Pacific

 Journal of MathematicsEXPLICIT REALIZATION OF THE DICKSON GROUPS $G_{2}(q)$ AS GALOIS GROUPS

Gunter Malle

EXPLICIT REALIZATION OF THE DICKSON GROUPS $\boldsymbol{G}_{\mathbf{2}}(\boldsymbol{q})$ AS GALOIS GROUPS

Gunter Malle

Abstract

For any prime power q we determine a polynomial $f_{q}(X) \in$ $\mathrm{F}_{q}(t, u)[X]$ whose Galois group over $\mathrm{F}_{q}(t, u)$ is the Dickson group $G_{2}(q)$. The construction uses a criterion and a method due to Matzat.

1. Introduction.

In this paper we are concerned with the construction of polynomials whose Galois groups are the exceptional simple Chevalley groups $G_{2}(q), q$ a prime power, first discovered by Dickson; see Theorems 4.1 and 4.3.

It was shown by Nori $[7]$ that all semisimple simply-connected linear algebraic groups over \mathbb{F}_{q} do occur as Galois groups of regular extension of regular function fields over \mathbb{F}_{q}, but his proof does not give an explicit equation or even a constructive method for obtaining such extensions. On the other hand, in a long series of papers Abhyankar has given families of polynomials for groups of classical types (see [1] and the references cited there). His ad hoc approach hasn't yet led to families with groups of exceptional type (but see [2] for a different construction of polynomials with Galois group the simple groups of Suzuki). Thus it seems natural to try to fill this gap. In his recent paper Matzat [6] describes an algorithmic approach which reduces the construction of generating polynomials for such extensions to certain group theoretic calculations.

More precisely, let $F:=\mathbb{F}_{q}(\mathbf{t})$, with $\mathbf{t}=\left(t_{1}, \ldots, t_{s}\right)$ a set of indeterminates. We denote by $\phi_{q}: F \rightarrow F, x \mapsto x^{q}$, the Frobenius endomorphism. Let G be a reduced connected linear algebraic group defined over \mathbb{F}_{q}, with a faithful linear representation $\Gamma: G(F) \hookrightarrow \mathrm{GL}_{n}(F)$ in its defining characteristic, also defined over \mathbb{F}_{q}. We identify $G(F)$ with its image in $\mathrm{GL}_{n}(F)$. Fix an element $g \in G(F)$ and assume that $g \in \mathrm{GL}_{n}(R)$, where $R:=\mathbb{F}_{q}[\mathbf{t}]$. Any specialization homomorphism $\psi: R \rightarrow \mathbb{F}_{q^{a}}, t_{j} \mapsto \psi\left(t_{j}\right)$, can be naturally extended to $\mathrm{GL}_{n}(R)$. We define

$$
g_{\psi}:=\psi(g) \cdot \psi\left(\phi_{q}(g)\right) \cdots \psi\left(\phi_{q}^{a-1}(g)\right) \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right) .
$$

With these notations Matzat [6, Thm. 4.3 and 4.5] shows the following:
Theorem 1.1 (Matzat). Let $G(F) \leq \mathrm{GL}_{n}(F)$ be a reduced connected linear algebraic group defined over \mathbb{F}_{q}. Let $g \in \mathrm{GL}_{n}(R)$ such that:
(i) $g \in G(F)$,
(ii) there exist specializations $\psi_{i}: R \rightarrow \mathbb{F}_{q^{a_{i}},}, 1 \leq i \leq k$, such that no proper subgroup of $G\left(\mathbb{F}_{q}\right) \leq \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ contains conjugates of all the $g_{\psi_{i}}, 1 \leq i \leq k$.
Then $G\left(\mathbb{F}_{q}\right)$ occurs as regular Galois group over F, and a generating polynomial $f(\mathbf{t}, X) \in F[X]$ for such a $G\left(\mathbb{F}_{q}\right)$-extension can be computed explicitly from the matrix g.

Thus the strategy for the computation of a $G_{2}(q)$-polynomial will be the following: First construct a small faithful matrix representation of $G_{2}(F)$ in its defining characteristic. For this we use the well-known facts that $G_{2}(F)$ is a subgroup of an 8-dimensional orthogonal group over F, and that this 8-dimensional representation has a faithful irreducible constituent of dimension 6 for $G_{2}(F)$, if $\operatorname{char}(F)=2$, respectively of dimension 7 if $\operatorname{char}(F)>2$. Secondly, we need to find an element $g \in G_{2}(F)$ with the properties required in the Theorem. For this, we make use of the known lists of maximal subgroups of $G_{2}(q)$ by Cooperstein and Kleidman. (These results require the classification of finite simple groups, but only in a very weak form.) Finally, the corresponding polynomial has to be computed using a version of the Buchberger algorithm.

2. Identifying $G_{2}(F)$ inside the 8 -dimensional orthogonal group.

We first introduce some notation. Let V be an 8 -dimensional vector space over a field F of characteristic $p \geq 0$, with basis e_{1}, \ldots, e_{8} and Q the quadratic form on V defined by

$$
Q: V \rightarrow F, \quad Q\left(\sum_{i=1}^{8} x_{i} e_{i}\right)=\sum_{i=1}^{4} x_{i} x_{9-i}
$$

We denote by $\mathrm{GO}_{8}(F)$ the group of isometries of Q, the full orthogonal group, and by $\mathrm{SO}_{8}(F)$ the connected component of the identity in $\mathrm{GO}_{8}(F)$, of index 2. Thus $\mathrm{SO}_{8}(F)$ is a simple split algebraic group over F of type D_{4}. The subgroup of upper triangular matrices of $\mathrm{GL}_{8}(F)$ contains a Borel subgroup B of $\mathrm{SO}_{8}(F)$. More precisely, the unipotent radical of B is generated by the root subgroups

$$
X_{i}:=\left\{x_{i}(t) \mid t \in F\right\}, \quad i=1, \ldots, 12
$$

where the $x_{i}(t)$ are defined as in Table 1. Here $E_{i, j}(t)$ denotes the matrix having 1's on the diagonal and one further nonzero entry t in position (i, j).

A maximal torus T in B is given by the set of diagonal matrices

$$
T:=\left\{t=\operatorname{diag}\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{4}^{-1}, t_{3}^{-1}, t_{2}^{-1}, t_{1}^{-1}\right) \mid t_{i} \in F^{\times}\right\}
$$

The simple roots with respect to T are now $\alpha_{i}, i=1, \ldots, 4$, with $\alpha_{i}(t)=$ t_{i} / t_{i+1} for $i=1,2,3$ and $\alpha_{4}(t)=t_{3} t_{4}$. In Table 1 we have also recorded the

Table 1. Root subgroups of $\mathrm{SO}_{8}(F)$.

| $x_{1}(t)=E_{1,2}(t)-E_{7,8}(t)$ | 1000 | $x_{7}(t)=E_{2,5}(t)-E_{4,7}(t)$ | 0101 |
| :--- | :---: | :---: | :---: | :---: |
| $x_{2}(t)=E_{2,3}(t)-E_{6,7}(t)$ | 0100 | $x_{8}(t)=E_{1,4}(t)-E_{5,8}(t)$ | 1110 |
| $x_{3}(t)=E_{3,4}(t)-E_{5,6}(t)$ | 0010 | $x_{9}(t)=E_{2,6}(t)-E_{3,7}(t)$ | 0111 |
| $x_{4}(t)=E_{3,5}(t)-E_{4,6}(t)$ | 0001 | $x_{10}(t)=E_{1,5}(t)-E_{4,8}(t)$ | 1101 |
| $x_{5}(t)=E_{1,3}(t)-E_{6,8}(t)$ | 1100 | $x_{11}(t)=E_{1,6}(t)-E_{3,8}(t)$ | 1111 |
| $x_{6}(t)=E_{2,4}(t)-E_{5,7}(t)$ | 0110 | $x_{12}(t)=E_{1,7}(t)-E_{2,8}(t)$ | 1211 |

decomposition of the root corresponding to a root subgroup into the simple roots $\alpha_{1}, \ldots, \alpha_{4}$. Note that the simple root α_{2} (with label 0100) is the one belonging to the central node in the Dynkin diagram of type D_{4}.

The group $\mathrm{PSO}_{8}(F):=\mathrm{SO}_{8}(F) / Z\left(\mathrm{SO}_{8}(F)\right)$ possesses an outer automorphism γ of order 3 induced by the graph automorphism of the Dynkin diagram D_{4} which cyclically permutes the nodes 1,3 and 4 and fixes the middle node 2. The group $\mathrm{PSO}_{8}(F)^{\gamma}$ of fixed points in $\mathrm{PSO}_{8}(F)$ under γ is again a simple connected algebraic group over F, of type G_{2}. Note that γ does not stabilize the natural representation of $\mathrm{SO}_{8}(F)$. Nevertheless we can construct $G_{2}(F)$ as a preimage G of $\mathrm{PSO}_{8}(F)^{\gamma}$ in $\mathrm{SO}_{8}(F)$.

The Borel subgroup B of $\mathrm{SO}_{8}(F)$ contains a Borel subgroup of G. Its unipotent radical is the product of the subgroups

$$
X_{i, j, k}:=\left\{x_{i}(t) x_{j}(t) x_{k}(t) \mid t \in F\right\}
$$

where $(i, j, k) \in\{(1,3,4),(5,6,7),(8,9,10)\}$, together with the root subgroups $X_{i}=\left\{x_{i}(t) \mid t \in F\right\}$ for $i \in\{2,11,12\}$ (see for example Carter [3, Prop. 13.6.3]). A maximal torus of G inside T consists of the elements

$$
\left\{t=\operatorname{diag}\left(t_{1}, t_{2}, t_{1} t_{2}^{-1}, 1,1, t_{1}^{-1} t_{2}, t_{2}^{-1}, t_{1}^{-1}\right) \mid t_{i} \in F^{\times}\right\}
$$

From this description we find that the simple roots for $G_{2}(F)$ are now α, β, with $\alpha(t):=t_{1} / t_{2}$ and $\beta(t):=t_{2}^{2} / t_{1}$, and with corresponding root subgroups $X_{\alpha}:=X_{1,3,4}, X_{\beta}:=X_{2}$ respectively.

An easy calculation with the generators of root subgroups given above now shows that G leaves invariant the hyperplane V_{1} of V consisting of vectors with equal fourth and fifth coordinate, as well as the 1-dimensional subspace V_{2} of V spanned by $e_{4}-e_{5}$. Thus we obtain an induced action of G on V_{1}, respectively on V_{1} / V_{2} when $\operatorname{char}(F)=2$. This yields a faithful matrix representation $\Gamma: G_{2}(F) \hookrightarrow \mathrm{GL}_{n}(F)$ of $G_{2}(F)$, of dimension $n=7$ when $\operatorname{char}(F) \neq 2$, respectively of dimension $n=6$ when $\operatorname{char}(F)=2$. It is well-known that the smallest possible degree of a faithful representation of $G_{2}(F)$ is 7 , respectively 6 if $\operatorname{char}(F)=2$, so our representation Γ is irreducible.

Remark 2.1. The matrices given in [4, p. 34] do not define a representation of $G_{2}\left(2^{f}\right)$. Indeed, the matrix for $h_{a}(t)$ does not have determinant 1 , as it should have (since $G_{2}\left(2^{f}\right)$ is simple for $f>1$). Its second diagonal entry should be t^{-1}. Conjugating $X_{a}(t)$ by $h_{a}\left(t^{\prime}\right)$ one sees that the middle offdiagonal entry of $X_{a}(t)$ should be t^{2} instead of t. The commutator relations (see Carter [3, 12.4]; [4, (2.1)] contains misprints) then show that similarly in the matrices for $X_{a+b}(t)$ and $X_{2 a+b}(t)$ the second nonzero off-diagonal entry t should be replaced by t^{2}. In this way one recovers the representation constructed above.

3. Finding a suitable element.

Let first $q=2^{f}$ be even. Then an easy calculation shows that in our 6 dimensional representation $\Gamma: G_{2}(F) \rightarrow \mathrm{GL}_{6}(F)$ constructed above, we have

$$
x_{\alpha}(t)=\left(\begin{array}{cccccc}
1 & t & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & t^{2} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & t \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right), \quad x_{\beta}(t)=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & t & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & t & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right),
$$

and the longest element of the Weyl group of $G_{2}(F)$ is represented by

$$
w_{0}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

We choose $g:=x_{\alpha}(t) x_{\beta}(u) w_{0} \in G_{2}(F)$ and let

$$
D:=\Gamma(g)=\left(\begin{array}{rrrrrr}
0 & 0 & 0 & t u & t & 1 \tag{1}\\
0 & 0 & 0 & u & 1 & 0 \\
0 & t^{2} u & t^{2} & 1 & 0 & 0 \\
0 & u & 1 & 0 & 0 & 0 \\
t & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Proposition 3.1. Let q be even and D be defined as above. Then no proper subgroup of $G_{2}(q)$ contains conjugates of all specializations of D.
Proof. We use the fact that all maximal subgroups of the finite groups $G_{2}(q)$ are known by Cooperstein [4]. For $q=2$ specializations into \mathbb{F}_{8} yield elements of orders 7 and 12, and no maximal subgroup of $G_{2}(2)$ contains elements of both orders. For $q=4$ specializations into \mathbb{F}_{4} yield elements of
orders 13,15 and 21. The only maximal subgroup of order divisible by $7 \cdot 13$ is $\mathrm{PSL}_{2}(13)$, but its order is not divisible by 5 , so we are done again.

Now let $q \geq 8$. Let G be a subgroup of $G_{2}(q)$ containing conjugates of all specializations of D. Let $\alpha \in \mathbb{F}_{q^{2}}^{\times}$of order $q+1$. Then the minimal polynomial of α over \mathbb{F}_{q} has the form $X^{2}+\operatorname{Tr}(\alpha) X+1$, where $\operatorname{Tr}(\alpha)=$ $\alpha+\alpha^{q} \in \mathbb{F}_{q}$. Thus any element of $\mathbb{F}_{q^{2}}^{\times}$of order $q+1$ occurs as a root of a polynomial of the shape

$$
X^{2}+v X+1, \quad v \in \mathbb{F}_{q}
$$

Clearly, all elements of \mathbb{F}_{q}^{\times}also occur as zeros of such a polynomial. Now for $v \in \mathbb{F}_{q}$ consider the specialization

$$
\psi_{v}: \mathbb{F}_{q}[t, u] \rightarrow \mathbb{F}_{q}, \quad t \mapsto 0, u \mapsto v
$$

Then the specialization $\psi_{v}(D)$ of D has characteristic polynomial

$$
X^{6}+\left(v^{2}+1\right) X^{4}+\left(v^{2}+1\right) X^{2}+1=(X+1)^{2}\left(X^{2}+v X+1\right)^{2}
$$

The 1-eigenspace of $\psi_{v}(D)$ only has dimension 1 for $v \neq 0$, so the order of $\psi_{v}(D)$ is divisible by 2 . By our above considerations, we hence find elements of orders $2(q+1)$ and $2(q-1)$ as specializations of D. (This can also be seen as follows: If $t=0$ then g specializes to

$$
x_{\beta}(u) w_{0}=x_{\beta}(u)\left(w_{\beta} w_{\alpha}\right)^{3}=x_{\beta}(u) w_{\beta} \cdot w^{\prime}
$$

where $w^{\prime}=w_{\alpha} w_{\beta} w_{\alpha} w_{\beta} w_{\alpha}$ has order 2 , centralizes $x_{\beta}(u) w_{\beta}$, and $x_{\beta}(u) w_{\beta}$ represents the element

$$
\left(\begin{array}{ll}
u & 1 \\
1 & 0
\end{array}\right)
$$

in the subgroup $\left\langle X_{\beta}, X_{-\beta}\right\rangle \cong \mathrm{SL}_{2}(q)$.)
Next, consider the specialization

$$
\psi_{v}^{\prime}: \mathbb{F}_{q}[t, u] \rightarrow \mathbb{F}_{q}, \quad t \mapsto v, u \mapsto 0
$$

Here, $\psi_{v}^{\prime}(D)$ has characteristic polynomial

$$
\left(X^{2}+v X+1\right)^{2}\left(X^{2}+v^{2} X+1\right)
$$

By the argument above, this again yields elements of orders $2(q-1)$ and $2(q+$ 1). But note that this time these elements never have an eigenvalue 1 , nor have any of their powers of order larger than 2 . Thus G contains subgroups of order $(q \pm 1)^{2}$. Theorem 2.3 in [4] shows that either $G \leq \mathrm{SL}_{2}(q) \times \mathrm{SL}_{2}(q)$ or $G=G_{2}(q)$.

Finally, consider the specialization

$$
\psi_{v}^{\prime \prime}: \mathbb{F}_{q}[t, u] \rightarrow \mathbb{F}_{q}, \quad t \mapsto v, u \mapsto 1
$$

The corresponding specialization of D has characteristic polynomial

$$
\left(X^{3}+v^{2} X+1\right)\left(X^{3}+v^{2} X^{2}+1\right)
$$

If $X^{3}+v^{2} X+1$ is reducible over \mathbb{F}_{q}, then it has a linear factor $X+a$, $a \in \mathbb{F}_{q}$, and $X^{3}+v^{2} X+1=(X+a)\left(X^{2}+a X+1 / a\right)$. Clearly, the case $a=0$ is not possible, so for at least one of the q possibilities for $v \in \mathbb{F}_{q}$ the characteristic polynomial has an irreducible factor of degree 3. In this case, the specialization of D has order dividing $q^{2}+q+1$, but not $q-1$. Since $\mathrm{SL}_{2}(q) \times \mathrm{SL}_{2}(q)$ doesn't contain such elements, we have $G=G_{2}(q)$, as claimed.

For odd $q=p^{f}$ we again choose $g:=x_{\alpha}(t) x_{\beta}(u) w_{0} \in G_{2}(F)$. With

$$
\begin{aligned}
x_{\alpha}(t) & =\left(\begin{array}{rrrrrrr}
1 & t & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & t & -t^{2} & 0 & 0 \\
0 & 0 & 0 & 1 & -2 t & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -t \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right), \\
x_{\beta}(t) & =\left(\begin{array}{rrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & t & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -t & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right),
\end{aligned}
$$

and

$$
w_{0}=\left(\begin{array}{rrrrrrr}
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

this gives

$$
D:=\Gamma(g)=\left(\begin{array}{rrrrrrr}
0 & 0 & 0 & 0 & t u & -t & 1 \tag{2}\\
0 & 0 & 0 & 0 & u & -1 & 0 \\
0 & -t^{2} u & -t^{2} & -t & 1 & 0 & 0 \\
0 & -2 t u & -2 t & -1 & 0 & 0 & 0 \\
0 & u & 1 & 0 & 0 & 0 & 0 \\
-t & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

in this case. This matrix has separable characteristic polynomial

$$
\begin{aligned}
X^{7} & +\left(t^{2}+1\right) X^{6}-\left(2 t^{2}+u^{2}+3\right) X^{5}-\left(t^{4}+3 t^{2}+u^{2}+3\right) X^{4} \\
& +\left(t^{4}+3 t^{2}+u^{2}+3\right) X^{3}+\left(2 t^{2}+u^{2}+3\right) X^{2}-\left(t^{2}+1\right) X-1 .
\end{aligned}
$$

We need the following result:
Lemma 3.2. Let $q>3$ be an odd prime power. Then there exists $v \in \mathbb{F}_{q}$ such that

$$
X^{3}-\left(v^{2}+2\right) X-1
$$

is irreducible over \mathbb{F}_{q}.
Proof. Assume that $f:=X^{3}-\left(v^{2}+2\right) X-1$ is reducible. Then f has a zero $a \in \mathbb{F}_{q}$, and $X^{3}-\left(v^{2}+2\right) X-1=(X-a)\left(X^{2}+a X+a^{-1}\right)$. These zeros are just the first coordinates of the \mathbb{F}_{q}-points on the elliptic curve E defined by $U^{3}-\left(V^{2}+2\right) U-1$. By the Weil bounds [8], E has at most $q+1+2 \sqrt{q}$ points (u, v) over \mathbb{F}_{q}. Clearly, with (u, v) the point $(u,-v)$ also lies on E, hence there are at most $q / 2+1+\sqrt{q}$ distinct values a which can occur as zeros of f.

Next, we estimate how often f splits completely into linear factors. This happens if in addition the discriminant $\left(a^{3}-4\right) / a$ of $X^{2}+a X+a^{-1}$ is a square in \mathbb{F}_{q}. Thus we need to count points on the \mathbb{F}_{q}-curve C defined by the two equations

$$
U^{3}-\left(V^{2}+2\right) U-1, \quad U^{3}-W^{2} U-4
$$

Subtracting these two equations we see that U lies in the function field $\mathbb{F}_{q}(V, W)$. Since both V, W have degree at most 2 over $\mathbb{F}_{q}(U)$, the curve C has genus at most 4. Moreover, the only singular point of C is the point with coordinates $(4,0,0)$ in characteristic 5 . Again by the Weil bounds [8] this means that C has at least $q+1-2 \cdot 4 \sqrt{q}-6$ points over \mathbb{F}_{q}. For each such point, changing the sign of the V, W-coordinates again yields a point, hence there are at least $(q-5-8 \sqrt{q}) / 4$ distinct $a \in \mathbb{F}_{q}$ for which f splits completely. Thus we obtain at most

$$
q / 2+1+\sqrt{q}-(q-5-8 \sqrt{q}) / 4=(q+9) / 4+3 \sqrt{q}
$$

factorizations of f into a linear and a quadratic factor. The discriminant of f is a polynomial in v of degree 6 , hence f is inseparable for at most six values of v. Apart from those, each completely splitting f accounts for three different values of a, so we obtain a total of at most

$$
(q+9) / 4+3 \sqrt{q}+((q-5-8 \sqrt{q}) / 4-6) / 3+6=(2 q+35) / 6+7 / 3 \sqrt{q}
$$

reducible polynomials when v runs over \mathbb{F}_{q}. Hence there remain at least

$$
(q+1) / 2-((2 q+35) / 6+7 / 3 \sqrt{q})=(q-32) / 6-7 / 3 \sqrt{q}
$$

irreducible polynomials. This is positive for $q \geq 257$. For the remaining prime powers $3<q<257$ a computer check shows that the assertion is
also satisfied. (For $q=5,9$ there is just one irreducible polynomial of the required shape, for $q=3$ there is none.)

Note that the counting of singular points and of inseparable f was very rough and a more detailed analysis would have reduced the bound considerably.

Proposition 3.3. Let q be odd and D be the matrix defined in (2). Then no proper subgroup of $G_{2}(q)$ contains conjugates of all specializations of D.

Proof. Again all maximal subgroups of $G_{2}(q)$ are known by work of Kleidman [5]. For $q=3$ specializations into \mathbb{F}_{9} yield elements of orders 7, 9, 13 . The only maximal subgroup of $G_{2}(3)$ of order divisible by $7 \cdot 13$ is $\mathrm{PSL}_{2}(13)$, but that has no elements of order 9 . For $q=5$, specialization into \mathbb{F}_{5} yields element orders 7, 20 and 31, thus we are done again.

For $q \geq 7$ let G be a subgroup of $G_{2}(q)$ containing conjugates of all specializations of D. We again consider the specialization

$$
\psi_{v}: \mathbb{F}_{q}[t, u] \rightarrow \mathbb{F}_{q}, \quad t \mapsto 0, u \mapsto v .
$$

Then the square of $\psi_{v}(D)$ has characteristic polynomial

$$
(X-1)^{3}\left(X^{2}-\left(v^{2}+2\right) X+1\right)^{2} .
$$

This gives rise to elements of orders $q \pm 1$ in G. Similarly, the specialization

$$
\psi_{v}^{\prime}: \mathbb{F}_{q}[t, u] \rightarrow \mathbb{F}_{q}, \quad t \mapsto v, u \mapsto 0,
$$

yields the characteristic polynomial

$$
(X-1)\left(X^{2}-\left(v^{4}+4 v^{2}+2\right) X+1\right)\left(X^{2}-\left(v^{2}+2\right) X+1\right)^{2}
$$

for the image of D^{2}. So as in the previous proof we deduce that G must contain subgroups of orders $(q \pm 1)^{2}$. Theorem A in [5] shows that either G is contained in the central product $\mathrm{SL}_{2}(q) \circ \mathrm{SL}_{2}(q)$, or $G=G_{2}(q)$. Finally, for the specialization

$$
\psi_{v}^{\prime \prime}: \mathbb{F}_{q}[t, u] \rightarrow \mathbb{F}_{q}, \quad t \mapsto v, u \mapsto 1,
$$

we obtain the characteristic polynomial

$$
(X-1)\left(X^{3}+\left(v^{2}+2\right) X^{2}-1\right)\left(X^{3}-\left(v^{2}+2\right) X-1\right)
$$

for $\phi_{v}^{\prime \prime}(D)$. Since $q \geq 7$ is odd, Lemma 3.2 shows that there exists $v \in \mathbb{F}_{q}$ such that the degree 3 factors of this polynomial are irreducible over \mathbb{F}_{q}. But $\mathrm{SL}_{2}(q) \circ \mathrm{SL}_{2}(q)$ does not contain such elements, hence we have $G=$ $G_{2}(q)$.

4. The polynomials.

It remains to determine generating polynomials for the $G_{2}(q)$-extensions whose existence is guaranteed by Theorem 1.1 in conjunction with Propositions 3.1 and 3.3.
Theorem 4.1. Let $q=2^{f}$ be a power of 2. Then the polynomial

$$
\begin{aligned}
X^{q^{6}} & +u^{e_{2}} t^{e_{4}} X^{q^{5}}+\left(u^{e_{1}} t^{e_{1}}+u^{e_{3}} t^{e_{1}}+t^{e_{1}}+t^{e_{3}}+1\right) X^{q^{4}} \\
& +u^{e_{2}} t^{e_{4}}\left(t^{q^{3}+q^{2}}+t^{q^{3}-q}+1\right) X^{q^{3}} \\
& +t^{e_{1}}\left(u^{e_{1}} t^{q^{2}-1}+u^{e_{1}} t^{q^{2}+q}+u^{e_{1}}+u^{e_{3}}+1\right) X^{q^{2}} \\
& +u^{e_{2}} t^{q^{4}+2 q^{2}-q} X^{q}+u^{e_{1}} t^{q^{4}-1} X
\end{aligned}
$$

with $e_{1}:=q^{4}-q^{2}, e_{2}:=q^{4}-q^{3}, e_{3}:=q^{4}+q^{3}, e_{4}:=q^{4}-q^{3}+2 q^{2}$, has Galois group $G_{2}(q)$ over $\mathbb{F}_{q}(t, u)$.
Proof. In Proposition 3.1 we have shown that the assumptions of Matzat's Theorem 1.1 are satisfied for the matrix D defined in (1). According to Matzat [6, §1], a generating polynomial for a field extension with group $G_{2}(q)$ can now be obtained by solving the non-linear system of equations given by

$$
\mathbf{y}=D \mathbf{y}^{q}
$$

where $\mathbf{y}=\left(y_{1}, \ldots, y_{6}\right)^{t}$, for one of the variables. Solving for y_{6} yields the equation displayed in the statement.

By the Hilbert irreducibility theorem, there exist 1-parameter specializations of the polynomial in Theorem 4.1 with group $G_{2}(q)$.
Example 4.2. By arguments similar to those used in the proof of Proposition 3.1 it can be checked that the polynomial

$$
\begin{aligned}
X^{64}+t^{24} X^{32} & +\left(t^{36}+t^{12}+1\right) X^{16}+\left(t^{30}+t^{36}+t^{24}\right) X^{8} \\
& +\left(t^{24}+t^{36}+t^{27}+t^{30}+t^{12}\right) X^{4}+t^{30} X^{2}+t^{27} X
\end{aligned}
$$

obtained by setting $u=t$ has Galois group $G_{2}(2)$ over $\mathbb{F}_{2}(t)$.
Theorem 4.3. Let $q=p^{f}$ be an odd prime power. Then the polynomial

$$
\begin{aligned}
X^{q^{7}} & +u^{e_{1}} t^{e_{4}}\left(t^{e_{6}}+1\right) X^{q^{6}}-\left(t^{e_{2}} u^{e_{3}}+\left(t^{q^{5}+q^{2}}+t^{e_{2}}\right) u^{e_{2}}+t^{e_{3}}+t^{e_{2}}+1\right) X^{q^{5}} \\
& -u^{e_{1}} t^{e_{4}}\left(t^{e_{5}}\left(u^{q^{4}+q^{3}}+u^{e_{5}}\right)+\left(t^{e_{6}}+1\right)\left(t^{q^{4}+q^{3}}+t^{e_{5}}+1\right)\right) X^{q^{4}} \\
& +t^{e_{2}}\left(u^{e_{3}}+\left(t^{e_{6}}+1\right)\left(t^{e_{6}}+t^{q^{3}-q}+1\right) u^{e_{2}}+1\right) X^{q^{3}} \\
& +u^{e_{1}} t^{q^{5}+q^{3}-2 q^{2}}\left(u^{q^{4}+q^{3}}+\left(t^{q^{2}+q}+t^{q^{2}-1}+1\right) u^{e_{5}}+t^{e_{6}}+1\right) X^{q^{2}} \\
& -u^{e_{2}} t^{q^{5}-q}\left(t^{e_{6}}+1\right) X^{q}-u^{q^{5}-q^{2}} t^{q^{5}+q^{3}-q^{2}-1} X,
\end{aligned}
$$

where $e_{1}:=q^{5}-q^{4}, e_{2}:=q^{5}-q^{3}, e_{3}:=q^{5}+q^{4}, e_{4}:=q^{5}-q^{4}+q^{3}-q^{2}$,
$e_{5}:=q^{4}-q^{2}, e_{6}:=q^{3}+q^{2}$, has Galois group $G_{2}(q)$ over $\mathbb{F}_{q}(t, u)$.
The proof is as for the preceding theorem, starting this time from the matrix D given in (2), solving for y_{7}, and using Proposition 3.3.

Remark 4.4. The sporadic simple Janko groups J_{1} and J_{2} are subgroups of $G_{2}(11)$, respectively of $G_{2}(4)$. It would be nice to find Galois extensions for these groups in characteristic 11 respectively 2 by the above method, possibly as specializations of the polynomials in Theorems 4.1 and 4.3.

Remark 4.5. The next smallest simple exceptional group is the one of type F_{4}. Its smallest faithful representation has dimension 26 , respectively 25 in characteristic 3. In principle, the methods of this paper should make it possible to produce an $F_{4}(q)$-polynomial.
Remark 4.6. The group $G_{2}(q), q$ odd, has q orbits on nonzero vectors in its 7 -dimensional representation. Thus, the polynomial $f_{q}(t, u, X)$ in Theorem 4.3 has q factors, of degrees roughly q^{6}, and a linear factor. On the other hand, any specialization of f_{q} has factors of degree at most $q^{2}+q+1$, the maximal element order in $G_{2}(q)$. Thus, f_{q} seems a good candidate for testing factorization algorithms. Using Maple we have not been able to find the factorization of f_{q} for $q=3$.

Similarly, for q even $G_{2}(q)$ has a single orbit on the nonzero vectors of the 6 -dimensional module. Hence $f_{q}(t, u, X)$ in Theorem 4.1 is irreducible apart from the trivial linear factor. Again Maple was not able to confirm this for $q=4$.

Acknowledgement. I'm indebted to N. Elkies for pointing out an overzealous simplification in a previous version.

References

[1] S. Abhyankar and N. Inglis, Galois groups of some vectorial polynomials, Trans. Amer. Math. Soc., 353 (2001), 2941-2869, MR 2002b:12005, Zbl 0992.12002.
[2] S. Abhyankar, H. Popp and W. Seiler, Construction techniques for Galois coverings of the affine line, Proc. Indian Acad. Sci., 103 (1993), 103-126, MR 94j:14017, Zbl 0794.14011.
[3] R. Carter, Simple Groups of Lie Type, 2nd edition, Wiley, London, 1989, MR 90g:20001, Zbl 0723.20006.
[4] B.N. Cooperstein, Maximal subgroups of $G_{2}\left(2^{n}\right)$, J. Algebra, 70 (1981), 23-36, MR 82h:20055, Zbl 0459.20007.
[5] P. Kleidman, The maximal subgroups of the Chevalley groups $G_{2}(q)$ with q odd, the Ree groups ${ }^{2} G_{2}(q)$, and their automorphism groups, J. Algebra, 117 (1988), 30-71, MR 89j:20055, Zbl 0651.20020.
[6] B.H. Matzat, Frobenius modules and Galois groups, in 'Galois Theory and Modular Forms' (K. Miyake, et al., eds.), Kluwer, Dordrecht, 2003, 233-267.
[7] M.V. Nori, Unramified coverings of the affine line in positive characteristic, in 'Algebraic geometry and its applications', Springer Verlag, New York, 1994, 209-212, MR 95i:14030, Zbl 0811.14031.
[8] A. Weil, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc., $\mathbf{5 5}$ (1949), 497-508, MR 10,592e, Zbl 0032.39402.

Fachbereich Mathematik/Informatik
Universität Kassel
Heinrich-Plett-Str. 40, D-34132 Kassel
Germany
E-mail address: malle@mathematik.uni-kassel.de

