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We prove that a generic point of a Cr manifold endowed
with a generic Riemannian structure has an unique antipode
(i.e., farthest point). Furthermore, in the case of 2-dimensi-
onal manifolds, such a point is joined to its antipode by at
most three minimizing geodesics (r ≥ 2).

1. Introduction.

In a compact metric space (X, d), we call an antipode of a point p ∈ X, any
point which realizes the maximum of the distance from x. Some conjectures
about antipodes were formulated by H. Steinhauss [2]. As an example: Is
the sphere the only surface on which each point admits a single antipode
and such that the antipodal function is an involution? This question was
recently solved by C. Vı̂lcu who exhibits some counterexamples [6]. Now, it
is quite natural to investigate the generic case.

In the case of a convex surface S, Tudor Zamfirescu proves in [7] that
a generic point of S has an unique antipode, and is joined to it by exactly
three segments (A segment, or a minimizing geodesic, is simply a path whose
length equals the distance between its extremities).

The aim of this paper is to give an analogous result in the frame of
Riemannian geometry. We obtain that the generic uniqueness holds for a
Cr manifold (of any dimension) endowed with a generic Riemannian metric
(Theorem 1), and the fact that at most three geodesics go from a generic
point to its antipode holds for such 2-dimensional manifolds (Theorem 2)
(r ≥ 2).

The first result is optimal, in sense that it fails if you remove any occur-
rence of “generic”. The projective plane with constant curvature is obviously
a counterexample to the attempt at deletion of the second occurrence. Con-
cerning the first one, we only need to notice that any sufficiency “long” space
admits points with more than one antipode. The antipodes, in such a space,
are localized near its “extremities”. Any point near enough one extremity
has all its antipodes near the other one. By semicontinuity of the antipodal
function (see Lemma 5), there exists a point which should have (at least)
one antipode near each extremity.
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However, in the case of convex surfaces [8, Theorem 4], as in the case of
manifolds homeomorphic to the 2-dimensional sphere [5], a stronger result
exists.

2. Baire categories notion of genericity.

For elementary results about Baire categories, we refer to any topology book.
We simply recall that a subset of topological space is said to be of first
category or meager if it is included in a countable union of closed sets with
empty interior. A Baire space is a topological space where meager subsets
have empty interior. Baire’s theorem states that complete metric spaces
are Baire spaces. In a Baire space, we say that a generic point satisfies a
property, if all points in a residual subset (i.e., a subset whose complement
is meager) satisfy this property.

Now we need to endow the set Gr of all Cr Riemannian structures on a
given manifoldM , with a topology which makes it a Baire space. This can be
done in several slightly different ways (see [1] for an another construction).

We fix g0 ∈ Gr. On one hand, g0 provides a norm ‖ ‖x, on each fibre over
x of the vector bundle

Bn =

n times︷ ︸︸ ︷
TM∗ ⊗ · · · ⊗ TM∗ ⊗ TM∗ � TM∗,

where � denotes the symmetric tensor product. As M is compact, we can
define a norm ‖ ‖n on the set Γr(Bn) of Crsections of Bn by

‖·‖n = sup
x∈M

‖·‖x .

On the other hand, g0 supplies its Levi-Cività covariant derivation ∇, from
Γr(Bn) to Γr−1 (Bn+1). Put ∇p = ∇ ◦ · · · ◦ ∇, and define for g ∈ G′r

def=
Γr(B0)

‖g‖Cr = max
p=0,...,r

‖∇pg‖p .

It is obvious that this real valued map is a norm on G′r. Moreover G′r

endowed with this norm is a Banach space. For C∞ manifolds, we define
the metric

d∞(g, g′) =
∞∑
r=0

2−r min
(
1,

∥∥g − g′
∥∥
Cr

)
.

It is well-known that (G′∞, d∞) is a complete metric space whose topol-
ogy equals the one defined by the norm family (‖ ‖Cr)r≥0. Moreover, the
topology induced by ‖ ‖Cr does not depend on g0 ∈ Gr.

The set Gr of Cr Riemannian structures can be defined by

Gr =
{
g ∈ G′r |∀x ∈ TM, g(x, x) > 0 ⇔ x 6= 0} .
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It is obvious that Gr is open in G′r, and so, is a Baire space.

3. Some continuity or upper semicontinuity results.

3.1. Some notation. As a matter of geometric notation, we define for
g ∈ Gr, Lg(γ) as the g-length of a curve γ, A

g
x as the set of g-antipodes

of a point x ∈ M , D
g
x as the distance between x and its g-antipodes. The

g-unit tangent bundle over M will be denoted by T 1gM . We also denote by
D the set of all metrics on M which induce its topology. D is endowed by
the metric δ defined by

δ
(
d, d′

)
= max

(x,y)∈M2

∣∣d (x, y)− d′ (x, y)
∣∣ .

For g ∈ Gr, we denote by dg ∈ D the metric corresponding to the Riemann-
ian structure g. At last, we define Σg

xy as the set of g-segments from x to y,
and Ag2 as the set of points of M which admit at least two g-antipodes.

We also need more abstract notations. For any metric space (X, d) we
define H(X) as the set of all nonempty compact subsets of X, which is
endowed with the well-known Hausdorff metric, denoted by the same symbol
d:

d (K1,K2) = max
(
d⊂ (K1,K2) , d⊂ (K2,K1)

)
,

d⊂ (K1,K2) = max
x∈K1

min
y∈K2

d(x, y).

It is well-known that H(X) is compact whenever X is compact. An H(X)-
valued function is said to be upper semicontinuous, if it is continuous for
the topology induced by d⊂. Note that d⊂ satisfies the triangle inequality,
and d⊂ (K1,K2) vanishes if and only if K1 ⊂ K2.

Given a subset P of X, and a positive real number ρ, we denote by P + ρ
the union of all open balls of radius ρ centered at the elements of P .

We define HG as the set of compact metric spaces up to isometries. Given
two spaces X,Y ∈ HG, we say that X is included in Y , and write X ⊂ Y , if
there exists an isometric injective map from X into Y . This defines a partial
order on HG. Now we put for (X, dX), (Y, dY ) ∈ HG

d⊂HG (X,Y ) = inf
(Z,dz),φ,ψ

d⊂Z (φ(X), ψ(Y ))

dHG (X,Y ) = max
(
d⊂HG (X,Y ) , d⊂HG (Y,X)

)
,

where the infimum is taken over all metric spaces (Z, dZ), and all isometric
injective maps, φ, from X to Z, and, ψ, from Y to Z. dHG is nothing but the
well-known Hausdorff-Gromov metric on HG [3]. A HG-valued function is
said to be upper semicontinuous if it is continuous for the topology induced
by d⊂HG. It is easy to see that d⊂HG satisfies the triangle inequality, moreover
we have:
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Lemma 1. Let X,Y ∈ HG. We have d⊂HG (X,Y ) = 0 if and only if X ⊂ Y .

Proof. It is clear that X ⊂ Y implies d⊂HG (X,Y ) = 0. Conversely, if
d⊂HG (X,Y ) = 0, then there exist metric spaces (Zn, dn), and injective isome-
tries φn : X → Zn and ψn : Y → Zn such that d⊂ (φn (X) , ψn (Y )) < 1

n .

Let Z be a coproduct of all compact metric spaces Z ′n
def= φn (X) ∪ ψn (Y ),

n ∈ N. We define on Z an equivalence relation R by zRz′ if and only if both
z and z′ are the image of the same point y ∈ Y by ψn for some n ∈ N. Put
ψ = s ◦ in ◦ ψn, with in : Z ′n → Z the canonical injection, and s : Z → Z/R
the canonical surjection. Z/R is a metric space with the metric dZ defined
by

dZ/R (zn, zm) = inf
y∈Y

(dn (zn, ψ (y)) + dm (zm, ψ (y))) ,

for zi ∈ Zi, i = n or m, n 6= m

dZ/R
(
zn, z

′
n

)
= dn

(
zn, z

′
n

)
, for zn, z′n ∈ Zn.

We claim that Z/R is compact. Let (zp) =
(
s
(
z′p

))
be a sequence of Z/R.

z′p belongs to inp

(
Z ′np

)
for some integer np, and then, there exists a point

yp ∈ ψ (Y ) such that dZ/R (zp, yp) ≤ 1
np

. If the sequence (np) is bounded
by an integer N , then we can select from (zp) a converging subsequence, by
compactness of Z ′1, Z

′
2, . . . , Z ′N , else, we can assume by selecting suitable

subsequences, that limp
1
np

= 0. As Y is compact, we can select from (yp),
and so from (zp) too, a converging subsequence. This proves the claim.
Now, as s◦ in ◦φn are isometries (hence, form an equicontinuous family), we
can extract a subsequence converging to an isometry φ : X → ψ (Y ). This
completes the proof. �

Given a compact metric space X, we denote by jX the canonical map from
H(X) to HG. Of course, jX is upper semicontinuous and order preserving.

Let X ∈ HG and P ⊂ HG, we will denote by d⊂HG (X,P ) the infimum
inf
Y ∈P

d⊂HG (X,Y ). As d⊂HG is not a metric, the following lemma is not obvious.

Lemma 2. Let P be a compact subset of HG, take X ∈ HG. Then d⊂HG(X,
P ) = 0 if and only if there exists a compact metric space Y ∈ P such that
X ⊂ Y .

Proof. Given an integer n, there exists a metric space Yn ∈ P such that
d⊂HG (X,Yn) < 1

n . Let Y be the limit of a converging subsequence of (Yn).
We have d⊂HG (X,Y ) ≤ d⊂HG (X,Yn) + dHG (Yn, Y ). As the right-hand side
tends to zero, left-hand side must vanish. �

We have to consider a special subset T ⊂ HG, which is the set of those
metric spaces, included in the unit circle (i.e., R/2πZ), whose cardinality is
at most 3. It is clear that T is compact.
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3.2. Useful lemmas. This miscellany is nothing but the list of lemmas we
need.

Lemma 3. The map from Gr to D which associates to g the corresponding
metric dg is locally Lipschitz continuous with respect to the metric δ and the
norm ‖ ‖C0.

Proof. We denote by N (g) the real number sup
x∈T 1g0M

∣∣∣ 1
g(x,x)

∣∣∣. Consider two

Riemannian structures g and g′ = g + h. Let x, y be two points of M , such
that δ(dg, dg

′
) = dg

′
(x, y)−dg(x, y) (you may exchange g and g′ if necessary).

Let σ be a g-segment from x to y. We have

dg′(x, y) ≤ Lg
′
(σ)

=
∫ √

g + h (σ̇ (t) , σ̇ (t)) dt

≤
∫
√
g (σ̇ (t) , σ̇ (t)) dt+

1
2

∫
|h|
√
g

(σ̇ (t) , σ̇ (t)) dt

≤ Lg(σ) +
1
2
‖h‖C0 N(g)

∫
√
g (σ̇ (t) , σ̇ (t)) dt

≤ dg(x, y) +
1
2
‖h‖C0 N(g)Lg (σ)

≤ dg(x, y) +
1
2
‖h‖C0 N(g)diam(M, g).

Hence

δ(dg, dg
′
) = dg′(x, y)− dg(x, y)

≤ 1
2
‖h‖C0 N(g)diam(M, g).

�

Lemma 4. The map D from Gr ×M to R is locally Lipschitz continuous
with respect to both variables.

Proof. Let x, x′ be in M , g, g′ be in Gr, and take a g-antipode y of x.

Dg
x = dg(x, y)

≤ dg
′
(x′, y) + dg(x, x′) + δ(dg, dg

′
)

≤ D
g′

x′ + dg(x, x′) + δ(dg, dg
′
).

Of course, the same holds when you exchange (x, g) and (x′, g′). Lemma 3
completes the proof. �

Lemma 5. The map A from Gr ×M to H (M) is upper semicontinuous.
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Proof. Suppose the result fails. There exists a real number ε > 0, such that
for each integer n, there exists a point xn and a Riemannian structure gn
such that

‖g − gn‖Cr <
1
n

(1)

dg(x, xn) <
1
n

Agn
xn

* Agx + ε.

The formula (1) implies the existence of a sequence (yn) of gn-antipodes of
xn such that yn /∈ A

g
x + ε. Now, select a converging subsequence from yn,

and denote by y its limit. On one hand, as A
g
x + ε is open, y /∈ A

g
x. On

the other hand, by Lemmas 4 and 3, the identity D
gn
xn = dgn(yn, xn) leads

to D
g
x = dg (y, x), and we obtain a contradiction. �

Lemma 6. The map

Gr ×M ×M → H (H (M))

(g, x, y) 7→ Σg
xy

is upper semicontinuous.

Proof. Suppose the result fails. There exists ε > 0, and three sequences (gn),
(xn) and (yn), converging respectively to g ∈ Gr, x ∈ M , and y ∈ M , such
that a gn-segment σn from xn to yn satisfying min {dg(σn, σ′)|σ′ ∈ Σg

xy} > ε
exists. We can select from σn a converging subsequence which tends to a
g-segment σ from x to y, and a contradiction is found. �

Lemma 7. Let (X, d) be a metric space, K be a subset of HG, and F : X →
HG be an upper semicontinuous function. The map from X to R,

x 7→ d⊂HG(F (x),K)

is upper semicontinuous.

Proof. Choose ε > 0, x ∈ X, and put δ = d⊂HG(F (x),K). Choose χ ∈ K
such that d⊂HG (F (x), χ) < δ+ ε

2 . There exists a compact metric space (Z1, d)
and two isometric injective maps g1 : F (x) → Z1 and h1 : χ→ Z1 such that

g1 (F (x)) ⊂ h1(χ) +
(ε

2
+ δ

)
.

By upper semicontinuity of F , there exists a real number η > 0, such that
for all points y of the open ball {x}+ η we have

d⊂HG (F (y), F (x)) <
ε

2
.

Hence, there exists a metric space (Z2, d) and two isometric injective maps
g2 : F (x) → Z2 and f2 : F (y) → Z2 such that

f2(F (y)) ⊂ g2 (F (x)) +
ε

2
.
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Let Z be a coproduct of Z1 and Z2 where g1(F (x)) and g2(F (x)) have
been identified. We obtain three injective isometric maps f : F (y) → Z,
g : F (x) → Z and h : χ→ Z such that

g (F (x)) ⊂ h(χ) +
(ε

2
+ δ

)
f(F (y)) ⊂ g (F (x)) +

ε

2
.

It follows that

f(F (y)) ⊂ h(χ) + (ε+ δ) .

We have proved that for all y ∈ {x}+ η,

d⊂HG(F (y),K) ≤ d⊂HG(F (y), χ)

≤ d⊂HG(F (x),K) + ε.

�

Lemma 8. Let (X, d) and (Y, d) be metric spaces. Let F : X → H (Y )
be an upper semicontinuous function, and G : H (Y ) → HG be an order
preserving (for order ⊂) and upper semicontinuous function. Then G ◦F is
upper semicontinuous.

Proof. Choose ε > 0 and x ∈ X. The upper semicontinuity of G implies the
existence of a real number ε′ > 0 such that for all K in H (Y ),

d (K,F (x)) ≤ ε′ =⇒ d⊂HG(G(K), G ◦ F (x)) < ε.(2)

By upper semicontinuity of F , there exists a real number η > 0 such that
for all y ∈ {x}+ η

F (y) ⊂ F (x) + ε′.(3)

Put K0 = F (x) ∪ F (y). As G preserves order, we have

G ◦ F (y) ⊂ G (K0) .(4)

As by (3) d(K0, F (x)) ≤ ε′, (2) leads to

d⊂HG (G (K0) , G ◦ F (x)) < ε.

Hence, there exists a metric space (Z, d) and two injective isometric maps
f : G ◦ F (x) → Z and g : G (K0) → Z such that

g ◦G (K0) ⊂ f ◦G ◦ F (x) + ε.

This formula and (4) lead to

g ◦G ◦ F (y) ⊂ f ◦G ◦ F (x) + ε.

Hence d⊂HG (G ◦ F (y), G ◦ F (x)) ≤ ε for all y ∈ {x} + η, and the lemma is
proved. �
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4. Comeback to geometry.

4.1. Generic uniqueness of antipodes. Now, we can enunciate and prove
the theorems described in the introduction.

Theorem 1. Let M be a Cr compact manifold (r = 2, . . . ,∞) endowed
with a generic Riemannian structure of Gr. A generic point of M admits
an unique antipode.

For proving this, we need the following:

Lemma 9. Let n be a positive integer. The interior of

Ux(n) def= {g ∈ Gr |diam (Ag
x) ≥ 1/n}

is empty.

Proof. Let g be in Ux(n), ρ be an integer less or equal to r, and ε be a
positive real number. We shall exhibit a Riemannian structure g′ /∈ Ux(n)
such that ‖g − g′‖Cρ < ε. We denote by λ the g-injectivity radius at point
x. Take y, a g-antipode of x. Let Σ = Σg

xy be the set of segments from x to
y, with their arc length parameter. We define S = {σ(λ/2)|σ ∈ Σ}. Let Φ
be the g-exponential mapping at x. As Φ is continuous on TxM there exists
a real number α such that for all tangent vectors u, v in the ball {0}+ 2D

g
x

of TxM

‖u− v‖ < α =⇒ dg(Φ(u),Φ(v)) <
1

12n
,

where the norm ‖ ‖ is the g-norm. As, restricted to {0}+ 2λ
3 , Φ has a well-

defined and continuous inverse, we can find a positive real number η, such
that

∀z, z′ ∈ {x}+
2λ
3
, dg(z, z′) < η =⇒

∥∥Φ−1(z′)− Φ−1(z)
∥∥ < λα

2D
g
x

def= β.

Choose a positive Cρ function φ such that V def= {x|φ(x) > 0} satisfies
S ⊂ V ⊂ S+ η. Now put g′ = g(1+ ιφ), with ι a positive small real number
such that:

(i) ‖g − g′‖Cρ < ε

(ii) δ(dg, dg
′
) < min(α, 1

4n).
Consider a g′-segment σ′ from x to y. We have the following inequalities:

Dg′
x ≥ dg

′
(x, y) = Lg

′
(σ′) ≥ Lg(σ′) ≥ dg(x, y) = Dg

x.

Moreover, either σ′ passes across V , and Lg
′
(σ′) > Lg(σ′), or σ′ is not a

g-segment, and Lg(σ′) > dg(x, y). In both cases, we have

Dg′
x > Dg

x.(5)
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Let y′ be in A
g′
x and σ be a g-segment from x to y′. If σ ∩ V = ∅, we

would have

Dg
x ≥ dg(x, y′) = Lg(σ) = Lg

′
(σ) ≥ dg

′
(x, y′) = Dg′

x ,

which is in contradiction with (5). Hence σ ∩ V 6= ∅, and there exists a
g-segment σ0 ∈ Σ and a real number τ such that dg(σ0(λ2 ), σ(τ)) < η. Let
u0, u ∈ TxM be two unit vectors such that Φ(tu) = σ(t) and σ0(t) = Φ(tu0).
We have

∣∣λ
2 − τ

∣∣ ≤ ∥∥λ
2u0 − τu

∥∥ < β. Hence∥∥∥∥Dg
xu0 − 2

D
g
x

λ
τu

∥∥∥∥ < α∥∥∥∥Dg
xu− 2

D
g
x

λ
τu

∥∥∥∥ < α,

and then

dg
(
σ0(Dg

x), σ
(

2D
g
x

λ
τ

))
<

1
12n

(6)

dg
(
σ(Dg

x), σ
(

2D
g
x

λ
τ

))
<

1
12n

.(7)

On the other hand, by Hypothesis (ii), we have

dg(x, y′) ≤ Dg
x ≤ Dg′

x = dg
′
(x, y′) < dg(x, y′) + α,

hence |dg (x, y′)−D
g
x| < α and

dg
(
σ (Dg

x) , σ
(
dg

(
x, y′

)))
<

1
12n

.(8)

As y = σ0 (Dg
x) and y′ = σ (dg (x, y′)), (6), (7) and (8) lead to dg(y, y′) < 1

4n ,
which becomes together with Hypothesis (ii) dg

′
(y, y′) < 1

2n . This holds for

each g′-antipode y′ of x, hence diamg′
(
A
g′
x

)
< 1

n , and finally g′ /∈ Ux(n). �

Proof of Theorem 1. Put Ug(n) = {x ∈M |diam (Ag
x) ≥ 1/n}. Lemma 5

implies that Ug(n) and Ux(n) are closed subsets of M and Gr respectively.
Let S be a countable dense subset of M . We have

{g ∈ Gr |Ag2 is not meager} =

g ∈ Gr
∣∣∣∣∣∣∃n ∈ N,

◦︷ ︸︸ ︷
Ug(n) 6= ∅


=

⋃
n∈N

g ∈ Gr
∣∣∣∣∣∣

◦︷ ︸︸ ︷
Ug(n) 6= ∅


⊂

⋃
n∈N

⋃
x∈S

{g ∈ Gr |x ∈ Ug(n)}

=
⋃
n∈N

⋃
x∈S

Ux (n) .
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Hence, by Lemma 9, {g ∈ Gr|Ag2 is not meager} is meager. �

4.2. Generic number of segments from a point to its antipode.
Given a Cr manifold M , we denote by S ⊂ Gr ×M the set of all ordered
pairs (g, x) such that A

g
x contains a single point. Let a : S → M be the

continuous function which associates to (g, x) the only g-antipode of x. We
define Sg = M\Ag2 = {x ∈M | (g, x) ∈ S} and Sx = {g ∈ Gr| (g, x) ∈ S}.

In order to prove the result concerning surfaces, we have to use the fol-
lowing:

Lemma 10. Let (M, g) be a Cr Riemannian 2-dimensional manifold (r ≥
2). Let x be a point of M , and y be a g-antipode of x. Denote by ~Σ ⊂ T 1g

y M
the set of unit vectors tangent to a segment from x to y.

Then ~Σ cannot be included in any open half-plane of TyM . This implies
that either ~Σ has cardinality at least three, or ~Σ = {−u, u} for a suitable
vector u ∈ T 1g

y M .

Proof. Assume that ~Σ is included in some open half-plane, and let γ : [0, ε] →
M be a arclength parameterized arc, starting at y, and directed by the
bisector u ∈ T 1g

y M of the other half-plane. For each integer n, there exists
a minimizing geodesic σn from x to γ(1/n). By selecting a subsequence, we
can assume that σn is tending to a segment σ from x to y. Let v be the unit
tangent vector at y to σ. Of course g(u, v) < 0. By a variant of the first
variation formula of arclength Lg(σn) = Lg(σ)− 1

ng(u, v)+o( 1
n), hence yn is

farther from x than y for n large enough, and we obtain a contradiction. �

Now, we can enunciate the following:

Theorem 2. Let M be Cr 2-dimensional manifold (r = 2, 3, . . . ,∞), en-
dowed with a generic Riemannian structure. A generic point of M is joined
to its only antipode by at most three segments.

We need three lemmas.

Lemma 11. We denote by ~Σg
xy the set of the g-unit tangent vectors at y,

to segments from x to y. Assume r ≥ 2. The map ξ from S to HG defined
by ξ(g, x) = jT 1gM

(
~Σg
xag

x

)
, is upper semicontinuous.

Proof. It is obvious, by continuity of a, and Lemma 6, that (g, x) 7−→ Σg
xag

x

is upper semicontinous. Now, with hypothesis r ≥ 2, the convergence of a
sequence of geodesics (σn : I → M)n to σ with respect to the Hausdorff
metric, implies, for a suitable parametrization, the uniform convergence of
the derivatives (σ̇n : I → TM) to σ̇. Hence, the map

τ : Σg
xag

x
7→ ~Σg

xag
x
,
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from a suitable subset of H (H (M)) to H (TM), is continuous. As τ pre-
serves order, we obtain by virtue of Lemma 8 that jTM ◦ τ is an (order pre-
serving) upper semicontinuous map. Applying once again the same lemma
gives the desired result. �

Lemma 12. The map µ from S to R, defined by

µgx = d⊂HG

(
jTM

(
~Σg
xag

x

)
, T

)
is upper semicontinuous.

Proof. This is a consequence of Lemmas 11 and 7. �

Denote by V (n) the set
{
(g, x) ∈ S|µgx ≥ 1

n

}
, and put

Vg (n) = {x ∈M | (g, x) ∈ V (n)}
Vx (n) = {g ∈ Gr| (g, x) ∈ V (n)} .

By Lemma 12, Vx (n) and Vg (n) are closed subsets of Sx and Sg respectively,
moreover we can prove the following:

Lemma 13. Assume r ≥ 2. Vx (n) has empty interior in Sx.

Proof. Fix x ∈ M , n ∈ N, g ∈ Vx (n) and put y = agx. If σ is a curve going
from x to y, we denote by ~σ ∈ T 1g

y M , the g-unit tangent vector to σ. The
g-distance in T 1g

y M (i.e., arccos g (·, ·)) is denoted by (·, ·).
Let σ0 be a g-segment from x to y, and choose a positive function φ :

M → R such that V def= {x ∈M |φ (x) > 0} satisfies:
(i) Each g-segment from x to y passing across V satisfies (~σ, ~σ0) < 1

4n .
(ii) There exists a real number ε > 0, such that all segments from x to y

satisfying (~σ, ~σ0) < ε pass across V .

We define a sequence of Riemannian structures gp =
(
1 + φ

p

)
g. We will

discuss two cases.

Case 1. For p large enough, y ∈ A
gp
x . By Lemma 10, there exists a g-

segment σ from x to y which does not pass across V . We have on one
hand

Dg
x = Lg (σ) = Lgp (σ) ≥ dgp (x, y) = D

gp
x .(9)

On the other hand, as gp ≥ g, we have Dg ≤ Dgp . Hence D
g
x = D

gp
x .

Let σp be a gp-segment from x to y. Suppose that σp passes across V ,
then

D
gp
x = Lgp (σp) > Lg (σp) ≥ dg(x, y) = Dg

x,

which is in contradiction with (9). Hence σp cannot pass across V ,

Lg (σp) = Lgp (σp) = D
gp
x = Dg

x,
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and, by Hypothesis (ii), σp is a g-segment such that (~σ0, ~σ
p) ≥ ε. Now

consider the process consisting on choosing a g-segment σ0, and replacing
g by gp. By repeating this process finitely many times, we would obtain
a situation where no segment from x to y will exist. This is obviously
impossible, so after finitely many steps, we obtain a Case 2.

Case 2. We can select a subsequence of (gp)p such that y 6∈ A
gp
x . For each

integer p, take a sequence (gp,q)q of Riemannian structures of Sx, converging
to gp (this is possible because Lemmas 5 and 9 involve that Sx is dense inGr).
Let yp,q be the only gp,q-antipode of x. By selecting suitable subsequences,
we assume that each sequence (yp,q)q is converging to a gp-antipode, say yp.
We also can assume that yp tends to y. Let σp be a gp-segment from x to yp
which does not pass across V . By Lemma 6, each cluster point σ of (σp)p is
g-segment from x to y, which does not pass across V . It follows that σp and
σ are g-geodesics. By a variant of the first variation formula of arclength

D
gp
x −Dg

x = Lg (σp)− Lg (σ)(10)

= −g(~σ,−→yyp) + o(−→yyp),

where −→yyp ∈ TyM is the tangent vector such that yp = Expy (−→yyp). We

denote by τp the g-norm of −→yyp, and put up =
−→yyp

τp
. As T 1g

y M is compact,
we can assume (otherwise select a subsequence) that (up) is converging to a
unit vector u. Equation (10) leads to

Φ def= lim
p→∞

D
gp
x −D

g
x

τp
= −g(~σ, u).

As Φ does not depend on (σp), there are at most two possible values for ~σ,
say ~σ1 and ~σ2. By Hypothesis (i), we have

lim
p→∞

d⊂
(
~Σgp
xyp , {~σ0, ~σ1, ~σ2}

)
≤ 1

4n
.(11)

Hence, for p large enough, we have

d⊂
(
~Σgp
xyp , {~σ0, ~σ1, ~σ2}

)
≤ 1

3n
.(12)

In order to conclude, we claim that for q large enough, we have

µ
gp,q
x ≤ d⊂

(
~Σgp,q
xyp,q , {~σ0, ~σ1, ~σ2}

)
≤ 1

2n
.

Suppose not, there would exist a sequence (σp,q)qof gp,q-segments from x to
yp,q such that (−→σp,q, ~σi) > 1

2n , 0 ≤ i ≤ 2. A converging subsequence must
tend to a gp-segment σp from x to yp such that (−→σp , ~σi) ≥ 1

2n , which is in
contradiction with (12). �
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Proof of Theorem 2. Take (g, x) ∈ S, x is joined to its only antipode by at
most three segments if and only if ~Σg

xag
x

has cardinality at most 3, that is,
by Lemma 2, µgx = 0. Let T g be the subset of (M, g) of those points which
are joined to their only antipodes by at least four segments. We shall prove
that Gr1

def= {g ∈ Gr|Ag2 ∪ T g not meager} is meager. As

Gr1 ⊂ {g ∈ Gr|Ag2 not meager} ∪ {g ∈ Gr|T g not meager} ,

we only need to prove that Gr2
def= {g ∈ Gr|T g not meager} is meager. As

T g =
⋃
n≥1

Vg (n) and Vg (n) is closed in Sg, we obtain

Gr2 ⊂

{
g ∈ Gr

∣∣∣∣∣∃n ≥ 1,
◦

Vg (n) 6= ∅

}

=
⋃
n≥1

{
g ∈ Gr

∣∣∣∣∣ ◦
Vg (n) 6= ∅

}

⊂
⋃
n≥1

g ∈ Gr
∣∣∣∣∣∣

◦︷ ︸︸ ︷
Vg (n) ∪Ag2 6= ∅

 .

Choosing a dense countable subset S of M ,

Gr2 ⊂
⋃
n≥1

⋃
x∈S

{g ∈ Gr |x ∈ Vg (n) ∪Ag2 }

⊂
⋃
n≥1

⋃
x∈S

{g ∈ Gr |x ∈ Vg (n)} ∪
⋃
x∈S

{g ∈ Gr |x ∈ Ag2 }

=
⋃
n≥1

⋃
x∈S

Vx (n) ∪
⋃
x∈S

Gr\Sx.

By Lemmas 5 and 9, Gr\Sx is meager in Gr; by Lemmas 12 and 13,⋃
n≥1

⋃
x∈S

Vx (n) is meager in Sx and consequently in Gr. �
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