QUATERNIONIC REPRESENTATIONS OF EXCEPTIONAL
LIE GROUPS

Hung Yean Loke

Let \(G \) be a quaternionic real form of an exceptional group of real rank 4. Gross and Wallach show that three representations in the continuation of the quaternionic discrete series are unitarizable (see Gross and Wallach, 1996). In this paper we will determine the restrictions of these representations to certain subgroups of \(G \) by computing explicitly the intersections of orbits. In particular we will determine certain compact dual pair correspondences of the minimal representation of \(G \).

1. Introduction.

1.1. We refer to §3 of [GW2] or §2 of [L3] for the definition of the double cover \(G \) of a quaternionic real form \(G_0 \) of a complex Lie group \(G(\mathbb{C}) \). \(G \) has maximal compact subgroup \(K \) of the form \(M_1 \times M \) where \(M_1 \) is isomorphic to \(SU_2 \). Its Lie algebra has complexified Cartan decomposition \(g = \mathfrak{k} \oplus \mathfrak{p} \). Here \(\mathfrak{p} = \mathbb{C}^2 \otimes V_M \) where \(V_M \) is a self dual representation of \(M(\mathbb{C}) \).

1.2. Let \(G(\mathbb{C}) \) be one of the following simply connected complex exceptional groups:

\[
\begin{align*}
F_4(\mathbb{C}), & \quad E_6(\mathbb{C}) \rtimes \mathbb{Z}/2\mathbb{Z}, \quad E_7(\mathbb{C}), \quad E_8(\mathbb{C}).
\end{align*}
\]

We will index these four cases by \(s = 1, 2, 4, 8 \) respectively. Let \(G(\mathbb{C})^0 \) denote the connected component of \(G(\mathbb{C}) \). Then there exists a unique connected quaternionic real form \(G_0^0 \) of \(G(\mathbb{C})^0 \) (cf. §1.1). It has a real root system of type \(F_4 \). We will denote \(G_0^0 \) by \(F_{4,4}, E_{6,4}, E_{7,4} \) and \(E_{8,4} \) respectively. Set \(G_0 = F_{4,4}, E_{6,4} \rtimes \mathbb{Z}/2\mathbb{Z}, E_{7,4} \) and \(E_{8,4} \) respectively and let \(G \) denote the corresponding double cover of \(G_0 \).

It is known that \(\mathbb{P}V_M \) is a union of four \(M(\mathbb{C}) \)-orbits. One of the orbits is Zariski dense and we will follow [GW2] and denote the Zariski closure of the remaining three orbits by \(X, Y \) and \(Z \). Here \(Z \) is the unique closed orbit in \(\mathbb{P}V_M \) and

\[
\mathbb{P}V_M \supset X \supset Y \supset Z.
\]

Let \(\mathcal{O} \) be either \(X, Y \) or \(Z \) and let \(\bigoplus \mathcal{O}^n(\mathcal{O}) \) denote the coordinate ring of \(\mathcal{O} \) in \(\mathbb{P}V_M \). Note that \(\mathcal{O}^n(\mathcal{O}) \) is a representation of \(M \).
In [GW1], [GW2] Gross and Wallach construct a unitary representation \(\sigma_O \) in the continuations of the quaternionic discrete series which is associated to \(\mathcal{O} \) in the sense that it has \(K \)-types (\(K = SU_2 \times M \))

\[
\sum_{n=0}^{\infty} \text{Sym}^{n+k}(\mathbb{C}^2) \otimes A^n(\mathcal{O})
\]

where \(k \) is the integer \(3s + 3, 2s + 2 \) and \(s + 2 \) if \(\mathcal{O} \) is \(X, Y \) and \(Z \) respectively. Again we will follow the notations of [GW2] and denote the three representations by \(\sigma_X, \sigma_Y \) and \(\sigma_Z \).

1.3. Let \(G \) be one of the exceptional groups of real rank 4 in §1.2. A quaternionic Lie subgroup \(G' \) of \(G \) is defined as a semisimple Lie subgroup of \(G \) containing \(M \). Let \(M' = G' \cap M \).

We refer to §2 and its references for the definition of a quaternionic representation of \(G \) and \(G' \). In [L3] we show that the restriction of \(\sigma_O \) from \(G \) to \(G' \) decomposes discretely into a direct sum of quaternionic representations of \(G' \). There we derived a formula to compute the spectrum of decompositions (See Thm. 3.4.1 [L3]) and we deduced that most of the irreducible components of the restriction to \(G' \) are determined by the coordinate ring of the intersection of \(\mathcal{O} \cap \mathbb{P}V_0 \). Here \(\mathbb{P}V_0 \) is a \(M'(\mathbb{C}) \)-invariant subspace of \(\mathbb{P}V_M \) and hence \(\mathcal{O} \cap \mathbb{P}V_0 \) is a \(M'(\mathbb{C}) \)-invariant projective variety. We will briefly recall these results in §3. Unfortunately the formula cannot be applied immediately to some interesting situations. In particular the coordinate ring of \(\mathcal{O} \cap \mathbb{P}V_0 \) is in general difficult to compute.

This paper is a continuation of [L3]. The main objective of this paper is to determine the restriction of \(\sigma_O \) in the following five situations (cf. (8)):

\[
\begin{align*}
(3) \quad G = \tilde{F}_{4,4} & \supset G' = \tilde{\text{Spin}}(5,4) \times (\mathbb{Z}/2\mathbb{Z})^2 (\mathbb{Z}/2\mathbb{Z})^2 \\
(4) \quad G = \tilde{F}_{4,4} & \supset G' = \tilde{\text{Spin}}(4,4) \times (\mathbb{Z}/2\mathbb{Z})^3 (\mathbb{Z}/2\mathbb{Z})^3 \\
(5) \quad G = \tilde{E}_{6,4} \times (\mathbb{Z}/2\mathbb{Z}) & \supset G' = \tilde{F}_{4,4} \times (\mathbb{Z}/2\mathbb{Z}) \\
(6) \quad G = \tilde{E}_{7,4} & \supset G' = \tilde{E}_{6,4} \times \mu_3 U_1 \\
(7) \quad G = \tilde{E}_{8,4} & \supset G' = \tilde{E}_{7,4} \times \mu_2 SU_2.
\end{align*}
\]

Here the tilde above the group denotes its double cover. We will compute the decompositions of the restrictions of the representations \(\sigma_O \) by explicitly computing the intersections \(\mathcal{O} \cap \mathbb{P}V_0 \). We have mentioned that one of the difficulty is to determine the intersections and their coordinate rings. Fortunately in each of the above \(G' \) it is known that \(\mathbb{P}V_0 \) is a union of finitely many \(M'(\mathbb{C}) \) orbits and the intersection \(\mathcal{O} \cap \mathbb{P}V_0 \) can therefore be effectively determined. We remark that the above subgroups \(G' \) are just a few such examples. Our method presented in this paper should be applicable to other subgroups \(G' \) where \(M'(\mathbb{C}) \) exhibit a dense orbit in \(\mathbb{P}V_0 \).
The restrictions provide an efficient method for finding many quaternionic representations of the exceptional quaternionic Lie groups which are unitarizable. Since σ_O has small Gelfand-Kirillov dimensions, the quaternionic representations obtained in the restriction would have small Gelfand-Kirillov dimensions too.

1.4. The representation σ_Z is a ladder representation and it is annihilated precisely by the Joseph ideal and it is thus called the minimal representation of G. A pair of reductive subgroups $H_1 \times_C H_2$ in G is called a (reductive) dual pair if the centralizers of H_1 and H_2 in G are H_2 and H_1 respectively. The dual pair is called compact if either H_1 or H_2 is compact. Note that G' in (3) to (7) are examples of compact dual pairs. In the appendix of [L3], we showed that certain correspondences of dual pairs in §1.3 exist and the second objective of this paper is to find the rest (if any) of the correspondences. We will also describe the dual pairs correspondences of $\text{Spin}(4,4) \times \mu_2 \times \text{U}_2$ in $E_{6,4}$, $E_{6,4} \times \text{SU}_3$ in $E_{8,4}$ in Corollary 4.10.1.

We remark that the restrictions of the minimal representations to dual pairs are of great interest. Exceptional dual pairs correspondences have been investigated by [HPS], [Li1], [Li2], [GS] and [L2]. In [GS] and [MS], the authors computed certain dual pair correspondences of p-adic exceptional groups by determining the intersection of orbits.

1.5. The organization of the paper is as follows: In §2 we will recall the definition of quaternionic groups and quaternionic representations. In §3 we will briefly state the restriction formula of [L3]. The main results of this paper are stated in §4. In §5 we describe the closures of the orbits X, Y, Z in detail. The rest of the paper is devoted to the proofs of the main results in §4.

1.6. We define some notations. $\pi_G(a_1 \varpi_1 + \cdots + a_n \varpi_n)$ will denote the irreducible finite dimensional complex representation of a semisimple Lie group G with highest weight $a_1 \varpi_1 + \cdots + a_n \varpi_n$ where ϖ_i are the fundamental weights given in Planches [Bou]. If V is a representation of G, then $S^n(V) = \text{Sym}^n V$ will denote its n-th symmetric product and V^* its dual representation. S^n will denote the representation $\text{Sym}^n(\mathbb{C}^2)$ of SU_2. χ_1 will denote a fundamental character of the compact torus U_1. μ_n will denote the cyclic group of order n. Suppose H_1 and H_2 are subgroups of G and C lies in the centers of both H_1 and H_2, then we denote

$$H_1 \times_C H_2 := (H_1 \times H_2)/\{(z,z) : z \in C\}.\tag{8}$$

2. Quaternionic groups and representations.

2.1. In this section we define some notations and briefly recall the definitions of the quaternionic real form of an algebraic group and quaternionic representations.
2.2. We refer to §3 of [GW2] and §2 of [L3] for the definition of the quaternionic real form \(g_0 \) of a complex simple Lie algebra \(g \). It has Cartan decomposition \(g = \mathfrak{k} \oplus \mathfrak{p} \) where

\[
\mathfrak{k} = \mathfrak{su}_2 \oplus \mathfrak{m}.
\]

Here \(\mathfrak{m} \) is a reductive Lie subgroup of \(g \) and \(\mathfrak{p} = \mathbb{C}^2 \otimes V_M \) where \(V_M \) is a self dual representation of \(\mathfrak{m} \). \(\mathfrak{k} \) contains a Cartan subalgebra \(\mathfrak{h} \) of \(g \). We choose a positive root system \(\Phi^+ \) with respect to \(\mathfrak{h} \) such that the \(\mathfrak{su}_2 \) in \(\mathfrak{k} \) corresponds to the highest root \(\tilde{\alpha} \). Denote this Lie algebra by \(\mathfrak{su}_2(\tilde{\alpha}) \). \(\mathfrak{t}_1 = \mathfrak{h} \cap \mathfrak{su}_2(\tilde{\alpha}) \) is a Cartan subalgebra of \(\mathfrak{su}_2(\tilde{\alpha}) \). Then \(\mathfrak{l} = \mathfrak{t}_1 \oplus \mathfrak{m} \) is a Levi subalgebra of a maximal parabolic subalgebra \(\mathfrak{q} \) whose nilpotent radical \(\mathfrak{u} \) is a Heisenberg Lie algebra. The one dimensional center of \(\mathfrak{u} \) is spanned by the highest root space \(g_{\tilde{\alpha}} \) and let \(\mathfrak{u}/[\mathfrak{u}, \mathfrak{u}] = V_M \) denote the representation of \(\mathfrak{m} \). \(\tilde{\mathfrak{g}} = \mathfrak{l} \oplus \tilde{\mathfrak{u}} \) will denote the opposite parabolic subalgebra.

Let \(G(\mathbb{C}) \) be a complex simply connected simple Lie group with Lie algebra \(g \) and let \(G_0 \) be a real form of \(G(\mathbb{C}) \) having Lie algebra \(g_0 \). We denote the real Lie subgroups in \(G(\mathbb{C}) \) corresponding to the various real forms of the Lie subalgebras \(\mathfrak{m}_0, \mathfrak{l}_0 \) and \(\mathfrak{t}_0 \) by \(M, L \) and \(K_0 = SU_2(\tilde{\alpha}) \times_{\mu_2} M \) respectively. Here \(K_0 \) is the maximal compact subgroup of \(G_0 \) and \(SU_2(\tilde{\alpha}) = M_1 \) in §1.1. Let \(G \) denote the double cover of \(G_0 \) with maximal compact subgroup \(K = SU_2(\tilde{\alpha}) \times M \). We will call \(G \times H \) a \textit{quaternionic} Lie group if \(G \) is a quaternionic simple Lie group and \(H \) is a compact Lie group.

Set \(2d = \dim V_M \). If \(g \) is of type \(D_4, F_4, E_6, E_7, E_8 \), then \(d = 3s + 4 \) where \(s = 0, 1, 2, 4, 8 \) respectively. We tabulate some of the \(M(\mathbb{C}) \) and \(V_M \) in Table 1 below.

<table>
<thead>
<tr>
<th>(G_0)</th>
<th>(M(\mathbb{C}))</th>
<th>(V_M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Spin}(d, 4), d \geq 4)</td>
<td>(SL_2 \times \text{Spin}(d))</td>
<td>(\mathbb{C}^2 \otimes \mathbb{C}^d)</td>
</tr>
<tr>
<td>((e_1) F_{4,4})</td>
<td>(Sp_6)</td>
<td>(\pi(\varpi_3))</td>
</tr>
<tr>
<td>((e_2) E_{6,4} \times \mathbb{Z}/2\mathbb{Z})</td>
<td>(SL_6 \times \mathbb{Z}/2\mathbb{Z})</td>
<td>(\pi(\varpi_3))</td>
</tr>
<tr>
<td>((e_4) E_{7,4})</td>
<td>(\text{Spin}(12))</td>
<td>(\pi(\varpi_6))</td>
</tr>
<tr>
<td>((e_8) E_{8,4})</td>
<td>(\text{simply connected } E_7)</td>
<td>(\pi(\varpi_1))</td>
</tr>
</tbody>
</table>

Table 1.

2.3. We will define and review the properties of quaternionic representations. We refer to [S1], [W1], [W2], [GW1], [GW2, §5] and Theorem 3.3.1 of [L2] for proofs and details.

Let \(W[k] = e^{-k\tilde{\alpha}/2} \otimes W \) be an irreducible finite dimensional representation of \(L = U_1 \times M \). We extend \(W[k] \) trivially to a representation of \(\tilde{\mathfrak{g}} \) and denote

\[
H(G, W[k]) = H(W[k]) := \Gamma^1_{K/L} (\text{Hom}_{\mathcal{U}(\mathfrak{g})}(\mathcal{U}(\mathfrak{g}), W[k])_L)
\]

as the Harish-Chandra module of \(G \) where \(\Gamma^1 \) is the first Zuckerman derived functor. It has infinitesimal character \(\mu + \rho(G) - k\frac{d}{2} \). If \(k \geq 2 \), then \(H(W[k]) \)
has K-types $(K = SU_2(\tilde{\alpha}) \times M)$

\begin{equation}
\sum_{n=0}^{\infty} S^{k-2+n}_{\tilde{\alpha}}(\mathbb{C}^2) \otimes (\text{Sym}^n(V_M) \otimes W).
\end{equation}

It contains a unique irreducible (g, K)-submodule denoted by $\sigma(G, W[k])$ which is generated by the translates of the lowest K-types

\begin{equation}
S^{k-2}_{\tilde{\alpha}}(\mathbb{C}^2) \otimes W.
\end{equation}

We will call $H(G, W[k])$ and $\sigma(G, W[k])$ quaternionic representations.

3.1. Let G_0 be one of the four exceptional groups given in Table 1 (es) indexed by $s = 1, 2, 4, 8$. Let G be its double cover.

3.2. Suppose G' is a quaternionic real Lie subgroup of G containing $SU_2(\tilde{\alpha})$. We have correspondingly $K' = G' \cap K$, $M' = G' \cap M$ and the Lie algebras $g', m', u' = u \cap g'$. Write $u = u' + V_0$. We have $V_{M'} \subset V_M$ and we define $V_0 = V_M/V_{M'}$ as a representation of M'.

We will use $\text{Res}_{G \rightarrow G'} H$ to denote the restriction of a Harish-Chandra module σ of G to that of G'.

3.3. First we review the work of [GW2]. Denote $H_k := H(G, \mathbb{C}[k])$ and its unique submodule $\sigma(G, \mathbb{C}[k])$ by σ_k. H_k is irreducible and unitarizable if $k \geq 3s + 4$. If $k > 6s + 8$, then it belongs to the discrete series. We recall Corollary 4.2.2 of [L2].

Proposition 3.3.1. There exists a filtration H_n of H_k such that $H_{n+1}/H_n = H(G', S^n(V_0)[n+k])$. If H_k is unitarizable, then

\begin{equation}
\text{Res}_{G \rightarrow G'} H_k = \sum_{n=0}^{\infty} H(G', S^n(V_0)[n+k])
\end{equation}

and each summand on the right is irreducible and unitarizable.

3.4. Since V_M is a self dual representation of M, we identify V_M with its dual. In §1.2 we remarked that PV_M is a union of four $M(\mathbb{C})$-orbits. One of the orbit is Zariski dense and we denote the Zariski closure of the other three non-dense orbits by X, Y and Z satisfying (1). We will describe these three orbits in greater detail in §5.

Let (k, m, O) be one of the three following sets of data:

$(3s + 3, 4, X)$, $(2s + 2, 3, Y)$, $(s + 2, 2, Z)$.

Let $I^i(O) = \bigoplus_{n \geq m} I^n(O)$, $(I^m \neq 0)$ be the homogeneous ideal of O in PV_M and $A^i(O) = \bigoplus A^n(O)$ be its coordinate ring. Then I^i is generated as a $S_i(V_m)$ module by $I^m(O)$ and each graded piece $A^n(O)$ is a representation of M.

345
Gross and Wallach showed that σ_k is a unitarizable proper submodule of H_k with K types given in (2). Furthermore it satisfies an exact sequence

$$0 \to \sigma_k \to \mathcal{H}(G, \mathbb{C}[k]) \xrightarrow{\phi} \mathcal{H}(G, \mathcal{O}^m)[k + m].$$

As a representation of $M(\mathbb{C})$, $\mathcal{O}^m(\mathcal{O}) = \mathbb{C}$, V_M and \mathfrak{m} respectively for the three values of k. When $k = 3s + 3$, ϕ in (11) is a surjection (cf. §8 of [GW2]).

We will follow the notation of [GW1] and denote the three representations σ_{3s+3}, σ_{2s+2} and σ_{s+2} by σ_X, σ_Y and σ_Z respectively.

The annihilator ideal of σ_Z is the Joseph ideal in $U(g)$ so σ_Z is called the minimal representation of G. It has K-types

$$\sum_{n=0}^\infty S_{\alpha}^s(n)(\mathbb{C}^2) \otimes \pi_M(n\lambda)$$

where λ is the highest weight of V_M. Note that all the representations descend to representations of G_0 except σ_X for groups of type E_6 and σ_Z of \tilde{F}_4.

3.5. The inclusion $\mathcal{O}^m(\mathcal{O}) \subset S^m(V_M)$ gives rise to the following natural maps of M-modules:

$$\text{Sym}^{n-m}(V_M) \otimes \mathcal{O}^m(\mathcal{O}) \to \text{Sym}^{n-m}(V_M) \otimes \text{Sym}^m(V_M) \to \text{Sym}^n(V_M).$$

Let r'_n denote the composite of the above maps. The direct sum $V_M = \mathfrak{u}' \oplus V_0$ (cf. §3.2) induces a natural map of M'-modules

$$r''_n : \text{Sym}^n(V_M) \to \text{Sym}^n(V_0).$$

We define $r_n = r''_n \circ r'_n$ for $n \geq m$. For $0 \leq n < m$, we set r_n to be the zero map into $\text{Sym}^n(V_0)$. Let R_n denote the cokernel of r_n and let $R_n = \bigoplus_{n=0}^\infty R_n$. Note that R_n is a representation of M' and we write

$$R_n = \bigoplus_{j} W_{n,j}$$

where $W_{n,j}$ are the irreducible subrepresentations of M'.

Let $\mathcal{O}' = \mathcal{O} \cap \mathbb{P}V_0$ and we denote its coordinate ring in $\mathbb{P}V_0$ by $A^*(\mathcal{O}') = \bigoplus A^n(\mathcal{O}')$. Then \mathcal{O}' is cut out by $r_m(\mathcal{O}^m(\mathcal{O}))$ and $R_*/\text{Nil}(R_*) = A^*(\mathcal{O}')$.

We can now state Theorem 3.3.1 and Corollary 2.8.1 of [L3].
Theorem 3.5.1.
(a) \[\text{Res}_G^G \sigma_k = \sum_{n=0}^{\infty} \sigma(G', R_n[k + n]) = \sum_{n=0}^{\infty} \sum_j \sigma(G', W_{n,j}[k + n]). \]
(b) \[\text{Res}_G^G \sigma_k \supseteq \sum_{n=0}^{\infty} \sigma(G', A^n(O')|k + n|). \]
Equality holds if and only if \(r_m(I^m(O)) \) generates the ideal of \(O' \).
(c) If \(r_m \) is surjective, then \(r_n \) is surjective for \(n \geq m \) and
\[\text{Res}_G^G \sigma_k = \sum_{n=0}^{m-1} \sigma(G', S^nV_0[k + n]). \]

4. The main results.

4.1. In this section we will state the main results on the restrictions of the quaternionic representations \(\sigma_O \) of the exceptional group \(G \) to its subgroup \(G' \). The proofs will be given in the later sections. We will replace \(G \) by \(G_0 \) if the representation descends to \(G_0 \). If \(H(G', W[n]) \) appears in the restriction formula, it means that \(H(G', W[n]) \) is irreducible and its \(K \)-types are given by (9).

4.2. Let \(G = F_{4,4} \supset G' = \tilde{\text{Spin}}(5,4) \) and \(M' = SU_2 \times \text{Spin}(5) \).
Let \(V_{m,n} = S^m(\mathbb{C}^2) \otimes \pi_{\text{Spin}(5)}(n \varpi_2) \) be the representation of \(M' \).

Theorem 4.2.1.
(a) \[\text{Res}_G^{F_{4,4}} \sigma_Z = \sigma(G', \mathbb{C}[3]) + \sigma(G', V_{0,1}[4]). \]
(b) \[\text{Res}_{\text{Spin}(5,4)}^{F_{4,4}} \sigma_Y = \sum_{n=0}^{\infty} \sigma(\text{Spin}(5,4), V_{0,n}[4+n]). \]
(c) \[\text{Res}_{\text{Spin}(5,4)}^{F_{4,4}} \sigma_X = H(\text{Spin}(5,4), \mathbb{C}[6]) + \sum_{n=1}^{\infty} \sigma(\text{Spin}(5,4), V_{0,n}[6+n]). \]
(d) \[\text{Res}_G^{G} H(G, \mathbb{C}[k]) = \sum_{n=0}^{\infty} H(G', V_{0,n}[k+n]) \text{ if } k \geq 7. \]

If \(n \geq 1 \) then the summands in (c) satisfy the following exact sequence:
\[0 \to \sigma(F_{4,4}, V_{0,n}[6+n]) \to H(F_{4,4}, V_{0,n}[6+n]) \to H(F_{4,4}, V_{0,n}[9+n]) \to 0. \]
4.3. Suppose \(G = \widetilde{F}_{4,4} \) and \(G' = \widetilde{\text{Spin}}(4,4) \). The maximal compact subgroup of \(G' \) is \(SU_2(\tilde{\alpha}) \times M' \) where \(M' = SU_2(A) \times SU_2(B) \times SU_2(C) \). Here \(\tilde{\alpha}, A, B, C \) are the (orthogonal) compact roots of \(\widetilde{\text{Spin}}(4,4) \). Let

\[
S(a, b, c) := S^a_A(\mathbb{C}^2) \otimes S^b_B(\mathbb{C}^2) \otimes S^c_C(\mathbb{C}^2)
\]

denote the irreducible representation of \(M' \).

Theorem 4.3.1.

(a) \[
\text{Res}^G_{G'} \sigma_Z = \sigma(G', C[3]) + \sigma(G', S(1, 0, 0)[4]) + \sigma(G', S(0, 1, 0)[4]) + \sigma(G', S(0, 0, 1)[4]).
\]

(b) \[
\text{Res}^{F_{4,4}}_{\text{Spin}(4,4)} \sigma_Y = \sum_{a, b, c = 0} \sigma(\text{Spin}(4,4), S(a, b, c)[4 + a + b + c]).
\]

(c) \[
\text{Res}^{F_{4,4}}_{\text{Spin}(4,4)} \sigma_X = \sum_{a, b, c = 0} H(\text{Spin}(4,4), S(a, b, c)[6 + a + b + c]) + \sum_{a, b, c > 0} \sigma(\text{Spin}(4,4), S(a, b, c)[6 + a + b + c]).
\]

(d) \[
\text{Res}^G_{G'} H(G, C[k]) = \sum_{a, b, c \geq 0} H(G', S(a, b, c)[k + a + b + c]) \text{ if } k \geq 7.
\]

When \(a, b, c \) are strictly positive, the summands in (c) satisfy the following exact sequence:

\[
0 \rightarrow \sigma(\text{Spin}(4,4), S(a, b, c)[6 + a + b + c]) \rightarrow H(\text{Spin}(4,4), S(a, b, c)[6 + a + b + c]) \rightarrow H(\text{Spin}(4,4), S(a-1, b-1, c-1)[7 + a + b + c]) \rightarrow 0.
\]

4.4. Note that \(\widetilde{\text{Spin}}(4,4) \) and \(\widetilde{\text{Spin}}(5,4) \) are components of dual pairs in (3) and (4). In \S6 we will describe the action of \((\mathbb{Z}/2\mathbb{Z})^2\) and \((\mathbb{Z}/2\mathbb{Z})^3\) on the summands. In particular Theorems 4.2.1(a) and 4.3.1(a) give the dual pairs correspondences of the minimal representation \(\sigma_Z \) of \(\widetilde{F}_{4,4} \). The \(K \)-types of summands are given in Theorem 6.8.1 and 6.9.1.

4.5. Let \(G = \widetilde{E}_{6,4} \times \mathbb{Z}/2\mathbb{Z} \) and \(G' = \widetilde{F}_{4,4} \times \mathbb{Z}/2\mathbb{Z} \). Let \(\chi \) be the nontrivial character of \(\mathbb{Z}/2\mathbb{Z} \).
Theorem 4.5.1.
(a) \(\text{Res}_{E_{6,4} \times Z/2Z}^{E_{6,4} \times Z/2Z} \sigma_Z = \sigma(F_{4,4}, \mathbb{C}[4]) \otimes \chi^0 + \sigma(F_{4,4}, \mathbb{C}^6[5]) \otimes \chi. \)

(b) \(\text{Res}_{E_{6,4} \times Z/2Z}^{E_{6,4} \times Z/2Z} \sigma_Y = \sum_{n=0}^{\infty} \sigma(F_{4,4}, S^n(\mathbb{C}^6)[6+n]) \otimes \chi^n. \)

(c) \(\text{Res}_G^G \sigma_X = \mathbb{H}(\tilde{F}_{4,4}, \mathbb{C}[9]) \otimes \chi^0 + \mathbb{H}(\tilde{F}_{4,4}, \mathbb{C}^6[10]) \otimes \chi \)
\[+ \sum_{n=2}^{\infty} \sigma(\tilde{F}_{4,4}, S^n(\mathbb{C}^6)[9+n]) \otimes \chi^n. \]

(d) \(\text{Res}_G^G \mathbb{H}(G, \mathbb{C}[k]) = \sum_{n=0}^{\infty} \mathbb{H}(\tilde{F}_{4,4}, S^n(\mathbb{C}^6)[10+n]) \otimes \chi^n \text{ if } k \geq 10. \)

If \(n \geq 2 \) then the summands in (c) satisfy the following exact sequence:

(15) \(0 \to \sigma(\tilde{F}_{4,4}, S^n(\mathbb{C}^6)[9+n]) \to \mathbb{H}(\tilde{F}_{4,4}, S^n(\mathbb{C}^6)[9+n]) \)
\[\to \mathbb{H}(\tilde{F}_{4,4}, S^{n-2}(\mathbb{C}^6)[11+n]) \to 0. \]

4.6. Each of the summands of \(\sigma_X \) in Theorems 4.2.1(c), 4.3.1(c) and 4.5.1(c) satisfies a short exact sequence. The \(K' \)-types of the middle and the last term of the exact sequence is given by (9). Hence it is possible to determine the \(K' \)-types, the Gelfand-Kirillov dimensions and the Bernstein degrees of the summands.

4.7. Let \(G = \tilde{E}_{7,4}, G' = \tilde{E}_{6,4} \times \mu_3 U_1 \) and \(M' = SU_6 \times \mu_3 U_1. \)
Let \(V_{a,b} = \pi_{SU_6}(a\varpi_1 + b\varpi_6). \)

Theorem 4.7.1.
(a) \(\text{Res}_{E_{6,4} \times U_1}^{E_{7,4}} \sigma_Z = \sum_{a,b \geq 0} \sigma(E_{6,4}, V_{a,b}[6+a+b]) \otimes \chi_1^{a-b}. \)

(b) \(\text{Res}_{E_{6,4} \times U_1}^{E_{7,4}} \sigma_Y = \mathbb{H}(E_{6,4}, \mathbb{C}[12]) \otimes \chi^0_1 \)
\[+ \sum_{a,b \geq 0} \sigma(E_{6,4}, V_{a,b}[10+a+b]) \otimes \chi_1^{a-b}. \]

(c) \(\text{Res}_G^G \sigma_X = \sum_{n=0}^{1} \sum_{a,b \geq 0} \mathbb{H}(E_{6,4}, V_{a,b}[15+2n+a+b]) \otimes \chi_1^{a-b}. \)

(d) \(\text{Res}_G^G \mathbb{H}(G, \mathbb{C}[k]) = \sum_{a,b \geq 0} \mathbb{H}(E_{6,4}, V_{a,b}[k+2n+a+b]) \otimes \chi_1^{a-b} \)
\[\text{ if } k \geq 16. \]

4.8. Let \(G = \tilde{E}_{8,4}, G' = \tilde{E}_{7,4} \times \mu_2 SU_2 \) and \(M' = \text{Spin} (12) \times \mu_2 SU_2. \)
Let \(V_{a,b} = \pi_{\text{Spin}(12)}(a\varpi_1 + b\varpi_2). \)
Theorem 4.8.1.

(a) \(\text{Res}^{E_{7,4} \times SU_2}_{E_{7,4} \times SU_2} \sigma_Z = \sum_{n=0}^{\infty} \sigma(E_{7,4}, V_{n,0}(10+n)) \otimes S^n(C^2). \)

(b) \(\text{Res}^{E_{7,4} \times SU_2}_{E_{7,4} \times SU_2} \sigma_Y = \sum_{a+2b+2c=n, bc=0} \sigma(E_{7,4}, V_{a,c}(18+n)) \otimes S^{a+2b}(C^2). \)

(c) \(\text{Res}^G_{G'} \sigma_X = \sum_{a,b,c,d,n}^{\ast} \Theta, V_{a,c}(27+n)) \otimes S^{a+2b}(C^2). \)

(d) \(\text{Res}^G_{G'} \Theta(G, C[k]) = \sum_{m=0}^{\infty} \sum_{a,b,c,d,n}^{\ast} \Theta(E_{7,4}, V_{a+2d,c}(k+n+4m)) \otimes S^{a+2b}(C^2) \) if \(k \geq 28 \)

where the summation \(\sum^{\ast} \) is taken over all nonnegative integers \(a, b, c, d, n \) satisfying the relations

\[
(16) \quad n - 2a \leq a + 2b + 2c + 4d \leq n, \quad cd = 0, \quad a \equiv n \mod (2).
\]

4.9. Some of the restrictions stated in this section are known. We have included them for the sake of completeness. Moreover they follow with little additional effort from the proofs of the rest of the statements. The following results are known:

(i) Theorems 4.5.1(a) and 4.7.1(a) are unpublished results of B. Gross [G]. See §6 [GW1] for Theorem 4.8.1(a). The method of proof is by considering the decompositions of the \(K \)-types. Also see Theorem 12.1.1 [L2].

(ii) See §4.6 of [L2] for Theorems 4.3.1(c) and (d).

4.10. Using the above theorems, we will deduce the following dual pair correspondence in §9.4:

Corollary 4.10.1.

\[\text{Res}^{E_{6,4} \times \mu_3 \times SU_3}_{E_{6,4} \times \mu_3 \times SU_3} \sigma_Z = \sum_{a,b \geq 0} \Theta(a,b) \otimes \pi_{SU_3}(a \varpi_1 + b \varpi_2) \]

where

\[
(17) \quad \Theta(a,b) = \begin{cases}
\sigma(E_{6,4}, \pi_{SU_3}(a \varpi_1 + b \varpi_3)(a+b+10)) & \text{if } (a,b) \neq (0,0) \\
\Theta(G_{6,4}, C[10]) \oplus \Theta(G_{6,4}, C[12]) & \text{if } (a,b) = (0,0).
\end{cases}
\]

The dual pair correspondence of \(\text{Spin}(4,4) \times \mu_2 U_1^2 \in E_{6,4} \) will be given in Theorem 7.3.1.
4.11. The proofs of part (c) of Theorems 4.2.1 to 4.8.1 are similar. By (11) we have an exact sequence

\[
0 \to \sigma_X \to H(G, \mathbb{C}[d-1]) \to H(G, \mathbb{C}[d+3]) \to 0.
\]

The term on the right is irreducible and unitarizable. By Proposition 3.3.1 the restriction of the last term to \(G'\) decomposes into

\[
\sum_{n=0}^{\infty} H(G', S^n V_0[d + 3 + n]).
\]

Applying the filtration in Proposition 3.3.1 to the middle and the last term of (18) gives a homomorphism of graded modules

\[
0 \to \text{Res}^G_{G'} \sigma_X \to \sum_{n=0}^{\infty} H(G', S^n V_0[d - 1 + n]) \to \sum_{n=0}^{\infty} H(G', S^n V_0[d + 3 + n]) \to 0.
\]

One can show that the above sequence is an exact sequence. We shall use (20) to prove part (c) of the above theorems.

5. Orbits computations.

5.1. In this section we will give a realization of the \(M(\mathbb{C})\) action on \(\mathbb{P}V_M\) and describe its subvarieties \(X, Y\) and \(Z\) (cf. §1.2). Please refer to [Ba], [Kim], [J1], [GW2] and [GL] for more details.

5.2. Let \(s = 1, 2, 4,\) or \(8\) and let \(\mathcal{K} = \mathcal{K}_s\) denote the composition algebra over \(\mathbb{C}\) of dimension \(s\). Then up to isomorphism, \(\mathcal{K}_1 = \mathbb{C}, \mathcal{K}_2\) is the set of 2 by 2 complex matrices \(M_2(\mathbb{C})\), \(\mathcal{K}_4\) is the subset of diagonal elements in \(M_2(\mathbb{C})\) and \(\mathcal{K}_8\) is the set of Cayley numbers [J2]. Each algebra has an anti-automorphism \(z \mapsto \bar{z}\) called conjugation such that \(N(z) := zz = \bar{z}z\) is a nondegenerate bilinear form on \(\mathcal{K}\). Moreover \(N(zz') = N(z)N(z')\). Define \(\text{tr}(z) = z + \bar{z}\) and \(\langle z, z' \rangle = \text{tr}(zz')\). There are obvious embeddings \(\mathcal{K}_1 \subset \mathcal{K}_2 \subset \mathcal{K}_4\).

5.3. Let \((U_0, \langle , \rangle)\) be the 3 dimensional complex inner product space with orthonormal basis \(\{e_1, e_2, e_3\}\). Then \(\mathcal{K}_8\) can be realized as elements of the form

\[
x = (a, d; v_1, v_2) := \begin{pmatrix} a & v_1 \\ v_2 & d \end{pmatrix}
\]

where \(a, d \in \mathbb{C}\) and \(v_1, v_2 \in U_0\). The multiplication is given in [J2, p. 142] and \(N(x) = ad - \langle v_1, v_2 \rangle\). We define an action of \(g \in SL(U_0)\) on \(\mathcal{K}_8\) by

\[
g : (a, d; v_1, v_2) \mapsto (a, d; hv_1, \bar{h}^{-1}v_2).
\]

We embed \(\mathcal{K}_4 \subset \mathcal{K}_8\) by \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} a & be_1 \\ ce_1 & d \end{pmatrix}\).
5.4. Let \(\mathcal{J} = \mathcal{J}(\mathcal{K}) \) be the Jordan algebra consisting of 3 by 3 Hermitian symmetric matrices of the form

\[
J = (\gamma_1, \gamma_2, \gamma_3; c_1, c_2, c_3) := \begin{pmatrix}
\gamma_1 & c_3 & \overline{c_2} \\
\overline{c_3} & \gamma_2 & c_1 \\
c_2 & \overline{c_1} & \gamma_3
\end{pmatrix}
\]

where \(\gamma_i \in \mathbb{C} \) and \(c_i \in \mathcal{K} \). The composition in \(\mathcal{J} \) is given by \(J_1 \circ J_2 = \frac{1}{2} (J_1 J_2 + J_1 J_2) \). Define an inner product on \(\mathcal{J} \) given by \(\langle X, Y \rangle = \text{Tr} (X \circ Y) \) where \(\text{Tr} \) denotes the usual trace of matrices. There is a cubic form

\[
\det(J) = \gamma_1 \gamma_2 \gamma_3 - \gamma_1 N(c_1) - \gamma_2 N(c_2) - \gamma_3 N(c_3) + \text{tr}(c_1 (c_2 c_3))
\]
on \(\mathcal{J} \) which induces a trilinear form on \(\mathcal{J} \) such that \((J, J, J) = \det J \). For \(\mathcal{J}(\mathcal{K}_1) \) and \(\mathcal{J}(\mathcal{K}_2) \), \(\det \) is the usual determinant of 3 by 3 matrices. Finally we define a bilinear map \(\mathcal{J} \times \mathcal{J} \rightarrow \mathcal{J} \), \((J, J') \mapsto J \times J' \) such that in the notation of (23)

\[
J \times J = (\gamma_2 \gamma_3 - N(c_1), \gamma_3 \gamma_1 - N(c_2), \gamma_1 \gamma_2 - N(c_3); \overline{c_2 c_3} - \gamma_1 c_1, \overline{c_3 c_1} - \gamma_2 c_2, \overline{c_1 c_2} - \gamma_3 c_3).
\]

\(J \neq 0 \) is said to have rank 1 if \(J \times J = 0 \). \(J \) has rank 0 if \(J = 0 \). \(J \neq 0 \) has rank 2 if \(\det(J) = 0 \) and it is not of rank 1.

Define

\[
V_M := \mathbb{C} \oplus \mathcal{J} \oplus \mathcal{J} \oplus \mathbb{C}
\]

and we denote a vector in \(V_M \) by \((\xi, J, J', \xi') \). There is a realization of the \(M(\mathbb{C}) \) action on \(V_M \) (see [Ba]). Let \(p : V_M \setminus \{0\} \rightarrow \mathbb{P} V_M \) be the canonical projection.

We refer to (23) and define

\[
\mathcal{J}_1 := \{(0, 0, 0; c_1, 0, 0) \in \mathcal{J} : c_1 \in \mathcal{K}\}.
\]

Similarly we define \(\mathcal{J}_2 \) and \(\mathcal{J}_3 \). Define \(W_i = \{(0, J, J', 0) \in V_M : J, J' \in \mathcal{J}_i\} \) for \(i = 1, 2, 3 \). We will need these definitions in §6 and §7.

5.5. The smallest orbit \(Z \) is generated by the highest weight vector spanned by \(p(1, 0, 0, 0) \). The stabilizer of \(p(1, 0, 0, 0) \) is a maximal abelian parabolic \(Q = L' \rtimes N' \) in \(M(\mathbb{C}) \). We denote \(\overline{Q'} = L \rtimes \overline{N'} \) to be the opposite parabolic subgroup. Then \(\overline{Q'} \) stabilizes the flag

\[
\mathbb{C} \subset \mathcal{J} \oplus \mathbb{C} \subset \mathcal{J} \oplus \mathcal{J} \oplus \mathbb{C} \subset V_M.
\]

There is a bijection \(\mathcal{J}(\mathcal{K}) \rightarrow \overline{N'} \) given by \(B \mapsto p_B \) where \(p_B \) acts on \(V_M \) by (see [Kim])

\[
p_B : (0, J, J', 0) \mapsto (0, J + 2B \times J, (B, B, J) + (B, J')).
\]

We recall a version of Lemma 7.5 of [MS].
Lemma 5.5.1. Representatives of the N'-orbits on Z are
\[v_1 = p(1, 0, 0, 0) \quad v_2 = p(0, J, 0, 0) \quad v_3 = p(0, 0, J', 0) \quad v_4 = p(0, 0, 0, 1) \]
where J and J' are rank 1 elements in J.

5.6. The variety X is the hypersurface given by the degree 4 polynomial (cf. [J1])
\[f_4(\xi, J, J', \xi') = (J \times J, J' \times J') - \xi \det(J) - \xi' \det(J') - \frac{1}{4}(J, J') - \xi \xi'. \]

If $J_1 = (0, 0, 0; x, y, z)$ and $J_2 = (0, 0, 0; x', y', z')$, then
\[f_4(0, J_1, J_2, 0) = N(x)N(x') + N(y)N(y') + N(z)N(z') + \langle yz, y'z' \rangle \]
\[+ \langle zx, z'x' \rangle + \langle xy, x'y' \rangle - \frac{1}{4}(x, x') + \langle y, y' \rangle + \langle z, z' \rangle) \]
Clearly $(0, J, 0, 0)$ and $(0, J_1, J_2, 0) \in X$.

5.7. Y is the algebraic set cut out by the set of degree 3 polynomials $\{\partial f_4/\partial v : v \in V_M\}$. It contains the point $p(0, J, 0, 0)$ (resp. $p(0, 0, J', 0)$) if and only if J (resp. J') has rank at most 2. Similarly Z contains the point iff J (resp. J') has rank 1.

5.8. Let $K = \mathbb{C}$, then the nontrivial outer automorphism of $M = SU_6$ in Table 1 (e2) acts on V_M by sending $(\xi, J, J', \xi') \mapsto (\xi, J, J', \xi')$ where J and J' denotes taking conjugation of the entries.

5.9. Let $G_0 = \tilde{\text{Spin}}(4, 4)$ and by setting J to be the set of diagonal 3 by 3 complex matrices in (25), V_M is the representation $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ of $M(\mathbb{C}) = SL_3(\mathbb{C})$. We index this case by $s = 0$.

6. Dual pairs in $\tilde{F}_{4,4}$.

6.1. In this section let $G = \tilde{F}_{4,4}$. It has maximal compact subgroup $K' = SU_2(\tilde{\alpha}) \times Sp_6$. Let $G' = \tilde{\text{Spin}}(5, 4)$ and $G'' = \tilde{\text{Spin}}(4, 4)$. In this section we will prove Theorems 4.2.1 and 4.3.1. We will retain the notations of §4.2 and §4.3.

6.2. The center C of $\tilde{\text{Spin}}(4, 4)$ is
\[C := \{(\epsilon_1 \epsilon_2 \epsilon_3, \epsilon_1, \epsilon_2, \epsilon_3) \in SU_2(\tilde{\alpha}) \times SU_2^3 : \epsilon_i = \pm 1 \in SU_2 \} \simeq \mu_3^3. \]
$(-1, -1, -1, -1) \in C$ is the nontrivial center of $\tilde{F}_{4,4}$. We would like to interpret the subgroup $\tilde{\text{Spin}}(4, 4)$ in $\tilde{F}_{4,4}$ as the dual pair
\[\tilde{\text{Spin}}(4, 4) \times_v C. \]
We denote a character of C by $\chi(s_1, s_2, s_3)$, $s_i \in (\mathbb{Z}/2\mathbb{Z})$ such that
$$(\epsilon_1, \epsilon_2, \epsilon_3) \mapsto \epsilon_1^{s_1} \epsilon_2^{s_2} \epsilon_3^{s_3}.$$
Let C^\wedge denote the character group of C.

The element $\epsilon_1 \in C$ acts on $F_{4,4}$ by conjugation and it fixes the subgroup $\tilde{\text{Spin}}(5, 4)$ in $F_{4,4}$. It has maximal compact subgroup
$$K = SU_2(\alpha) \times (SU_2(A) \times \text{Spin}(5)).$$
The center $C_1 \subset C$ of $\tilde{\text{Spin}}(5, 4)$ is the Klein 4 group
$$C_1 := \{ (\epsilon_1, \epsilon_1, \epsilon_2, \epsilon_2) \in C : \epsilon_i = \pm 1 \}.$$
We denote the character group of C_1 by C_1^\wedge. It consists of characters
$$\chi(s_1, s_2) : (\epsilon_1, \epsilon_2) \mapsto \epsilon_1^{s_1} \epsilon_2^{s_2}$$
where $s_i \in \mathbb{Z}/2\mathbb{Z}$.

We have the following see-saw pairs in $\tilde{F}_{4,4}$:
$$\begin{array}{ccc}
\tilde{\text{Spin}}(5, 4) & \bowtie & C \\
\tilde{\text{Spin}}(4, 4) & \bowtie & C_1.
\end{array}$$

6.3. The S_3 outer automorphism group on $\tilde{\text{Spin}}(4, 4)$ permutes the 3 factor subgroups of $SU_2^3 \subset M''$ and G contains
$$\begin{array}{ccc}
(\tilde{\text{Spin}}(4, 4) \times_C C) & \times & S_3.
\end{array}$$
Hence if $\text{Res}_{\tilde{\text{Spin}}(4, 4)} \sigma(\mathbb{C}[k])$ contains $\sigma(\text{Spin}(4, 4), S(a, b, c)[k])$, then it will also contain
$$^s\sigma = \sigma \left(\text{Spin}(4, 4), S^a_{s(A)} \otimes S^b_{s(B)} \otimes S^c_{s(C)}[k] \right),$$
where $s \in S_3$.

6.4. By (31) $\text{Spin}(4, 4) \times S_3 \subset F_{4,4}$ and $M'''(\mathbb{C}) = SL_3^3(\mathbb{C}) \times S_3$. Set $K = \mathbb{C}$ and we recall the definition of J_i and W_i ($i = 1, 2, 3$) in (26). The W_i's give the standard representations of each of the 3 factor groups of $SU_2^3 \subset M'''$. $V_0 = W_1 \oplus W_2 \oplus W_3$. The outer automorphism group S_3 acts on V_0 by permuting the W_i's. Then $\mathbb{P}V_0$ has a dense $M'''(\mathbb{C})$-orbit. There are two more orbits and their closures are
$$X_2 := \mathbb{P}(W_1 \oplus W_2) \cup \mathbb{P}(W_2 \oplus W_3) \cup \mathbb{P}(W_3 \oplus W_1)$$
$$X_1 := \mathbb{P}W_1 \cup \mathbb{P}W_2 \cup \mathbb{P}W_3 \subset X_2.$$
The homogeneous ideal of X_2 in $\mathbb{P}V_0$ is generated by
$$W_0 = W_1 \otimes W_2 \otimes W_3 \subset S^3(V_0)$$
and it has coordinate ring
\[A_n(X_2) = \sum_{a,b,c} S^a(W_1) \otimes S^b(W_2) \otimes S^c(W_3) \]
where the sum is taken over all nonnegative integers \(a, b, c \) such that \(a + b + c = n \) and \(abc = 0 \).

Lemma 6.4.1.
(a) \(PV_0 \cap X = PV_0 \).
(b) \(PV_0 \cap Y = X_2 \).
(c) \(PV_0 \cap Z \) is the empty set.

Proof. Let \(J_1 = (0, 0, 0; 0, 0, 1), J_2 = (0, 0, 0; 0, 1, 1), J_3 = (0, 0, 0; 1, 1, 1) \) and \(v_i = (0, J_i, 0) \in X \) for \(i = 1, 2, 3 \). \(p(v_3) \in (X \cap PV_0) \setminus X_2 \) so \(PV_0 \cap X \) strictly contains \(X_2 \) and thus equals \(PV_0 \). This proves (a). Note that \(p(v_3) \not\in Y \) so \(PV_0 \cap Y \subset X_2 \). On the other hand \(p(v_2) \in Y \cap X_2 \). This proves (b). Finally \(p(v_3) \in X_1 \) but it does not lie in \(Z \). This proves (c). □

6.5. Consider \(\text{Spin}(5, 4) \subset F_{4,4} \) and \(M' = SU_2 \times \text{Spin}(5) = SU_2 \times Sp_4 \). Then \(V'_0 = W_2 \oplus W_3 \) gives the standard representation of \(Sp_4 \). Note that \(PV'_0 \) is a single \(Sp_4 \) orbit.

Lemma 6.5.1.
(a) \(PV'_0 \cap X = PV'_0 \cap Y = PV'_0 \).
(b) \(PV'_0 \cap Z \) is the empty set.

Proof. Since \(V'_0 \subset V_0 \), the lemma follows from Lemma 6.4.1. □

6.6. Proof of Theorems 4.2.1(c)(d) and 4.3.1(c)(d). Part (d) follows easily from Proposition 3.3.1 since \(S^nV'_0 = V_{0,n} \) and \(S^nV_0 = \sum_{a+b+c=n} S(a, b, c) \) respectively.

(c) By \(20 \) we have
\[0 \to \text{Res} \sigma_X \to \sum_{n=0}^{\infty} H(\text{Spin}(5, 4), V_{0,n}[d - 1 + n]) \]
\[\to \sum_{n=0}^{\infty} H(\text{Spin}(5, 4), V_{0,n}[d + 3 + n]) \to 0. \]
Considering the infinitesimal characters of the summands gives (13).

The restriction of \(\sigma_X \) to \(\text{Spin}(4, 4) \) and (14) have been proven in Prop. 4.6.1 of [L2]. This proves (c). □

Proof of Theorem 4.2.1(b). \(r_3 : V_M \to S^3(V'_0) \) and since the codomain is irreducible, \(r_3 \) is either the zero map or a surjection. However the image of \(r_3 \) has to cut out the empty set so \(r_3 = 0 \). This implies \(r_n = 0 \) and \(R_n = S^n(V'_0) \) for all \(n \). □
6.7. Proof of Theorem 4.3.1(b). \(r_3 : V_M \to S^3(V_0) \) and
\[
V_M = S^1_A + S^1_B + S^1_C + (S^1_A \otimes S^1_B \otimes S^1_C)
\]

as representations of \(M'' \). Thus image of \(r_3 \) is either 0 or \(W_0 \) (cf. (32)). By Lemma 6.4.1 the image has to cut out \(X_2 \) so it is \(W_0 \). Moreover \(W_0 \) generates the ideal of \(X_2 \) and thus \(R_n = A^n(X_2) \). □

6.8. Recall that the minimal representation \(\sigma_Z \) of \(\widetilde{F}_{4,4} \) has \(K \)-types
\[
\sum_{n=0}^{\infty} S^{n+1}_a(C^2) \otimes \pi_{Sp_6}(n \varpi_3).
\]

Suppose \(\text{Res}_{\text{Spin}(5,4) \times C} \sigma_Z = \sum_{\chi \in C^\wedge_1} \Theta'(\chi) \otimes \chi \).

The center of \(\widetilde{F}_{4,4} \) acts nontrivially on \(\sigma_Z \) and hence \(C_1 \) only acts by the characters \(\chi(1,0) \) and \(\chi(1,1) \). Theorem 4.2.1(a) is a consequence of the following theorem:

Theorem 6.8.1. Let \(\epsilon = 0, 1 \). Then \(\Theta'(\chi(1, \epsilon)) = \sigma(\widetilde{\text{Spin}}(5, 4), V_0, \epsilon[4]) \) and it has \(K \)-types \((K = SU_2(\widetilde{\alpha}) \times \mu_2 \times SU_2 \times \text{Spin}(5)) \)
\[
\sum_{a+b=0} S^{a+2b+1+\epsilon}(C^2) \otimes S^a(C^2) \otimes V_{a,2b+\epsilon}.
\]

Proof. By Lemma 6.5.1, \(O' \) is empty so \(r'_2 : S^2V_0' \to S^2V'_0 \) is not the zero map. Hence \(r'_2 \) is a surjection and Theorem 3.5.1(a) applies. The following lemma proves the claim about the \(K \)-types and completes the proof of the theorem:

Lemma 6.8.2.
\[
\text{Res}_{SU_2 \times \text{Spin}(5) \times C} \pi(n \varpi_3) = \sum_{a+b=n} S^a(C) \otimes \pi_{\text{Spin}(5)}(a \varpi_1 + b \varpi_2) \otimes \chi(a,b).
\]

We omit the proof of the lemma since branching law of \(Sp_6 \) is known (see Equation (25.27) [FH]). □

6.9. Suppose
\[
\text{Res}_{\text{Spin}(4,4) \times C} \sigma_Z = \sum_{\chi \in C^\wedge} \Theta(\chi) \otimes \chi.
\]

Since the center of \(\widetilde{F}_{4,4} \) acts nontrivially on \(\sigma_Z \), \(C \) can only act by the characters \(\chi(s_1, s_2, s_3) \) where \(s_1 + s_2 + s_3 \) is an odd integer.

Theorem 4.5.1(a) is a consequence of the following theorem:
Theorem 6.9.1.
(a) \(\Theta(\chi(1, 1, 1)) = \sigma(\tilde{\text{Spin}}(4, 4), \mathbb{C}[3]) \).
(b) \(\Theta(\chi(1, 0, 0)) = \sigma(\tilde{\text{Spin}}(4, 4), S(1, 0, 0)[4]) \).
(c) \(\Theta(\chi(0, 1, 0)) = \sigma(\tilde{\text{Spin}}(4, 4), S(0, 1, 0)[4]) \).
(d) \(\Theta(\chi(0, 0, 1)) = \sigma(\tilde{\text{Spin}}(4, 4), S(0, 0, 1)[4]) \).

\(\Theta(\chi(1, 1, 1)) \) (resp. \(\Theta(\chi(1, 0, 0)) \)) has \(K \)-types \((K = SU_2 \times SU_2^2) \)
\[
\sum_{n,a,b,c \geq 0} S^{1+n}_n(\mathbb{C}) \otimes S(a, b, c)
\]
where the sum is taken over all nonnegative integers \(n, a, b, c \) such that \(a + b + c \geq n, a + b - c \leq n, a - b + c \leq n, b + c - a \leq n \) and \(n \equiv a \equiv b \equiv c \) (mod 2) (resp. \(n \equiv a \neq b \equiv c \) (mod 2)).

The \(K \)-types of \(\Theta(\chi(0, 1, 0)) \) and \(\Theta(\chi(0, 0, 1)) \) differ from that of \(\Theta(\chi(1, 0, 0)) \) by permuting \(a, b, c \) in (34) accordingly under the action of \(S_3 \) (cf. §6.3).

Proof. By the action of \(S_3 \), it suffices to prove (a) and (b). By the see-saw pair (30), we note that
\[
\Theta'(\chi(1, 0)) = \Theta(\chi(1, 1, 1)) + \Theta(\chi(1, 0, 0)).
\]
The branching rule from Spin (5) to Spin (4) = \(SU_2^2 \) is well-known (see eqn (25.34) \([FH]\)). Applying this to Theorem 6.8.1 shows that the sum of the \(K \)-types of (a) and (b) agrees with the \(K \)-types in (35). A \(K \)-type
\[
S^n(\mathbb{C}^2) \otimes S(a, b, c)
\]
in (35) will belong to \(\Theta(\chi(1, 1, 1)) \) (resp. \(\Theta(\chi(1, 0, 0)) \)) if and only if \(a - b \) is an even (resp. odd) integer. This proves (34).

By naturality, the composition of the map
\[
I^2(Z) \overset{r_2}{\rightarrow} S^2V_0 \rightarrow S^2V'_0 = S^2_B + S^2_C + \mathbb{C}_B \otimes \mathbb{C}_C
\]
is the map \(r'_2 \) in the proof of Theorem 6.8.1 and it is surjective. This implies that the image contains \(S^2_B + S^2_C + \mathbb{C}_B \otimes \mathbb{C}_C \). Since \(r_2 \) commutes with the action of \(S_3 \) (cf. §6.3), \(r_2 \) is surjective and the theorem follows from Theorem 3.5.1(c). \(\square \)

7. Dual pairs in \(E_{6,4} \).

7.1. Let \(G' \subset G \) be one of the dual pairs (5) to (7). We set \(s = 2, 4, 8 \) and we define
\[
\mathcal{J}^p_s = \{(0, 0, 0; x_1, x_2, x_3) \in \mathcal{J}(K_s) : x_i \in K_s, \langle x_i, z \rangle = 0 \text{ for all } z \in K_s/2\}
\]
then
\[
V_0 = \{(0, J, J', 0) \in V_M : J, J' \in \mathcal{J}^p_s\}.
\]
It is known that \(M'(\mathbb{C}) \) has a dense orbit in \(\mathbb{P}V_0 \) [SK]. The orbits and their coordinate rings have been extensively studied and they are documented in §7 [GW2]. We will make use of these results to determine \(R_* \).

7.2. Consider \(G = E_{6,4} \times \mathbb{Z}/2\mathbb{Z} \supset G' = \tilde{F}_{4,4} \times \mathbb{Z}/2\mathbb{Z} \). Set \(s = 2 \). Then \(V_0 = \mathbb{C}^0 \) in (36) is the standard representation of \(M'(\mathbb{C}) = Sp_6(\mathbb{C}) \times \mathbb{Z}/2\mathbb{Z} \). It is well-known that \(\mathbb{P}V_0 \) is a single orbit of \(M'(\mathbb{C}) \).

Lemma 7.2.1.

(a) \(\mathbb{P}V_0 \cap X = \mathbb{P}V_0 \cap Y = \mathbb{P}V_0 \).

(b) \(\mathbb{P}V_0 \cap Z \) is an empty set.

Proof. (a) It suffices to show that \(\mathbb{P}V_0 \cap Y \) is nonempty since \(X \supset Y \) and \(\mathbb{P}V_0 \) is a single orbit of \(M'(\mathbb{C}) \). Let \(J = (0,0,0; s,0,0) \in J(K_2) \) where \(s = \text{diag}(1,-1) \in K_2 \). By (36) \((0,J,0,0) \in V_0 \). Since \(\det(J) = 0, p(J) \in Y \) by §5.7.

(b) We will prove this by contradiction. Suppose on the contrary \(\mathbb{P}V_0 \cap Z \) is nonempty and it equals \(\mathbb{P}V_0 \). Let \(v = (0,J',0) \in V_0 \) as given in (36) and assume that \(J \neq 0 \). Since \(p(v) \in Z \), by Lemma 5.5.1 and (27) \(J \) has rank at most 1. By (24), \(J = 0 \). This yields the contradiction. \(\square \)

Proof of Theorem 4.5.1. (a) By Lemma 7.2.1(b), \(r_2 : \mathfrak{s}_6 \rightarrow S^2(\mathbb{C}^6) \) is non-zero. Since the image is irreducible \(r_2 \) is a surjection. (a) follows from Theorem 3.5.1(c).

(b) and (c) follow from Lemma 7.2.1(a) and Theorem 3.5.1(a) since \(R_n = S^n(\mathbb{C}^6) \).

By (20) we have

\[
0 \rightarrow \text{Res} \sigma_X \rightarrow \sum_{n=0}^{\infty} \mathbf{H}(\tilde{F}_{4,4}, S^n(\mathbb{C}^6))[9 + n] \otimes \chi^n \\
\rightarrow \sum_{n=0}^{\infty} \mathbf{H}(\tilde{F}_{4,4}, S^n(\mathbb{C}^6))[13 + n] \otimes \chi^n \rightarrow 0.
\]

Finally considering the infinitesimal characters of the above summands gives (15). \(\square \)

7.3. Consider \(G_0 = E_{6,4} \times \mathbb{Z}/2\mathbb{Z} \supset G'' = \text{Spin}(4,4) \times \mu_2^2 (U_1^2 \times \mathbb{Z}/2\mathbb{Z}) \) and \(M'' = SU_2^3 \times \mu_2^2 (U_1^2 \times \mathbb{Z}/2\mathbb{Z}) \). Here we identify \(U_1^2 = \{(t_1, t_2, t_3) : t_i \in U_1, t_1t_2t_3 = 1\} \).

Let \(\chi_0(a_1, a_2, a_3) : (t_1, t_2, t_3) \mapsto t_1^{a_1}t_2^{a_2}t_3^{a_3} \) be a character of \(U_1^2 \) where \(a_i \in \mathbb{Z} \). Let \(\chi(a_1, a_2, a_3) \) be the unique irreducible representation of \(U_1^2 \times \mathbb{Z}/2\mathbb{Z} \) containing \(\chi_0(a_1, a_2, a_3) \). Note that \(\chi(a, a, a) = \mathbb{C} \) and if not all the \(a_i \)'s are the same, then \(\chi(a_1, a_2, a_3) = \chi_0(a_1, a_2, a_3) + \chi_0(-a_1, -a_2, -a_3) \). Clearly
\[\chi(a_1, a_2, a_3) = \chi(a_1 - a, a_2 - a, a_3 - a) = \chi(-a_1, -a_2, -a_3). \] Therefore we may assume that \((a_1, a_2, a_3)\) takes values from the set

\[T := \{(a_1, a_2, a_3) \in \mathbb{Z}^3 : a_i > a_{i+1} = 0 \geq a_{i+2} \text{ for some } i = 1, 2, 3\} \cup \{(0, 0, 0)\}. \]

Set \(K = K_2\) and we define \(J_i\) and \(W_i\) \((i = 1, 2, 3)\) using (26). Then \(V_0 = W_1 \oplus W_2 \oplus W_3\). \(W_i = W_{i1} \oplus W_{i2}\) where \(W_{i1}\) and \(W_{i2}\) are the standard representations of \(SU_2\). \((t_1, t_2, t_3) \in U_1^2\) acts on \(W_{i1}\) (resp. \(W_{i2}\)) by multiplication by \(t_i\) (resp. \(t_i^{-1}\)).

Write \(V_0 = \sum w_{ij}\) and we denote an element of \(V_0\) by \((w_{ij})\) where \(w_{ij} \in W_{ij}\). Let \(V\) denote the subset of \(V_0\) consisting of \((w_{ij})\) satisfying the following:

1. For each \(j = 1, 2,\) at least 2 of \(w_{1j}, w_{2j}, w_{3j}\) is zero.
2. For each \(i = 1, 2, 3,\) either \(w_{i1} = 0\) or \(w_{i2} = 0.\)

Then one can show that \(Z \cap \mathbb{P}V_0 = \mathbb{P}V\) and the ideal of \(\mathbb{P}V\) is generated by degree 2 polynomials. Its coordinate ring is

\[A^n(\mathbb{P}V) = \sum S([a_1], [a_2], [a_3]) \otimes \chi(a_1, a_2, a_3) \]

where the sum is taken over all \((a_1, a_2, a_3) \in T\) satisfying \(|a_1| + |a_2| + |a_3| = n\).

By Theorem 3.5.1(c) we get the dual pair correspondence of \(G''\) in \(G\).

Theorem 7.3.1.

\[\text{Res}_{E_{6,4} \times \mathbb{Z}/2\mathbb{Z}}^{\text{Spin}(4,4) \times (U_1^2 \times \mathbb{Z}/2\mathbb{Z})} \sigma_{Z} \]

\[= \sum_{(a_1, a_2, a_3) \in T} \sigma_{\text{Spin}(4,4)} S([a_1], [a_2], [a_3]) [a_1 + |a_2| + |a_3| + 4] \otimes \chi(a_1, a_2, a_3). \]

The \(K\)-types of the summands could be calculated using (12) by applying the branching rule from \(M = SU_6\) to \(SU_3^2 \times U_1^2 \subset M''\). This in turn could be computed using the Littlewood-Richardson rule (see [FH, p. 456]).

Note that the summands of the above correspondence also appear in Theorem 4.3.1(b). This follows from the fact that the dual pairs \(G_0''\) and \(E_{4,4} \times \mathbb{Z}/2\mathbb{Z}\) form a see-saw pair in \(G_0\). Similarly restrictions of \(\sigma_Y\) and \(\sigma_X\) to \(G_0''\) will yield representations of Spin(4,4) appearing in Theorem 4.3.1(c) and (d).

8. Dual pair in \(E_{7,4}.\)

8.1. Consider \(G_0 = E_{7,4} \lor G_0' = (E_{6,4} \times U_1) \times \mathbb{Z}/2\mathbb{Z}\) and \(M'(\mathbb{C}) = GL_6 \times \mathbb{Z}/2\mathbb{Z}\). The nontrivial element in \(\mathbb{Z}/2\mathbb{Z}\) acts on \(E_{6,4}\) as the outer automorphism. It also acts on \(U_1\) by sending \(z \mapsto z^{-1}\).

Set \(s = 4\) and define \(V_0\) as in (36). \(z \in U_1(\mathbb{C}) = \mathbb{C}^*\) will act on \(V_0\) by

\[(0, J, J', 0) \rightarrow (0, zJ, z^{-1}J', 0). \]
Recall \(\mathcal{K}_4 = M_2(\mathbb{C}) \) and let \(\mathcal{K}_u \) (resp. \(\mathcal{K}_l \)) denote the subspace of strictly upper (resp. lower) triangular matrices. Define
\[
\mathcal{J}_u = \{ (0,0,0;c_1,c_2,c_3) \in \mathcal{J}(\mathcal{K}_4) : c_i \in \mathcal{K}_u \} \\
\mathcal{V}_u = \{ (0,J,J',0) \in \mathcal{V}_0 : J,J' \in \mathcal{J}_u \}.
\]
Similarly we define \(\mathcal{J}_l \) and \(\mathcal{V}_l \) by replacing \(\mathcal{K}_u \) with \(\mathcal{K}_l \). \(\mathcal{V}_u \) (resp. \(\mathcal{V}_l \)) gives the standard (resp. dual) representation of \(GL_6 \). Thus \(\mathcal{V}_0 = \mathbb{C}^6 \oplus (\mathbb{C}^6)^* \) as a representation of \(M'(\mathbb{C}) = GL_6 \otimes \mathbb{Z}/2\mathbb{Z} \).

There are only two nontrivial proper orbits of \(M' \) in \(\mathbb{P}V_0 \) (cf. §6 [GW2]). Their closures are
\[
X_1 = \mathbb{P}\mathbb{C}^6 \cup \mathbb{P}(\mathbb{C}^6)^* \\
\mathcal{F} = \{ (v,v^*) \in \mathbb{P}V_0 : f_0 := \langle v,v^* \rangle = 0 \}.
\]
Note that \(X_1 \subseteq \mathcal{F} \). The inner product \(f_0 \) defining \(\mathcal{F} \) is an \(M'- \)invariant quadratic form in \(S^2V_0 \) and this in turn induces an inclusion
\[
S^nV_0 : f_0 \hookrightarrow S^{n+2}V_0.
\]
The coordinate ring \(A^n(\mathcal{F}) \) is the quotient of the above inclusion. Recall §4.7 where we define \(V_{a,b} = \pi_{SL_6}(a\varpi_1 + b\varpi_6) \). Then
\begin{equation}
A^n(\mathcal{F}) = \sum_{a+b=n} V_{a,b} \otimes \chi_1^{a-b} \\
A^n(\mathbb{P}V_0) = A^n(\mathcal{F})[f_0] = \sum_{a+b+2m=n} V_{a,b} \otimes \chi_1^{a-b}
\end{equation}
as a representation of \(GL_6 = SL_6 \times \mu_6 U_1 \).

Lemma 8.1.1.
(a) \(\mathbb{P}V_0 \cap Z = \mathbb{P}\mathbb{C}^6 \cup \mathbb{P}(\mathbb{C}^6)^* \).
(b) \(\mathcal{F} = \mathbb{P}V_0 \cap X = \mathbb{P}V_0 \cap Y \).

Proof. Define
\[
s = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad t = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \in \mathcal{K}_4 = M_2(\mathbb{C}), \\
x_1 = (0,0,0;s,0,0), \quad x_2 = (0,0,0;t,0,0) \in \mathcal{J}(\mathcal{K}_4), \\
T_1 = (0,x_1,0,0), \quad T_2 = (0,x_1+x_2,0,0), \quad T_3 = (0,x_1,x_2,0) \in \mathcal{V}_0.
\]
By Lemma 5.5.1 \(p(T_1) \in Z \cap \mathbb{P}V_0 \). Hence \(Z \cap \mathbb{P}V_0 \) is nontrivial and it must contain \(X_1 \). \(x_1 + x_2 \) has rank 2 so \(p(T_2) \in Y \setminus Z \) (cf. §5.7) and \(p(T_2) \notin X_1 \). This proves (a) and implies that \(\mathbb{P}V_0 \cap Y \supseteq \mathcal{F} \).

Next \(p(T_3) \notin \mathbb{P}V_0 \setminus \mathcal{F} \). \(f_4(T_3) \neq 0 \) so \(T_3 \notin X \). Since \(\mathcal{F} \) is maximal proper, \(\mathcal{F} \supseteq X \cap \mathbb{P}V_0 \supseteq Y \cap \mathbb{P}V_0 \). This proves (b). \(\square \)
Proof of Theorem 4.7.1. (a) The image of r_2 must be cut out X_1 so it is either $V_{1,1}$ or $Cf_0 + V_{1,1}$ in S^2V_0.

We claim that the image cannot be $V_{1,1}$. Indeed if otherwise by Theorem 3.5.1(b) the restriction of σ_Z will contain $\sigma' = \sigma(E_{6,4}, \mathbb{C}[6])$. σ' contains the lowest K'-type $\tau = S^4_0(\mathbb{C}^2) \otimes \mathbb{C} (K' = SU_2(\alpha) \times SU_6)$. Therefore τ is a subrepresentation of the K-type

$$S^4_0(\mathbb{C}^2) \otimes \pi_{\text{Spin}(12)}(2\varpi_6)$$

in σ_Z. However the tables of $[KP]$ show that the above does not contain τ. This proves the claim.

Finally since $V_{1,1} + Cf_0$ generates the homogeneous ideal of X_1 so $R_* = A^\bullet(\mathcal{F})$ (cf. (37)). This proves (a).

(b) Similar to (a) the image of r_3 cuts out \mathcal{F} and it has to be $V_0 : f_0 \subset S^3V_0$. The ideal generated by V_0f_0 contains all homogeneous polynomials vanishing on \mathcal{F} except Cf_0. Thus $R_* = A^\bullet(\mathcal{F}) + Cf_0$. Finally we note that $\text{H}(E_{6,4}, \mathbb{C}[12])$ is irreducible (cf. §3.3).

(c) By (20) we get

$$0 \to \text{Res} \sigma_X \to \sum_{a,b,n} \text{H}(\tilde{E}_{6,4}, V_{a,b}[15 + 2n + a + b]) \otimes \chi_1^{a-b}$$

$$\to \sum_{a,b,n} \text{H}(\tilde{E}_{6,4}, V_{a,b}[19 + 2n + a + b]) \otimes \chi_1^{a-b} \to 0.$$

The summands on the right are all irreducible and unitary, and they also appear as summands in the middle term. Therefore removing these representations from (38) gives

$$0 \to \text{Res} \sigma_X \to \sum_{n=0,1} \sum_{a,b} \text{H}(\tilde{E}_{6,4}, V_{a,b}[15 + 2n + a + b]) \otimes \chi_1^{a-b} \to 0.$$

This completes the proof of (c). \qed

Note that in (c) the image of r_4 is one dimensional and it cuts out \mathcal{F} and it has to be $(f_0)^2 \subset S^4V_0$. Therefore R_* is not reduced. This example shows that the containment in Theorem 3.5.1(b) may be proper.
9. Dual pairs in $E_{8,4}$.

9.1. In this section we consider $\tilde{E}_{8,4} \supset \tilde{E}_{7,4} \times SU_2$ and $M' = \text{Spin}(12) \times SU_2$. Set $s = 8$ and define V_0 by (36).

9.2. Recall U_0 in §5.3. Define $U_e := C e_2 \oplus C e_3 \subset U_0$. By (22) $SL(U_e)$ acts on \mathcal{K}_8. This induces an action of $SL(U_e)$ on $(0, J, J', 0) \in V_0$ where $SL(U_e)$ acts uniformly on each of the nonzero entries of J and J'.

For $i = 1, 2$, define $J_i = (0, 0, 0; x_{i1}, x_{i2}, x_{i3}) \in \mathcal{J}$ where $x_{ij} = (0, 0; w_{ij1} e_2, -w_{ij2} e_3)$ in \mathcal{K}_8 (cf. (21)) and $w_{ijk} \in \mathbb{C}$. Let $v = (0, J_1, J_2, 0) \in V_0$. Denote the set of such vectors v in V_0 by V_1.

Similarly for $i = 1, 2$, define $J'_i = (0, 0, 0; x'_{i1}, x'_{i2}, x'_{i3}) \in \mathcal{J}$ where $x'_{ij} = (0, 0; w'_{ij1} e_3, w'_{ij2} e_2) \in \mathcal{K}_8$ and $w'_{ijk} \in \mathbb{C}$. Let $v' = (0, J'_1, J'_2, 0) \in V_0$. Denote the set of such vectors v' in V_0 by V_2.

Note that $V_0 = V_1 \oplus V_2$. Both V_1 and V_2 give the standard representations of Spin(12) in $M(\mathbb{C})$. The invariant quadratic forms on V_1 and V_2 are given respectively by

\[
q_1(w_{ijk}) = \sum_{j=1}^{3} (w_{1j1} w_{2j2} - w_{1j2} w_{2j1})
\]

\[
q_2(w'_{ijk}) = \sum_{j=1}^{3} (w'_{1j1} w'_{2j2} - w'_{1j2} w'_{2j1}).
\]

Let $\omega = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in SL(U_e)$, $(w_{ijk}) \in V_1$ and $(w'_{ijk}) \in V_2$. The action of ω on V_0 commutes with that of Spin(12) and $\omega V_2 = V_1$ by sending $(w'_{ijk}) \mapsto (w_{ijk})$ where $w_{ijk} = w'_{ijk}$. Let $w_1, w_2 \in V_1$, define $\phi : V_1 \otimes U_e \rightarrow V_0$ by

\[
\phi : w_1 \otimes e_2 + w_2 \otimes e_3 \rightarrow w_1 + \omega^{-1} w_2.
\]

Then ϕ is an isomorphism of representations of $M'(\mathbb{C}) = \text{Spin}(12) \times SL(U_e)$.

9.3. We will describe the orbits of $M'(\mathbb{C})$ on $\mathbb{P}V_0$. $\mathbb{P}V_0$ has a dense $M'(\mathbb{C})$ orbit. It contains four additional orbits and we denote their closures by X_1, Y_1, Y_2, Z_1. Let $\langle \cdot, \cdot \rangle$ denote the inner product induced by quadratic form q_1 on V_1 and let $v = w_1 \otimes e_2 + w_2 \otimes e_2$. Then X_1 is a hypersurface whose ideal is generated by a degree 4 polynomial f'_4

\[
f'_4(v) = \det \left(\begin{array}{cc} \langle w_1, w_1 \rangle & \langle w_1, w_2 \rangle \\ \langle w_2, w_1 \rangle & \langle w_2, w_2 \rangle \end{array} \right).
\]

Y_1 is the complete intersection of the 3 quadrics

\[
\langle w_1, w_1 \rangle = \langle w_1, w_2 \rangle = \langle w_2, w_2 \rangle = 0.
\]
\[Y_2 \subset X_1 \] is the subvariety \(\mathbb{P}W \times \mathbb{P}U \). Let \(Q \subset \mathbb{P}W \) be defined by \(\langle w_1, w_1 \rangle = 0 \). Then \(Z_1 = Q \times \mathbb{P}U = Y_1 \cap Y_2 \) is the unique minimal closed orbit in \(\mathbb{P}V_0 \). \(Y_1 \cup Y_2 \) is cut out by cubics

\[
\begin{align*}
\tag{40} f_a(v) &:= \det \begin{pmatrix} \langle w_1, w_1 \rangle & \langle w_1, a \rangle \\ \langle w_2, w_1 \rangle & \langle w_2, a \rangle \end{pmatrix} = 0, \\
\tag{41} f_b(v) &:= \det \begin{pmatrix} \langle b, w_1 \rangle & \langle b, w_2 \rangle \\ \langle w_2, w_1 \rangle & \langle w_2, w_2 \rangle \end{pmatrix} = 0
\end{align*}
\]

for all \(a, b \in W \). Let \(I_0 \) be the homogeneous ideal generated by \(\{ f_a, f'_b : a, b \in W \} \). We claim that \(I_0 \) is the homogeneous ideal of \(Y_1 \cup Y_2 \). Indeed suppose \(f \) vanishes on \(Y_1 \cup Y_2 \), by (39) we may assume that modulo \(I_0 \)

\[f(w_1, w_2) = h_1(w_1)\langle w_1, w_1 \rangle + h_2(w_1, w_2)\langle w_1, w_2 \rangle + h_3(w_2)\langle w_2, w_2 \rangle \]

where \(h_1, h_2, h_3 \) are polynomials on \(V_1, W \) and \(V_2 \) respectively. Since \(f(w_1, w_2) = 0 \) whenever \(w_1 \) is parallel to \(w_2 \), we get \(h_1 = h_3 = 0 \) and \(h_2 \) vanishes on \(Y_2 \). Thus \(f \in I_0 \) and this proves the claim.

Recall §4.8 where \(V_{a,b} = \pi_{\text{Spin}(12)}(a\bar{w_1} + b\bar{w_2}) \). Then the coordinate rings are:

\[
\begin{align*}
\tag{41} A^*(\mathbb{P}V_0) &= A^*(X_1)[f'_d] \\
A^n(X_1) &= \sum_{a+2d+c} V_{a+2d,c} \otimes S^{a+2b}(U) \\
&= \sum_{a+2c=n} V_{a,c} \otimes S^n(U). \\
\tag{42} A^n(Y_1) &= \sum_{a+2c=n} V_{a,c} \otimes S^n(U). \\
\tag{43} A^n(Y_2) &= S^n(W) \otimes S^n(U) = \sum_{a+2b=n} V_{a,0} \otimes S^n(U).
\end{align*}
\]

\[
\begin{align*}
\tag{44} A^n(Y_1 \cup Y_2) &= \sum_{a+2b+2c=n, bc=0} V_{a,c} \otimes S^{a+2b}(U). \\
\tag{45} A^n(Z_1) &= V_{n,0} \otimes S^n(U).
\end{align*}
\]

The coordinate rings except (44) are given in §5, §6 [GW2]. Since \(A^n(Y_1 \cup Y_2) \) is a quotient of \(A^n(X_1) \) which is multiplicity free, (44) follows from (42) and (43).

Lemma 9.3.1.

(a) \(X \cap \mathbb{P}V_0 = X_1 \).

(b) \(Y \cap \mathbb{P}V_0 = Y_1 \cup Y_2 \).

(c) \(Z \cap \mathbb{P}V_0 = Z_1 \).

Proof. For the ease of notations, suppose \(J_i = (0, 0, 0; c_{i1}, c_{i2}, c_{i3}) \in \mathcal{J} \) \((i = 1, 2)\), then we denote \((0, J_1, J_2, 0) \in \mathbb{V}_0 \) by \((c_{11}, c_{12}, c_{13}; c_{11}, c_{12}, c_{13}) \). For \(i = 2, 3 \), let \(x_i = (0, 0; e_i, e_i), y_i = (0, 0; e_i, 0) \in \mathcal{K}_8 \) and (cf. (21)).
Set $v_1 := (x_2, x_2, x_2)(0, 0, 0) \in V_0$. Then $f_4(v_1) \neq 0$. Hence $X \cap PV_0$ is a hypersurface in PV_0 of degree 4 and it has to be X_1.

(b) $J_4 = (0, 0, 0; x_2, x_2, x_2)$ has rank 3 so $p(0, J_4, 0, 0) \in (X \setminus Y) \cap PV_0$. Hence $Y \cap PV_0 \subseteq Y_1 \cup Y_2$. $J_5 = (0, 0, 0; x_2, 0, 0)$ has rank 2 so $p(0, J_5, 0, 0) \in (Y \setminus Z) \cap (Y_1 \cup Z_1)$. Hence $Z \cap PV_0 \subseteq Y_2$ and $Y_1 \subseteq Y \cap PV_0$.

Let $v_3 = (y_2, 0, 0; y_3, 0, 0)$ so that $pv_3 \in Y_2 \setminus Z_1$. It is easy to check that v_3 satisfies $\partial f_4/\partial v = 0$ in $Y_2 \setminus Z_1$ so $pv_2 \in Y$. This implies that $Y \supseteq Y_2$.

(c) We have seen in (b) that $Z \cap PV_0 \subseteq Y_2$. $J_6 = (0, 0, 0; y_2, 0, 0)$ has rank 1 so $p(0, J_6, 0, 0) \in Z \cap PV_0$. Hence $Z \cap PV_0 \supseteq Z_1$. To complete the proof it suffices to show that $pv_3 \notin Z$. Indeed otherwise, by Lemma 5.5.1, $v_3 = p_B(0, J_6, 0, 0)$ for some $B = (\beta_k; d_k) \in J$ (cf. (27)). Computations show that $p_B(J_6) = (0, J_6, 2B \times J_6, 0)$. However $2B \times J_6 = (*, *, *, -\beta_1 y_2, *, *) \neq (0, 0, 0; y_3, 0, 0)$. Hence $pv_3 \notin Z$. □

Proof of Theorem 4.8.1. (a) This is determined by the map

\[
r_2 : \quad e_7 = \mathbb{C} \otimes S^2U + V_{0,1} + U \otimes \pi_{\text{Spin}_{12}}(v_0) \rightarrow S^2(W \otimes U) = V_{2,0} \otimes S^2U + S^2(U) + V_{0,1}.
\]

The image of r_2 is nonzero so it is either S^2U, $V_{0,1}$ or the sum. By (42) (resp. (43)) S^2U (resp. $V_{0,1}$) vanishes on Y_1 (resp. Y_2). By Lemma 9.3.1(c) the image cuts out Z_1 and hence it is must be the sum. Since $I^*(Z_1)$ is generated by degree 2 polynomials, $R_n = A^n(Z_1)$.

(b)

\[
r_3 : \quad V_M = W \otimes U + \pi_{\text{Spin}_{12}}(v_5) \rightarrow S^3(V_0) = V_{3,0} \otimes S^3(U) + W \otimes U + W \otimes S^3(U) + V_{1,2} \otimes U.
\]

Since r_3 is nontrivial, the image has to be $W \otimes U$ and they are the set of cubics in (40). We have shown that the set of cubics generates the ideal of $Y_1 \cup Y_2$ and (b) follows from Theorem 3.5.1(b) and (44).

(c) By (20) and (41) we get

\[
0 \rightarrow \text{Res} \sigma_X \rightarrow \sum_{n,m} H(G', A^m(X_1)[27 + m + 4n]) \rightarrow \sum_{n,m} H(G', A^m(X_1)[31 + m + 4n]) \rightarrow 0.
\]

The summands on the right also appear in the middle term. Therefore by removing these representations from (46) we get

\[
0 \rightarrow \text{Res} \sigma_X \rightarrow \sum_{m=0}^{\infty} H(G', A^m(X_1)[27 + m + n]) \rightarrow 0.
\]

This completes the Proof of Theorem 4.8.1(c).
(d) This follows from Proposition 3.3.1 and (41).

9.4. **Proof of Corollary 4.10.1.** First we recall a well-known fact [FH].

Lemma 9.4.1. The 1 dimensional character \det^{a-b} of U_2 is the only SU_2 fixed vector in $\pi_{SU_3}(a\varpi_1 + b\varpi_2)$.

Consider the see-saw pair

$$E_7,4 \quad SU_3$$
$$\bowtie$$
$$E_6,4 \quad SU_2$$

By Theorem 4.8.1(a), the trivial representation of SU_2 corresponds to the representation σ_Y of $E_7,4$. Applying Lemma 9.4.1 to the see-saw pair (47) gives

$$\sum_{a,b \geq 0} \Theta(a,b) \otimes \chi_{1}^{a-b}$$

$$= \text{Res}_{E_6,4 \times U_1} \sigma_Y$$

$$= \mathcal{H}(E_6,4, \mathbb{C}[12]) \otimes \chi_{1}^{0} + \sum_{a,b \geq 0} \sigma(E_6,4, \pi_{SU_6}(a\varpi_1 + b\varpi_5)[a + b + 10]) \otimes \chi_{1}^{a-b}.$$

The second equality is Theorem 4.7.1(b). By Table 1B of the Appendix to [L3], $\Theta(a,b)$ contains the right-hand side of (17). Alternatively, one can deduce this by considering the correspondence of the infinitesimal characters [Li3]. By (48) the containment is an equality. This proves Corollary 4.10.1.

Acknowledgments. This paper is a continuation of the author’s Ph.D thesis at Harvard [L1] and [L3]. He thanks his thesis advisor Prof. Benedict Gross for introducing him to the subject of quaternionic representations. He also thanks the referee for his careful reading.

References

B. Gross, Letter to Kostant.

Received December 13, 1999 and revised February 9, 2000.

DEPARTMENT OF MATHEMATICS
NATIONAL UNIVERSITY OF SINGAPORE
10 KENT RIDGE CRESCENT
SINGAPORE 119260
E-mail address: matlhy@math.nus.edu.sg