Pacific Journal of Mathematics

EXPLICIT REALIZATION OF THE DICKSON GROUPS $G_2(q)$ AS GALOIS GROUPS

GUNTER MALLE

Volume 212 No. 1

November 2003

EXPLICIT REALIZATION OF THE DICKSON GROUPS $G_2(q)$ AS GALOIS GROUPS

GUNTER MALLE

For any prime power q we determine a polynomial $f_q(X) \in F_q(t,u)[X]$ whose Galois group over $F_q(t,u)$ is the Dickson group $G_2(q)$. The construction uses a criterion and a method due to Matzat.

1. Introduction.

In this paper we are concerned with the construction of polynomials whose Galois groups are the exceptional simple Chevalley groups $G_2(q)$, q a prime power, first discovered by Dickson; see Theorems 4.1 and 4.3.

It was shown by Nori [7] that all semisimple simply-connected linear algebraic groups over \mathbb{F}_q do occur as Galois groups of regular extension of regular function fields over \mathbb{F}_q , but his proof does not give an explicit equation or even a constructive method for obtaining such extensions. On the other hand, in a long series of papers Abhyankar has given families of polynomials for groups of classical types (see [1] and the references cited there). His ad hoc approach hasn't yet led to families with groups of exceptional type (but see [2] for a different construction of polynomials with Galois group the simple groups of Suzuki). Thus it seems natural to try to fill this gap. In his recent paper Matzat [6] describes an algorithmic approach which reduces the construction of generating polynomials for such extensions to certain group theoretic calculations.

More precisely, let $F := \mathbb{F}_q(\mathbf{t})$, with $\mathbf{t} = (t_1, \ldots, t_s)$ a set of indeterminates. We denote by $\phi_q : F \to F$, $x \mapsto x^q$, the Frobenius endomorphism. Let G be a reduced connected linear algebraic group defined over \mathbb{F}_q , with a faithful linear representation $\Gamma : G(F) \hookrightarrow \operatorname{GL}_n(F)$ in its defining characteristic, also defined over \mathbb{F}_q . We identify G(F) with its image in $\operatorname{GL}_n(F)$. Fix an element $g \in G(F)$ and assume that $g \in \operatorname{GL}_n(R)$, where $R := \mathbb{F}_q[\mathbf{t}]$. Any specialization homomorphism $\psi : R \to \mathbb{F}_{q^a}, t_j \mapsto \psi(t_j)$, can be naturally extended to $\operatorname{GL}_n(R)$. We define

$$g_{\psi} := \psi(g) \cdot \psi(\phi_q(g)) \cdots \psi(\phi_q^{a-1}(g)) \in \mathrm{GL}_n(\mathbb{F}_q).$$

With these notations Matzat [6, Thm. 4.3 and 4.5] shows the following:

Theorem 1.1 (Matzat). Let $G(F) \leq \operatorname{GL}_n(F)$ be a reduced connected linear algebraic group defined over \mathbb{F}_q . Let $g \in \operatorname{GL}_n(R)$ such that:

(i) $g \in G(F)$,

(ii) there exist specializations $\psi_i : R \to \mathbb{F}_{q^{a_i}}, 1 \leq i \leq k$, such that no proper subgroup of $G(\mathbb{F}_q) \leq \operatorname{GL}_n(\mathbb{F}_q)$ contains conjugates of all the $g_{\psi_i}, 1 \leq i \leq k$.

Then $G(\mathbb{F}_q)$ occurs as regular Galois group over F, and a generating polynomial $f(\mathbf{t}, X) \in F[X]$ for such a $G(\mathbb{F}_q)$ -extension can be computed explicitly from the matrix g.

Thus the strategy for the computation of a $G_2(q)$ -polynomial will be the following: First construct a small faithful matrix representation of $G_2(F)$ in its defining characteristic. For this we use the well-known facts that $G_2(F)$ is a subgroup of an 8-dimensional orthogonal group over F, and that this 8-dimensional representation has a faithful irreducible constituent of dimension 6 for $G_2(F)$, if $\operatorname{char}(F) = 2$, respectively of dimension 7 if $\operatorname{char}(F) > 2$. Secondly, we need to find an element $g \in G_2(F)$ with the properties required in the Theorem. For this, we make use of the known lists of maximal subgroups of $G_2(q)$ by Cooperstein and Kleidman. (These results require the classification of finite simple groups, but only in a very weak form.) Finally, the corresponding polynomial has to be computed using a version of the Buchberger algorithm.

2. Identifying $G_2(F)$ inside the 8-dimensional orthogonal group.

We first introduce some notation. Let V be an 8-dimensional vector space over a field F of characteristic $p \ge 0$, with basis e_1, \ldots, e_8 and Q the quadratic form on V defined by

$$Q: V \to F, \qquad Q\left(\sum_{i=1}^{8} x_i e_i\right) = \sum_{i=1}^{4} x_i x_{9-i}.$$

We denote by $\operatorname{GO}_8(F)$ the group of isometries of Q, the full orthogonal group, and by $\operatorname{SO}_8(F)$ the connected component of the identity in $\operatorname{GO}_8(F)$, of index 2. Thus $\operatorname{SO}_8(F)$ is a simple split algebraic group over F of type D_4 . The subgroup of upper triangular matrices of $\operatorname{GL}_8(F)$ contains a Borel subgroup B of $\operatorname{SO}_8(F)$. More precisely, the unipotent radical of B is generated by the root subgroups

$$X_i := \{ x_i(t) \mid t \in F \}, \qquad i = 1, \dots, 12,$$

where the $x_i(t)$ are defined as in Table 1. Here $E_{i,j}(t)$ denotes the matrix having 1's on the diagonal and one further nonzero entry t in position (i, j).

A maximal torus T in B is given by the set of diagonal matrices

$$T := \{ t = \operatorname{diag}(t_1, t_2, t_3, t_4, t_4^{-1}, t_3^{-1}, t_2^{-1}, t_1^{-1}) \mid t_i \in F^{\times} \}.$$

The simple roots with respect to T are now α_i , i = 1, ..., 4, with $\alpha_i(t) = t_i/t_{i+1}$ for i = 1, 2, 3 and $\alpha_4(t) = t_3 t_4$. In Table 1 we have also recorded the

Table 1. Root subgroups of $SO_8(F)$.

$x_1(t) = E_{1,2}(t) - E_{7,8}(t)$	1000	$x_7(t) = E_{2,5}(t) - E_{4,7}(t)$	0101
$x_2(t) = E_{2,3}(t) - E_{6,7}(t)$	0100	$x_8(t) = E_{1,4}(t) - E_{5,8}(t)$	
$x_3(t) = E_{3,4}(t) - E_{5,6}(t)$	0010	$x_9(t) = E_{2,6}(t) - E_{3,7}(t)$	0111
$x_4(t) = E_{3,5}(t) - E_{4,6}(t)$	0001	$x_{10}(t) = E_{1,5}(t) - E_{4,8}(t)$	1101
$x_5(t) = E_{1,3}(t) - E_{6,8}(t)$	1100	$x_{11}(t) = E_{1,6}(t) - E_{3,8}(t)$	1111
$x_6(t) = E_{2,4}(t) - E_{5,7}(t)$	0110	$x_{12}(t) = E_{1,7}(t) - E_{2,8}(t)$	1211

decomposition of the root corresponding to a root subgroup into the simple roots $\alpha_1, \ldots, \alpha_4$. Note that the simple root α_2 (with label 0100) is the one belonging to the central node in the Dynkin diagram of type D_4 .

The group $\text{PSO}_8(F) := \text{SO}_8(F)/Z(\text{SO}_8(F))$ possesses an outer automorphism γ of order 3 induced by the graph automorphism of the Dynkin diagram D_4 which cyclically permutes the nodes 1, 3 and 4 and fixes the middle node 2. The group $\text{PSO}_8(F)^{\gamma}$ of fixed points in $\text{PSO}_8(F)$ under γ is again a simple connected algebraic group over F, of type G_2 . Note that γ does not stabilize the natural representation of $\text{SO}_8(F)$. Nevertheless we can construct $G_2(F)$ as a preimage G of $\text{PSO}_8(F)^{\gamma}$ in $\text{SO}_8(F)$.

The Borel subgroup B of $SO_8(F)$ contains a Borel subgroup of G. Its unipotent radical is the product of the subgroups

$$X_{i,j,k} := \{ x_i(t) x_j(t) x_k(t) \mid t \in F \}$$

where $(i, j, k) \in \{(1, 3, 4), (5, 6, 7), (8, 9, 10)\}$, together with the root subgroups $X_i = \{x_i(t) \mid t \in F\}$ for $i \in \{2, 11, 12\}$ (see for example Carter [3, Prop. 13.6.3]). A maximal torus of G inside T consists of the elements

$$\{t = \operatorname{diag}(t_1, t_2, t_1 t_2^{-1}, 1, 1, t_1^{-1} t_2, t_2^{-1}, t_1^{-1}) \mid t_i \in F^{\times}\}.$$

From this description we find that the simple roots for $G_2(F)$ are now α, β , with $\alpha(t) := t_1/t_2$ and $\beta(t) := t_2^2/t_1$, and with corresponding root subgroups $X_{\alpha} := X_{1,3,4}, X_{\beta} := X_2$ respectively.

An easy calculation with the generators of root subgroups given above now shows that G leaves invariant the hyperplane V_1 of V consisting of vectors with equal fourth and fifth coordinate, as well as the 1-dimensional subspace V_2 of V spanned by $e_4 - e_5$. Thus we obtain an induced action of G on V_1 , respectively on V_1/V_2 when $\operatorname{char}(F) = 2$. This yields a faithful matrix representation $\Gamma : G_2(F) \hookrightarrow \operatorname{GL}_n(F)$ of $G_2(F)$, of dimension n = 7when $\operatorname{char}(F) \neq 2$, respectively of dimension n = 6 when $\operatorname{char}(F) = 2$. It is well-known that the smallest possible degree of a faithful representation of $G_2(F)$ is 7, respectively 6 if $\operatorname{char}(F) = 2$, so our representation Γ is irreducible. **Remark 2.1.** The matrices given in [4, p. 34] do not define a representation of $G_2(2^f)$. Indeed, the matrix for $h_a(t)$ does not have determinant 1, as it should have (since $G_2(2^f)$ is simple for f > 1). Its second diagonal entry should be t^{-1} . Conjugating $X_a(t)$ by $h_a(t')$ one sees that the middle offdiagonal entry of $X_a(t)$ should be t^2 instead of t. The commutator relations (see Carter [3, 12.4]; [4, (2.1)] contains misprints) then show that similarly in the matrices for $X_{a+b}(t)$ and $X_{2a+b}(t)$ the second nonzero off-diagonal entry t should be replaced by t^2 . In this way one recovers the representation constructed above.

3. Finding a suitable element.

Let first $q = 2^f$ be even. Then an easy calculation shows that in our 6dimensional representation $\Gamma : G_2(F) \to \operatorname{GL}_6(F)$ constructed above, we have

$$x_{\alpha}(t) = \begin{pmatrix} 1 & t & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & t^2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & t \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad x_{\beta}(t) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & t & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & t & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix},$$

and the longest element of the Weyl group of $G_2(F)$ is represented by

$$w_0 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

We choose $g := x_{\alpha}(t)x_{\beta}(u)w_0 \in G_2(F)$ and let

(1)
$$D := \Gamma(g) = \begin{pmatrix} 0 & 0 & 0 & tu & t & 1 \\ 0 & 0 & 0 & u & 1 & 0 \\ 0 & t^2 u & t^2 & 1 & 0 & 0 \\ 0 & u & 1 & 0 & 0 & 0 \\ t & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Proposition 3.1. Let q be even and D be defined as above. Then no proper subgroup of $G_2(q)$ contains conjugates of all specializations of D.

Proof. We use the fact that all maximal subgroups of the finite groups $G_2(q)$ are known by Cooperstein [4]. For q = 2 specializations into \mathbb{F}_8 yield elements of orders 7 and 12, and no maximal subgroup of $G_2(2)$ contains elements of both orders. For q = 4 specializations into \mathbb{F}_4 yield elements of

orders 13, 15 and 21. The only maximal subgroup of order divisible by $7 \cdot 13$ is $PSL_2(13)$, but its order is not divisible by 5, so we are done again.

Now let $q \geq 8$. Let G be a subgroup of $G_2(q)$ containing conjugates of all specializations of D. Let $\alpha \in \mathbb{F}_{q^2}^{\times}$ of order q + 1. Then the minimal polynomial of α over \mathbb{F}_q has the form $X^2 + \operatorname{Tr}(\alpha)X + 1$, where $\operatorname{Tr}(\alpha) = \alpha + \alpha^q \in \mathbb{F}_q$. Thus any element of $\mathbb{F}_{q^2}^{\times}$ of order q + 1 occurs as a root of a polynomial of the shape

$$X^2 + vX + 1, \qquad v \in \mathbb{F}_q.$$

Clearly, all elements of \mathbb{F}_q^{\times} also occur as zeros of such a polynomial. Now for $v \in \mathbb{F}_q$ consider the specialization

$$\psi_v : \mathbb{F}_q[t, u] \to \mathbb{F}_q, \qquad t \mapsto 0, \ u \mapsto v.$$

Then the specialization $\psi_v(D)$ of D has characteristic polynomial

$$X^{6} + (v^{2} + 1)X^{4} + (v^{2} + 1)X^{2} + 1 = (X + 1)^{2}(X^{2} + vX + 1)^{2}.$$

The 1-eigenspace of $\psi_v(D)$ only has dimension 1 for $v \neq 0$, so the order of $\psi_v(D)$ is divisible by 2. By our above considerations, we hence find elements of orders 2(q+1) and 2(q-1) as specializations of D. (This can also be seen as follows: If t = 0 then g specializes to

$$x_{\beta}(u)w_{0} = x_{\beta}(u)(w_{\beta}w_{\alpha})^{3} = x_{\beta}(u)w_{\beta} \cdot w'$$

where $w' = w_{\alpha}w_{\beta}w_{\alpha}w_{\beta}w_{\alpha}$ has order 2, centralizes $x_{\beta}(u)w_{\beta}$, and $x_{\beta}(u)w_{\beta}$ represents the element

$$\left(\begin{array}{cc} u & 1 \\ 1 & 0 \end{array}\right)$$

in the subgroup $\langle X_{\beta}, X_{-\beta} \rangle \cong SL_2(q)$.)

Next, consider the specialization

$$\psi'_v : \mathbb{F}_q[t, u] \to \mathbb{F}_q, \qquad t \mapsto v, \ u \mapsto 0.$$

Here, $\psi'_{v}(D)$ has characteristic polynomial

$$(X^2 + vX + 1)^2(X^2 + v^2X + 1).$$

By the argument above, this again yields elements of orders 2(q-1) and 2(q+1). But note that this time these elements never have an eigenvalue 1, nor have any of their powers of order larger than 2. Thus G contains subgroups of order $(q \pm 1)^2$. Theorem 2.3 in [4] shows that either $G \leq SL_2(q) \times SL_2(q)$ or $G = G_2(q)$.

Finally, consider the specialization

$$\psi_v'': \mathbb{F}_q[t, u] \to \mathbb{F}_q, \qquad t \mapsto v, \ u \mapsto 1.$$

The corresponding specialization of D has characteristic polynomial

$$(X^3 + v^2X + 1)(X^3 + v^2X^2 + 1).$$

If $X^3 + v^2X + 1$ is reducible over \mathbb{F}_q , then it has a linear factor X + a, $a \in \mathbb{F}_q$, and $X^3 + v^2X + 1 = (X + a)(X^2 + aX + 1/a)$. Clearly, the case a = 0 is not possible, so for at least one of the q possibilities for $v \in \mathbb{F}_q$ the characteristic polynomial has an irreducible factor of degree 3. In this case, the specialization of D has order dividing $q^2 + q + 1$, but not q - 1. Since $\mathrm{SL}_2(q) \times \mathrm{SL}_2(q)$ doesn't contain such elements, we have $G = G_2(q)$, as claimed. \Box

For odd $q = p^f$ we again choose $g := x_{\alpha}(t)x_{\beta}(u)w_0 \in G_2(F)$. With

$$x_{\alpha}(t) = \begin{pmatrix} 1 & t & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & t & -t^2 & 0 & 0 \\ 0 & 0 & 0 & 1 & -2t & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -t \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & t & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -t & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

and

$$w_0 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

this gives

(2)
$$D := \Gamma(g) = \begin{pmatrix} 0 & 0 & 0 & 0 & tu & -t & 1 \\ 0 & 0 & 0 & 0 & u & -1 & 0 \\ 0 & -t^2u & -t^2 & -t & 1 & 0 & 0 \\ 0 & -2tu & -2t & -1 & 0 & 0 & 0 \\ 0 & u & 1 & 0 & 0 & 0 & 0 \\ -t & -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

in this case. This matrix has separable characteristic polynomial

$$X^{7} + (t^{2} + 1) X^{6} - (2t^{2} + u^{2} + 3) X^{5} - (t^{4} + 3t^{2} + u^{2} + 3) X^{4} + (t^{4} + 3t^{2} + u^{2} + 3) X^{3} + (2t^{2} + u^{2} + 3) X^{2} - (t^{2} + 1) X - 1.$$

We need the following result:

Lemma 3.2. Let q > 3 be an odd prime power. Then there exists $v \in \mathbb{F}_q$ such that

$$X^3 - (v^2 + 2)X - 1$$

is irreducible over \mathbb{F}_q .

Proof. Assume that $f := X^3 - (v^2 + 2)X - 1$ is reducible. Then f has a zero $a \in \mathbb{F}_q$, and $X^3 - (v^2 + 2)X - 1 = (X - a)(X^2 + aX + a^{-1})$. These zeros are just the first coordinates of the \mathbb{F}_q -points on the elliptic curve E defined by $U^3 - (V^2 + 2)U - 1$. By the Weil bounds [8], E has at most $q + 1 + 2\sqrt{q}$ points (u, v) over \mathbb{F}_q . Clearly, with (u, v) the point (u, -v) also lies on E, hence there are at most $q/2 + 1 + \sqrt{q}$ distinct values a which can occur as zeros of f.

Next, we estimate how often f splits completely into linear factors. This happens if in addition the discriminant $(a^3 - 4)/a$ of $X^2 + aX + a^{-1}$ is a square in \mathbb{F}_q . Thus we need to count points on the \mathbb{F}_q -curve C defined by the two equations

$$U^3 - (V^2 + 2)U - 1, \quad U^3 - W^2U - 4.$$

Subtracting these two equations we see that U lies in the function field $\mathbb{F}_q(V, W)$. Since both V, W have degree at most 2 over $\mathbb{F}_q(U)$, the curve C has genus at most 4. Moreover, the only singular point of C is the point with coordinates (4, 0, 0) in characteristic 5. Again by the Weil bounds [8] this means that C has at least $q + 1 - 2 \cdot 4\sqrt{q} - 6$ points over \mathbb{F}_q . For each such point, changing the sign of the V, W-coordinates again yields a point, hence there are at least $(q - 5 - 8\sqrt{q})/4$ distinct $a \in \mathbb{F}_q$ for which f splits completely. Thus we obtain at most

$$q/2 + 1 + \sqrt{q} - (q - 5 - 8\sqrt{q})/4 = (q + 9)/4 + 3\sqrt{q}$$

factorizations of f into a linear and a quadratic factor. The discriminant of f is a polynomial in v of degree 6, hence f is inseparable for at most six values of v. Apart from those, each completely splitting f accounts for three different values of a, so we obtain a total of at most

$$(q+9)/4 + 3\sqrt{q} + ((q-5-8\sqrt{q})/4 - 6)/3 + 6 = (2q+35)/6 + 7/3\sqrt{q}$$

reducible polynomials when v runs over \mathbb{F}_q . Hence there remain at least

$$(q+1)/2 - ((2q+35)/6 + 7/3\sqrt{q}) = (q-32)/6 - 7/3\sqrt{q}$$

irreducible polynomials. This is positive for $q \ge 257$. For the remaining prime powers 3 < q < 257 a computer check shows that the assertion is

also satisfied. (For q = 5,9 there is just one irreducible polynomial of the required shape, for q = 3 there is none.)

Note that the counting of singular points and of inseparable f was very rough and a more detailed analysis would have reduced the bound considerably.

Proposition 3.3. Let q be odd and D be the matrix defined in (2). Then no proper subgroup of $G_2(q)$ contains conjugates of all specializations of D.

Proof. Again all maximal subgroups of $G_2(q)$ are known by work of Kleidman [5]. For q = 3 specializations into \mathbb{F}_9 yield elements of orders 7, 9, 13. The only maximal subgroup of $G_2(3)$ of order divisible by $7 \cdot 13$ is $PSL_2(13)$, but that has no elements of order 9. For q = 5, specialization into \mathbb{F}_5 yields element orders 7, 20 and 31, thus we are done again.

For $q \geq 7$ let G be a subgroup of $G_2(q)$ containing conjugates of all specializations of D. We again consider the specialization

$$\psi_v : \mathbb{F}_q[t, u] \to \mathbb{F}_q, \qquad t \mapsto 0, \ u \mapsto v.$$

Then the square of $\psi_v(D)$ has characteristic polynomial

$$(X-1)^{3}(X^{2}-(v^{2}+2)X+1)^{2}.$$

This gives rise to elements of orders $q \pm 1$ in G. Similarly, the specialization

$$\psi'_v : \mathbb{F}_q[t, u] \to \mathbb{F}_q, \qquad t \mapsto v, \ u \mapsto 0,$$

yields the characteristic polynomial

$$(X-1)(X^2 - (v^4 + 4v^2 + 2)X + 1)(X^2 - (v^2 + 2)X + 1)^2$$

for the image of D^2 . So as in the previous proof we deduce that G must contain subgroups of orders $(q \pm 1)^2$. Theorem A in [5] shows that either Gis contained in the central product $SL_2(q) \circ SL_2(q)$, or $G = G_2(q)$. Finally, for the specialization

$$\psi_v'': \mathbb{F}_q[t, u] \to \mathbb{F}_q, \qquad t \mapsto v, \ u \mapsto 1,$$

we obtain the characteristic polynomial

$$(X-1)(X^3 + (v^2 + 2)X^2 - 1)(X^3 - (v^2 + 2)X - 1)$$

for $\phi_v''(D)$. Since $q \geq 7$ is odd, Lemma 3.2 shows that there exists $v \in \mathbb{F}_q$ such that the degree 3 factors of this polynomial are irreducible over \mathbb{F}_q . But $\mathrm{SL}_2(q) \circ \mathrm{SL}_2(q)$ does not contain such elements, hence we have $G = G_2(q)$.

4. The polynomials.

It remains to determine generating polynomials for the $G_2(q)$ -extensions whose existence is guaranteed by Theorem 1.1 in conjunction with Propositions 3.1 and 3.3.

Theorem 4.1. Let
$$q = 2^{f}$$
 be a power of 2. Then the polynomial

$$X^{q^{6}} + u^{e_{2}}t^{e_{4}}X^{q^{5}} + (u^{e_{1}}t^{e_{1}} + u^{e_{3}}t^{e_{1}} + t^{e_{1}} + t^{e_{3}} + 1)X^{q^{4}} + u^{e_{2}}t^{e_{4}}(t^{q^{3}+q^{2}} + t^{q^{3}-q} + 1)X^{q^{3}} + t^{e_{1}}(u^{e_{1}}t^{q^{2}-1} + u^{e_{1}}t^{q^{2}+q} + u^{e_{1}} + u^{e_{3}} + 1)X^{q^{2}} + u^{e_{2}}t^{q^{4}+2q^{2}-q}X^{q} + u^{e_{1}}t^{q^{4}-1}X,$$

with $e_1 := q^4 - q^2$, $e_2 := q^4 - q^3$, $e_3 := q^4 + q^3$, $e_4 := q^4 - q^3 + 2q^2$, has Galois group $G_2(q)$ over $\mathbb{F}_q(t, u)$.

Proof. In Proposition 3.1 we have shown that the assumptions of Matzat's Theorem 1.1 are satisfied for the matrix D defined in (1). According to Matzat [6, §1], a generating polynomial for a field extension with group $G_2(q)$ can now be obtained by solving the non-linear system of equations given by

$$\mathbf{y} = D \mathbf{y}^q,$$

where $\mathbf{y} = (y_1, \dots, y_6)^t$, for one of the variables. Solving for y_6 yields the equation displayed in the statement.

By the Hilbert irreducibility theorem, there exist 1-parameter specializations of the polynomial in Theorem 4.1 with group $G_2(q)$.

Example 4.2. By arguments similar to those used in the proof of Proposition 3.1 it can be checked that the polynomial

$$\begin{aligned} X^{64} + t^{24} X^{32} + (t^{36} + t^{12} + 1) X^{16} + (t^{30} + t^{36} + t^{24}) X^8 \\ + (t^{24} + t^{36} + t^{27} + t^{30} + t^{12}) X^4 + t^{30} X^2 + t^{27} X \end{aligned}$$

obtained by setting u = t has Galois group $G_2(2)$ over $\mathbb{F}_2(t)$.

Theorem 4.3. Let $q = p^f$ be an odd prime power. Then the polynomial

$$\begin{aligned} X^{q} &+ u^{e_{1}}t^{e_{4}}(t^{e_{6}}+1)X^{q} - (t^{e_{2}}u^{e_{3}} + (t^{q} + t^{e_{2}})u^{e_{2}} + t^{e_{3}} + t^{e_{2}} + 1)X^{q} \\ &- u^{e_{1}}t^{e_{4}}(t^{e_{5}}(u^{q^{4}+q^{3}} + u^{e_{5}}) + (t^{e_{6}} + 1)(t^{q^{4}+q^{3}} + t^{e_{5}} + 1))X^{q^{4}} \\ &+ t^{e_{2}}(u^{e_{3}} + (t^{e_{6}} + 1)(t^{e_{6}} + t^{q^{3}-q} + 1)u^{e_{2}} + 1)X^{q^{3}} \\ &+ u^{e_{1}}t^{q^{5}+q^{3}-2q^{2}}(u^{q^{4}+q^{3}} + (t^{q^{2}+q} + t^{q^{2}-1} + 1)u^{e_{5}} + t^{e_{6}} + 1)X^{q^{2}} \\ &- u^{e_{2}}t^{q^{5}-q}(t^{e_{6}} + 1)X^{q} - u^{q^{5}-q^{2}}t^{q^{5}+q^{3}-q^{2}-1}X, \end{aligned}$$

where $e_1 := q^5 - q^4$, $e_2 := q^5 - q^3$, $e_3 := q^5 + q^4$, $e_4 := q^5 - q^4 + q^3 - q^2$,

 $e_5 := q^4 - q^2$, $e_6 := q^3 + q^2$, has Galois group $G_2(q)$ over $\mathbb{F}_q(t, u)$.

The proof is as for the preceding theorem, starting this time from the matrix D given in (2), solving for y_7 , and using Proposition 3.3.

Remark 4.4. The sporadic simple Janko groups J_1 and J_2 are subgroups of $G_2(11)$, respectively of $G_2(4)$. It would be nice to find Galois extensions for these groups in characteristic 11 respectively 2 by the above method, possibly as specializations of the polynomials in Theorems 4.1 and 4.3.

Remark 4.5. The next smallest simple exceptional group is the one of type F_4 . Its smallest faithful representation has dimension 26, respectively 25 in characteristic 3. In principle, the methods of this paper should make it possible to produce an $F_4(q)$ -polynomial.

Remark 4.6. The group $G_2(q)$, q odd, has q orbits on nonzero vectors in its 7-dimensional representation. Thus, the polynomial $f_q(t, u, X)$ in Theorem 4.3 has q factors, of degrees roughly q^6 , and a linear factor. On the other hand, any specialization of f_q has factors of degree at most $q^2 + q + 1$, the maximal element order in $G_2(q)$. Thus, f_q seems a good candidate for testing factorization algorithms. Using Maple we have not been able to find the factorization of f_q for q = 3.

Similarly, for q even $G_2(q)$ has a single orbit on the nonzero vectors of the 6-dimensional module. Hence $f_q(t, u, X)$ in Theorem 4.1 is irreducible apart from the trivial linear factor. Again Maple was not able to confirm this for q = 4.

Acknowledgement. I'm indebted to N. Elkies for pointing out an overzealous simplification in a previous version.

References

- S. Abhyankar and N. Inglis, *Galois groups of some vectorial polynomials*, Trans. Amer. Math. Soc., **353** (2001), 2941-2869, MR 2002b:12005, Zbl 0992.12002.
- [2] S. Abhyankar, H. Popp and W. Seiler, Construction techniques for Galois coverings of the affine line, Proc. Indian Acad. Sci., 103 (1993), 103-126, MR 94j:14017, Zbl 0794.14011.
- [3] R. Carter, Simple Groups of Lie Type, 2nd edition, Wiley, London, 1989, MR 90g:20001, Zbl 0723.20006.
- [4] B.N. Cooperstein, Maximal subgroups of $G_2(2^n)$, J. Algebra, **70** (1981), 23-36, MR 82h:20055, Zbl 0459.20007.
- [5] P. Kleidman, The maximal subgroups of the Chevalley groups G₂(q) with q odd, the Ree groups ²G₂(q), and their automorphism groups, J. Algebra, **117** (1988), 30-71, MR 89j:20055, Zbl 0651.20020.
- [6] B.H. Matzat, Frobenius modules and Galois groups, in 'Galois Theory and Modular Forms' (K. Miyake, et al., eds.), Kluwer, Dordrecht, 2003, 233-267.

- M.V. Nori, Unramified coverings of the affine line in positive characteristic, in 'Algebraic geometry and its applications', Springer Verlag, New York, 1994, 209-212, MR 95i:14030, Zbl 0811.14031.
- [8] A. Weil, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc., 55 (1949), 497-508, MR 10,592e, Zbl 0032.39402.

Fachbereich Mathematik/Informatik Universität Kassel Heinrich-Plett-Str. 40, D–34132 Kassel Germany *E-mail address*: malle@mathematik.uni-kassel.de