Vol. 212, No. 1, 2003

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
On antipodes on a manifold endowed with a generic Riemannian metric

Joël Rouyer

Vol. 212 (2003), No. 1, 187–200
Abstract

We prove that a generic point of a Cr manifold endowed with a generic Riemannian structure has an unique antipode (i.e., farthest point). Furthermore, in the case of 2-dimensional manifolds, such a point is joined to its antipode by at most three minimizing geodesics (r 2).

Milestones
Received: 3 April 2002
Revised: 4 November 2002
Published: 1 November 2003
Authors
Joël Rouyer
Laboratoire de Mathématiques et Applications
Faculté des Sciences et Techniques - Université de Haute-Alsace
4, rue des frères Lumière
F-68 093 Mulhouse Cedex
France