

Hu′
0 = H0.

In other words the quadruple Qu′ = (ρ,H, γu′ , {W u′
i }) also satisfies (3.3).

Hence, by the uniqueness part of Theorem 4.1 in [LW1], there is a unique
unitary operator ρ′(u′) on H such that

ρ′(u′)Wi = Wiu
′; ρ′(u′)γ(a) = γ(a)u′;

ρ′(u′)ρ(a) = ρ(a)ρ′(u′).
(3.4)

The resulting map ρ′ is easily seen to be a unitary representation of the
group of unitaries in A′ by checking matrix elements against vectors from
the dense subspace H0. It follows that ρ′ extends linearly to a normal,
unital representation of A′. Hence ([Dix], p. 61) there is a Hilbert space
h and an isometry V : H → h ⊗ h such that ρ′(x′) = V ∗(x′ ⊗ 1)V and
p := V V ∗ ∈ A′′⊗B(h). Put H = VH and define π′ : A′ → B(h⊗h), π : A →
B(h⊗ h), δ : A → B(h; h⊗ h), and wj ∈ B(h; h⊗ h) for j ≥ 1, by

π′(x′) = (x′ ⊗ 1)p, π(a) = V ρ(a)V ∗, δ(a) = V γ(a), wj = V Wj .
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Since p ∈ A′′ ⊗ B(h), algebraic manipulations applied to (3.4) reveal the
following identities:

π(1) = p; pδ(a) = δ(a); pwj = wj ,

π(a)(x′ ⊗ 1) = (x′ ⊗ 1)π(a) = π′(x′)π(a),

δ(a)x′ = (x′ ⊗ 1)δ(a),

wjx
′ = (x′ ⊗ 1)wj .

Thus π(A) ⊂ A′′ ⊗ B(h), δ(A) ⊂ A′′ ⊗ h and wj ∈ A′′ ⊗ h. Moreover π is a
representation, δ a π-derivation, and

Ranπ(1) = RanV = V (H0) = H0 = H.

Now δ(1) = 0 and δ(a)∗δ(b) = ∂τ(a, b), from its definition. Thus by
Theorem 1.3 there is some d ∈ Linuw{δ(a)b : a, b} ⊂ A′′⊗h and h = h∗ ∈ A′′
such that δ = δd,π and τ(·) = Ld,π,h(·)+ 1

2{τ(1), ·}. Note also that π(1)d = d
since δ(1) = 0, which completes part (a).

(b) Writing Hi for Ran πi(1) ⊂ h ⊗ hi, i = 1, 2, Theorem 4.1 of [LW1]
ensures the existence of a unique unitary operator V0 : H1 → H2 satisfying

V0w
1
j = w2

j ; V0δ1 = δ2; V0π1(a) = π2(a)V0.

Let V be the unique extension of V0 to an operator V : h ⊗ h1 → h ⊗ h2

that satisfies (3.2i). Then V satisfies (3.2ii), and is thus clearly the unique
partial isometry satisfying (3.2). That V belongs to A′′ ⊗ B(h1; h2) follows
from the identity

(a′ ⊗ 1i)(δi(a)u0 + πi(a)wi
ju

j) = δi(a)a′u0 + πi(a)wi
ja
′uj .

(c) In one direction this is trivial. To obtain normality of π from the
normality of all of the θα

β it is enough to consider the restriction of π to
π(1)(h⊗ h) and apply [LW1], Theorem 4.1(d). �

Remark. If A is a von Neumann algebra, the initial space h is separable,
and each θα

β is ultraweakly continuous, then Proposition 4.2 of [LW1] implies
that the representation space H in the quadruple Q is separable too, so that
in particular the von Neumann algebra ρ′(A′)′ is σ-finite. In this case we
may assume that the Hilbert space h in Theorem 3.1 is separable too (see
[Dix], p. 62).

Theorem 3.2. Let θ be a mapping matrix on the unital C∗-algebra A that
weakly generates a stochastic flow k. The following are equivalent :

(i) k is a completely positive contraction cocycle.
(ii) θ is real and bounded, and there is a sextuple S = (h, π, h, d, w, v)

consisting of a Hilbert space h, a ∗-homomorphism π : A → A′′⊗B(h),
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operators h = h∗ ∈ A′′, d ∈ A′′⊗ h and contractions w ∈ A′′⊗B(k0; h)
and v ∈ A′′ ⊗ k0 such that, in the notation of (1.1)′,

θ̂(a) =
[
L(a) + 1

2{t, a} δ†(a)w + ac∗

w∗δ(a) + ca w∗π(a)w

]
(3.5i)

π(1)d = d and π(1)w = w(3.5ii)

Ranπ(1) = H(3.5iii)

c = (1− w∗w)1/2v(−t)1/2(3.5iv)

Ker v ⊃ Ker t and Ran v ⊂ Ran(1− w∗w)(3.5v)

where t = τ(1) ≤ 0, c = χ(1), δ = δd,π,L = Ld,π,h and H = H0 with

H0 = Lin
{
δ(a)u0 + π(a)w(ui) : a ∈ A, (uγ) ∈ h00

}
.

Moreover, if A is a von Neumann algebra then the representation (π, h⊗ h)
of A appearing in S is normal if and only if the process k is normal.

Proof. By Lemma 2.1 and [LW1], Proposition 5.1 and Theorem 5.2, (ii)
implies (i). Conversely if (i) holds then θ is bounded and satisfies θ(1) ≤ 0,
so that ν is a completely positive contraction. Letting (h, π, h, d, {wi}) be
the quintuple of Theorem 3.1, define an operator w : h ⊗ k0 → h ⊗ h by
w(vi) = wiv

i, initially on vectors whose components are eventually zero.
Since π(1)wj = wj for each j, and

‖w(vi)‖2 = 〈wiv
i, wjv

j〉 = 〈vi, w∗
i π(1)wjv

j〉
= 〈vi, νi

j(1)vj〉 = 〈(vi), ν(1)(vi)〉 ≤ ‖(vi)‖2,

it follows that w is a contraction. Since[
t c∗

c w∗w − 1

]
≤ 0(3.6)

the existence of v ∈ A′′ ⊗ k0 satisfying (3.5iv) and (3.5v) follows from
Lemma 2.1. The remaining properties now follow easily from Theorem 3.1,
noting that when A is a von Neumann algebra, k is normal if and only if
each θα

β is normal by [LW1], Proposition 3.2. �

Remarks. (i) The necessary conditions (3.5) for θ to weakly generate a CP
contraction cocycle k have been shown to be sufficient too ([LW3]), since
completely bounded mapping matrices are necessarily regular in the sense of
[Mey] and [LW1]. This also implies that θ strongly generates k. Uniqueness
of solutions ([LW1], Theorem 3.1) permits us to use the notation kθ for the
cocycle generated by θ.

(ii) By [LW1] Proposition 5.1, k is unital if and only if c and t are both
zero and w is isometric; this implies that v is zero too.
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Since we aim to dilate CP contraction cocycles to ∗-homomorphic cocy-
cles, we need to be able to recognise from the generator when the flow is
already ∗-homomorphic. This is addressed in the next result.

Proposition 3.3. LetM be a von Neumann algebra acting on h, and let k
be the flow generated by a (completely) bounded mapping matrix θ : M →
M⊗B(k̂0) which is expressible in the form (3.5i) for some normal represen-
tation (π, h⊗ h) of M and operators c ∈ M⊗ k0, h = h∗ ∈ M, d ∈ M⊗ h
and w ∈ M⊗ B(k0; h) satisfying (3.5ii). Then k is ∗-homomorphic if and
only if:

(i) w is a partial isometry,
(ii) wc = 0,
(iii) c∗c = −t,
(iv) ww∗ ∈ π(M)′, and
(v) ww∗δ = δ.

In particular, if ww∗ = π(1) then k is ∗-homomorphic if and only if wc = 0
and c∗c = −t.

Note. The hypotheses here imply complete positivity of k (by Theorem 3.1)
but not contractivity. If however k is assumed to be contractive — equiva-
lently θ(1) ≤ 0 — then there is an element v of M⊗ k0 satisfying (3.5iv),
and so (i) implies (ii).

Proof. The necessary and sufficient conditions for k to be ∗-homomorphic
([LW1], Theorem 6.5) may be written

w∗π(a∗a)w = w∗π(a)∗ww∗π(a)w(3.7)

w∗δ(a∗a) = w∗δ(a∗)a + w∗π(a∗)w(w∗δ(a) + ca)(3.8)

(w∗δ(a) + ca)∗(w∗δ(a) + ca) = ∂τ(a, a)− a∗ta

= δ(a)∗δ(a)− a∗ta
(3.9)

where (1.5) is used in the last line. Suppose (3.7)–(3.9) hold. Then, putting
a = 1 and using the fact that π(1)w = w, reveals that (w∗w)2 = w∗w,
so that w is a partial isometry. Now δ(1) = 0, so (3.8) and (3.9) with
a = 1 give wc = 0 and c∗c = −t respectively, which in turn implies that
δ(a)∗(1 − ww∗)δ(a) = 0, and so (1 − ww∗)δ(a) = 0. Also (3.7) implies
that w∗π(a)∗(1 − ww∗)π(a)w = 0, so (1 − ww∗)π(a)w = 0, which implies
that π(a)ww∗ = ww∗π(a)ww∗, and taking adjoints shows that ww∗π(a) =
π(a)ww∗. Thus (i)–(iv) hold.

Conversely if (i)–(iv) hold then (3.7)–(3.9) are easily verified. �

Remark. Invoking [GS] Theorem 3.3.6, instead of [LW1] Theorem 6.5,
the proposition remains true when the noise dimension space is no longer
separable.
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4. ∗-Homomorphic dilation.

In this section we give the main result of the paper, namely necessary and
sufficient conditions for a Markovian cocycle to have a normal Markov-
regular ∗-homomorphic dilation. We then consider various special cases.

Theorem 4.1. Every normal Markov-regular completely positive contrac-
tion cocycle on a von Neumann algebra, with separable noise dimension
space, admits a normal ∗-homomorphic stochastic dilation.

Proof. Let k be a normal Markov-regular CP contraction cocycle on the
von Neumann algebra M with separable noise dimension space k0. By
Theorem 3.2 its stochastic generator θ satisfies

θ̂(a) =
[

τ(a) δ†(a)w + ac∗

w∗δ(a) + ca w∗π(a)w

]
= mι(a) + ι(a)m∗ + s∗Ψ(a)s

where

m =
[

1
2 t 0
c 0

]
∈M⊗B(k̂0), s =

[
1 0
0 w

]
∈M⊗B(k̂0; ĥ),

Ψ :M→M⊗B(ĥ) is the (transformed) mapping matrix

Ψ =
[
L δ†

δ π

]
,(4.1)

and (h, π, h, d, w, v) is the sextuple S from the theorem satisfying (3.5). Set
k = k0 ⊕ k1 ⊕ k2 and let φ :M→M⊗B(k̂) be the mapping matrix defined
by

φ̂(a) =
[

τ(a) δ†(a)W + aC∗

W ∗δ(a) + Ca W ∗π(a)W

]
= Mι(a) + ι(a)M∗ + S∗Ψ(a)S

where

M =
[

1
2 t 0
C 0

]
∈M⊗B(k̂) and S =

[
1 0
0 W

]
∈M⊗B(k̂; ĥ),

with W =
[
w r 0

]
and C =

[
c g e

]T, and where the Hilbert spaces k1

and k2 and operators r ∈ M⊗B(k1; h), g ∈ M⊗ k1 and e ∈ M⊗ k2 are to
be determined.

Since φ is unchanged if W is replaced by π(1)W , we may assume that
π(1)r = r. By Lemma 1.2 kφ is a stochastic dilation of k, and by Propo-
sition 3.3 and the remarks following it, kφ is ∗-homomorphic if and only
if

q2 = q ∈ π(M)′, qδ = δ, wc + rg = 0 and c∗c + g∗g + e∗e = −t,(4.2)

where q := ww∗ + rr∗. The choice k1 = h, k2 = C and

r = (π(1)− ww∗)1/2, g = −wv(−t)1/2, e = (1− v∗v)1/2(−t)1/2,
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satisfies these constraints since then q = π(1), and by (3.5ii) and (3.5iv)

rg = −(π(1)− ww∗)1/2wv(−t)1/2

= −w(1− w∗w)1/2v(−t)1/2 = −wc,

and

t + g∗g + e∗e = (−t)1/2[−1 + v∗w∗wv + (1− v∗v)](−t)1/2

= (−t)1/2v∗(w∗w − 1)v(−t)1/2 = −c∗c.

�

Remarks. The particular solution given above serves merely to establish
the existence of stochastic dilations. More natural dilations arise in par-
ticular cases; moreover one may wish to preserve unitality under dilation.
In the remarks below we simplify the constraints (4.2) by considering only
dilations for which q = π(1).

(i) If wc = 0 then it is natural to choose g = 0, simplifying the constraints
to a question of finding r ∈M⊗B(k1; h) and e ∈M⊗ k2 satisfying

rr∗ + ww∗ = π(1) and c∗c + e∗e = −t.(4.2)′

(ii) If w is a partial isometry then r is necessarily a partial isometry and
(using (3.5iv)) wc = 0 so (i) applies.

(iii) If ww∗ = π(1) then (ii) applies, and since r is necessarily zero we
may take k1 = {0}. Moreover, by Proposition 3.3, k is already ∗-
homomorphic unless c∗c 6= −t, in which case we may take

k2 = C, C =
[

c

(−t− c∗c)1/2

]
and W =

[
w 0

]
.

(iv) If k has a conservative Markov semigroup then t = 0, and so v and c
are zero. Also e and g are necessarily zero and we may take k2 = {0}.
By (iii) k is already ∗-homomorphic unless ww∗ 6= π(1). In this case

φ̂(a) = S∗Ψ(a)S for S =
[
1 0 0
0 w r

]
,

with Ψ given by (4.1) and r 6= 0 satisfying (4.2)′.
(v) If k is unital then θ(1) = 0 (by [LW1], Proposition 5.1), (iv) applies

and also w is necessarily isometric so (ii) applies too. Thus we are left
with a choice of Hilbert space k1 and partial isometry r inM⊗B(k1; h)
whose final space is Ran(π(1) − ww∗). The resulting dilation will be
unital if and only if r is isometric. In particular, the above scheme can
yield a unital ∗-homomorphic dilation with the choice k1 = h if and
only if the projection (π(1)−ww∗) is Murray-von Neumann equivalent
to the identity, relative to the von Neumann algebra M⊗B(h).
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(vi) If k0 = {0} then there is no noise and so k is a semigroup, P say. Thus
c, v and w are all zero, in particular (ii) applies. If P is unital then (iv)
and (v) apply too, and in this case S = diag[1, r]. The choice k1 = h

and r = π(1), so that φ̂ = Ψ, gives the dilation obtained in [GS]. If P
is nonunital then, choosing k2 = C and k1 = h yields the generator

φ =

τ δ† λ†

δ π − ι 0
λ 0 − id

 ,(4.3)

in which λ denotes left multiplication by e = (−t)1/2.
(vii) If k0 = {0} and M = B(h) where h is infinite dimensional but sep-

arable, then (vi) applies and we may choose k1 to be (at most) one
dimensional. To see this let

π(a) = V ∗(a⊗ 1h′)V with V V ∗ ∈ 1h ⊗ B(h′)

be the normal decomposition of the representation π. Then, since
h′ may be assumed to be separable, there is a partial isometry U ∈
B(h; h⊗ h′) with final space RanV V ∗. Putting r = V ∗U ∈ B(h; h⊗ h)
yields the transformed dilation generator

φ̂ =

τ γ† λ†

γ ν 0
λ 0 0

 ,

where ν(a) = U∗(a ⊗ 1h′)U and γ = δD,ν for D = U∗V d. If ∂τ = 0
then δ = 0 by (1.5), and it follows from Theorem 1.3 that we may take
k1 = {0} in (4.3) which (unless P is already ∗-homomorphic) gives the
generator

φ =
[
τ λ†

λ − id

]
.

If ∂τ 6= 0 then it follows that π is nonzero and we may choose U to
be isometric, making ν unital. When P is unital, so that k2 may be
chosen to be {0}, the resulting dilation is that obtained in [HuS].

Corollary 4.2 ([GS]). Every norm-continuous normal completely positive
contraction semigroup on a von Neumann algebra has an Evans-Hudson
dilation.

Corollary 4.3 ([HuS]). Let h be infinite dimensional and separable. Every
norm-continuous normal completely positive unital semigroup on B(h) has
a unital Evans-Hudson dilation with one-dimensional quantum noise.
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5. Number/exchange-free dilation.

In this section we seek necessary and sufficient conditions for a CP contrac-
tion cocycle to have a Markov-regular ∗-homomorphic stochastic dilation
involving no number/exchange processes. Creation/annihilation-free dila-
tions are also considered. Some interesting connections with locality, for
quantum dynamical semigroups, emerge.

Proposition 5.1. Let k be a Markov-regular completely positive contraction
cocycle on a von Neumann algebraM, with separable noise dimension space

k0, and let θ =
[
τ χ†

χ ν − ι0

]
be its stochastic generator and P its Markov

semigroup.

(a) Suppose that ν = ι0. Then the following are equivalent :
(i) k has a number/exchange-free ∗-homomorphic dilation.
(ii) k is unital, χ is an ι0-derivation and τ satisfies

∂τ(a, a)− χ(a)∗χ(a) = γ(a)∗γ(a)(5.1)

where γ :M→M⊗ k1 is an ι1-derivation for some Hilbert space
k1.

(b) Suppose that χ = 0 and k is normal. Then the following are equivalent :
(i) k has a creation/annihilation-free ∗-homomorphic dilation.
(ii) P is ∗-homomorphic.

Proof. (a) Suppose that k has a number/exchange-free ∗-homomorphic di-
lation. Then, by [LW1] Proposition 6.3 and Lemma 6.4, the generator of
this dilation has the form

a 7→
[
l∗(a⊗ 1k)l − 1

2{l
∗l, a}+ i[h, a] al∗ − l∗(a⊗ 1k)

la− (a⊗ 1k)l 0

]
(5.2)

where l ∈ M ⊗ k, h = h∗ ∈ M and k ⊃ k0. It follows that χ(a) =
ma−(a⊗1k0)m, where m = p0l ∈M⊗k0, p0 being the orthogonal projection
h⊗ k→ h⊗ k0, and so θ satisfies (ii).

Conversely, if θ has satisfies (ii) then by Theorem 1.3, χ(a) = ma− (a⊗
1k0)m and γ(a) = na − (a ⊗ 1k1)n for some m ∈ M⊗ k0 and n ∈ M⊗ k1,
and τ = Ll,ι,h where ι(a) = a⊗ 1k0⊕k1 , l = [m n]> and h = h∗ ∈M, so that
k has the number/exchange-free dilation with generator (5.2).

(b) First note that (ii) is equivalent to τ being a derivation. Since the
creation component γ̃ of a ∗-homomorphic dilation must satisfy τ(a∗a) −
a∗τ(a)− τ(a)∗a = γ̃(a)∗γ̃(a) ([LW1], Section 6), (i) implies (ii).

Conversely, if (ii) holds then P is conservative and, since k is normal,
Remark (iv) above applies, with δ = 0, so k has a creation/annihilation-free
∗-homomorphic dilation. �
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Remark. From the structure of Markov-regular ∗-homomorphic generators
without number/exchange coefficients (5.2) it is clear that on an abelian
von Neumann algebra any nontrivial CP contraction cocycle requires num-
ber/exchange processes in its dilation. This is not so when the Markov
semigroup is no longer assumed to be norm continuous ([G]).

Proposition 5.2. Let k and θ be as in Proposition 5.1, and assume further
that ν = ι0 and χ is an ι0-derivation. If k has a number/exchange-free ∗-
homomorphic dilation then k is unital and τ satisfies

∂τ(az, az) = z∗∂τ(a, a)z ∀a ∈M, z ∈ Z,(5.3)

where Z denotes the centre of M. The converse holds when M′ is abelian
and k is normal.

Proof. The necessity of (5.3) is clear from the form τ must take according
to (5.2). Conversely, suppose that M′ is abelian (and so equals Z), k is
unital and normal and (5.3) holds, and let

θ(a) =
[
τ(a) χ†(a)
χ(a) ν(a)− ι0(a)

]
=

[
L(a) δ†(a)w

w∗δ(a) 0

]
be a representation of θ according to Theorem 3.2. Thus

w∗π(a)w = a⊗ 1k0 and ∂L(a, a) = δ(a)∗δ(a),(5.4)

with π normal. Also (5.3) with a = 1, and (5.4), imply that δ(z) = 0 for
z ∈ Z =M′, so that

δ(a)a′ = π(a′)δ(a) ∀a ∈M, a′ ∈M′.(5.5)

Now (5.4) also implies that w is isometric and, letting p be the orthogonal
projection ww∗ ∈M⊗B(h),

pπ(a)∗p⊥π(a)p = pπ(a∗a)p− pπ(a∗)pπ(a)p

= w(a∗a⊗ 1k0)w
∗ − w(a∗ ⊗ 1k0)(a⊗ 1k0)w

∗ = 0,

so p commutes with π(M) and thus π1(a) = p⊥π(a)p⊥ defines a normal
representation π1 ofM. Let

π1(a) = V ∗(a⊗ 1h1)V with V V ∗ ∈M′ ⊗ B(h1),

be its normal decomposition, and define a map γ : M → B(h; h ⊗ h1) by
γ = V δ. Note that V satisfies

(a⊗ 1h1)V = V π(a).(5.6)

By (5.5), (5.6) and (5.4), γ satisfies

γ(a)a′ = V π(a′)δ(a) = (a′ ⊗ 1h1)γ(a);

γ(ab)− γ(a)b− (a⊗ 1h1)γ(b) = V π(a)δ(b)− (a⊗ 1h1)V δ(b) = 0;

γ(a)∗γ(a) + χ(a)∗χ(a) = δ(a)∗[V ∗V + ww∗]δ(a) = ∂τ(a, a);
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for a, b ∈ M and a′ ∈ M′. Thus γ is an ι1-derivation satisfying γ(M) ⊂
M⊗ h1 and (5.1). The result follows. �

Corollary 5.3. A number/exchange-free Markov-regular normal CP unital
cocycle on B(h) has a number/exchange-free ∗-homomorphic dilation if and
only if the creation component of its generator is an ι0-derivation.

Remark. Two consequences of the existence of a number/exchange-free ∗-
homomorphic dilation for a Markov-regular CP contraction semigroup P,
with generator τ , are

∂τ(a, za) = ∂τ(a, z)a + z∂τ(a, a)(5.7a)

δ(a)z = 0 whenever az = 0(5.7b)

where z ∈ Z and δ is an ι1-derivation satisfying ∂τ(a, b) = δ(a)∗δ(b). When
M is abelian (in which case Z =M) (5.7a) implies that

∂τ is a derivation in its second argument.(5.7a)′

In his study of locality for quantum dynamical semigroups ([Sa2]) Sauvageot
(citing [LeJ], Section 1.5) notes that, in the commutative C∗-case, (5.7a)′

is equivalent to the locality of P; that is

lim
t↘0

t−1Ptf(x) = 0 whenever f vanishes in a neighbourhood of x.

This suggests an interesting link between the analytic property of locality
and the quantum probabilistic property of number/exchange-free ∗-homo-
morphic dilatability, for noncommutative Markov semigroups. Note also
that, in the commutative case, (5.7b) is locality for δ.

6. Unitary dilation.

In this section we consider contraction cocycles on a Hilbert space, and
their stochastic dilation to unitary cocycles. We also apply this to construct
an alternative form of dilation for unital CP cocycles on a von Neumann
algebra.

A (left) Markovian contraction cocycle on the Hilbert space h is a con-
traction process (Xt)t≥0 on h adapted to the Fock filtration and satisfying

Xs+t = Xsσs(Xt),

in which the right shift σs acts on B(h⊗ Γk) by

σs(T ) = 1s ⊗ SsTS∗s ,

where Ss is the right shift h⊗ Γk → h⊗ Γ[s,∞[,k, 1s is the identity operator
on Γ[0,s[,k, and some natural identifications of tensor products are invoked.
The Markov semigroup of X is defined by Pt = E [Xt] = E∗XtE (t ≥ 0).
The cocycle X is called Markov-regular if P is norm continuous R+ → B(h).
The counterpart to Theorem 1.1 is:
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Theorem 6.1 ([LW2]). Let X be a contraction process on the Hilbert space
h, with separable noise dimension space k0. Then the following are equiva-
lent :

(i) X is a Markov-regular cocycle.
(ii) X weakly satisfies a QS differential equation of the form

dXt = XtF
α
β dΛβ

α(t), X0 = 1,(6.1)

for an operator matrix F ∈ MD(B(h)).
In this case X satisfies the equation strongly, and F defines a bounded op-
erator on h ⊗ k̂0. Moreover, for a von Neumann algebra M acting on h,
Xt ∈M⊗Bk0 for all t ≥ 0 if and only if F ∈M⊗B(k̂0).

Remark. A (unique) strong solution to (6.1) exists whenever [Fα
β ] defines

a bounded operator F on h⊗ k̂ ([LW1], Theorem 7.1), although the solution
may be unbounded. Following (1.1) such F will be written in block matrix
form as

[
A B
C D

]
with A ∈ B(h), B,C∗ ∈ B(h⊗ k; h) and D ∈ B(h⊗ k).

The case where X is unitary was established in [HuL] and [Mo1]. Weakly
differentiable Markovian contraction cocycles were shown to satisfy a QS
differential equation in [AJL] and [Fag]. An interesting characterisation
of strongly continuous unitary Markovian cocycles was obtained in [Jou],
which also contains an example of such a cocycle which fails to satisfy a QS
differential equation.

Propositions 7.5 and 7.6 of [LW1] may be stated as follows, using the
representation of nonnegative operator matrices given in Lemma 2.1 once
more:

Theorem 6.2. Let X be a process on the Hilbert space h with separable
noise dimension space k0, weakly satisfying a QS differential equation of the
form (6.1). Then the following equivalences hold :
(ai) X is a contraction process.
(aii) F is bounded with block matrix form

F =
[
iH − 1

2(M∗M + B2) BV S −M∗W
M W − 1

]
where H = H∗, B ≥ 0, ‖V ‖, ‖W‖ ≤ 1 and S = (1−W ∗W )1/2.

(aiii) F is bounded with block matrix form

F =
[
iH − 1

2(LL∗ + C2) −L
WL∗ −RV ′C W − 1

]
where H = H∗, C ≥ 0, ‖V ′‖, ‖W‖ ≤ 1 and R = (1−WW ∗)1/2.

(bi) X is isometric.
(bii) In (aii) W is isometric and B = 0.
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(ci) X is coisometric.
(cii) In (aiii) W is coisometric and C = 0.
(di) X is unitary
(dii) In (aii) W is unitary and B = 0.
(diii) In (aiii) W is unitary and C = 0.
The representation (aii) is unique provided that V satisfies Ker V ⊃ Ker S
and RanV ⊂ RanB, which may be easily arranged. Uniqueness of the
representation (aiii) may be similarly arranged.

Remark. Thus associated with a Markov-regular operator contraction co-
cycle X is a unique octet (H,W, (M,B, V ), (L,C, V ′)), and conversely, X is
determined by either one of the two parameterisations (H,W,M, B, V ) or
(H,W, L, C, V ′).

Theorem 6.3. Every Markov-regular contraction cocycle on a Hilbert space,
with separable noise dimension space, admits a unitary stochastic dilation.

Proof. Let X be a Markov-regular contraction cocycle on h, with separable
noise dimension space k0. By Theorems 6.1 and 6.2, X has a stochastic
generator of the form [

K −Q
N W − 1

]
,

where K = iH − 1
2(N∗N + B2), Q = N∗W − BV S, H = H∗, B ≥ 0,

‖W‖, ‖V ‖ ≤ 1 and S = (1−W ∗W )1/2.
Set k = k0 ⊕ k1 ⊕ k2, where k1 and k2 are to be determined, and let

G ∈ B(h⊗ k̂) with block matrix form[
K −L
M U − 1

]
in which

U∗U = UU∗ = 1, M∗M = N∗N + B2 and L = M∗U.(6.2a)

Then G generates a unitary cocycle by Theorem 6.2, and by the operator
process analogue of Lemma 1.2 this cocycle is a stochastic dilation of X if
and only if

M0 = N, L0 = Q and U0
0 = W.(6.2b)

Solutions of the constraints (6.2) are obtained by taking k1 = k0, k2 = C,

M =

 N
−V ∗B

M2

 , L =
[
Q L1 M∗

2

]
, and U =

W R 0
S −W ∗ 0
0 0 1

 ,

where R = (1 −WW ∗)1/2, L1 = BV W ∗ + N∗R, and M2 ∈ B(h) is chosen
so that M∗

2 M2 = B(1− V V ∗)B. �
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Remarks. (i) If X is affiliated to a von Neumann algebraM, then it has
a unitary dilation which is affiliated to M also.

(ii) If B = 0, in particular if X is isometric (but not unitary), then M2 = 0
and we may take k1 = k0 and k2 = {0}, giving the dilation generator

G =

iH − 1
2N∗N −N∗W −N∗R

N W − 1 R
0 S −W ∗ − 1

 ,

with R and S as above.

(iii) If W is unitary (but B 6= 0) then V = 0 and the simplest solution is
k1 = {0}, k2 = C and

G =

iH − 1
2(N∗N + B2) −N∗W iB

N W − 1 0
iB 0 0

 .

(iv) To see what is being stochastically generalised here, let k0 = {0} so
that we have a contraction semigroup on h. Then (iii) applies, giving

G =
[
iH − 1

2B2 iB
iB 0

]
,

and the dilation is effected by the solution U of the stochastic differ-
ential equation

dUt = Ut

[
iB dQt +

(
iH − 1

2
B2

)
dt

]
where Q = (At + A†

t)t≥0 is a classical Brownian motion. When the
operators B and H commute it is given explicitly by

Ut = ei(B⊗Qt+tH⊗I).

(v) Using time-reversal techniques, or by taking adjoints, Markov-regular
right contraction cocycles are equally seen to have unitary stochastic
dilations.

We end this section with an alternative form of dilation for unital CP
cocycles.

Theorem 6.4. Every normal Markov-regular completely positive unital co-
cycle k, on a von Neumann algebra, with separable noise dimension space
k0 and initial space h, enjoys a factorisation of the following form:

k̃t = E1 ◦ adUt ◦ ι(6.3)

in which k̃t(a) = kt(a) ⊗ 1 on h ⊗ Γk1, ι(a) = a ⊗ 1 on h ⊗ Γk1⊕k1, k1 ⊃ k0

is separable and U is a Markov-regular unitary cocycle. If k0 is infinite
dimensional then we may take k1 = k0, so that k̃ = k.
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Proof. Theorem 4.5 of [GLW] ensures the existence of a separable Hilbert
space k1 containing k0, and a Markov-regular coisometry cocycle X with
noise dimension space k1 such that kt(a)⊗ 1 = Xt(a⊗ 1)X∗

t on h⊗Γk1 . Let
k− denote the Markovian cocycle on B(h) given by the same formula. The
stochastic generators of X and k− have the respective forms

F̂ =
[
iH − 1

2M∗M −M∗

W ∗M W ∗

]
, θ̂(a) =

[
τ(a) δ†(a)W

W ∗δ(a) W ∗ι1(a)W

]
(6.4)

where H = H∗,W ∗W = 1, ι1(a) = a⊗1 on h⊗k1, δ = δM,ι1 and τ = LM,ι1,H .
If X is unitary then (6.3) holds with Ut = Xt ⊗ 1. If X is nonunitary then,
by Theorem 6.2, W ∗ is nonisometric and we let U be the unitary stochastic
dilation of X whose generator is defined by

Ĝ =

iH − 1
2M∗M −M∗ 0

W ∗M W ∗ 0
RM R −W


where R = (1 −WW ∗), and set j−t = adUt : a 7→ Ut(a ⊗ 1)U∗

t . Then the
stochastic generator of j− is given by

φ(a) = ι(a)G∗ + Gι(a) + G∆(a)G∗,

where ∆(a) = a⊗∆ and ∆ is the orthogonal projection in B(k̂) with range
k = k1 ⊕ k1, so that

φ̂(a) =

 τ(a) δ†(a)W δ†(a)R
W ∗δ(a) W ∗ι1(a)W W ∗ι1(a)R
Rδ(a) Rι1(a)W Rι1(a)R + Wι1(a)W ∗

 .

Invoking Lemma 1.2 once more, comparison with (6.4) shows that j− is
a stochastic dilation of k−, and the result follows. �

Remark. This need not be a stochastic dilation of k̃ in our sense, since U
need not be affiliated to M.

7. Application to classical probability.

Two areas of classical probability where ideas from the theory of CP-valued
quantum processes might be applied are filtering theory and measure-valued
diffusion. Indeed the Zakai equation (see e.g., [KaK]), governing the con-
ditional distribution of a signal process at time t given the σ-algebra of
an observed process up to time t, was a motivation for Belavkin to con-
sider quantum filtering from the point of view of QS differential equations
([Be1]). Below we give a rough outline of how one might view measure-
valued diffusions as conditioned classical processes on the underlying state
space.

Consider a compact Hausdorff space X. Let P denote the set of regu-
lar Borel probability measures on X, equipped with the topology of weak
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convergence, and let A denote the unital C∗-algebra of continuous complex-
valued functions on X. Also let L2(P) be the L2-space of the probability
space (Ω,F, P) of a family P 1, . . . , Pm of independent Poisson processes with
respective intensities λ1, . . . , λm. Finally let µ := (µx

t : Ω → P)x∈X,t≥0 be
a family of maps satisfying suitable measurability conditions, the condition
that, for each t ≥ 0 and f ∈ A, the map x 7→ 〈f, µx

t (ω)〉 :=
∫

f(y)µx
t (ω)(dy)

is continuous for almost all ω ∈ Ω, and also the following stochastic differ-
ential equation:

d〈f, µx
t 〉 = 〈α0(f), µx

t 〉 dt +
m∑

i=1

〈αi(f), µx
t 〉 dP i

t , µx
0 = δx,(7.1)

where α0, . . . , αm are bounded linear maps on A such that αi(f) = αi(f)
and αi(1) = 0. Thus (µx

t ) is a measure-valued diffusion.
In order to cast this in a QS form, first letM be the universal enveloping

algebra of A and let h be the Hilbert space on which it acts. Then each αi

extends to a bounded normal operator onM — which we denote by α∗∗i .
Under the natural identification of L2(P) with Γ(L2(R+; Cm)), the op-

erator of multiplication by P i
t corresponds to the following combination of

fundamental quantum processes:

N i
t (t) +

√
λi(Ai(t) + A†

i (t)) + λit(7.2)

([Mey], p. 74). Let k be the Markovian cocycle onM generated by θ where

θ0
0 = α∗∗0 +

m∑
i=1

λiα
∗∗
i , θi

0 = θ0
i =

√
λiα

∗∗
i , and θi

j = δi
jα
∗∗
i .

Then k is normal, CP and unital. Comparison with (7.1) and (7.2) shows
that for f ∈ A, viewed as a subalgebra of M, kt(f) corresponds to the
operator of multiplication by the function Ft : Ω → A ⊂ M given by
Ft(ω) = 〈f, µ·t(ω)〉.

Suppose now that k has a unital ∗-homomorphic dilation . Let jt be
the restriction of t to A then the C∗-algebra generated by {jt(f) : t ≥
0, f ∈ A} is abelian ([Par], Theorem 28.8). Letting Σ be its spectrum,
our process may be viewed as consisting of unital ∗-homomorphisms jt :
C(X)→ C(Σ). By Gelfand theory (specifically the Banach-Stone Theorem)
there are continuous maps ξt : Σ→ X such that jt(f) = f ◦ ξt. In this way
the dilation of k may be viewed as a lifting of the measure-valued diffusion
µ to a “process” ξ taking values in the underlying state space.
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MR 93m:81083, Zbl 0751.60062.

[Mo2] , Quantum Stochastic Calculus with Infinite Degrees of Freedom, Ph.D.
Thesis, Indian Statistical Institute, Delhi, 1992.

[MoS] A. Mohari and K.B. Sinha, Quantum stochastic flows with infinite degrees of
freedom and countable state Markov processes, Sankhyā Ser. A, 52 (1990), 43-57,
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