EXPLICIT REALIZATION OF THE DICKSON GROUPS
\(G_2(q) \) AS GALOIS GROUPS

Gunter Malle
For any prime power \(q \) we determine a polynomial \(f_q(X) \in F_q(t, u)[X] \) whose Galois group over \(F_q(t, u) \) is the Dickson group \(G_2(q) \). The construction uses a criterion and a method due to Matzat.

1. Introduction.

In this paper we are concerned with the construction of polynomials whose Galois groups are the exceptional simple Chevalley groups \(G_2(q) \), \(q \) a prime power, first discovered by Dickson; see Theorems 4.1 and 4.3.

It was shown by Nori [7] that all semisimple simply-connected linear algebraic groups over \(F_q \) do occur as Galois groups of regular extension of regular function fields over \(F_q \), but his proof does not give an explicit equation or even a constructive method for obtaining such extensions. On the other hand, in a long series of papers Abhyankar has given families of polynomials for groups of classical types (see [1] and the references cited there). His ad hoc approach hasn’t yet led to families with groups of exceptional type (but see [2] for a different construction of polynomials with Galois group the simple groups of Suzuki). Thus it seems natural to try to fill this gap. In his recent paper Matzat [6] describes an algorithmic approach which reduces the construction of generating polynomials for such extensions to certain group theoretic calculations.

More precisely, let \(F := F_q(t) \), with \(t = (t_1, \ldots, t_s) \) a set of indeterminates. We denote by \(\phi_q : F \to F, x \mapsto x^q \), the Frobenius endomorphism. Let \(G \) be a reduced connected linear algebraic group defined over \(F_q \), with a faithful linear representation \(\Gamma : G(F) \hookrightarrow \text{GL}_n(F) \) in its defining characteristic, also defined over \(F_q \). We identify \(G(F) \) with its image in \(\text{GL}_n(F) \). Fix an element \(g \in G(F) \) and assume that \(g \in \text{GL}_n(R) \), where \(R := F_q[t] \). Any specialization homomorphism \(\psi : R \to F_q, t_j \mapsto \psi(t_j) \), can be naturally extended to \(\text{GL}_n(R) \). We define

\[
g_\psi := \psi(g) \cdot \psi(\phi_q(g)) \cdots \psi(\phi_q^{a-1}(g)) \in \text{GL}_n(F_q).
\]

With these notations Matzat [6, Thm. 4.3 and 4.5] shows the following:

Theorem 1.1 (Matzat). Let \(G(F) \leq \text{GL}_n(F) \) be a reduced connected linear algebraic group defined over \(F_q \). Let \(g \in \text{GL}_n(R) \) such that:
(i) $g \in G(F)$,
(ii) there exist specializations $\psi_i : R \to \mathbb{F}_{q^n}$, $1 \leq i \leq k$, such that no proper subgroup of $G(\mathbb{F}_q) \leq \text{GL}_n(\mathbb{F}_q)$ contains conjugates of all the g_{ψ_i}, $1 \leq i \leq k$.

Then $G(\mathbb{F}_q)$ occurs as regular Galois group over F, and a generating polynomial $f(t, X) \in F[X]$ for such a $G(\mathbb{F}_q)$-extension can be computed explicitly from the matrix g.

Thus the strategy for the computation of a $G_2(q)$-polynomial will be the following: First construct a small faithful matrix representation of $G_2(F)$ in its defining characteristic. For this we use the well-known facts that $G_2(F)$ is a subgroup of an 8-dimensional orthogonal group over F, and that this 8-dimensional representation has a faithful irreducible constituent of dimension 6 for $G_2(F)$, if $\text{char}(F) = 2$, respectively of dimension 7 if $\text{char}(F) > 2$. Secondly, we need to find an element $g \in G_2(F)$ with the properties required in the theorem. For this, we make use of the known lists of maximal subgroups of $G_2(q)$ by Cooperstein and Kleidman. (These results require the classification of finite simple groups, but only in a very weak form.) Finally, the corresponding polynomial has to be computed using a version of the Buchberger algorithm.

2. Identifying $G_2(F)$ inside the 8-dimensional orthogonal group.

We first introduce some notation. Let V be an 8-dimensional vector space over a field F of characteristic $p \geq 0$, with basis e_1, \ldots, e_8 and Q the quadratic form on V defined by

$$Q : V \to F, \quad Q\left(\sum_{i=1}^{8} x_i e_i\right) = \sum_{i=1}^{4} x_i x_{9-i}.$$

We denote by $\text{GO}_8(F)$ the group of isometries of Q, the full orthogonal group, and by $\text{SO}_8(F)$ the connected component of the identity in $\text{GO}_8(F)$, of index 2. Thus $\text{SO}_8(F)$ is a simple split algebraic group over F of type D_4. The subgroup of upper triangular matrices of $\text{GL}_8(F)$ contains a Borel subgroup B of $\text{SO}_8(F)$. More precisely, the unipotent radical of B is generated by the root subgroups

$$X_i := \{x_i(t) \mid t \in F\}, \quad i = 1, \ldots, 12,$$

where the $x_i(t)$ are defined as in Table 1. Here $E_{i,j}(t)$ denotes the matrix having 1’s on the diagonal and one further nonzero entry t in position (i, j).

A maximal torus T in B is given by the set of diagonal matrices

$$T := \{t = \text{diag}(t_1, t_2, t_3, t_4, t_4^{-1}, t_3^{-1}, t_2^{-1}, t_1^{-1}) \mid t_i \in F^\times\}.$$

The simple roots with respect to T are now α_i, $i = 1, \ldots, 4$, with $\alpha_i(t) = t_i/t_{i+1}$ for $i = 1, 2, 3$ and $\alpha_4(t) = t_3 t_4$. In Table 1 we have also recorded the
The group $\text{PSO}_8(F)$ with $G := \text{SO}_8(F)/Z(\text{SO}_8(F))$ possesses an outer automorphism γ of order 3 induced by the graph automorphism of the Dynkin diagram D_4 which cyclically permutes the nodes 1, 3 and 4 and fixes the middle node 2. The group $\text{PSO}_8(F)^\gamma$ of fixed points in $\text{PSO}_8(F)$ under γ is again a simple connected algebraic group over F, of type G_2. Note that γ does not stabilize the natural representation of $\text{SO}_8(F)$. Nevertheless we can construct $G_2(F)$ as a preimage G of $\text{PSO}_8(F)^\gamma$ in $\text{SO}_8(F)$.

The Borel subgroup B of $\text{SO}_8(F)$ contains a Borel subgroup of G. Its unipotent radical is the product of the subgroups

$$X_{i,j,k} := \{x_i(t)x_j(t)x_k(t) \mid t \in F\}$$

where $(i,j,k) \in \{(1,3,4),(5,6,7),(8,9,10)\}$, together with the root subgroups $X_i = \{x_i(t) \mid t \in F\}$ for $i \in \{2,11,12\}$ (see for example Carter [3, Prop. 13.6.3]). A maximal torus of G inside T consists of the elements

$$\{t = \text{diag}(t_1,t_2,t_1t_2^{-1},1,1,t_1^{-1}t_2,t_2^{-1},t_1^{-1}) \mid t_i \in F^\times\}.$$

From this description we find that the simple roots for $G_2(F)$ are now α, β, with $\alpha(t) := t_1^{-1}t_2$ and $\beta(t) := t_2^2/t_1$, and with corresponding root subgroups $X_\alpha := X_{1,3,4}, X_\beta := X_2$ respectively.

An easy calculation with the generators of root subgroups given above now shows that G leaves invariant the hyperplane V_1 of V consisting of vectors with equal fourth and fifth coordinate, as well as the 1-dimensional subspace V_2 of V spanned by $e_4 - e_5$. Thus we obtain an induced action of G on V_1, respectively on V_1/V_2 when $\text{char}(F) = 2$. This yields a faithful matrix representation $\Gamma : G_2(F) \hookrightarrow \text{GL}_n(F)$ of $G_2(F)$, of dimension $n = 7$ when $\text{char}(F) \neq 2$, respectively of dimension $n = 6$ when $\text{char}(F) = 2$. It is well-known that the smallest possible degree of a faithful representation of $G_2(F)$ is 7, respectively 6 if $\text{char}(F) = 2$, so our representation Γ is irreducible.

Table 1. Root subgroups of $\text{SO}_8(F)$.

<table>
<thead>
<tr>
<th>$x_1(t)$</th>
<th>$x_2(t)$</th>
<th>$x_3(t)$</th>
<th>$x_4(t)$</th>
<th>$x_5(t)$</th>
<th>$x_6(t)$</th>
<th>$x_7(t)$</th>
<th>$x_8(t)$</th>
<th>$x_9(t)$</th>
<th>$x_{10}(t)$</th>
<th>$x_{11}(t)$</th>
<th>$x_{12}(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{1,2}(t) - E_{7,8}(t)$</td>
<td>$E_{2,3}(t) - E_{6,7}(t)$</td>
<td>$E_{3,4}(t) - E_{5,6}(t)$</td>
<td>$E_{3,5}(t) - E_{4,6}(t)$</td>
<td>$E_{1,3}(t) - E_{6,8}(t)$</td>
<td>$E_{2,4}(t) - E_{5,7}(t)$</td>
<td>$E_{2,5}(t) - E_{4,7}(t)$</td>
<td>$E_{1,4}(t) - E_{5,8}(t)$</td>
<td>$E_{2,6}(t) - E_{3,7}(t)$</td>
<td>$E_{1,5}(t) - E_{4,8}(t)$</td>
<td>$E_{1,6}(t) - E_{3,8}(t)$</td>
<td>$E_{1,7}(t) - E_{2,8}(t)$</td>
</tr>
</tbody>
</table>
Remark 2.1. The matrices given in [4, p. 34] do not define a representation of $G_2(2^f)$. Indeed, the matrix for $h_a(t)$ does not have determinant 1, as it should have (since $G_2(2^f)$ is simple for $f > 1$). Its second diagonal entry should be t^{-1}. Conjugating $X_a(t)$ by $h_a(t')$ one sees that the middle off-diagonal entry of $X_a(t)$ should be t^2 instead of t. The commutator relations (see Carter [3, 12.4]; [4, (2.1)] contains misprints) then show that similarly in the matrices for $X_{a+b}(t)$ and $X_{2a+b}(t)$ the second nonzero off-diagonal entry t should be replaced by t^2. In this way one recovers the representation constructed above.

3. Finding a suitable element.

Let first $q = 2^f$ be even. Then an easy calculation shows that in our 6-dimensional representation $\Gamma : G_2(F) \rightarrow \text{GL}_6(F)$ constructed above, we have

$$x_\alpha(t) = \begin{pmatrix} 1 & t & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & t^2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & t \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad x_\beta(t) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & t & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

and the longest element of the Weyl group of $G_2(F)$ is represented by

$$w_0 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

We choose $g := x_\alpha(t)x_\beta(u)w_0 \in G_2(F)$ and let

$$D := \Gamma(g) = \begin{pmatrix} 0 & 0 & 0 & tu & t & 1 \\ 0 & 0 & 0 & u & 1 & 0 \\ 0 & t^2u & t^2 & 1 & 0 & 0 \\ 0 & u & 1 & 0 & 0 & 0 \\ t & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Proposition 3.1. Let q be even and D be defined as above. Then no proper subgroup of $G_2(q)$ contains conjugates of all specializations of D.

Proof. We use the fact that all maximal subgroups of the finite groups $G_2(q)$ are known by Cooperstein [4]. For $q = 2$ specializations into \mathbb{F}_8 yield elements of orders 7 and 12, and no maximal subgroup of $G_2(2)$ contains elements of both orders. For $q = 4$ specializations into \mathbb{F}_4 yield elements of
orders 13, 15 and 21. The only maximal subgroup of order divisible by 7 · 13 is PSL$_2(13)$, but its order is not divisible by 5, so we are done again.

Now let $q \geq 8$. Let G be a subgroup of $G_2(q)$ containing conjugates of all specializations of D. Let $\alpha \in \mathbb{F}_q^{\times}$ of order $q + 1$. Then the minimal polynomial of α over \mathbb{F}_q has the form $X^2 + \text{Tr}(\alpha)X + 1$, where $\text{Tr}(\alpha) = \alpha + \alpha^q \in \mathbb{F}_q$. Thus any element of \mathbb{F}_q^{\times} of order $q + 1$ occurs as a root of a polynomial of the shape

$$X^2 + vX + 1, \quad v \in \mathbb{F}_q.$$

Clearly, all elements of \mathbb{F}_q^{\times} also occur as zeros of such a polynomial. Now for $v \in \mathbb{F}_q$ consider the specialization

$$\psi_v : \mathbb{F}_q[t, u] \rightarrow \mathbb{F}_q, \quad t \mapsto 0, \; u \mapsto v.$$

Then the specialization $\psi_v(D)$ of D has characteristic polynomial

$$X^6 + (v^2 + 1)X^4 + (v^2 + 1)X^2 + 1 = (X + 1)^2(X^2 + vX + 1)^2.$$

The 1-eigenspace of $\psi_v(D)$ only has dimension 1 for $v \neq 0$, so the order of $\psi_v(D)$ is divisible by 2. By our above considerations, we hence find elements of orders $2(q + 1)$ and $2(q - 1)$ as specializations of D. (This can also be seen as follows: If $t = 0$ then g specializes to

$$x_{\beta}(u)w_0 = x_{\beta}(u)(w_{\beta}w_{\alpha})^2 = x_{\beta}(u)w_{\beta} \cdot w'$$

where $w' = w_{\alpha}w_{\beta}w_{\alpha}w_{\beta}w_{\alpha}$ has order 2, centralizes $x_{\beta}(u)w_{\beta}$, and $x_{\beta}(u)w_{\beta}$ represents the element

$$\begin{pmatrix} u & 1 \\ 0 & 1 \end{pmatrix}$$

in the subgroup $\langle X_{\beta}, X_{-\beta} \rangle \cong \text{SL}_2(q)$.)

Next, consider the specialization

$$\psi'_v : \mathbb{F}_q[t, u] \rightarrow \mathbb{F}_q, \quad t \mapsto v, \; u \mapsto 0.$$

Here, $\psi'_v(D)$ has characteristic polynomial

$$(X^2 + vX + 1)^2(X^2 + v^2X + 1).$$

By the argument above, this again yields elements of orders $2(q - 1)$ and $2(q + 1)$. But note that this time these elements never have an eigenvalue 1, nor have any of their powers of order larger than 2. Thus G contains subgroups of order $(q \pm 1)^2$. Theorem 2.3 in [4] shows that either $G \leq \text{SL}_2(q) \times \text{SL}_2(q)$ or $G = G_2(q)$.

Finally, consider the specialization

$$\psi''_v : \mathbb{F}_q[t, u] \rightarrow \mathbb{F}_q, \quad t \mapsto v, \; u \mapsto 1.$$

The corresponding specialization of D has characteristic polynomial

$$(X^3 + v^2X + 1)(X^3 + v^2X^2 + 1).$$
If \(X^3 + v^2X + 1 \) is reducible over \(\mathbb{F}_q \), then it has a linear factor \(X + a \), \(a \in \mathbb{F}_q \), and \(X^3 + v^2X + 1 = (X + a)(X^2 + aX + 1/a) \). Clearly, the case \(a = 0 \) is not possible, so for at least one of the \(q \) possibilities for \(v \in \mathbb{F}_q \) the characteristic polynomial has an irreducible factor of degree 3. In this case, the specialization of \(D \) has order dividing \(q^2 + q + 1 \), but not \(q - 1 \). Since \(SL_2(q) \times SL_2(q) \) doesn’t contain such elements, we have \(G = G_2(q) \), as claimed.

For odd \(q = p^f \) we again choose \(g := x_\alpha(t)x_\beta(u)w_0 \in G_2(F) \). With

\[
x_\alpha(t) = \begin{pmatrix} 1 & t & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & t \cdot -t^2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -t \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},
\]

\[
x_\beta(t) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & t & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -t \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},
\]

and

\[
w_0 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix},
\]

this gives

\[
D := \Gamma(g) = \begin{pmatrix} 0 & 0 & 0 & 0 & tu & -t & 1 \\ 0 & 0 & 0 & 0 & u & -1 & 0 \\ 0 & -t^2 & -t^2 & -t & 1 & 0 & 0 \\ 0 & -2tu & -2t & -1 & 0 & 0 & 0 \\ 0 & u & 1 & 0 & 0 & 0 & 0 \\ -t & -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.
\]
in this case. This matrix has separable characteristic polynomial
\[
X^7 + (t^2 + 1) X^6 - (2t^2 + u^2 + 3) X^5 - (t^4 + 3t^2 + u^2 + 3) X^4
+ (t^4 + 3t^2 + u^2 + 3) X^3 + (2t^2 + u^2 + 3) X^2 - (t^2 + 1) X - 1.
\]

We need the following result:

Lemma 3.2. Let \(q > 3 \) be an odd prime power. Then there exists \(v \in \mathbb{F}_q \) such that
\[
X^3 - (v^2 + 2)X - 1
\]
is irreducible over \(\mathbb{F}_q \).

Proof. Assume that \(f := X^3 - (v^2 + 2)X - 1 \) is reducible. Then \(f \) has a zero \(a \in \mathbb{F}_q \), and \(X^3 - (v^2 + 2)X - 1 = (X - a)(X^2 + aX + a^{-1}) \). These zeros are just the first coordinates of the \(\mathbb{F}_q \)-points on the elliptic curve \(E \) defined by \(U^3 - (V^2 + 2)U - 1 \). By the Weil bounds, \(E \) has at most \(q + 1 + 2\sqrt{q} \) points \((u, v)\) over \(\mathbb{F}_q \). Clearly, with \((u, v)\) the point \((u, -v)\) also lies on \(E \), hence there are at most \(q/2 + 1 + \sqrt{q} \) distinct values \(a \) which can occur as zeros of \(f \).

Next, we estimate how often \(f \) splits completely into linear factors. This happens if in addition the discriminant \((a^3 - 4)/a\) of \(X^2 + aX + a^{-1} \) is a square in \(\mathbb{F}_q \). Thus we need to count points on the \(\mathbb{F}_q \)-curve \(C \) defined by the two equations
\[
U^3 - (V^2 + 2)U - 1, \quad U^3 - W^2U - 4.
\]
Subtracting these two equations we see that \(U \) lies in the function field \(\mathbb{F}_q(V, W) \). Since both \(V, W \) have degree at most 2 over \(\mathbb{F}_q(U) \), the curve \(C \) has genus at most 4. Moreover, the only singular point of \(C \) is the point with coordinates \((4, 0, 0)\) in characteristic 5. Again by the Weil bounds, this means that \(C \) has at least \(q + 1 - 2 \cdot 4\sqrt{q} - 6 \) points over \(\mathbb{F}_q \). For each such point, changing the sign of the \(V, W \)-coordinates again yields a point, hence there are at least \((q - 5 - 8\sqrt{q})/4\) distinct \(a \in \mathbb{F}_q \) for which \(f \) splits completely. Thus we obtain at most
\[
(q/2 + 1 + \sqrt{q} - (q - 5 - 8\sqrt{q})/4 = (q + 9)/4 + 3\sqrt{q}
\]
factorizations of \(f \) into a linear and a quadratic factor. The discriminant of \(f \) is a polynomial in \(v \) of degree 6, hence \(f \) is inseparable for at most six values of \(v \). Apart from those, each completely splitting \(f \) accounts for three different values of \(a \), so we obtain a total of at most
\[
(q + 9)/4 + 3\sqrt{q} + ((q - 5 - 8\sqrt{q})/4 - 6)/3 + 6 = (2q + 35)/6 + 7/3\sqrt{q}
\]
reducible polynomials when \(v \) runs over \(\mathbb{F}_q \). Hence there remain at least
\[
(q + 1)/2 - ((2q + 35)/6 + 7/3\sqrt{q}) = (q - 32)/6 - 7/3\sqrt{q}
\]
irreducible polynomials. This is positive for \(q \geq 257 \). For the remaining prime powers \(3 < q < 257 \) a computer check shows that the assertion is
also satisfied. (For \(q = 5, 9 \) there is just one irreducible polynomial of the required shape, for \(q = 3 \) there is none.)

Note that the counting of singular points and of inseparable \(f \) was very rough and a more detailed analysis would have reduced the bound considerably.

\[\Box \]

Proposition 3.3. Let \(q \) be odd and \(D \) be the matrix defined in (2). Then no proper subgroup of \(G_2(q) \) contains conjugates of all specializations of \(D \).

Proof. Again all maximal subgroups of \(G_2(q) \) are known by work of Kleidman [5]. For \(q = 3 \), specializations into \(\mathbb{F}_9 \) yield elements of orders 7, 9, 13, but that has no elements of order 9. For \(q = 5 \), specialization into \(\mathbb{F}_5 \) yields element orders 7, 20 and 31, thus we are done again.

For \(q \geq 7 \) let \(G \) be a subgroup of \(G_2(q) \) containing conjugates of all specializations of \(D \). We again consider the specialization

\[\psi_v : \mathbb{F}_q[t, u] \rightarrow \mathbb{F}_q, \quad t \mapsto 0, \quad u \mapsto v. \]

Then the square of \(\psi_v(D) \) has characteristic polynomial

\[(X - 1)^3(X^2 - (v^2 + 2)X + 1)^2. \]

This gives rise to elements of orders \(q \pm 1 \) in \(G \). Similarly, the specialization

\[\psi'_v : \mathbb{F}_q[t, u] \rightarrow \mathbb{F}_q, \quad t \mapsto v, \quad u \mapsto 0, \]

yields the characteristic polynomial

\[(X - 1)(X^2 - (v^4 + 4v^2 + 2)X + 1)(X^2 - (v^2 + 2)X + 1)^2 \]

for the image of \(D^2 \). So as in the previous proof we deduce that \(G \) must contain subgroups of orders \((q \pm 1)^2\). Theorem A in [5] shows that either \(G \) is contained in the central product \(\text{SL}_2(q) \circ \text{SL}_2(q) \), or \(G = G_2(q) \). Finally, for the specialization

\[\psi''_v : \mathbb{F}_q[t, u] \rightarrow \mathbb{F}_q, \quad t \mapsto v, \quad u \mapsto 1, \]

we obtain the characteristic polynomial

\[(X - 1)(X^3 + (v^2 + 2)X^2 - 1)(X^3 - (v^2 + 2)X - 1) \]

for \(\phi''_v(D) \). Since \(q \geq 7 \) is odd, Lemma 3.2 shows that there exists \(v \in \mathbb{F}_q \) such that the degree 3 factors of this polynomial are irreducible over \(\mathbb{F}_q \). But \(\text{SL}_2(q) \circ \text{SL}_2(q) \) does not contain such elements, hence we have \(G = G_2(q) \). \[\Box \]
4. The polynomials.

It remains to determine generating polynomials for the $G_2(q)$-extensions whose existence is guaranteed by Theorem 1.1 in conjunction with Propositions 3.1 and 3.3.

Theorem 4.1. Let $q = 2^f$ be a power of 2. Then the polynomial
\[X^{q^6} + u^{e_2} t^{e_4} X^{q^5} + (u^{e_1} t^{e_1} + u^{e_3} t^{e_1} + t^{e_1} + t^{e_3} + 1)X^{q^4} \\
+ u^{e_2} t^{e_4} (t^{q^3} - q + 1)X^{q^3} \\
+ t^{e_1} (u^{e_1} t^{q^2 + q} + u^{e_1} + u^{e_3} + 1)X^{q^2} \\
+ u^{e_2} t^{q^4 + 2q - 2} X^q + u^{e_1} t^{q^4 - 1} X, \]
with $e_1 := q^4 - q^2$, $e_2 := q^4 - q^3$, $e_3 := q^4 + q^3$, $e_4 := q^4 - q^3 + 2q^2$, has Galois group $G_2(q)$ over $\mathbb{F}_q(t,u)$.

Proof. In Proposition 3.1 we have shown that the assumptions of Matzat’s Theorem 1.1 are satisfied for the matrix D defined in (1). According to Matzat [6, §1], a generating polynomial for a field extension with group $G_2(q)$ can now be obtained by solving the non-linear system of equations given by
\[y = Dy^q, \]
where $y = (y_1, \ldots, y_6)^t$, for one of the variables. Solving for y_6 yields the equation displayed in the statement. \(\square\)

By the Hilbert irreducibility theorem, there exist 1-parameter specializations of the polynomial in Theorem 4.1 with group $G_2(q)$.

Example 4.2. By arguments similar to those used in the proof of Proposition 3.1 it can be checked that the polynomial
\[X^{64} + t^{24} X^{32} + (t^{36} + t^{12} + 1) X^{16} + (t^{30} + t^{36} + t^{24}) X^{8} \\
+ (t^{24} + t^{36} + t^{27} + t^{30} + t^{12}) X^4 + t^{30} X^2 + t^{27} X \]
obtained by setting $u = t$ has Galois group $G_2(2)$ over $\mathbb{F}_2(t)$.

Theorem 4.3. Let $q = p^f$ be an odd prime power. Then the polynomial
\[X^{q^7} + u^{e_1} t^{e_4} (t^{e_6} + 1) X^{q^6} - (t^{e_2} u^{e_3} + t^{q^3 + q^2} + t^{e_2}) u^{e_2} + t^{e_3} + t^{e_2} + 1)X^{q^5} \\
- u^{e_1} t^{e_4} (t^{e_5} (u^{q^3} + u^{e_3}) + (t^{e_6} + 1)(t^{q^4 + q^3} + t^{e_5} + 1))X^{q^4} \\
+ t^{e_2} (u^{e_3} + (t^{e_6} + 1)(t^{e_6} + t^{q^2 - q} + 1) u^{e_2} + 1)X^{q^3} \\
+ u^{e_1} t^{q^2} t^{q^3 - 2q} (u^{q^3 + q^2} + t^{q^2 + q} + t^{q^2 + q} + t^{q^2 - 1} + 1) u^{e_5} + t^{e_6} + 1)X^{q^2} \\
- u^{e_2} t^{q^3 - q} (t^{e_6} + 1) X^q - u^{q^2 - q^2} t^{q^3 - q^3 - q^2 - 1} X, \]
where $e_1 := q^5 - q^4$, $e_2 := q^5 - q^3$, $e_3 := q^5 + q^4$, $e_4 := q^5 - q^4 + q^3 - q^2$, \(\square\)
\(e_5 := q^4 - q^2, \ e_6 := q^3 + q^2, \) has Galois group \(G_2(q) \) over \(\mathbb{F}_q(t,u) \).

The proof is as for the preceding theorem, starting this time from the matrix \(D \) given in (2), solving for \(y_7 \), and using Proposition 3.3.

Remark 4.4. The sporadic simple Janko groups \(J_1 \) and \(J_2 \) are subgroups of \(G_2(11) \), respectively of \(G_2(4) \). It would be nice to find Galois extensions for these groups in characteristic 11 respectively 2 by the above method, possibly as specializations of the polynomials in Theorems 4.1 and 4.3.

Remark 4.5. The next smallest simple exceptional group is the one of type \(F_4 \). Its smallest faithful representation has dimension 26, respectively 25 in characteristic 3. In principle, the methods of this paper should make it possible to produce an \(F_4(q) \)-polynomial.

Remark 4.6. The group \(G_2(q), \ q \ odd \), has \(q \) orbits on nonzero vectors in its 7-dimensional representation. Thus, the polynomial \(f_q(t,u,X) \) in Theorem 4.3 has \(q \) factors, of degrees roughly \(q^6 \), and a linear factor. On the other hand, any specialization of \(f_q \) has factors of degree at most \(q^2 + q + 1 \), the maximal element order in \(G_2(q) \). Thus, \(f_q \) seems a good candidate for testing factorization algorithms. Using Maple we have not been able to find the factorization of \(f_q \) for \(q = 3 \).

Similarly, for \(q \ even \ G_2(q) \) has a single orbit on the nonzero vectors of the 6-dimensional module. Hence \(f_q(t,u,X) \) in Theorem 4.1 is irreducible apart from the trivial linear factor. Again Maple was not able to confirm this for \(q = 4 \).

Acknowledgement. I’m indebted to N. Elkies for pointing out an overzealous simplification in a previous version.

References

Fachbereich Mathematik/Informatik
Universität Kassel
Heinrich-Plett-Str. 40, D–34132 Kassel
Germany
E-mail address: malle@mathematik.uni-kassel.de