Vol. 212, No. 1, 2003

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
A family of arithmetic surfaces of genus 3

Jordi Guàrdia

Vol. 212 (2003), No. 1, 71–91
Abstract

The aim of this paper is the study of the genus 3 curves

Cn : Y 4 = X4 − (4n− 2)X2 + 1,

from the Arakelov viewpoint. The Jacobian of the curves Cn splits as a product of elliptic curves, and this fact gives enough arithmetical datum to determine the stable model and the canonical sheaf of the curves. We use this information to look for explicit expressions of the modular height and the self-intersection of the dualizing sheaf of the curves Cn.

Milestones
Received: 22 November 2000
Revised: 14 January 2003
Published: 1 November 2003
Authors
Jordi Guàrdia
Dept. Matemàtica Aplicada IV
Escola Universitària Politècnica de Vilanova i la Geltrú
Universitat Politècnica de Catalunya
E-08800 Vilanova i la Geltrú
Barcelona - Catalunya
Spain