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ENDOCOHERENT MODULES

Lidia Angeleri-Hügel

We study coherence properties of a module M over its en-
domorphism ring. Hereby we extend to modules known char-
acterizations of coherent and π-coherent rings. Moreover, we
discuss the case that the category addM is covariantly, re-
spectively contravariantly, finite in modR. Finally, we give a
new characterization of endofinite modules.

A left module SM over a ring S is coherent if it is finitely presented and
every finitely generated submodule of SM is finitely presented. Inspired by
Lenzing’s and Camillo’s work on a special class of coherent rings [15] and
[7], we will further say that SM is π-coherent if it is finitely presented and
every finitely generated left S-module which is cogenerated by SM is finitely
presented. Then the ring S is left π-coherent in the sense of [7] if and only
if the regular left module SS is π-coherent.

In this note, we consider the case that M is a right module over a ring
R with endomorphism ring S and study coherence as well as π-coherence
of SM . We prove the following results which extend to modules known
characterizations of coherent and π-coherent rings [15], [7], [18, 5.3] and [9,
5.1].

Theorem 1. The following statements are equivalent:
(1) Every finitely generated left S-module which is cogenerated by SM is

finitely presented.
(2) Every finitely M -generated right R-module has an addM -preenvelope.
(3) For every n ∈ N and every subset X ⊂Mn the annihilator annSn×n(X)

of X in the matrix ring Sn×n is a finitely generated left ideal.

Theorem 2.
(1) If SM is π-coherent, then every finitely generated module has an

addM -preenvelope. The converse holds if MR is finitely generated.
(2) If SM is coherent, then every finitely presented module has an addM -

preenvelope. The converse holds if MR is finitely presented.

In particular, we see that a finitely presented module MR is coherent over
its endomorphism ring if and only if the category addM is covariantly finite
in modR. We also prove a dual result characterizing the case that addM

1

http://pjm.math.berkeley.edu/pjm
http://dx.doi.org/10.2140/pjm.2003.212-1


2 LIDIA ANGELERI-HÜGEL

is contravariantly finite in modR (Corollary 11). Finally, we employ our
results to give a new characterization of endofinite modules (Corollary 9).

Let us start with some notation. For an arbitrary ring R, we write
Mod R and mod R for the categories of all, respectively of the finitely
presented, right R-modules. By a subcategory we always mean a full sub-
category.

Let X ⊂ ModR and A be a right R-module. Following [9], we say that a
homomorphism a : A→ X is an X -preenvelope if X ∈ X and the abelian
group homomorphism HomR(a,X ′) : HomR(X,X ′) → HomR(A,X ′) is sur-
jective for each X ′ ∈ X . A homomorphism a : A→ X is said to be left
minimal if every endomorphism h : X → X such that h a = a is an isomor-
phism. Left minimal preenvelopes are called envelopes and are uniquely
determined up to isomorphism. (Pre)covers are defined dually. In the
representation theory of artin algebras, the usual terminology is (minimal)
left or right X -approximation.

Given a module MR, we denote by Add M (respectively, add M) the
category consisting of all modules isomorphic to direct summands of (finite)
direct sums of copies of M . Throughout the paper, we will freely use the fact
that for a finitely generated module the existence of an addM -preenvelope
is equivalent to the existence of an AddM -preenvelope.

If MR is finitely presented, then addM is a subcategory of modR, and it
is said to be covariantly finite in modR if every finitely presented module
has an addM -preenvelope. Dually, one says that addM is contravariantly
finite in modR if every finitely presented module has an addM -precover
[5].

The following easy observation will be very useful:

Lemma 3. Let R be a ring and MR a module with endomorphism ring S.
(1) AR has an addM -preenvelope if and only if the left S-module

SHomR (A,M) is finitely generated.
(2) CR has an addM -precover if and only if the right S-module

HomR (M,C)S is finitely generated.

Proof. (1) If SHomR (A,M) is finitely generated, one can easily check that
the map c : A→Mn induced by an S-generating set ck : A→M, 1 ≤ k ≤ n,
of HomR (A,M) is an addM -preenvelope of A. Conversely, if a : A → X
is an addM -preenvelope, then we can assume w.l.o.g. that X = Mn for
some n, and applying the functor HomR ( ,M) : ModR −→ SMod on a, we
immediately obtain the claim.

(2) is proven dually. �

The above lemma suggests that the existence of addM -preenvelopes is re-
lated to the behaviour of the contravariant functor HomR ( ,M) : ModR −→
SMod. We now investigate this connection more closely.
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Let BQA be a bimodule. Recall that a module XA is said to be QA-
reflexive if the evaluation morphism δX : X → HomB (HomA (X,QA),BQ)
given by δX(x) : α 7→ α(x) is an isomorphism. Of course, since Ker δX coin-
cides with the reject RejQ(X) of Q in X, all reflexive modules are in the cat-
egory CogenQ of Q-cogenerated modules. We denote further by cogenQ
the category of all finitely Q-cogenerated modules, by copresQ (respec-
tively, by sfcopresQ) the category of all finitely (respectively, semi-fini-
tely) Q-copresented modules, that is, of all modules X admitting an
exact sequence 0 −→ X −→ Qn −→ L −→ 0 where n ∈ N and L is finitely
Q-cogenerated (respectively, Q-cogenerated). Dually, we write genQ for
the category of all finitely Q-generated modules, and presQ for the cat-
egory of all finitely Q-presented modules, that is, of all modules X
admitting an exact sequence 0 −→ K −→ Qn −→ X −→ 0 where n ∈ N
and K is finitely Q-generated. Finally, we denote by K(QA) the subcate-
gory of ModA consisting of all modules KA which admit an exact sequence
0 −→ K −→ An −→ YA −→ 0 where n ∈ N and YA is QA-cogenerated, and
by K(BQ) the corresponding subcategory of BMod.

We are interested in the special case where Q is our bimodule SMR with
S = EndRM . Then S is obviously SM -reflexive, and we have the following
result:

Lemma 4.

(1) SHomR (A,M) ∈ sfcopres SM for all finitely generated modules AR,
and SHomR (A,M) ∈ copres SM for all finitely presented modules AR.

(2) The functor HomR ( ,M) : ModR −→ SMod induces dense functors
genMR −→ K(SM) and presMR −→ copres SS.

Proof. (1) Let AR be finitely generated with an exact sequence 0 −→ K
f−→

Rn −→ A −→ 0. We then have an exact sequence 0 → SHomR (A,M) →

SHomR (Rn,M)
HomR (f,M)
−−−−−−−−→ SHomR (K,M) where SHomR (K,M) is a sub-

module of SHomR (R(J),M) ' SM
J for some set J . Further, if AR is finitely

presented, then K is finitely generated, and SHomR (K,M) is a submodule
of SHomR (Rm,M) ' SM

m for some m ∈ N.
(2) As in (1), we show that A ∈ genMR gives rise to an exact se-

quence 0 → SHomR (A,M) → SHomR (Mn,M) → SHomR (K,M) where
SHomR (K,M) is SM -cogenerated, and moreover, that we can assume
SHomR (K,M) finitely cogenerated by S provided that A ∈ presMR. So,
it remains to prove that the functors are dense. Any exact sequence 0 −→
K −→ Sn −→ SY −→ 0 with Y ∈ Cogen SM yields an exact sequence
0 → HomS (Y,M) → HomS (Sn,M)

g−→ HomS (K,M) where LR = Im g is
an epimorphic image of Mn. We obtain the commutative diagram
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0→ K −−−→ Sn −−−→ Y → 0yα δSn

y yδY
0→HomR (L, M)−−−→HomR(HomS(Sn, M), M)−−−→HomR(HomS(Y, M), M)

where α and δY are monomorphisms and δSn is an isomorphism. Then
by the snake lemma α is an isomorphism, hence SK ∼= HomR (L,M) with
L ∈ genMR.

Assume further that there is a monomorphism i : Y → Sm for some
m ∈ N. Then we also have a map f = HomS (i,M) : HomS (Sm,M) →
HomS (Y,M) with AR = Im f ∈ genMR and a commutative diagram

0−−−→ A −−−→HomS (Sn,M)−−−→ L′ −−−→0⋂
e ‖

y
0−−−→HomR (Y,M)−−−→HomS(Sn,M)−−−→ L −−−→0

where L′ ∈ presMR. Since δ is a natural transformation, HomR (f,M) δY =
δSm i is a monomorphism, and therefore HomR (e,M) δY is a monomorphism
as well. So, we conclude as above from the commutative diagram

0→ K −−−→ Sn −−−→ Y → 0yα δSn

y yδY
0→HomR (L, M)−−−→HomR(HomS(Sn, M), M)−−−→HomR(HomS(Y, M), M)yβ ‖

yHomR (e, M)

0→HomR (L′, M)−−−→HomR(HomS(Sn, M), M)−−−→ HomR(A, M)

that βα is an isomorphism, hence SK ∼= HomR (L′,M) with L′ ∈ presMR.
�

Let us remark that if SMR is faithfully balanced, then by similar argu-
ments, the functor HomR ( ,M) : ModR −→ SMod induces dense functors
genR −→ sfcopres SM and modR −→ copres SM .

We now obtain a characterization of left coherent endomorphism rings,
see also [10]. Moreover, we prove the equivalence of the first two conditions
in Theorem 1.

Proposition 5.

(1) S is left coherent if and only if every A ∈ presMR has an addM -
preenvelope.
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(2) Every finitely generated left S-module which is cogenerated by SM is
finitely presented if and only if every A ∈ genMR has an addM -
preenvelope.

Proof. (1) Of course, S is left coherent if and only if every module in
copres SS is finitely generated over S. By Lemma 4 the latter means that
SHomR (A,M) is finitely generated for all modules AR ∈ presM . Combin-
ing this with Lemma 3, we obtain the claim.

(2) is proven similarly. �

Note that Lenzing has described left coherence in terms of annihilators
of matrix rings [15, §4, Korollar 1]. More precisely, denoting by Rn×n the
n× n matrix ring over R, he has proven that R is left coherent if and only
if for every n ∈ N and every A ∈ Rn×n the left annihilator of A in Rn×n is a
finitely generated left ideal. Moreover, he has shown in [15, Satz 4] that R is
left π-coherent if and only if for every n ∈ N all left annihilators in Rn×n are
finitely generated left ideals, see also [7]. We now establish a corresponding
result for modules and complete the proof of Theorems 1 and 2.

Proposition 6. The following statements are equivalent:

(1) Every finitely generated left S-module which is cogenerated by SM is
finitely presented.

(2) For every n ∈ N and every subset X ⊂Mn the annihilator annSn×n(X)
of X in Sn×n is a finitely generated left ideal.

Proof. (1)⇒(2) : Let X ⊂ Mn, put K = X · R and AR = Mn/K, and
denote by ν : Mn → A the canonical surjection. By assumption and the
above proposition, AR ∈ genM has an addM -preenvelope a : A → Mm,
and we can consider the maps fi : Mn ν−→ A

a−→ Mm pri−→ M
ι−→ Mn,

1 ≤ i ≤ m, where pri and ι denote the canonical projections and a canonical
injection, respectively. Obviously, f1, . . . , fm are contained in annSn×n(X),
and since every other map h ∈ annSn×n(X) factors through ν and hence
through aν, they are generators of annSn×n(X) over Sn×n.

(2)⇒(1) : We again apply Proposition 5 and show that every A ∈ genM
has an addM -preenvelope. Consider an exact sequence 0 −→ K −→
Mn g−→ A −→ 0 and a generating set f1, . . . , fm of annSn×n(K) over Sn×n.
Then K is contained in the kernel of the product map f : Mn → Mnm

induced by the fi, and so there is a map a : A → Mnm such that f =
a g. Let us verify that a is an addM -preenvelope. In fact, if we denote
again by M

ι−→ Mn a canonical injection, then for every homomorphism
h : A → M the composition ι h g lies in annSn×n(K) and therefore has the
form

∑m
i=1 ti fi for some t1, . . . , tm ∈ Sn×n. This shows that h g factors

through a g, and hence h factors through a. �
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Proof of Theorem 2. (1) If AR is finitely generated, then by Lemma 4 there
is an exact sequence 0 −→ SHomR (A,M) −→ SM

n −→ L −→ 0 where
n ∈ N and L ∈ Cogen SM . By assumption L is then finitely generated and
even finitely presented, so SHomR (A,M) is finitely generated, and A has an
addM -preenvelope by Lemma 3. Conversely, if MR is finitely generated and
every finitely generated module has an addM -preenvelope, then we deduce
that R and every A ∈ genM have an addM -preenvelope. But this implies
by Lemma 3 and Proposition 5(2) that SM is π-coherent.

(2) We show as in (1) that Lemma 4 and Lemma 3 yield the existence of
an addM -preenvelope for every finitely presented module AR. Conversely, if
MR is finitely presented and every finitely presented module has an addM -
preenvelope, then we deduce that R and every A ∈ presM have an addM -
preenvelope. In particular, S is then left coherent by Proposition 5(1).
Moreover, if a : R→Mn is an addM -preenvelope with cokernel L, then also
LR is finitely presented, and therefore SHomR (L,M) is finitely generated by
Lemma 3. So, we infer from the exact sequence 0 −→ SHomR (L,M) −→
SHomR (Mn,M) −→ SHomR (R,M) −→ 0 that SM is finitely presented
and hence coherent. �

Assume that R is semiregular, that is, idempotents lift modulo the
Jacobson radical J(R) and R/J(R) is von Neumann regular. Then we know
from [3, Corollary 3] and [18, Corollary 5.4] that R being left (π-)coherent
even implies the existence of projective envelopes for the finitely presented
(respectively, finitely generated) modules. Also these results can be extended
to modules.

Corollary 7. Let S be semiregular.
(1) If SM is π-coherent, then every finitely generated module has an

addM -envelope.
(2) If SM is coherent and MR is finitely presented, then every finitely

presented module has an addM -envelope.

Proof. From Theorem 2 we obtain the existence of an addM -preenvelope
f : A → Mn with A finitely generated or finitely presented, respectively.
Note that in both cases the cokernel L = Coker f has an addM -preenvelope
g : L→Mm, too. Indeed, in Case (1) this follows from Proposition 5(2) and
the fact that L ∈ genM , and in Case (2) we have only to remind that MR,
and therefore also LR, are finitely presented. Set E = EndRMn. From the

exact sequence EHomR (Mm,Mn) −→ EE
HomR (f,Mn)
−−−−−−−−→ EHomR (A,Mn) −→

0 we deduce that the annihilator annE(f) is a finitely generated left ideal
of E. Since E is semiregular by [16, 2.7], we know from [17, Satz 1.2] that
there is a left ideal I which satisfies annE(f) + I = E and is minimal with
respect to this property. Then annE(f)∩I is superfluous in I and therefore
also in E. So, we have verified that:
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(i) There is a left ideal I in E such that annE(f) + I = E and annE(f)∩
I ⊂ J(E); and

(ii) idempotents lift modulo J(E).

Thus we can apply a result of Zimmermann [21] asserting that under these
conditions f has a left minimal version, that is, there is a decomposition
Mn = X ⊕K such that the composition of f with the canonical projection
p : Mn → X gives rise to an addM -envelope. �

Let us now compare different notions of coherence. Recall that a ring
R is said to be left strongly coherent if products of projective right R-
modules are locally projective [19] and [11]. Such rings are characterized
by the property that every matrix subgroup of the right module RR is a
finitely generated left ideal. Moreover, as observed in [20], they are always
left π-coherent.

More generally, if MR is a finitely generated module with all matrix sub-
groups being finitely generated over the endomorphism ring S, then we can
prove as in [2, 3.1] that every finitely generated module has an addM -preen-
velope, and so it follows immediately from Theorem 2 that SM is π-coherent
and in particular coherent.

Examples for the failure of the converse implications even in the case M =
R are given in [20, Example 29], [11, Example 5.2] and [7]. In particular,
every commutative von Neumann regular ring which is not self-injective is
coherent but not π-coherent, and the ring R = K[X1, X2, . . . ] over a field
K is π-coherent but not strongly coherent.

Next, we investigate the gap between π-coherence and coherence. To this
end, we recall the notion of an R-Mittag-Leffler (or finitely pure-projecti-
ve) module studied in [12], [8], [13] and [6]. A module XR is said to
be an R-Mittag-Leffler module if the canonical map X ⊗R RJ → XJ

is a monomorphism for every set J , or equivalently, if for every finitely
generated submodule AR the embedding A ⊂ X factors through a finitely
presented module. Jones showed in [13, p. 104] that a ring is left π-coherent
if and only if it is left coherent and all products of copies of R (on either
side) are R-Mittag-Leffler modules. Note that since the class of R-Mittag-
Leffler modules is closed under pure submodules [6, Proposition 9], the latter
property amounts to saying that all products of projective modules are R-
Mittag-Leffler modules. We now prove the general statement for modules.

Corollary 8. The following statements are equivalent:

(1) SM is π-coherent.
(2) S is left (π-)coherent, SM is finitely presented, and all products of

copies of SM are S-Mittag-Leffler modules.

If MR is finitely presented, the following statement is further equivalent:
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(3) S is left (π-)coherent, SM is finitely presented, and all products of
copies of MR are R-Mittag-Leffler modules.

Proof. (1)⇒(2) : Any epimorphism R(K) → M gives rise to a monomor-
phism SS ' HomR (M,M) → HomR (R(K),M) ' SM

K , showing that S is
left (π-)coherent. Moreover, all finitely generated submodules of products of
copies of SM are finitely presented by definition, and so the claim is proven.

(2)⇒(1) : Let SA be a finitely generated submodule of a product of copies
of SM . By assumption, SA is contained in a finitely presented module SY ,
which is coherent since so is the ring S. Hence SA is finitely presented, and
we have verified that SM is π-coherent.

(1)⇒(3) : Let AR be a finitely generated submodule of MJ for some set
J . By Theorem 2, the embedding A ⊂ MJ factors through an addM -
preenvelope A→Mn, and Mn is finitely presented if so is MR.

(3)⇒(1) : We claim that every finitely generated module has an addM -
preenvelope. The claim then follows from Theorem 2 whenever MR is
finitely generated. So, let AR be finitely generated. By possibly consid-
ering A/RejM (A), we can assume without loss of generality that A is M -
cogenerated. Then the product map f : A → MJ induced by all maps
in J = HomR (A,M) is a monomorphism and therefore factors through a
homomorphism f ′ : A → F where F is finitely presented. But since SM
is coherent by assumption, we obtain from Theorem 2 the existence of an
addM -preenvelope a : F →Mn. Now it is easy to check that the composi-
tion a f ′ : A→Mn is an addM -preenvelope as well. �

Here is a further application of Theorem 2. Recall that M is said to
be endonoetherian, respectively endofinite, if SM is noetherian, respec-
tively a module of finite length. We will moreover call M endocoherent if
SM is coherent, and endocoperfect if it satisfies the descending chain con-
dition for cyclic S-submodules. We explore the relationship between these
finiteness conditions over the endomorphism ring.

Corollary 9. The following statements are equivalent:
(1) M is endofinite.
(2) M is endocoperfect, and for all direct summands M ′ of M and all

finitely presented modules AR, there exists an addM ′-preenvelope.

If MR is finitely generated, then (1) is further equivalent to:
(3) M is endocoperfect and all its direct summands are endocoherent.

Proof. (1)⇔(2): Assume that M is endofinite. Then M is Σ-pure-injective
and therefore satisfies the descending chain condition for cyclic S-submo-
dules. Moreover, M is endonoetherian, and it is well-known that its direct
summands are then endonoetherian as well. Now, we have shown in [2, 3.1]
that all finitely presented modules AR have an addM ′-preenvelope if and
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only if certain endo-submodules of M ′, namely the finite matrix subgroups,
are finitely generated over EndRM ′. Thus (1) implies (2). For the converse
implication, we use that M is endofinite if and only if every direct summand
of M is product-complete [14]. Observe that by [2, 5.1] a module M ′ is
product-complete if and only if it is endocoperfect and all finite matrix sub-
groups of M ′ are finitely generated over EndRM ′. Since endocoperfectness
is inherited to direct summands, we have verified (2)⇒(1).

(3)⇒(2) follows immediately from Theorem 2.
(1)⇒(3) : The direct summands of M are finitely generated and endo-

noetherian, so their endomorphism rings are left noetherian. Thus they are
also endocoherent. �

We close the paper with some dual considerations. We have seen above
that the existence of addM -preenvelopes is related to coherence properties
of SM . Dually, we can describe the existence of addM -precovers in terms
of coherence properties of the dual module M∗

S = HomR (M,W ) S , where
WR denotes a minimal injective cogenerator of ModR. We refer to [1] for
details and only mention the main results.

Theorem 10.
(1) If M∗

S is π-coherent, then every finitely W -cogenerated module has an
addM -precover. The converse holds if MR is finitely W -cogenerated.

(2) If M∗
S is coherent, then every finitely W -copresented module has an

addM -precover. The converse holds if MR is finitely W -copresented.

If R is a right Morita ring, that is, if R is a right artinian ring and
WR is finitely generated, then we obtain a characterization of contravari-
antly finiteness. This and other consequences are collected in the following
corollary. Observe that the last statement generalizes a result proven by
Auslander for finitely generated projective modules [4, 6.6].

Corollary 11.
(1) Assume that M is a finitely generated module over a right Morita ring

R. Then M∗
S is (π-)coherent if and only if addM is contravariantly

finite in modR.
(2) Assume that MR is a finitely generated module over a right noetherian

ring R. If addM is contravariantly finite in modR, then every finitely
generated right S-module which is cogenerated by M∗

S is finitely pre-
sented. In particular, S is then a right π-coherent ring.

(3) Assume that MR is a coherent module. If all finitely generated modules
have an addM -precover, then S is a right coherent ring.

Proof. (1) By assumption every finitely generated module is finitely W -co-
presented and therefore has an addM -precover provided that M∗

S is coher-
ent. Conversely, assume that addM is contravariantly finite in modR. Then
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every finitely W -cogenerated module, being finitely presented by assump-
tion, has an addM -precover. Moreover, the finitely generated module MR

is finitely W -cogenerated, and we conclude from Theorem 10 that M∗
S is

π-coherent.
(2) Under the given assumptions, all modules in cogenM are finitely

presented and therefore have an addM -precover whenever addM is con-
travariantly finite in modR. The claim then follows from the dual version
of Proposition 5(2). That S is right π-coherent follows from the fact that
SS is M∗

S-cogenerated.
(3) Under the given assumption, all modules in copresM are finitely gen-

erated and therefore have an addM -precover. The claim then follows from
the dual version of Proposition 5(1), see also [10]. �
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AREA, WIDTH, AND LOGARITHMIC CAPACITY
OF CONVEX SETS

Roger W. Barnard, Kent Pearce, and Alexander Yu. Solynin

For a planar convex compact set E, we describe the mu-
tual range of its area, width, and logarithmic capacity. This
result will follow from a more general theorem describing the
mutual range of area, logarithmic capacity, and length of or-
thogonal projection onto a given axis of an arbitrary compact
set, connected or not.

1. Introduction.

For a planar convex compact set E, let A(E), w(E), and capE denote the
area, width, and logarithmic capacity of E respectively. The width w(E) is
the minimal orthogonal projection of E, i.e.,

w(E) = min
0≤θ≤π

projθ E,

where projθ E denotes the length of the orthogonal projection of E onto the
line lθ = {z = teiθ : −∞ < t < ∞}. The logarithmic capacity capE of a
compact set E is defined by

− log capE = lim
z→∞

(g(z)− log |z|),

where g(z) denotes Green’s function of the unbounded component Ω(E) of
C \E having singularity at z = ∞. This notion combines several character-
istics of a compact set such as transfinite diameter, Chebyshev’s constant,
and outer radius, see [3, 4, 7, 8, 10] and [12].

How large can the area of E be if the width and logarithmic capacity of
E are prescribed? — For convex sets, the answer to this question is given
by:

Theorem 1.1. For a planar convex compact set E, let 2h = w(E)/capE.
Then 0 ≤ h = h(E) ≤ 1 and

A(E) ≤ cap 2E
(
πβ2 + 4hβ′E(β′, β′−1)

)
,(1.1)

where E denotes the elliptic integral of the second kind, β′ =
√

1− β2, and
β = β(h) is a solution to the equation

h = βE(β, β−1)(1.2)
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unique in the interval 0 < β < 1. In addition, for a fixed capE = c, the
right-hand side of (1.1) strictly increases from 0 to πc2 as h runs from 0
to 1.

Equality occurs in (1.1) if and only if E coincides up to a linear transfor-
mation with the set Eh, symmetric w.r.t. the coordinate axes, complemen-
tary to the image f(U∗) of U∗ = {z : |z| > 1} under a univalent conformal
mapping w = f(z) with f = g ◦ τ , where

g(τ) = h+
1
2

∫ τ

2

τ +
√
τ2 − 4β2

√
τ2 − 4

dτ, τ = (1/2)(z +
√
z2 − 4)(1.3)

with the principal branches of the radicals.

Figure 1 displays extremal configurations for some typical values of h.

Figure 1. Typical extremal confugurations.

Let A(h) = maxA(E), where the maximum is taken among all convex
compact sets E such that capE = 1, w(E) = 2h. Then by Theorem 1.1,
A(h) equals the right-hand side of (1.1). The graph of A(h) coincides with
a part, for 0 ≤ h ≤ 1, of the graph in Figure 2, which shows the maximal
area among all compact sets with logarithmic capacity 1 and prescribed
projection onto the real axis, as it is explained in Theorem 1.2.

The Proof of Theorem 1.1 given in Section 3 actually leads to a more
general result: Inequality (1.1) holds true with the same uniqueness assertion
for all compact sets E (connected or not) such that 0 ≤ h(E) ≤ 1. However,
we prefer to speak about convex sets since the inequalities 0 ≤ h(E) ≤ 1
give the whole range of h(E) over the family of all such sets with equalities
h(E) = 0 and h(E) = 1 only for rectilinear segments and disks, respectively.
This follows from the well-known isoperimetric inequalities:

w(E) ≤ 1
π

∫ π

0
proj0E dθ =

1
π

length (∂E),

1
2π

length (∂E) ≤
(

areaE
π

)1/2

≤ capE,



AREA, WIDTH, AND LOGARITHMIC CAPACITY OF CONVEX SETS 15
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Figure 2. Graph of A(h)

cf. [10, pp. 8, 164].
In contrast, the range of h(E) over the set of all continua (= connected

compact sets) E is not known. There is an open question, first referenced
by Erdös, Herzog and Piranian [5], and later commented on by Ch. Pom-
merenke [11] to find max h(E). Erdös et al. conjectured that max h(E)
would be 1; however, Pommerenke gave an counterexample, E6, the sym-
metric star with six rays, for which h(E6) > 1. An easy computation shows
that for E3, the symmetric star with three rays, that h(E3) > h(E6). How-
ever, counter to intuition, there are intermediate stars (between E3 and E6)
which show that E3 cannot be the extremal configuration for max h(E).
This remark points out that the problem on the maximal area of E among
all continua E with prescribed h(E) > 1 is potentially quite difficult.

A characteristic of a compact set E, dual to the width, is the diameter of
E which can be defined as

diamE = max
0≤θ≤π

projθ E.

In [1, Theorem 2], we found the maximal area A(d) = maxA(E) among all
continua E such that capE = 1, diamE = 2d. The range of d = d(E), if E
is connected and capE = 1, is given by the classical inequalities 1 ≤ d ≤ 2.
The first of them is due to G. Pólya [9] and the second one is due to G. Faber
[6]. The upper bound for d shows that the range of the length of projection
of E onto a fixed axis, say on R, is

0 ≤ proj0E ≤ 4.

For a half of this range, when the projection is between 0 and 2, the
arguments used to prove Theorem 1.1 show also that (1.1) holds true with
the same uniqueness assertion for all compact sets E such that capE = 1
and 0 ≤ proj0E ≤ 2. This result combined with Theorem 2 in [1] gives:
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Theorem 1.2. Let E be a compact set in C such that capE = 1 and
proj0E = 2h, where 0 ≤ h ≤ 2. Then

A(E) ≤

 πβ2 + 4hβ′E(β′, β′−1), if 0 ≤ h ≤ 1,

πβ2 − 2πh(β − 1), if 1 ≤ h ≤ 2,
(1.4)

where β = β(h), 0 ≤ β ≤ 1 is defined by (1.2) in the first case and 1 ≤ β ≤ 2
is the unique solution to the equation h = β−(β−1) log(β−1) in the second
case. In addition, the right-hand side of (1.4) strictly increases from 0 to π
as h runs from 0 to 1 and strictly decreases from π to 0 as h runs from 1
to 2.

For 0 ≤ h ≤ 1, extremal configurations are described in Theorem 1.1.
For 1 ≤ h ≤ 2, equality occurs in (1.4) if and only if E coincides up to a
linear transformation with the complement to the image f(U∗) of U∗ under a
conformal mapping f(z) = h+

∫ z
1 ϕ(z;h) dz, where ϕ maps U∗ conformally

onto the complement of the “double anchor”

F (β, ψ) = [−iβ, iβ] ∪
{
βeit :

π

2
− ψ ≤ t ≤ π

2
+ ψ

}
∪
{
βeit :

3π
2
− ψ ≤ t ≤ 3π

2
+ ψ

}
with ψ = (1/2) cos−1(8β−1 − 8β−2 − 1).

For the right-hand side of (1.4) we will keep notation A(h), where now
0 ≤ h ≤ 2; in context of Theorem 1.1, A(h) was defined only for 0 ≤ h ≤ 1.

2. Geometry and closed form of the extremals.

In Lemma 2.1 we summarize well-known symmetrization results necessary
for our main proofs, see [3, 7, 2] and [1].

Lemma 2.1. For any compact set E, let E∗∗ be the result of successive
Steiner symmetrizations of E w.r.t. the real and imaginary axes, respectively.
Then

A(E∗∗) = A(E), proj0E
∗∗ = proj0E, capE∗∗ ≤ capE(2.1)

with the sign of equality in the third relation if and only if E∗∗ coincides
with E a.e. up to shifts in the directions of the coordinate axes.

It follows from (2.1) that in proving Theorem 1.2 we may restrict ourselves
with continua possessing double Steiner symmetry w.r.t. the coordinate axes.
Furthermore, since capE, w(E), projθ E, and (A(E))1/2 all change linearly
w.r.t. scaling, we may assume in what follows that capE = 1. Then, w(E)
in Theorem 1.1 may vary in between 0 and 2, and proj0E in Theorem 1.2
varies in between 0 and 4.
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If E is connected and Steiner symmetric, then ΩE = C\E is a simply con-
nected domain containing the point z = ∞. Let f be a conformal mapping
from U∗ onto ΩE . If capE = 1, we can normalize f such that

f(ζ) = ζ + a0(f) + a1(f)ζ−1 + · · · .(2.2)

The set of all analytic functions univalent in U∗ and normalized by (2.2)
constitute the standard class Σ, see [3, 4] and [8].

For f ∈ Σ, let Df = f(U∗) and Ef = C\Df . Our previous considerations
show that the problem in Theorem 1.2 is equivalent to the problem on the
maximal omitted area for the class Σ under the additional constraint

proj0Ef = 2h,

0 ≤ h ≤ 2. The set of functions f ∈ Σ such that 0 ∈ Ef and projection of
Ef onto R coincides with the segment [−h, h] will be denoted by Σh. The
omitted area Af = A(Ef ) can be computed as

Af = π

(
1−

∞∑
n=1

n|an(f)|2
)
.

Let AΣ(h) = supf∈Σh Af . Since the area functional Af is lower semi-
continuous, the existence of an extremal function, at least one for each h,
easily follows from the compactness of the class Σh. Thus, the proof of
Lemma 2.2 is standard (see [1] and [2]) and left to the reader.

Lemma 2.2. For every 0 ≤ h ≤ 2, there exists f ∈ Σh such that Af =
AΣ(h). In addition, AΣ(h) is continuous in 0 ≤ h ≤ 2.

Let f be an extremal function in Σh, 0 < h < 2. By Lemma 2.1, we may
assume that Ef possesses Steiner symmetry w.r.t. the coordinate axes. This
implies that the boundary Lf = ∂Ef contains two “free” parts L+

fr = {z ∈
∂Ef : =z > 0, |<z| < h} and L−fr = {z : z ∈ L+

fr}. The double symmetry of
Ef and a standard subordination argument easily imply that L+

fr is Jordan
rectifiable, see similar considerations in [1].

For the “non-free” part of Lf there are two possibilities: Either it consists
of two vertical segments (possibly degenerate) I± = {w = ±h + is : |s| ≤
sf}, 0 ≤ sf ≤ 2, or it consists of two horizontal segments I± = {w = ±t :
hf ≤ t ≤ h}, 0 ≤ hf ≤ h.

Let l+fr = {eiθ : θ0 < θ < π − θ0} and l−fr = {eiθ : e−iθ ∈ l+fr} be the “free
arcs”, i.e., l±fr are the preimages of L±fr under the mapping f . Similarly, let
l±nf = f−1(I±) if the non-free boundary is vertical and l±nf = f−1(I±) if it is
horizontal.

Lemma 2.3. For a fixed h, 0 ≤ h ≤ 2, let f ∈ Σh be extremal for AΣ(h)
possessing Steiner symmetry w.r.t. the coordinate axes and having a vertical
non-free boundary. Then:
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(i) |f ′(z)| = β with some 0 < β < 1 for all z ∈ l±fr;
(ii) |f ′(eiθ)| strictly decreases from ρ = |f ′(1)| to β as θ runs from 0 to θ0.

Proof. First, we show that |f ′(z)| is constant a.e. on l+fr. Since L+
fr is Jordan

rectifiable it follows that the nonzero finite limit

f ′(ζ) = lim
z→ζ, z∈U∗

f(z)− f(ζ)
z − ζ

6= 0,∞(2.3)

exists a.e. on lfr. This easily follows from [12, Theorem 6.8] applied to the
univalent function 1/f(1/z). Assume that

0 < β1 = |f ′(eiθ1)| < |f ′(eiθ2)| = β2 <∞(2.4)

for eiθ1 , eiθ2 ∈ l+fr. Note that (2.3) and (2.4) allow us to apply the two point
variational formulas of Lemma 5 in [1], see also [2, Lemma 10] for similar
variational formulas for analytic functions univalent in the unit disk U =
{z : |z| < 1}. Namely, for fixed positive k1, k2 such that 0 < k1 < 1 < k2

and k1β
−1
1 > k2β

−1
2 and fixed ϕ > 0 small enough, we consider the two

point variation D̃ of Df centered at w1 = f(eiθ1) and w2 = f(eiθ2) with
inclinations ϕ and radii ε1 = k1ε, ε2 = k2ε respectively, see Section 2 in [1].
Computing the change in the area by formula (2.11) [1], we find

Area (C \ D̃)−Area (C \Df ) =
2πϕ− sin 2πϕ

2 sin2 πϕ
ε2(k2

2 − k2
1) + o(ε2)(2.5)

> 0

for all ε > 0 small enough. Similarly, applying formula (2.10) [1], we get

log
R(D̃,∞)
R(Df ,∞)

=
[
ϕ(2 + ϕ)
6(1 + ϕ)2

k2
1

β2
1

− ϕ(2− ϕ)
6(1− ϕ)2

k2
2

β2
2

]
ε2 + o(ε2) > 0(2.6)

for all ε > 0 small enough and ϕ chosen such that the expression in the
brackets is positive.

Inequalities (2.5) and (2.6), via a standard subordination argument, lead
to a contradiction with the extremality of f for AΣ(h). Thus |f ′(eiθ)| = β
a.e. on l±fr with some β > 0.

Since Ef is Steiner symmetric w.r.t. R, the strict monotonicity of |f ′(eiθ)|
in 0 ≤ θ < θ0 follows from Lemma 3 [1]. To prove that |f ′(eiθ)| > β
for all eiθ ∈ l+nf , we assume that β = |f ′(eiθ1)| > |f ′(eiθ2)| = β2 with
eiθ1 ∈ l+fr and some eiθ2 ∈ l+nf . Then applying the two point variation
as above, we get inequalities (2.5) and (2.6), again, via a subordination
argument, contradicting the extremality of f for AΣ(h). Hence, |f ′(eiθ)| ≥ β
for all eiθ ∈ l±nf , which combined with the strict monotonicity property of
|f ′| leads to the strict inequality |f ′(eiθ)| > β for eiθ ∈ l±nf .
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To prove that |f ′| = β everywhere on l+fr, we consider the function g(z) =
1/f(1/z). The double symmetry property of Lemma 2.1 implies that Dg =
g(U) is Jordan rectifiable and starlike w.r.t. w = 0. Therefore, it is a Smirnov
domain, see [12, p. 163]. This implies that log |g′(z)| = log |f ′(1/z)| −
2 log |zf(1/z)|, and therefore log |f ′(1/z)|, can be represented by the Poisson
integral

log |f ′(1/z)| =
1

2π

∫ 2π

0
P (r, θ − t) log |f ′(e−it)| dt(2.7)

with boundary values defined a.e. on T = {z : |z| = 1}, see [12, p. 155].
Equation (2.7) along with relations |f ′| = β a.e. on l±fr and |f ′| > β every-
where on l±nf shows that 1 = |f ′(∞)| ≥ β with equality only for the function
f(z) ≡ z.

If l+n = ∅ or consists of a single point, then the previous arguments show
that |f ′| = β identically on U∗. Therefore, f(z) ≡ z, which can happen only
for h = 1. Hence, l+n 6= ∅ and therefore 0 < θ0 < π/2 if h 6= 1. Let v be
a bounded harmonic function on U with boundary values log(β) on l±fr and
log |f ′(e−iθ)| on l±nf . Then v(z)− log |f ′(1/z)| has nontangential limit 0 a.e.
on T. Therefore, v(z)− log |f ′(1/z)| ≡ 0 on U. Hence, |f ′| = β everywhere
on l±fr.

To show that f ′ is continuous at ±e±iθ0 , we note that by the reflection
principle, f can be continued analytically through l+nf and f ′ can be con-
tinued analytically through l+fr. This implies that f can be considered as a
function analytic in a slit disk {z : |z − eiθ0 | < ε} \ [(1 − ε)eiθ0 , eθ0 ] with
ε > 0 small enough.

Using the Julia-Wolff lemma, see [12, Proposition 4.13], boundedness of
log f ′, and well-known properties of the angular derivatives, see [12, Proposi-
tions 4.7, 4.9], one can prove that f ′ has a finite limit f ′(eiθ0), |f ′(eiθ0)| = β,
along any path in U∗ ending at eiθ0 and by double symmetry at −e±iθ0 and
e−iθ. The details of this proof are similar to the arguments in Lemma 13 in
[2].

Since |f ′| takes its minimal values on T, it follows that |f ′(z)| > β for all
z ∈ U∗. In particular, β < |f ′(∞)| = 1. The proof is complete. �

Summing up the results of this section we can prove the following lemma,
which allows us to find a closed form for extremal functions.

Lemma 2.4. Let f ∈ Σh, 0 ≤ h ≤ 2, be extremal for AΣ(h) having the
vertical non-free boundary. Then ϕ(z) = zf ′(z) maps U∗ univalently onto
a domain Ω(β, ρ) = C \ {Uβ ∪ [−ρ, ρ]} with ρ = 1 +

√
1− β2 and some

β = β(h) ∈ (0, 1).
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Proof. Considering boundary values of ϕ, we have arg ϕ(eiθ) = 0 for 0 ≤
θ ≤ θ0 since < f(eiθ) is constant for such θ. Since |ϕ(eiθ)| = |f ′(eiθ)| strictly
increases in 0 < θ < θ0, ϕ maps the arc {eiθ : 0 ≤ θ ≤ θ0} continuously and
one-to-one onto the segment {w = t : β ≤ t ≤ ρ} with ρ = |f ′(1)|.

For θ0 ≤ θ ≤ π−θ0, |ϕ(eiθ)| = β. Since |ϕ(z)| > β for all z ∈ U∗ it follows
that ϕ′(eiθ) 6= 0 for θ0 < θ < π− θ0. Hence ϕ is locally univalent on l+fr and
therefore argϕ(eiθ) strictly increases when θ runs from θ0 to π − θ0.

Let ~n(θ) be the inner unit normal to L+
fr at f(eiθ). Then 0 ≤ arg ~n(θ) ≤ π

for θ0 ≤ θ ≤ π − θ0 since Ef is Steiner symmetric. Since arg ~n(θ) = θ +
arg f ′(riθ) = argϕ(eiθ), the total variation of argϕ(eiθ) on l+fr is < π.
This together with the equalities argϕ(eiθ0) = 0 and argϕ(−e−iθ0) = π
shows that ϕ maps l+fr continuously and one-to-one onto the upper semicircle
{βeiψ : 0 < ψ < π}.

Since Ef possesses double symmetry w.r.t. the coordinate axes it fol-
lows that ϕ maps T continuously and one-to-one in the sense of boundary
correspondence onto the boundary of Ω(β, ρ). Now by the argument prin-
ciple, ϕ maps U∗ conformally and one-to-one onto Ω(β, ρ). Since ϕ′(∞) =
f ′(∞) = 1, an easy computation shows that ρ = 1 +

√
1− β2. The lemma

is proved. �

3. Proof of the theorems.

Proof of Theorem 1.2. By Lemma 2.1, we may restrict ourselves to con-
nected compact sets, which are Steiner symmetric w.r.t. the coordinate axes.
Let E be such a continuum extremal for AΣ(h), 0 ≤ h ≤ 2 and let f ∈ Σh

map U∗ onto Ω(E).
First we consider the case when the non-free boundary is vertical. By

Lemma 2.4, ϕ = zf ′ maps U∗ conformally onto Ω(β, ρ) with ρ = 1 +√
1− β2 and some 0 < β < 1. The function ϕ can be represented as

ϕ = β(g−1(β−1g(z)), where g(z) = z + 1/z is Joukowski’s function. There-
fore,

f(z) = h+ β

∫ z

1
z−1g−1(β−1g(z)) dz.

Changing the variable of integration τ = g(z), we get

f(z) = h+
1
2

∫ τ

2

τ +
√
τ2 − 4β2

√
τ2 − 4

dτ,(3.1)

which gives (1.3). Since <f(i) = 0 and τ(i) = 0, we find from (3.1),

h =
1
2
<
∫ 2

0

τ +
√
τ2 − 4β2

√
τ2 − 4

dτ = β

∫ β

0

√
1− β−2x2

1− x2
dx,(3.2)
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which is equivalent to (1.2). From (3.2) it is clear that βE(β, β−1) strictly
increases in β. Since

lim
β→0+

βE(β, β−1) = 0 and βE(β, β−1)
∣∣
β=1

= 1,

it follows that for every fixed 0 ≤ h ≤ 1, (1.2) has exactly one solution in
0 ≤ β ≤ 1. Moreover, this shows that for 1 < h ≤ 2, (1.2) has no solutions
and therefore extremal continua with the vertical non-free boundary can
exist only for 0 ≤ h ≤ 1.

The case of extremal continua with horizontal non-free boundary was
studied in [1, Theorem 2], which proves (1.4) for 1 ≤ h ≤ 2 and shows, in
particular, that extremal continua with horizontal non-free boundary can
exist only for 1 ≤ h ≤ 2. In addition, in case h = 1 the unit disk U is the
unique extremal configuration of the problem under consideration.

In case 1 ≤ h ≤ 2, the maximal area A(h) was found in [1, Theorem 2]. To
compute A(h) for 0 ≤ h ≤ 1, we consider the function f ∈ Σh, such that Ef
is extremal for the problem under consideration and symmetric w.r.t. the
coordinate axes. Applying the standard line integral formula to compute
A(h) = A(Ef ), we get

A(Ef ) =
1
2
=
∫
∂Ef

w dw =
1
2
=
∫
Lnf

w dw +
1
2
=
∫
Lfr

w dw

= 2hv0 +
1
2
=
∫
Lfr

w dw,

where

v0 = =f(eiθ0) =
1
2
=
∫ 2β

2

τ +
√
τ2 − 4β2

√
τ2 − 4

dτ =
∫ 1

β

x+
√
x2 − β2

√
1− x2

dx.

Now, taking the condition |f ′(z)| = β for z ∈ lfr into account, we find
the integral over the free boundary:

1
2
=
∫
Lfr

w dw =
1
2
<
∫
lfr

f(eiθ)e−iθf ′(eiθ) dθ

=
β2

2
<
∫ π

−π

f(eiθ)eiθ

e2iθf ′(eiθ)
dθ − β2

2
<
∫
lnf

f(eiθ)
eiθf ′(eiθ)

dθ

=
β2

2
=
∫

T

f(z)
z2f ′(z)

dz − 2β2h

∫ θ0

0

dθ

|f ′(eiθ)|

=
β2

2
=Res

[
f(z)
z2f ′(z)

,∞
]
− 2β2h

∫ θ0

0

dθ

|f ′(eiθ)|

= πβ2 − 2β2h

∫ θ0

0

dθ

|f ′(eiθ)|
.
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To find
∫ θ0
0

dθ
|f ′(eiθ)| , we change the variable of integration z = (1/2)(τ +

√
τ2 − 4), then we get∫ θ0

0

dθ

|f ′(eiθ)|
= 2

∫ 2

2β

dτ
√

4− τ2(τ +
√
τ2 − 4β2)

= β−2

∫ 1

β

x−
√
x2 − β2

√
1− x2

dx.

Combining all these computations, we obtain

A(h) = πβ2 + 4h
∫ 1

β

√
x2 − β2

√
1− x2

dx = πβ2 + 4hβ′E(β′, β′−1),

which proves (1.4) for 0 ≤ h ≤ 1.

The monotonicity of A(h) for 1 ≤ h ≤ 2 was established in [1]. To prove
that A(h) is monotone in 0 ≤ h ≤ 1, one can show by direct computation
that A′(h) > 0 for 0 < h < 1. Here we prefer another argument of a general
nature. Since capE = 1, diamE ≥ 2 > 2h. Since ∂Eh is smooth, it follows
that for every h′, h < h′ ≤ 1 there is θ′ = θ′(h′), 0 < θ′ < π, such that
projθ′ Eh = 2h′. This implies that the continuum Eh,θ

′
= {z : eiθ

′
z ∈ Eh}

is admissible for the problem on AΣ(h′) but not extremal since Eh,θ
′

clearly
does not have Steiner symmetry w.r.t. R. Therefore AΣ(h′) > A(Eh,θ

′
) =

AΣ(h). The Proof of Theorem 1.2 is complete. �

Proof of Theorem 1.1. Let E be a compact set such that capE = 1 and
w(E) = 2h, 0 < h < 1 and let Eh be the continuum from the Proof of
Theorem 1.2 extremal for AΣ(h). It follows from Theorem 1.2 that A(E) ≤
A(Eh) with the sign of equality only if E coincides a.e. with Eh up to a
linear transformation. Note that w(Eh) = 2h. Indeed, if w(Eh) = 2h′ < 2h,
then A(h) = A(Eh) ≤ A(h′) contradicting the strict monotonicity property
of A(h). This shows that Eh has the maximal area among all compact sets,
connected or not, with logarithmic capacity 1 and prescribed width 2h.

To complete the Proof of Theorem 1.1, we consider the function f ∈ Σh,
which maps U∗ onto Ω(Eh). By Lemma 2.4, ϕ = zf ′ maps U∗ onto Ω(β, ρ)
with certain ρ ≥ β ≥ 0. Since C \ Ω(β, ρ) is starlike w.r.t. the origin, it
follows from the classical Alexander’s theorem, see [4, p. 43], that Lf is
convex. Thus, Eh is a unique up to a linear transformation convex compact
set, which maximizes the area among all such sets with capE = 1 and
prescribed width w(E) = 2h. �
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PERTURBATION OF DIFFERENTIAL OPERATORS
ADMITTING A CONTINUOUS LINEAR RIGHT INVERSE

ON ULTRADISTRIBUTIONS

Rüdiger W. Braun, Reinhold Meise, and B.A. Taylor

Let Pm be a homogeneous polynomial of degree m in n ≥ 2
variables for which the associated partial differential operator
Pm(D) admits a continuous linear right inverse on C∞(Rn).
Examples suggest that then for each polynomial Q of degree
less than m there exists a number 0 < β < 1 such that the op-
erator (Pm+Q)(D) admits a continuous linear right inverse on
the space of all ωβ-ultradifferentiable functions on Rn, where
ωβ(t) = (1 + t)β. The main result of the present paper is to
determine the optimal value of β for which the above holds
for all perturbations Q of a given degree in the case n = 3.
When n > 3 sufficient conditions as well as necessary condi-
tions of this type are presented, but there is a gap between
them. The results are illustrated by several examples.

1. Introduction.

The problem of determining when a given partial differential operator P (D)
with constant coefficients admits a continuous linear right inverse on the
space E(G) (respectively D′(G)) of all C∞ functions (respectively distribu-
tions) on an open set G in Rn was solved in Meise, Taylor, and Vogt [11],
where various equivalent characterizing conditions were given. In [13] these
characterizations were extended to ω-ultradifferentiable functions E(ω)(G)
and to ω-ultradistributions D′(ω)(G) of Beurling type. Since all of these
equivalent characterizations are rather involved, several attempts were made
to derive other characterizations in terms of the symbol P or its zero variety.

One way to attack this problem is based on a result from [15] which shows
that if P (D) admits a continuous linear right inverse on E(ω)(Rn) then so
does Pm(D), where Pm is the principal part of P . Thus, one might treat
P as a perturbation of its principal part Pm. In [4] this idea led to an
explicit characterization of the homogeneous polynomials Pm of degree m in
n variables for which (Pm +Q)(D) admits a continuous linear right inverse
on E(Rn) (or on D′(Rn)) for each polynomial Q of degree at most m − 1.
The main part of this characterization is that — up to a complex multiple
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— Pm is a real polynomial of principal type; i.e., Pm has real coefficients
and gradPm(x) 6= 0 for 0 6= x ∈ Rn.

Our aim in this paper is to refine the perturbation result just cited. The
goal is to explain in terms of Pm and l = deg(Q) < m the optimal choice
of β = β(l, Pm) so that (Pm + Q)(D) has a continuous linear right inverse
on E(ωβ)(Rn) for all polynomials Q of degree at most l. In dimension three,
this is achieved in the following theorem:

Theorem 1.1. Let Pm ∈ C[x, y, z] be homogeneous of degree m ≥ 2 and let
ν = max{deg(Pm)θ : θ ∈ V (Pm)∩S2}, where (Pm)θ denotes the localization
of Pm at θ (see Definition 3.4). For 0 ≤ l < m, let β(l) := max{0, 1− m−l

ν }
and let E(ω0)(R3) := E(R3). Then Pm(D) admits a continuous linear right
inverse on E(R3) if and only if for each polynomial Q ∈ C[x, y, z], deg(Q) ≤
l, the operator (Pm + Q)(D) admits a continuous linear right inverse on
E(ωβ(l))(R

3).
Moreover, the number β(l) is optimal in the following sense: If for some

number 0 ≤ γ < 1 the operator (Pm+Q)(D) admits a continuous linear right
inverse on E(ωγ)(R3) for each Q ∈ C[x, y, z] with degQ ≤ l, then γ ≥ β(l).

The proof of the theorem is carried out by establishing three new results
about the Phragmén-Lindelöf condition PL(Rn, ω) (see Definition 2.4) that
was shown in [13] to characterize the existence of a continuous linear right
inverse for P (D). First, we show (Proposition 3.3) that the condition can
be localized to cones about the real points in V (Pm)∩Sn−1. Second, we use
the lemma of Boutroux-Cartan and Rouche’s theorem to derive a sufficient
condition for such Phragmén-Lindelöf conditions to hold. From this, we then
derive a sufficient condition which ensures that for a given homogeneous
polynomial Pm in n variables and for all perturbations Q with deg(Q) ≤
l < m, the variety V (Pm + Q) satisfies PL(Rn, ωβ) where β is given by
the formula in Theorem 1.1. Third, we use a result from [4] to show that
γ ≥ β(l) when (Pm + Q)(D) admits a continuous linear right inverse on
E(ωγ)(Rn) for each polynomial Q of degree l, where m − ν ≤ l < m. The
argument is based on the fact that the maximal degree of the localization of a
homogeneous polynomial Pm ∈ C[z1, . . . , zn] at the points in V (Pm) ∩ Sn−1

greatly influences the existence of a continuous linear right inverse. The
combination of these results then implies Theorem 1.1. We remark that the
case n = 2 is much simpler and was already known.

Our results also imply that we can extend the perturbation theorem from
[4] to ultradifferentiable functions. Further, we show that under additional
hypotheses on the localization at a singular point ξ ∈ V (Pm) ∩ S2, a better
result concerning Phragmén-Lindelöf conditions in cones can be obtained
(Lemma 4.1). Finally, quite a number of examples are provided. They
also show the known effect that for a fixed polynomial Q, the operator
(Pm + Q)(D) may do better than predicted by Theorem 1.1. Namely, it
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may have a continuous linear right inverse on E(ωσ)(Rn) for some σ < β.
When n = 3, the optimal value for σ can be determined. However, this is
a much more complicated procedure, based on hyperbolicity considerations,
for which we refer to our forthcoming paper [6].

2. Preliminaries.

In this preliminary section we introduce the basic definitions, notation, and
a few results which will be used subsequently.

Throughout this paper, |.| denotes the Euclidean norm on Cn and Bn(ξ, r)
denotes the ball of center ξ and radius r in Cn.

Definition 2.1. Let ω : ]0,∞[ → ]0,∞[ be continuous and increasing and
assume that it has the following properties:

(α) ω(2t) = O(ω(t)),
(β)

∫∞
1

ω(t)
t2
dt <∞,

(γ) log t = O(ω(t)) as t tends to infinity,
(δ) x 7→ ω(ex) is convex.

Then its radial extension to Cn, defined by ω : z 7→ ω(|z|), z ∈ Cn, will be
called a weight function. Throughout this paper we assume that ω(0) ≥ 1.
It is easy to check that this can be assumed without loss of generality.

Example 2.2. Examples of weight functions are
(a) ω0(t) = log(e+ t),
(b) ωα(t) = (1 + t)α for 0 < α < 1.

Definition 2.3. Let V be an algebraic variety in Cn and Ω an open subset
of V . A function u : Ω → [−∞,∞[ will be called plurisubharmonic if it is
locally bounded above, plurisubharmonic in the usual sense on Ωreg, the set
of all regular points of V in Ω, and satisfies

u(z) = lim sup
ξ∈Ωreg,ξ→z

u(ξ)

at the singular points of V in Ω. By PSH(Ω) we denote the set of all
plurisubharmonic functions on Ω.

Definition 2.4. Let V ⊂ Cn be an algebraic variety and let ω be a weight
function. Then V satisfies the condition PL(Rn, ω) if the following holds:

There exists A ≥ 1 such that for each ρ > 1 there exists B > 0 such that
each u ∈ PSH(V ) satisfying (α) and (β) also satisfies (γ), where:

(α) u(z) ≤ |Im z|+O(ω(z)), z ∈ V ,
(β) u(z) ≤ ρ |Im z|, z ∈ V ,
(γ) u(z) ≤ A |Im z|+Bω(z), z ∈ V .

Phragmén-Lindelöf conditions and continuous linear right in-
verses 2.5. To explain the significance of the condition PL(Rn, ω), let
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n ≥ 2, let P (z) =
∑

|α|≤m aαz
α be a complex polynomial of degree m > 0,

and let

V (P ) := {z ∈ Cn : P (−z) = 0}
denote its zero variety. Then V (P ) satisfies PL(Rn, ω) if and only if the
linear partial differential operator

P (D) : E(ω)(Rn) → E(ω)(Rn), P (D)f :=
∑
|α|≤m

aαi
−|α|∂

|α|f

∂xα

admits a continuous linear right inverse, where E(ω)(Rn) is the Fréchet space
of all ω-ultradifferentiable functions of Beurling type (see [2]). This follows
from the general characterization in Meise, Taylor, and Vogt [15]. Recall
that E(ω0)(Rn) = C∞(Rn) and that in this case the characterization of the
existence of continuous linear right inverses was already obtained in Meise,
Taylor, and Vogt [12]. Note also that Palamodov [17] proved that a differ-
ential complex of C∞-functions over Rn splits if and only if the associated
varieties satisfy PL(Rn, ω0).

From [12], Lemma 2.9, we recall the following lemma:

Lemma 2.6. For each n ∈ N the function H : Cn → R, defined as H(z) :=
1
2((Im z)2 − (Re z)2) is plurisubharmonic and has the following properties:

(a) H(z) ≤ |Im z| , |z| ≤ 1,
(b) H(z) ≤ |Im z| − 1

2 , |z| = 1,
(c) H(x) ≤ 0, x ∈ Rn,
(d) H(iy) ≥ 0, y ∈ Rn.

Definition 2.7. For d = (d1, . . . , dn) 6= (0, . . . , 0) with dj ∈ N0, 1 ≤ j ≤ n,
a nonzero polynomial P ∈ C[z1, . . . , zn] is said to be d-quasihomogeneous of
d-degree m ≥ 0 if

P (z) =
∑

〈d,α〉=m

aαz
α, z ∈ Cn,

where 〈d, α〉 =
∑n

j=1 djαj . The zero polynomial is considered to be d-
quasihomogeneous of d-degree −∞.

Combining Lemma 3.2 and Lemma 3.6 from [4] we get the following
lemma:

Lemma 2.8. For n ≥ 2 let P ∈ C[z1, . . . , zn] be d-quasihomogeneous of
d-degree m and let Q ∈ C[z1, . . . , zn] be the sum of d-quasihomogeneous
polynomials of d-degrees less than m. Assume that for some k, 1 ≤ k < n,
the following conditions are fulfilled :

(1) d1 = · · · = dk < dj for j > k,
(2) there exists ζ = (ζ ′, ζ ′′) ∈ Ck × Rn−k satisfying P (ζ) = 0 and ζ ′′ 6= 0,
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(3) if P (z′, ζ ′′) = 0 then Im z′ 6= 0.
If V (P + Q) satisfies PL(Rn, ω) for some weight function ω and D :=
max{dj : ζj 6= 0}, then ω satisfies td1/D = O(ω(t)) as t tends to infinity.

3. Main results.

The aim of this section is to derive conditions which imply that for a homo-
geneous poynomial P ∈ C[z1, . . . , zn] for which V (P ) satisfies PL(Rn, ω0) the
variety V (P+Q) satifies PL(Rn, ωβ(l)) for all polynomials Q of degree l < m.
The number β(l) will be shown to be sharp.

Throughout this section we assume n ≥ 2 unless other assumptions are
made.

Instead of working with the property PL(Rn, ω) as it is given in Defini-
tion 2.4, it is often easier to consider the intersection of the variety V with
cones. This will be made more precise in Proposition 3.3. To formulate this
proposition, recall that for a point ξ in the unit sphere Sn−1 ⊂ Rn, a set M
with M ⊂ Bn(0, 1), and r > 0 the cone Γ(ξ,M, r) around the ray generated
by ξ with profile M , truncated at r, is defined as

Γ(ξ,M, r) :=
⋃
t>r

t(ξ +M).

Definition 3.1. For P ∈ C[z1, . . . , zn] \C let V := V (P ), let ω be a weight
function, and let Γ := Γ(ξ,G, r) be a cone for which G is an open neighbor-
hood of zero in Cn. We say that V satisfies the condition PL(V (P ),Γ, ω)
if there exist a compact set K ⊂ G which is a neighborhood of zero and
numbers A1 ≥ 1 and r1 ≥ r such that for each ρ > 0 there exists Bρ such
that for each u ∈ PSH(V ∩ Γ) the following two conditions:

(α) u(z) ≤ |z|, z ∈ V ∩ Γ,
(β) u(z) ≤ ρ |Im z|, z ∈ V ∩ Γ,

imply
(γ) u(z) ≤ A1 |Im z|+Bρω(z), z ∈ V ∩ Γ(ξ,K, r1).

Lemma 3.2. For a polynomial P ∈ C[z1, . . . , zn] \ C denote by Pm its
principal part and let ω be a weight function. If V (P ) satisfies the con-
dition PL(Rn, ω) then for each ξ ∈ V (Pm) ∩ Sn−1, r ≥ 1, and each open
zero neighborhood G with G ⊂ Bn(0, 1), the variety V (P ) has the property
PL(V (P ),Γ(ξ,G, r), ω).

Proof. Fix ξ ∈ V (Pm) ∩ Sn−1, r ≥ 1, and G as in the statement of the
lemma. Then fix a compact zero neighborhood K ⊂ G, choose 0 < η < 1 so
small that K +B(0, 2η) ⊂ G and note that max{|z| : z ∈ K} ≤ 1. Next fix
u ∈ PSH(V (P ) ∩ Γ(ξ,G, r)) and assume that u satisfies Conditions 3.1 (α)
and (β). Now fix
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z0 = t0ξ + t0w0 ∈ Γ(ξ,K, r)

and distinguish the following two cases:

Case 1: |Im z0| ≥ ηt0.

Then |z0| ≤ t0 |ξ + w0| ≤ 2t0, the present hypothesis, and Condition 3.1 (α)
on u imply

u(z0) ≤ |z0| ≤ 2t0 ≤
2
η
|Im z0| .

Case 2: |Im z0| < ηt0.

Then note that for each z ∈ B(Re z0, ηt0) the present hypothesis and the
choice of η imply

z − t0ξ = z − Re z0 − i Im z0 + z0 − t0ξ ∈ t0B(0, 2η) + t0K ⊂ t0G.

Hence we can define ϕ : V (P ) → [−∞,∞[ by

ϕ(z) := max
{
η

9
u(z) + ηt0H

(
z − Re z0

ηt0

)
, |Im z|

}
, z ∈ V ∩B(Re z0, ηt0)

and by ϕ(z) := |Im z| elsewhere on V , where H denotes the function defined
in Lemma 2.6. To see that ϕ is plurisubharmonic on V , note that for
z ∈ V ∩ ∂B(Re z0, ηt0) the above estimate for z0 implies

|z| = |z − Re z0 + Re z0| ≤ ηt0 + |z0| ≤ 3t0.

Hence Condition 3.1 (α) for u gives u(z) ≤ 3t0. By the properties of H, this
implies

η

9
u(z) + ηt0H

(
z − Re z0

ηt0

)
≤ η

3
t0 + |Im z| − η

2
t0 < |Im z|

for each z ∈ V (P ) ∩ ∂B(Re z0, ηt0). Thus, ϕ is plurisubharmonic on V (P ).
From 3.1 (β) and the properties of H it follows that

ϕ(z) ≤
(η

9
ρ+ 1

)
|Im z| , and ϕ(z) = |Im z|+O(1), z ∈ V.

Since V (P ) satisfies PL(Rn, ω), we conclude from these estimates the exis-
tence of A ≥ 1 depending only on V (P ), and of B, depending on ρ, such
that

ϕ(z) ≤ A |Im z|+Bω(z), z ∈ V.
Evaluating this estimate at z0 and using the properties of H together with
the definition of ϕ, we get

A |Im z0|+Bω(z0) ≥ ϕ(z0) ≥ η

9
u(z0) + ηt0H

(
i Im z0
ηt0

)
≥ η

9
u(z0),
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and hence

u(z0) ≤ 9A
η
|Im z0|+

9B
η
ω(z0).

Both cases together show that u satisfies Condition 3.1 (γ) with A1 := 9A
η

and Bρ := 9B
η . �

Proposition 3.3. Let P ∈ C[z1, . . . , zn] be a polynomial of degree m ≥ 1
and denote by Pm its principal part. Then for a given weight function ω the
following two conditions are equivalent :

(a) V (P ) satisfies PL(Rn, ω).
(b) V (Pm) satisfies PL(Rn, ω0) and for each ξ ∈ V (Pm)∩Sn−1 there exist

an open neighborhood Gξ of zero and rξ > 0 such that V (P ) satisfies
PL(V (P ),Γ(ξ,Gξ, rξ), ω).

Proof. (a) ⇒ (b): If V (P ) satisfies PL(Rn, ω) then also V (Pm) satisfies
PL(Rn, ω0) by Meise, Taylor, and Vogt [15], Theorem 4.1. Hence the first
condition of (b) is fulfilled. The second one holds by Lemma 3.2.

(b) ⇒ (a): Since V (Pm) satisfies PL(Rn, ω0) by the present hypothesis, it
follows from [15], Theorem 3.13, and Meise, Taylor, and Vogt [12], The-
orem 5.1, that V (P ) satisfies Condition (RPL) defined in [12], 2.2. This
means that there exists A0 ≥ 1 such that for each ρ > 0 there exists Bρ > 0
such that each u ∈ PSH(V (P )) satisfying

u(z) ≤ |z|+ o(|z|) and u(z) ≤ ρ |Im z| , z ∈ V (P )

also satisfies

u(z) ≤ A0 |z|+Bρ, z ∈ V (P ).(3.1)

From this we get in particular that each u ∈ PSH(V (P )) which satisfies Con-
ditions 2.4 (α) and (β) of PL(Rn, ω) already satisfies (3.1). Consequently,
v(z) := 1

A0
u(z)−Bρ satisfies Conditions 3.1 (α) and (β) with ρ′ := ρ

A0
in any

cone Γ(ξ,Gξ, rξ), ξ ∈ V (Pm) ∩ Sn−1. Therefore we can use the hypothesis
and a compactness argument to conclude similarly as in the proof of Meise
and Taylor [10], Proposition 4.5, that there exist A1 ≥ 1 and Cρ > 0 such
that u satisfies

u(z) ≤ A1 |Im z|+ Cρω(z), z ∈ V (P ).

Hence (a) holds. �

To apply Proposition 3.3 we will use the following lemma, which is the
key step for our positive results. To formulate it we need the following
definitions:
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Definition 3.4. Let P ∈ C[z1, . . . , zn] and θ ∈ Cn be given. Then the local-
ization Pθ of P at θ is defined as the lowest order nonvanishing homogeneous
polynomial in the Taylor series expansion of P at θ.

Definition 3.5. For P ∈ C[z1, . . . , zn] the variety V (P ) is said to be locally
hyperbolic at ξ ∈ V (P ) ∩ Rn if there exist a projection π : Cn → Cn and an
open neighborhood U of ξ such that the following conditions are satisfied:

(a) kerπ and im π are spanned by real vectors, dim kerπ = 1, and (kerπ)∩
V (Pξ) = {0}.

(b) Whenever z ∈ V (P ) ∩ U and π(z) is real then z is real.

Lemma 3.6. Let Pm ∈ C[z1, . . . , zn] be homogeneous of degree m ≥ 2.
Assume Pm(ξ) = 0, deg(Pm)ξ = µ, and (Pm)ξ(0, . . . , 0, 1) 6= 0 for ξ =
(1, 0, . . . , 0) and define β(l) := max(0, 1 − m−l

µ ) for 0 ≤ l < m. Then for
each Q ∈ C[z1, . . . , zn], degQ ≤ l < m, there exist η, σ > 0 and R,C > 1
such that the following holds:

(a) For each (z1, z′) ∈ Cn−1 satisfying
∣∣∣ z1|z1| − 1

∣∣∣ < η, |z1| > R, and
|z′| < η |z1|, and for each ζ ∈ C satisfying |ζ| < σ |z1| and (Pm +
Q)(z1, z′, ζ) = 0, there exists w ∈ C satisfying |w| < σ |z1|, Pm(z1, z′,
w) = 0, and

|ζ − w| ≤ C |z1|β(l) .

(b) If V (Pm) is locally hyperbolic at ξ with respect to the projection π :
(z′′, zn) 7→ (z′′, 0), then the parameters η, σ,R and C in (a) can be cho-
sen in such a way that for each (z1, z′, ζ) satisfying (Pm+Q)(z1, z′, ζ) =
0 and

∣∣∣ z1|z1| − 1
∣∣∣ < η, |z1| > R, |z′| < η |z1|, |ζ| < σ |z1|, and (z1, z′)

real, we have

|Im ζ| ≤ C |z1|β(l) .

Proof. The present hypotheses imply for the Taylor series expansion of Pm
at ξ (see [3], Lemma 3.9)

Pm(z1, z′, zn) =
m∑
j=µ

zm−j1 pj(z′, zn),

where pj is either homogeneous of degree j or identically zero, and where
(Pm)ξ(z1, z′, zn) = pµ(z′, zn). From this expansion and the hypotheses we
get

Pm(1, 0′, zn)=
m∑
j=µ

zjnpj(0
′, 1) = zµn

(Pm)ξ(0, 0′, 1) +
m∑

j=µ+1

zj−µn pj(0, 0′, 1)

.
Hence we can choose σ > 0 such that zn 7→ Pm(1, 0′, zn) has exactly µ zeros
in the disk B1(0, σ) and does not vanish on ∂B1(0, σ). Hence it follows from
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the Weierstraß preparation theorem that we can choose η > 0 such that for
(z1, z′, zn) ∈ G := B1(1, η)×Bn−2(0, η)×B1(0, σ) we have

Pm(z1, z′, zn) = U(z1, z′, zn)
µ∑
j=0

zjncj(z1, z
′)(3.2)

= U(z1, z′, zn)
µ∏
j=1

(zn − βj(z1, z′)),

where U is a holomorphic function which does not vanish on G. In fact,
shrinking η if necessary, we may assume that there exists α > 0 such that
|U(z)| > α for all z ∈ G. We also may assume |βj(z1, z′)| ≤ σ/2 for (z1, z′) ∈
B1(1, η)×Bn−2(0, η) and 1 ≤ j ≤ µ. Next note that by the homogeneity of
Pm, U is also homogeneous and extends holomorphically to the cone

Γ :=
{

(z1, z′, zn) ∈ Cn :
∣∣∣∣ z1|z1| − 1

∣∣∣∣ < η,

∣∣z′∣∣ < η |z1| , |zn| < σ |z1| , and |z1| > 1
}
.

For z = (z1, z′, zn) ∈ Γ we have

|U(z)| = |z1|m−µ
∣∣∣∣U ( z

|z1|

)∣∣∣∣ ≥ α |z1|m−µ .(3.3)

Also by homogeneity the functions βj extend to the cone

Γ′ :=
{

(z1, z′) ∈ Cn−1 :
∣∣∣∣ z1|z1| − 1

∣∣∣∣ < η, and
∣∣z′∣∣ < η |z1|

}
.

For (z1, z′) ∈ Γ′ define F (z1, z′, zn) :=
∏µ
j=1(zn−βj(z1, z′)) and note that by

the Lemma of Boutroux-Cartan (see Levin [9], Theorem I.10) the following
holds: For each (z1, z′) ∈ Γ′ and each δ > 0 there exist finitely many disks
Dl(z1, z′), 1 ≤ l ≤ d(z1, z′), for which the sum of the radii is at most 2δ,
such that ∣∣F (z1, z′, zn)

∣∣ ≥ (δ
e

)µ
whenever zn ∈ C\

d⋃
l=1

Dl.(3.4)

We may assume that the Dl(z1, z′) are constructed as in the proof that is
given in [9]; then each Dl(z1, z′) contains at least one zero of F (z1, z′, ·).
Now fix Q ∈ C[z1, . . . , zn], degQ ≤ l < m. Then it is easy to check that
there exists a constant M > 1 such that

|Q(z)| ≤M |z1|l , z ∈ Γ.
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Choose r > 1 and R > 1 so large that αrµ > M and such that 4ertβ(l) < σ
2 t

for t ≥ R. Next fix (z1, z′) ∈ Γ′ satisfying |z1| > R and let

δ := er |z1|β(l) .

Then it follows from (3.2), (3.3), (3.4), and our choice of r that for each
zn ∈ C \

⋃d
l=1Dl(z1, z′) satisfying |zn| < σ |z1| we have∣∣Pm(z1, z′, zn)

∣∣ ≥ α |z1|m−µ
(
δ

e

)µ
(3.5)

= αrµ |z1|m−µ+µβ(l)

> M |z1|l ≥
∣∣Q(z1, z′, zn)

∣∣ .
Let now ζ ∈ B1(0, σ |z1|) with (Pm +Q)(z1, z′, ζ) = 0 be given. Then

|Pm(z1, z, ζ)| =
∣∣Q(z1, z′, ζ)

∣∣ ≤M |z1|l ,

and thus there is l ≤ d(z1, z′) with ζ ∈ Dl(z1, z′). Let w ∈ Dl(z1, z′) be a
zero of F (z1, z′, ·). Then |ζ − w| < 4δ since the sum of the radii of all disks
Dl(z1, z′) is at most 2δ. We have shown that the estimate in (a) holds. To
see that |w| < σ |z1|, note that F (z1, z′, w) = 0 implies the existence of j,
1 ≤ j ≤ µ, such that w = βj(z1, z′). Hence the choice of η implies

|w| ≤ |z1|
∣∣βj(1, z′/ |z1|)∣∣ ≤ σ |z1|

2
.

Thus the proof of Part (a) is complete.
To prove (b) we note first that under the present hypothesis we can choose

η and σ so small that B1(1, η)×Bn−2(0, η)×B1(0, σ) is contained in the set
U which exists by local hyperbolicity. This implies that the zeros βj(z′, zn)
are all real whenever (z′, zn) ∈ Γ′ is real. Hence the estimate in (a) implies
the one in (b). �

Lemma 3.7. Let V be an algebraic variety in Cn and ω a weight function.
Assume that for ξ = (1, 0, . . . , 0) and G = Bn−1(0, δ)×B1(0, σ) (0 < δ, σ ≤
1) the map π : V ∩ Γ(ξ,G, r) → Γ(ξ,G, r), π(z′, zn) := (z′, 0), is proper and
satisfies the following condition:

There exists C > 0 such that |Im zn| ≤ Cω(z)(3.6)

for each z ∈ V ∩ Γ(ξ,G, r) with π(z) real.

Then V satisfies PL(V,Γ(ξ,G, r), ω).

Proof. To show that there are a compact set K ⊂ G and a constant A1 ≥ 1
such that V satisfies PL(V,Γ(ξ,G, r), ω) let K := 1

2G, fix u ∈ PSH(V ∩
Γ(ξ,G,R)), and assume that u satisfies Conditions 3.1 (α) and (β). Then
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let G′ := Bn−1(0, δ), fix t > r, and define

ϕ : G′ → [−∞,∞[,

z′ 7→ max{u(tξ + tz) : tξ + tz ∈ V, z ∈ G, π(z) = (z′, 0)}.
Then ϕ is plurisubharmonic outside the branch locus of π. Since π is proper
by hypothesis, it follows from Hörmander [8], Lemma 4.4, that ϕ extends
to a plurisubharmonic function on G′. Condition 3.1 (α) for u and 0 < δ,
σ ≤ 1 imply

ϕ(z′) ≤ max{|t(ξ + z)| : z ∈ G} ≤ 2t,

while Condition 3.1 (β) together with (3.6) implies

ϕ(z′) ≤ max{ρ |Im(tξ + tz)| : tξ + tz ∈ V, z ∈ G, π(z) = (z′, 0)}
≤ max{ρCω(tz) : z ∈ G} ≤ ρCω(t).

From these two estimates for ϕ and classical estimates of the harmonic
measure of the half disk (see, e.g., Nevanlinna [16], Section 38) it now follows
that there is a constant A0, depending only on the dimension, so that

ϕ(z′) ≤ A0

δ
2t
∣∣Im z′

∣∣+ ρCω(t), z ∈ Bn−1(0, δ/2).

To evaluate this further, note that for k ∈ K we have

|tξ + tk| ≥ t(1− |k|) ≥ t

2
.

Note also that our requirements on the weight functions imply the existence
of a constant L > 0 such that ω(2s) ≤ Lω(s) for s ≥ 0. Therefore, the
definition of ϕ and the previous estimates imply for tξ + tk ∈ V

u(tξ + tk) ≤ ϕ(k) ≤ 2A0

δ
t |Im k|+ ρCω(t)

≤ 2A0

δ
|Im(tξ + tk)|+ ρCLω(tξ + tk).

Since k ∈ K and t > r were chosen arbitrarily, this estimate shows that u
satisfies 3.1 (γ) for A1 := 2A0

δ and Bρ := ρCL. �

Theorem 3.8. Let Pm ∈ C[z1, . . . , zn] be homogeneous of degree m ≥ 2 and
assume that V (Pm) satisfies PL(Rn, ω0). Let

ν := max
{

deg(Pm)θ : θ ∈ V (Pm) ∩ Sn−1
}

and define

β(l) := max
(

0, 1− m− l

ν

)
for 0 ≤ l < m.(3.7)

If for each ξ ∈ V (Pm)sing∩Sn−1 the variety V (Pm) is locally hyperbolic at ξ,
then for each Q ∈ C[z1, . . . , zn] with degQ ≤ l < m the variety V (Pm +Q)
satisfies PL(Rn, ωβ(l)), where ωβ is defined in Example 2.2.
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Proof. Since V (Pm) satisfies PL(Rn, ω0) by hypothesis, the theorem follows
from Proposition 3.3 once we show that the second condition in 3.3 (b) is
fulfilled. To show this, we first factorize Pm =

∏s
j=1 q

kj

j , where the poly-
nomials qj are irreducible and where

∏s
j=1 qj is square-free. Since V (Pm)

satisfies PL(Rn, ω0), also V (qj) has this property for each j. By Meise, Tay-
lor, and Vogt [14], Lemma 2, this implies that there exists cj ∈ C, |cj | = 1,
so that cjqj has real coefficients. Hence it is no restriction to assume that
each qj has real coefficients.

Now fix a regular point a ∈ V (Pm) of length 1. Then there exists an
index i so that qi(a) = 0. This implies qj(a) 6= 0 for all j 6= i by the
following argument: If qj(a) = 0 for some j 6= i then V (qj) and V (qi) must
coincide in a neighborhood of a since a is a regular point of V (Pm). But
then V (qj) = V (qi) since both varieties are irreducible. Hence qj and qi are
proportional, in contradiction to

∏s
l=1 ql being square-free.

Next note that

(Pm)a = ((qi)a)ki
∏
j 6=i

(qj(a))kj .

Since a is a regular point of V (Pm) and hence of V (qi), the localization
satisfies (qi)a(z) =

∑n
j=1

∂qi
∂zj

(a)zj , which implies deg(Pm)a = ki ≤ ν. After a

real linear change of variables we may assume a = (1, 0, . . . , 0) and ∂qi
∂zn

(a) 6=
0. Then the real and the complex implicit function theorem imply the
existence of a neighborhood U of (1, 0, . . . , 0) ∈ Cn−1, of δ > 0, and of a
holomorphic function β : U → B1(0, δ) which is real over real points so that

V (Pm) ∩ (U ×W ) = {(z′, β(z′)) : z′ ∈ U}.

Hence V (Pm) is locally hyperbolic at a with respect to π(z′, zn) := (z′, 0) in
these coordinates.

If a ∈ V (Pm) ∩ Sn−1 is a singular point of V (Pm), then V (Pm) is locally
hyperbolic at a by hypothesis. Then we can perform a real linear change of
coordinates so that in the new coordinates a = (1, 0, . . . , 0) and π : (z′, zn) 7→
(z′, 0) is the projection which exists by local hyperbolicity. If we let µ =
deg(Pm)a, then in both cases the hypotheses of Lemma 3.6 (b) are fulfilled.
Now Lemma 3.6 implies that the hypotheses of Lemma 3.7 are fulfilled in a
suitable cone Γ(a,Ga, ra) for ω = ωβ(l,a), where β(l, a) = max(0, 1 − m−l

µ ).
By the definition of µ we have µ ≤ ν and hence β(l, a) ≤ β(l). Thus,
the second condition of Proposition 3.3 (b) holds with ω = ωβ(l), which
completes the proof of the theorem. �

Remark. Theorem 3.8 also holds if we replace the hypothesis “V (Pm) sat-
isfies PL(Rn, ω0)” by the following one: “Each irreducible factor of Pm has
real coefficients up to a complex factor and is not elliptic”. Under this hy-
pothesis, the present proof shows that V (Pm) is locally hyperbolic at each
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real regular point of V (Pm) ∩ Sn−1. Hence the hypotheses imply that this
property holds at each point of V (Pm) ∩ Sn−1. By Hörmander [8], Theo-
rem 6.5, this implies that V (Pm) satisfies Condition (HPL) and therefore
it follows from Meise, Taylor, and Vogt [15], Corollary 3.14 that V (Pm)
satisfies PL(Rn, ω0), which is needed for the application of Proposition 3.3.
Otherwise the proof remains unchanged.

Remark. Note that for n ≥ 4 there are homogeneous polynomials Pm ∈
C[z1, . . . , zn] for which V (Pm) satisfies PL(Rn, ω0) but which are not locally
hyperbolic at some singular points of V (Pm) ∩ Sn−1. When n = 3, this
cannot happen, as a result of Hörmander [8] shows. This fact will be used
in Corollary 3.12 below.

As a corollary of Theorem 3.8 we get:

Corollary 3.9. Let kj ∈ N and Pj ∈ R[z1, . . . , zn], 1 ≤ j ≤ s, be given.
Assume that each Pj is irreducible, homogeneous of degree qj, and not elliptic
and that

∏s
j=1 Pj is square-free. Set m :=

∑s
j=1 qjkj, P :=

∏s
j=1 P

kj

j ,
k := max1≤j≤s kj, assume m ≥ 2, and let β(l) be as in (3.7) with ν = k.
If all points in V (P ) ∩ Sn−1 are regular points of V (P ), then for each Q ∈
C[z1, . . . , zn] with degQ ≤ l the variety V (P +Q) satisfies PL(Rn, ωβ(l)).

Proof. Since the localization of a product equals the product of the local-
izations of its factors, the present hypotheses imply

ν = max{deg(P )θ : θ ∈ V (Pm) ∩ Sn−1} = max
j=1,...,s

kj = k.

Since all points of V (P ) ∩ Sn−1 are regular points of V (P ), the corollary
follows from Theorem 3.8. �

As an obvious consequence of Corollary 3.9 we get the following result
which is a reformulation of [4], Corollary 4.7:

Corollary 3.10. Let P ∈ R[z1, . . . , zn] be homogeneous of degree µ and
assume that gradP (x) 6= 0 for all x ∈ V (P ) ∩ Sn−1. Let k ∈ N be given
so that kµ ≥ 2. Then for each Q ∈ C[z1, . . . , zn] with degQ =: l < kµ the
variety V (P k +Q) satisfies PL(Rn, ωβ(l)) for β(l) as in (3.7).

It will be shown in Theorem 3.14 that in Corollary 3.10 the condition
gradP (x) 6= 0 for all x ∈ V (P ) ∩ Sn−1 is in fact necessary. To prove this
result, we use the following lemma:

Lemma 3.11. Let P ∈ R[z1, . . . , zn] be homogeneous of degree m ≥ 2, let

ν := max{degPθ : θ ∈ V (P ) ∩ Sn−1},
and fix p ∈ N with 1 ≤ p < ν and a weight function ω. If for each Q ∈
C[z1, . . . , zn] with degQ ≤ m−ν+p the variety V (P+Q) satisfies PL(Rn, ω),
then tp/ν = O(ω(t)) as t tends to infinity.
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Proof. Fix ξ ∈ Sn−1 with degPξ = ν. After a real linear change of variables
we may assume ξ = (0, . . . , 0, 1). Hence [3], Lemma 3.9, implies

P (z′, zn) =
m∑
j=ν

zm−jn Qj(z′),

where the polynomials Qj ∈ C[z1, . . . , zn−1] are either zero or homogeneous
of degree j and where Qν(z′) = Pξ(z′, zn). Now let S := P + izm−ν+pn

and note that V (S) satisfies PL(Rn, ω) by the present hypothesis. To apply
Lemma 2.8, let d := (p, . . . , p, ν). Then

q(z′, zn) := zm−νn Qν(z′) + izm−ν+pn

has d-degree (m − ν + p)ν. For ν + 1 ≤ j ≤ m the term zm−jn Qj(z′) has
d-degree (m− j)ν + jp. Since

(m− ν + p)ν − ((m− j)ν + jp) = (j − ν)(ν − p) > 0

the polynomial q is the term in S with the highest d-degree. Next choose
a ∈ Sn−1 such that Qν(a) 6= 0 and consider the polynomial

λ 7→ q(λa, 1) = Qν(λa) + i = λνQν(a) + i.

Since Qν has real coefficients by hypothesis, we can choose λ0 ∈ C \R such
that ζ ′ := λ0a ∈ Cn−1 \ Rn−1 satisfies q(ζ ′, 1) = 0. Finally, note that the
equation

0 = q(z′, 1) = Qν(z′) + i

has no real solutions since Qν has real coefficients. Thus we have shown
that all conditions of Lemma 2.8 are fulfilled. Therefore, the present lemma
follows from Lemma 2.8. �

Corollary 3.12. Let Pm ∈ C[x, y, z] be homogeneous of degree m ≥ 2, let

ν := max{deg(Pm)θ : θ ∈ V (Pm) ∩ S2}

and define β(l) as in (3.7). Then the following assertions are equivalent :
(a) V (Pm) satisfies PL(R3, ω0).
(b) For each 0 ≤ l < m and for each Q ∈ C[x, y, z], degQ ≤ l, the variety

V (Pm +Q) satisfies PL(R3, ωβ(l)).
(c) There exist Q ∈ C[x, y, z], degQ < m, and a weight function ω such

that the variety V (Pm +Q) satisfies PL(R3, ω).
Moreover, the numbers β(l) are optimal in the following sense: If l satisfies
m − ν ≤ l < m and if for some weight function ω and each polynomial Q
of degree at most l the variety V (P + Q) satisfies PL(R3, ω), then tβ(l) =
O(ω(t)) as t tends to infinity.

Proof. (b) ⇒ (c): This holds obviously.

(c) ⇒ (a): This holds by Meise, Taylor, and Vogt [15], Theorem 4.1.
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(a) ⇒ (b): Since V (Pm) satisfies PL(R3, ω0) it also satisfies the Phragmén-
Lindelöf condition HPL(R3), considered in Hörmander [8] (by Meise, Taylor,
and Vogt [15], Proposition 3.9). By Hörmander [8], Theorem 6.5, this im-
plies that V (Pm) is locally hyperbolic at each ξ ∈ V (Pm) ∩ S2. Hence (b)
follows from Theorem 3.8.

The additional assertion obviously follows from Lemma 3.11. �

Remark. Note that Corrollary 3.12 implies Theorem 1.1 by the results of
Meise, Taylor, and Vogt [13], mentioned in 2.5.

From Hörmander [7], 10.4.11, we recall the following definition:

Definition 3.13. A polynomial P ∈ C[z1, . . . , zn] is said to be of principal
type if its principal part Pm satisfies

n∑
j=1

∣∣∣∣∂Pm∂xj
(x)
∣∣∣∣ 6= 0 for each x ∈ Rn \ {0}.

Note that by Euler’s rule 〈x, gradPm(x)〉 = mPm(x), so P is of principal
type if and only if gradPm(x) 6= 0 for each x ∈ V (Pm) ∩ Rn \ {0}.
Theorem 3.14. For a homogeneous polynomial P ∈ C[z1, . . . , zn] of degree
µ ≥ 1 and k ∈ N satisfying µk ≥ 2 the following assertions are equivalent
(for the definition of the weights ωα see Example 2.2):

(a) V (P k+Q) satisfies PL(Rn, ω0) for each Q ∈ C[z1, . . . , zn] with degQ ≤
(µ− 1)k.

(b) For each p ∈ N0, 0 ≤ p < k, and each Q ∈ C[z1, . . . , zn] with degQ ≤
(µ− 1)k + p the variety V (P k +Q) satisfies PL(Rn, ωp/k).

(c) There exists p ∈ N0, 0 ≤ p < k, such that the assertion in (b) holds.
(d) P is of principal type and real up to a complex factor, and each irre-

ducible factor of P admits a real zero ξ 6= 0.

Proof. From (d) we get (a) and (b) by Corollary 3.10. Obviously, (a) implies
(c) and also (b) implies (c). Hence it suffices to prove that (c) implies (d). To
do so, note first that V (P k) and hence V (P ) satisfies PL(Rn, ωp/k). Since P
is homogeneous, it follows from Meise, Taylor, and Vogt [15], Theorem 3.3,
that V (P ) satisfies PL(Rn, ω0). From this and [15], Theorem 3.13, we get
that for each irreducible factor q of P we have dimR V (q) ∩ Rn = n − 1.
Thus the last condition in (d) is fulfilled. Since V (P ) satisfies PL(Rn, ω0),
Lemma 2 in Meise, Taylor, and Vogt [14] implies the existence of λ ∈ C\{0}
such that λP has real coefficients. Hence the second condition in (d) holds,
and we may assume that P has real coefficients. To show that P is of
principal type we argue by contradiction and assume that for some a ∈
V (P ) ∩ Sn−1 we have gradP (a) = 0. This implies degPa ≥ 2. Since the
localization of a product is the product of the localizations of its factors it
follows that

ν := max{deg(P k)θ : θ ∈ V (P k) ∩ Sn−1} ≥ 2k.
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Now let s := ν − k + p, where 0 ≤ p < k is chosen according to (c). Then
s
ν = 1− ν−1(k − p) > 1− k−1(k − p) = p

k and µk − ν + s = (µ− 1)k + p.

Hence (c) implies that for each Q ∈ C[z1, . . . , zn] with degQ ≤ µk − ν + s
the variety V (P k +Q) satisfies PL(Rn, ωp/k). By Lemma 3.11 this implies

ts/ν = O(ωp/k(t)) = O(tp/k).

Since s
ν >

p
k , this contradiction completes the proof. �

Remark. Theorem 3.14 extends [4], Theorem 4.3 and Corollary 4.7.

4. Further results and examples.

In this section we first indicate that there are further variants of Lemma 3.6
which may be helpful in considering examples. Then we provide several
examples to illustrate the results of the previous section and to explain the
difficulties that one encounters in proving perturbation results.

Lemma 4.1. Let Pm ∈ C[x, y, z] be homogeneous of degree m ≥ 2, let ξ ∈
V (Pm) ∩ S2 satisfy deg(Pm)ξ =: µ ≥ 2, and assume that V (Pm) is locally
hyperbolic at ξ and that (Pm)ξ is square-free. Let Q ∈ C[x, y, z] with degQ <

m be given. Decompose Q as Q =
∑m−1

j=µ qj, where qj is either homogeneous
of degree j or zero. If deg(qj)ξ ≥ µ for each j, then V (Pm + Q) satisfies
PL(V (Pm +Q), Γ(ξ,Gξ, rξ), ω0) in a suitable cone Γ(ξ,Gξ, rξ).

Proof. After a real linear change of variables we may assume ξ = (1, 0, 0).
By [3], Lemma 3.9, we then have in these coordinates

Pm(x, y, z) =
m∑
j=µ

xm−jpj(y, z),

where pj is either homogeneous of degree j or identically zero and where
pµ(y, z) = (Pm)ξ(x, y, z). We may also assume that the coordinates have
been chosen so that π(x, y, z) := (x, y, 0) is a projection for which the local
hyperbolicity condition holds. Then we get

pµ(y, z) = c

µ∏
j=1

(z − ajy)

for suitable numbers c, a1, . . . , aµ ∈ C. Since pµ is square-free by hypothesis,
we have ai 6= aj for i 6= j and hence

δ := min{|ai − aj | : 1 ≤ i, j ≤ µ, i 6= j} > 0.

By Braun [1], Corollary 12, the local hyperbolicity of V (Pm) at ξ implies
the existence of σ > 0 and 0 < η < 1

2 and of holomorphic functions βj :
B(1, η)×B(0, η) → B(0, σ), 1 ≤ j ≤ µ so that
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V (Pm) ∩ (B(1, η)×B(0, η)×B(0, σ))

=
µ⋃
j=1

{(x, y, βj(x, y)) : (x, y) ∈ B(1, η)×B(0, η)}

and so that βj(x, y) is real for real (x, y). By the homogeneity of Pm we get

βj(x, y) = xβj

(
1,
y

x

)
= x

∞∑
k=1

bj,k

(y
x

)k
, 1 ≤ j ≤ µ,

where {bj,1 : 1 ≤ j ≤ µ} = {aj : 1 ≤ j ≤ µ}. Hence we may assume aj = bj,1
for 1 ≤ j ≤ µ. It is no restriction to assume η to be so small that∣∣∣∣∣

∞∑
k=2

bj,k

(y
x

)k∣∣∣∣∣ ≤ δ if (x, y) ∈ B(1, η)×B(0, η).

Arguing as in the proof of Lemma 3.6 we get for η > 0 small enough with

Γ :=
{

(x, y, z) ∈ C3 :
∣∣∣∣ x|x| − 1

∣∣∣∣ , |x| > R,
∣∣∣y
x

∣∣∣ < η,
∣∣∣ z
x

∣∣∣ < σ

}
and Γ′ := {(x, y) ∈ C3 : (x, y, 0) ∈ Γ} that

Pm(x, y, z) = U(x, y, z)F (x, y, z), (x, y, z) ∈ Γ,

where F (x, y, z) =
∏µ
j=1(z − βj(x, y)). We also get the existence of α > 0

such that

|U(x, y, z)| ≥ α |x|m−µ , (x, y, z) ∈ Γ.

Choosing η small enough, we get∣∣∣βj (1,
y

x

)
− aj

y

x

∣∣∣ =

∣∣∣∣∣
∞∑
k=2

bj,k

(y
x

)k∣∣∣∣∣ ≤ 2δ
∣∣∣y
x

∣∣∣ , 1 ≤ j ≤ µ.

Next fix 1 ≤ i ≤ µ and define for (x, y) ∈ Γ′

z(x, y, λ) := βi(x, y) + λ

where for some ρ > 1 (to be determined later), λ ∈ C satisfies

|λ| = min(ρ, δ |y|).
For j 6= i the previous choices imply

|z(x, y, λ)− βj(x, y)| =

∣∣∣∣∣(ai − aj)y + y

∞∑
k=2

(bi,k − bj,k)
(y
x

)k
+ λ

∣∣∣∣∣
≥ 4δ |y| − 2δ |y| − |y| = δ |y| .

Moreover, we get
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∣∣∣∣z(x, y, λ)
x

∣∣∣∣ =

∣∣∣∣∣ai yx +
∞∑
k=2

bi,k

(y
x

)k
+
λ

x

∣∣∣∣∣(4.1)

≤ (|ai|+ 2δ + δ)
∣∣∣y
x

∣∣∣
≤ max

1≤j≤µ
(|aj |+ 3δ)η < σ,

provided that η is small enough. All together we get for (x, y) ∈ Γ′

|Pm(x, y, z(x, y, λ))| = |(UF )(x, y, z(x, y, λ))| ≥ α |x|m−µ |λ| (δ |y|)µ−1.

Now fix Q =
∑m−1

j=µ qj as in the hypothesis. For κj := deg(qj)ξ there is
Mj with

|qj(1, η, ζ)| ≤Mj |(η, ζ)|κj if |(η, ζ)| ≤ 1.

Hence (4.1) implies

|qj(x, y, z(x, y, λ))| =
∣∣∣∣qj (1,

y

x
,
z(x, y, λ)

x

)∣∣∣∣ |x|j
≤Mj(1 + |aj |+ 3δ)κj

∣∣∣y
x

∣∣∣κj

|x|j .

Since κj ≥ µ by hypothesis, the last estimate implies the existence of M
such that

|Q(x, y, z(x, y, λ))| ≤M |x|m−1

∣∣∣∣xy
∣∣∣∣µ .

Now we claim that we can choose R > 1 and ρ > 1 so that

M < α |λ|
∣∣∣∣xy
∣∣∣∣ δµ−1 for |x| > R, (x, y) ∈ Γ′.(4.2)

To see this, assume first |λ| = δ |y|. Then

α |λ|
∣∣∣∣xy
∣∣∣∣ δµ−1 = αδµ |y|

∣∣∣∣xy
∣∣∣∣ = αδµ |x| > M if |x| > R = max

(
1,

M

δµα

)
.

If |λ| = ρ then

α |λ|
∣∣∣∣xy
∣∣∣∣ δµ−1 = γρ

∣∣∣∣xy
∣∣∣∣ δµ−1 > αρ

1
η
δµ−1 > M

if we choose ρ > ηM
αδµ−1 . Hence (4.2) holds. From it and κj ≤ µ we now get
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|Q(x, y, z(x, y, λ))| ≤M |x|m−1
∣∣∣y
x

∣∣∣µ(4.3)

< α |λ|
∣∣∣∣xy
∣∣∣∣ δµ−1 |x|m−1

∣∣∣y
x

∣∣∣µ
= α |λ| |x|m−1 δµ−1

∣∣∣y
x

∣∣∣µ−1

≤ α |λ| |x|m−1 δµ−1
∣∣∣y
x

∣∣∣µ−1

≤ |Pm(x, y, z(x, y, λ))| ,

since
∣∣ y
x

∣∣ < 1. From this estimate and the theorem of Rouché it follows for
(x, y) ∈ Γ′, y 6= 0, 1 ≤ i ≤ µ, that the functions ζ 7→ Pm(x, y, ζ) and ζ 7→
(Pm+Q)(x, y, ζ) have the same number of zeros in the disk |ζ − βi(x, y)| < r,
where r = min(ρ, δ |y|). Since Pm has exactly one zero in this disk, we get
that (Pm +Q)(x, y, ·) also has exactly one zero in that disk.

A similar application of the theorem of Rouché shows that for each (x, y) ∈
Γ′ the functions ζ 7→ Pm(x, y, ζ) and (Pm+Q)(x, y, ζ) have the same number
of zeros in the disk of radius σ |x|. All together we have shown that under
the present hypotheses the conclusion of Lemma 3.6 holds with β(l) = 0.
Since βj(x, y) is real for each (x, y) ∈ Γ′ and 1 ≤ j ≤ µ, this implies the
existence of a constant C > 0 such that for each (x, y, ζ) ∈ Γ satisfying
(Pm +Q)(x, y, ζ) = 0 we have the estimate

|Im ζ| ≤ C.

Therefore, the assertion of the lemma follows from Lemma 3.6. �

Lemma 4.1 does not hold without the hypothesis “(Pm)ξ is square-free”.
To provide an example for this fact, we will use the following lemma. Since
its proof uses only basic calculus, we omit it.

Lemma 4.2. For t > 0 and a ∈ R consider the polynomial

p(z; t, a) := (z2 − t2)(z − 2t) + a.

Then for each t > 0 and each a satisfying |a| ≤ 1
2 t

3, all zeros of p(·; t, a) are
real.

Example 4.3. Define P6, Q ∈ R[x, y, z] by

P6(x, y, z) := (xz − y2)(xz + y2)(xz − 2y2), Q(x, y, z) := x2y3.

Then the following assertions hold:
(a) For ξ = (±1, 0, 0), the variety V (P6 + Q) satisfies PL(V (P6 + Q),

Γ(ξ,Gξ, rξ), ω1/3).
(b) For each ξ ∈ V (P6)∩S2, the variety ξ 6= (±1, 0, 0), V (P6 +Q) satisfies

PL(V (P6 +Q), Γ(ξ,Gξ, rξ), ω0).
(c) V (P6 +Q) satisfies PL(R3, ω1/3).
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(d) If V (P6+Q) satisfies PL(R3, ω) for some weight function ω then t1/3 =
O(ω(t)) as t tends to infinity.

Proof. (a) Let ξ := (1, 0, 0), define

Γ :=
{

(x, y, z) ∈ C3 :
∣∣∣∣ x|x| − 1

∣∣∣∣ < 1
4
, |y| < 1

4
|x| , |z| < 1

4
|x| , |x| > 1

}
,

and let Γ′ = {(x, y) ∈ C2 : (x, y, 0) ∈ Γ}. Fix (x, y) ∈ Γ′ ∩ R2 and assume
first that |y| > (2x)2/3. Then we have∣∣∣∣y3

x

∣∣∣∣ < 1
2

∣∣∣∣y2

x

∣∣∣∣3 .
Hence Lemma 4.2 implies that all zeros of the equation

(P6 +Q)(x, y, z) = x3

((
z2 −

(
y2

x

)2
)(

z − 2
y2

x

)
+
y3

x

)
are real.

Assume next that (x, y) ∈ Γ′ ∩ R2 satisfies |y| < 2 |x|2/3. If y = 0 then
obviously, (P6 + Q)(x, 0, z) has a zero of order 3 at the origin. Hence we
may assume |y| > 0. Then let δ := 21/3e |y| |x|−1/3 and apply the Lemma of
Boutroux-Cartan to get∣∣∣∣∣

(
z2 −

(
y2

x

)2
)(

z − 2
y2

x

)∣∣∣∣∣ ≥
(
δ

e

)3

= 2
∣∣∣∣y3

x

∣∣∣∣ > ∣∣∣∣y3

x

∣∣∣∣
outside a finite number of disks for which the sum of their radii is at most
2δ. Applying the theorem of Rouché at the boundary of these disks we get
that for each zero ζ of the equation (P6 +Q)(x, y, ζ) = 0 we have

|Im ζ| ≤ 4e21/3

∣∣∣∣y3

x

∣∣∣∣1/3 ≤ 4e21/3

(
23x2

x

)1/3

≤ e24 |x|1/3 .

Combining this estimate with Lemma 3.7, we get (a) for ξ. Since it is easy
to check that the same arguments apply also for −ξ, the proof of (a) is
complete.

(b) Whenever ξ ∈ V (P6) ∩ S2 and ξ 6= (±1, 0, 0) and ξ 6= (0, 0,±1) then
gradP6(ξ) 6= 0. Hence a real linear change of coordinates shows that we can
apply Lemma 3.6 with µ = 1. Hence in this case the assertion follows from
Lemma 3.6 and 3.7. If ξ = (0, 0, 1) then let

Γ′ :=
{

(y, z) ∈ C2 :
∣∣∣∣ z|z| − 1

∣∣∣∣ < 1
4
, |z| > 2, |y| < 1

4
|z|
}

and note that

(P6 +Q)(x, 0, z) = x3z3
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has a zero of order 3 at the origin for each |z| > 0. For (y, z) ∈ Γ′ ∩R2 with
y 6= 0 we have

(P6 +Q)(0, y, z) = 2y6 > 0,

(P6 +Q)
(

3
2
y2

z
, y, z

)
= −5

8
y6 +

9
4
y7

z2
= −y6

(
5
8
− 9

4
y

z2

)
< 0,

(P6 +Q)
(
−2

y2

z
, y, z

)
= −12y6 + 4

y7

z2
= −y6

(
12 +

4y
z2

)
< 0.

Since (P6 + Q)(·, y, z) has degree three and real coefficients, this implies
that for each (y, z) ∈ Γ′ ∩ R2, all zeros of x 7→ (P6 + Q)(x, y, z) are real.
Hence Lemma 3.7 implies the assertion of (b) also in this case. The same
arguments apply for ξ = (0, 0,−1).

(c) This assertion follows from Proposition 3.3 since the second condition
in 3.3 (b) holds by the present parts (a) and (b) and since V (P6) satisfies
PL(R3, ω0). The latter assertion follows from the fact that P6 is the product
of three polynomials, each of which defines a wave operator.

(d) It is easy to check that P6 +Q is (3, 2, 1)-quasihomogeneous and that the
polynomial z3−2z2−z+3 has a zero τ which is not real. Then ζ := (1, 1, τ)
satisfies

(P6 +Q)(ζ) = (τ − 1)(τ + 1)(τ − 2) + 1 = τ3 − 2τ2 − τ + 3 = 0.

Hence P := P6 + Q, ζ and d = (3, 2, 1) satisfy the hypotheses of [4], Lem-
ma 3.2. Hence (d) follows from this lemma. �

The following example shows how Lemma 4.1 can be applied.

Example 4.4. Define the polynomial P5 by

P5(x, y, z) := z2y(x2 − y2) + x5 + (x− y)2x3 + y5.

Let q3, q4, and p3 be polynomials in C[x, y], each of which is homogeneous
of degree 3, 4, and 3 respectively or identically zero, and define

Q(x, y, z) := q3(x, y) + q4(x, y) + zp3(x, y).

Then V (P5 +Q) satisfies PL(R3, ω0).
An interesting example of a perturbation Q satisfying the above condi-

tions is given by Q(x, y, z) := x4 − xy2.

Proof. To derive the assertion from Proposition 3.3, let P := P5 + Q, so
that P5 is the principal part of P . Some computation shows that gradP5

vanishes only on V (P5) ∩ {(0, 0, t) : t ∈ C} so that

V (P5)sing ∩ S2 = {(0, 0, 1), (0, 0,−1)}.
Since P5 is irreducible, it follows from Meise, Taylor, and Vogt [15], Corol-
lary 3.14, that V (P5) satisfies PL(R3, ω0) if and only if V (P5) satisfies
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Hörmander’s Phragmén-Lindelöf condition, which by Hörmander [8], Theo-
rem 6.5, is equivalent to V (P5) being locally hyperbolic at each ξ ∈ V (P5)∩
S2. Since P5 has real coefficients, this condition obviously holds at each
regular point ξ ∈ V (P5) ∩ S2. At the singular points ξ± := (0, 0,±1), it
holds by the following observation: The reduction of P5 at ξ±, defined by

q±(x, y) := P5(x, y,±1) = y(x2 − y2) + x5 + (x2 − y2)x3 + y5,

has a zero variety which is locally hyperbolic at the origin. Therefore
it follows from [5], Lemma 6.1, that V (P5) satisfies PLloc(ξ) and hence
V (P5) is locally hyperbolic at ξ±, by Braun [1], Corollary 12. Thus we
have shown that V (P5) satisfies PL(ω0), i.e., the first condition of Proposi-
tion 3.3 (b) holds. To show that also the second one is fulfilled, note that
V (P ) satisfies PL(V (P ),Γ(ξ,Gξ, rξ), ω0) for each ξ ∈ V (P5) ∩ S2 \ {±ξ}
and a suitable cone Γ(ξ,Gξ, rξ) because of Lemma 3.6 and Lemma 3.7,
since gradP5(ξ) is not zero. To show that the same condition also holds
at ξ = ξ±, note that deg(P5)ξ± = 3 and that (P5)ξ±(x, y, z) = y(x2 − y2)
is square-free. The decomposition of Q into homogeneous components is
Q = Q3 + Q4 with Q3(x, y, z) = q3(x, y) and Q4(x, y, z) = q4(x, y) +
zp3(x, y). Hence deg(Qj)ξ± ≥ 3 = deg(P5)ξ± for j = 3, 4, and it follows
from Lemma 4.1 that V (P ) satisfies PL(V (P ),Γ(ξ±, Gξ± , rξ±), ω0) for suit-
able cones Γ(ξ±, Gξ± , rξ±). This shows that also the second condition of 3.3
(b) is fulfilled. Therefore, the assertion follows from Proposition 3.3. �

Example 4.5. Let P ∈ R[x, y, z] be defined as

P (x, y, z) := z2(x2 + y2 − z2)3.

Then for each Q ∈ C[x, y, z] with degQ ≤ 5 the operator (P +Q)(D) admits
a continuous linear right inverse on D′(R3). If degQ = 6 or degQ = 7,
then (P +Q)(D) admits a continuous linear right inverse on D′(ω1/3)(R

3) or

D′(ω2/3)(R
3), respectively. This follows from 2.5 and Proposition 3.9.

Remark. In Lemma 3.11 and Theorem 3.14 the statements are optimal
if perturbations by arbitrary polynomials of a given degree are considered.
For an individual polynomial it may happen that (P + Q)(D) admits a
continuous linear right inverse on D′(σ)(R

n) for a weight function σ which
grows more slowly than indicated by 3.9 or 3.14. Such examples can be
constructed easily from our results, as we show next.

Example 4.6. Let P (x, y, z) := (x2 + y2 − z2)2. Then 2.5 and Theo-
rem 3.14 imply that (P +Q)(D) admits a continuous linear right inverse on
D′(ω1/2)(R

3) whenever degQ ≤ 3 and that for each ω satisfying ω(t) = o(t1/2)
there is a polynomial Q of degree 3 such that (P +Q)(D) does not admit a
continuous linear right inverse on D′(ω)(R

3).
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Nevertheless, in special cases like, e.g., Q0(x, y, z) := (x2+y2−z2)y, more
can be said. For this example

P +Q0 = ST for S := x2 + y2 − z2 and T := x2 + y2 − z2 + y.

Since S(D) is the wave operator, S(D) admits a continuous linear right
inverse on D′(R3). By Proposition 3.9, the same holds for T (D), and thus
also for the product (P +Q0)(D).

Remark 4.7. It has been known for some time that the conclusion of
Proposition 3.9 does not hold in general if there are singular points of V (Pm)
in Sn−1. The simplest example is provided by the polynomial P2 ∈ R[x, y, z],

P2(x, y, z) = xy.

For Q(x, y, z) := iz, the operator (P2 +Q)(D) does not admit a continuous
linear right inverse in D′(ω)(R

3) if the weight function ω satisfies ω(t) =

o(t1/2). This was shown in Meise, Taylor, and Vogt [15], Example 4.9, but
can also be derived from Lemma 3.11.

In [6] we derive new necessary conditions for a given polynomial P ∈
C[z1, . . . , zn] to satisfy PL(Rn, ω) for a given weight function and we show
that these conditions are characterizing when n = 3. To achieve this, a
more refined analysis of the behavior of V (P ) in conoids is necessary and
ω-hyperbolicity conditions in these conoids play a crucial role.
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[15] , Phragmén-Lindelöf principles on algebraic varieties, J. Amer. Math. Soc.,
11 (1998), 1-39, MR 98j:32007, Zbl 0896.32008.

[16] R. Nevanlinna, Eindeutige Analytische Funktionen, Grundlehren Math. Wiss., 46,
Springer, Berlin-New York, 1974, MR 49 #9165, Zbl 0278.3000.

[17] V.P. Palamodov, A criterion for splitness of differential complexes with constant coef-
ficients, in ‘Geometrical and Algebraical Aspects in Several Complex Variables’, C.A.
Berenstein and D.C. Struppa (Eds.), EditEL, Rende, 1991, 265-291, MR 94d:58137.

Received August 7, 2002. The research of the third author was supported in part by the
National Science Foundation under grant number DMS 0070725.

Mathematisches Institut
Heinrich-Heine-Universität
Universitätsstraße 1
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COMPACT HYPERSURFACES IN A UNIT SPHERE WITH
INFINITE FUNDAMENTAL GROUP

Qing-Ming Cheng

It is our purpose to study curvature structures of compact
hypersurfaces in the unit sphere Sn+1(1). We proved that
the Riemannian product S1(

√
1 − c2) ×Sn−1(c) is the only

compact hypersurfaces in Sn+1(1) with infinite fundamental
group, which satisfy r ≥ n−2

n−1
and S ≤ (n − 1)n(r−1)+2

n−2
+

n−2
n(r−1)+2

, where n(n − 1)r is the scalar curvature of hyper-

surfaces and c2 = n−2
nr

. In particular, we obtained that the
Riemannian product S1(

√
1 − c2) × Sn−1(c) is the only com-

pact hypersurfaces with infinite fundamental group in Sn+1(1)
if the sectional curvatures are nonnegative.

1. Introduction.

Let M be an n-dimensional hypersurface in a unit sphere Sn+1(1) of dimen-
sion n + 1. It is well-known that the investigation on curvature structures
of compact hypersurfaces is important and interesting. In 1977, S.Y. Cheng
and Yau [4] studied compact hypersurfaces with constant scalar curvature in
the unit sphere Sn+1(1). They proved that let M be an n-dimensional com-
pact hypersurface with constant scalar curvature n(n−1)r, if r ≥ 1 and the
sectional curvatures of M are nonnegative, then M is isometric to the totally
umbilical hypersurface Sn(c) or the Riemannian product Sk(c1)× Sn−k(c2)
1 ≤ k ≤ n− 1, where Sk(c) denote the sphere of radius c. In order to prove
this theorem, they introduced a differential operator � defined by

�f =
n∑

i,j=1

(nHδij − hij)∇i∇jf,

for any C2-function f on M . Where hij and H are components of the second
fundamental form and the mean curvature of M , respectively. We should
notice the following:

(1) The differential operator � is self-adjoint.
(2) The differential operator � is degenerate elliptic if r ≥ 1.

Therefore, in order to prove their theorem, they must make use of the prop-
erties that the differential operator � is self-adjoint and degenerate elliptic.
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And in order to obtain the estimate
∑n

i,j,k=1 h
2
ijk ≥ n2|gradH|2, which is

very important in the proof of their theorem, the condition of r ≥ 1 and
the assumption of constant scalar curvature is essential. Where hijk’s are
components of the covariant differentiation of the second fundamental form.
Hence, the condition r ≥ 1 and the assumption of constant scalar curvature
play an essential role in the proof of their theorem. Further, by making use
of the similar method which was used by Nakagawa and the author in [3] and
the differential operator introduced by S.Y. Cheng and Yau, Li [5] proved
that let M be an n-dimensional compact hypersurface with constant scalar
curvature n(n − 1)r, if r ≥ 1 and S ≤ (n − 1)n(r−1)+2

n−2 + n−2
n(r−1)+2 , then M

is isometric to either the totally umbilical hypersurface or the Riemannian
product S1(

√
1− c2)×Sn−1(c) with c2 = n−2

nr ≤ n−2
n , where S is the squared

norm of the second fundamental form of M . These properties that the differ-
ential operator � is self-adjoint and degenerate elliptic are indispensable in
the proof of his theorem again. And the estimate

∑n
i,j,k=1 h

2
ijk ≥ n2|gradH|2

is also essential in the proof of his theorem.
On the other hand, for any 0 < c < 1, by considering the standard immer-

sions Sn−1(c) ⊂ Rn, S1(
√

1− c2) ⊂ R2 and taking the Riemannian product
immersion S1(

√
1− c2) × Sn−1(c) ↪→ R2 × Rn, we obtain a compact hy-

persurface S1(
√

1− c2)×Sn−1(c) in Sn+1(1) with constant scalar curvature
n(n − 1)r, where r = n−2

nc2
> 1 − 2

n . Hence, some of Riemannian products
S1(

√
1− c2)×Sn−1(c) do not appear in these results of S.Y. Cheng and Yau

[4] and Li [5]. Moreover, Cheng [2] proved:

Theorem C (Cheng [2]). Let M be an n-dimensional complete hypersur-
face with constant scalar curvature n(n − 1)r in Sn+1(1). If M has only
two distinct principal curvatures one of which is simple, then, r > 1 − 2

n

holds and M is isometric to S1(
√

1− c2) × Sn−1(c) if r 6= n−2
n−1 and S ≥

(n− 1)n(r−1)+2
n−2 + n−2

n(r−1)+2 , where c2 = n−2
nr .

From the assertion above, it is natural and interesting to generalize these
results due to S.Y. Cheng and Yau [4] and Li [5] to the case r > 1− 2

n . That
is, it is interesting to prove the following:

Problem 1 (cf. Cheng [2]). Let M be an n-dimensional compact hypersur-
face with constant scalar curvature n(n− 1)r in Sn+1(1). If r > 1− 2

n and
S ≤ (n− 1)n(r−1)+2

n−2 + n−2
n(r−1)+2 , then M is isometric to the totally umbilical

hypersurface or the Riemannian product S1(
√

1− c2)× Sn−1(c).

It is our purpose to try to solve this problem above. Since the problem
seems to be a very hard problem, we shall try to solve it under a topological
condition. It is known that S1(

√
1− c2)× Sn−1(c) has infinite fundamental
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group. Hence, we shall consider compact hypersurfaces with infinite funda-
mental group in the unit sphere Sn+1(1). The following theorems will be
proved.

Theorem 1. Let M be an n-dimensional compact hypersurface with infinite
fundamental group in Sn+1(1). If r ≥ n−2

n−1 and S ≤ (n − 1)n(r−1)+2
n−2 +

n−2
n(r−1)+2 , then M is isometric to the Riemannian product S1(

√
1− c2) ×

Sn−1(c), where n(n− 1)r is the scalar curvature of M and c2 = n−2
nr .

Theorem 2. Let M be an n-dimensional compact hypersurface with infinite
fundamental group in Sn+1(1). If the sectional curvatures are nonnegative,
then M is isometric to the Riemannian product S1(

√
1− c2)× Sn−1(c).

Remark. In our Theorems 1 and 2, we do not assume that the scalar cur-
vature is constant. And in our Theorem 2, we do not assume any condition
on scalar curvature.

2. Proofs of theorems.

Let M be an n-dimensional hypersurface in a unit sphere Sn+1(1) with
constant scalar curvature n(n−1)r. We take a local orthonormal frame field
{e1, . . . , en+1} in Sn+1(1), restricted to M , so that e1, . . . , en are tangent to
M . Let ω1, · · · , ωn+1 denote the dual coframe fields in Sn+1(1). We shall
make use of the following convention on the ranges of indices:

1 ≤ A,B,C, · · · ,≤ n+ 1; 1 ≤ i, j, k, · · · ,≤ n.

Then the structure equations of Sn+1(1) are given by

dωA =
n+1∑
B=1

ωAB ∧ ωB, ωAB + ωBA = 0,

dωAB =
n+1∑
C=1

ωAC ∧ ωCB + ΩAB, ΩAB = −1
2

n+1∑
C,D=1

RABCDωC ∧ ωD,

RABCD = (δACδBD − δADδBC),

where ΩAB (resp. RABCD) denotes the curvature form (resp. the compo-
nents of the curvature tensor) of Sn+1(1). Then, in M ,

ωn+1 = 0.

It follows from Cartan’s Lemma that

ωn+1i =
∑

j

hijωj , hij = hji.(2.1)
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The second fundamental form α and the mean curvature of M are defined
by

α =
∑
i,j

hijωiωjen+1 and nH =
∑

i

hii,

respectively. M is said to be totally umbilical if the hij can be expressed as
hij = Hδij . The structure equations of M are given by

dωi =
n∑

k=1

ωik ∧ ωk, ωij + ωji = 0,(2.2)

dωij =
n∑

k=1

ωik ∧ ωkj + Ωij , Ωij = −1
2

n∑
k,l=1

Rijklωk ∧ ωl,

Rijkl = (δikδjl − δilδjk) + (hikhjl − hilhjk),

where Ωij (resp. Rijkl) denotes the Riemannian curvature form (resp. the
components of the Riemannian curvature tensor) of M . From the above
equation, we have

Rij = (n− 1)δij + nHhij −
n∑

k=1

hikhkj ,(2.3)

n(n− 1)r = n(n− 1) + n2H2 − S,(2.4)

where Rij and n(n− 1)r are components of the Ricci curvature tensor and
the scalar curvature of M , respectively, and S =

∑n
ij=1 h

2
ij is the squared

norm of the second fundamental form of M .

Proof of Theorem 1. Since r ≥ n−2
n−1 and S ≤ (n− 1)n(r−1)+2

n−2 + n−2
n(r−1)+2 , we

infer

n+ 2(n− 1)(r − 1)− n− 2
n

S ≥ 0.(2.5)

In fact,

n+ 2(n− 1)(r − 1)− n− 2
n

S

= n+ 2(n− 1)(r − 1)− n− 2
n

{
(n− 1)

n(r − 1) + 2
n− 2

+
n− 2

n(r − 1) + 2

}
+
n− 2
n

{
(n− 1)

n(r − 1) + 2
n− 2

+
n− 2

n(r − 1) + 2
− S

}
≥ n+ 2(n− 1)(r − 1)− n− 2

n

{
(n− 1)

n(r − 1) + 2
n− 2

+
n− 2

n(r − 1) + 2

}
=

(n− 2)2

n
+
n− 1
n

{n(r − 1) + 2} − (n− 2)2

n{n(r − 1) + 2}
.
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We consider function f(t) = (n−2)2

n + n−1
n t− (n−2)2

nt . By a direct computation,
we have f(t) ≥ 0 if t ≥ n−2

n−1 . Since r ≥ n−2
n−1 , we have n(r − 1) + 2 ≥ n−2

n−1 .
Thus, we infer

n+ 2(n− 1)(r − 1)− n− 2
n

S ≥ 0.

Therefore, when r ≥ n−2
n−1 , we know that

S ≤ (n− 1)
n(r − 1) + 2

n− 2
+

n− 2
n(r − 1) + 2

(2.6)

is equivalent to

n+ 2(n− 1)(r − 1)− n− 2
n

S(2.7)

≥ n− 2
n

√
{n(n− 1)(r − 1) + S}{S − n(r − 1)}.

Indeed, we can prove that

S ≤ (n− 1)
n(r − 1) + 2

n− 2
+

n− 2
n(r − 1) + 2

holds if and only if{
n+ 2(n− 1)(r − 1)− n− 2

n
S

}2

≥ (n− 2)2

n2
{n(n− 1)(r − 1) + S}{S − n(r − 1)}.

Since (2.5) holds, we obtain that (2.7) is true.
From Gauss equation n(n− 1)r = n(n− 1) + n2H2 − S, we conclude

{S − n(r − 1)} =
n

n− 1
(S − nH2).(2.8)

Hence, from (2.7) and (2.8), we obtain

n+ 2nH2 − S ≥ n− 2√
n(n− 1)

√
n2H2(S − nH2).(2.9)

For any point p and any unit vector ~u ∈ TpM , we choose a local orthonormal
frame field {e1, · · · , en} such that en = ~u, we have, from Gauss equation
(2.3),

Ric(~u) = (n− 1) + nHhnn −
n∑

i=1

h2
in.(2.10)

Since

(nH − hnn)2 =

(
n−1∑
i=1

hii

)2

≤ (n− 1)
n−1∑
i=1

h2
ii,
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we have

n2H2 − (n− 1)
n∑

i=1

h2
ii + nh2

nn − 2nHhnn ≤ 0.

From
∑

i(hii −H) = 0 and
∑n

i=1(hii −H)2 =
∑n

i=1 h
2
ii − nH2, we have, for

any i,

(hii −H)2 ≤ n− 1
n

(
n∑

i=1

h2
ii − nH2

)
.

0 ≥ n(h2
nn − nHhnn) + (n− 2)nH(hnn −H)

+ 2(n− 1)nH2 − (n− 1)
n∑

i=1

h2
ii

≥ n(h2
nn − nHhnn)− (n− 2)n|H|

√√√√n− 1
n

(
n∑

i=1

h2
ii − nH2

)

+ 2(n− 1)nH2 − (n− 1)
n∑

i=1

h2
ii,

namely,

(h2
nn − nHhnn)

(2.11)

≤ (n− 2)|H|

√√√√n− 1
n

(
n∑

i=1

h2
ii − nH2

)
− 2(n− 1)H2 +

n− 1
n

n∑
i=1

h2
ii.

From (2.10) and (2.11), we have

Ric(~u) ≥ (n− 1)− (n− 2)|H|

√√√√n− 1
n

(
n∑

i=1

h2
ii − nH2

)

+ 2(n− 1)H2 − n− 1
n

n∑
i,j=1

h2
ij

because of n−1
n > 1

2 . Thus, we obtain, from the above inequality and S =∑n
i,j=1 h

2
ij ,

Ric(~u) ≥ n− 1
n

{
n+ 2nH2 − S − n− 2√

n(n− 1)

√
n2H2(S − nH2)

}
.(2.12)

From (2.9), we have Ric(~u) ≥ 0. In particular, from the assertions above, we
know that if S < (n−1)n(r−1)+2

n−2 + n−2
n(r−1)+2 holds, then Ric(~u) > 0. Thus, if
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there exists point p in M such that S < (n− 1)n(r−1)+2
n−2 + n−2

n(r−1)+2 , then, at
the point p, the Ricci curvature is positive. From the following Lemma due
to Aubin [1], we know that there exists a metric on M such that the Ricci
curvature is positive on M . According to Myers theorem, we know that
the fundamental group is finite. This is impossible because M has infinite
fundamental group.

Lemma (cf. Aubin [1, p. 344]). If the Ricci curvature of a compact Rie-
mannian manifold is nonnegative and positive at somewhere, then the man-
ifold carries a metric with positive Ricci curvature.

Thus, we must have S = (n− 1)n(r−1)+2
n−2 + n−2

n(r−1)+2 . And at each point,
there exists a unit vector ~u such that Ric(~u) = 0. From the assertions above,
we infer that these inequalities above are equalities. That is, we must have
hij = 0 if i 6= j and h11 = · · · = hn−1n−1,

(hnn −H)2 =
n− 1
n

(
n∑

i=1

h2
ii − nH2

)
=
n− 1
n

(S − nH2)

and
(h11 −H)2 = · · · = (hn−1n−1 −H)2 =

1
n(n− 1)

(S − nH2).

Hence, we conclude that M has only two distinct principal curvatures one
of which is simple. Let {e1, · · · , en} be a local orthonormal frame field such
that hij = λiδij , where λi’s are principal curvatures on M . Without loss
of generality, we can assume µ = λn, λ = λ1 = · · · = λn−1. From Gauss
Equation (2.2) and the definition of the Ricci curvature, we have 1 +µλ = 0
because of 1 +λiλj = 1 +λ2 > 0, for any i, j = 1, · · · , n− 1. From (2.4), we
have

µ =
n(r − 1)

2λ
− n− 2

2
λ.

Hence λ2 = n(r−1)+2
n−2 and µ2 = n−2

n(r−1)+2 .
We consider the integral submanifold of the corresponding distribution

of the space of principal vectors corresponding to the principal curvature
λ. Since the multiplicity of the principal curvature λ is greater than 1, we
know that the principal curvature λ is constant on this integral submanifold
(cf. Otsuki [6]). From λ2 = n(r−1)+2

n−2 and µ2 = n−2
n(r−1)+2 , we know that

the scalar curvature n(n − 1)r and the principal curvature µ are constant.
Thus, we obtain that M is isoparametric. Therefore, M is isometric to the
Riemannian product S1(

√
1− c2)× Sn−1(c) because S = (n− 1)n(r−1)+2

n−2 +
n−2

n(r−1)+2 holds. This completes the Proof of Theorem 1.

Proof of Theorem 2. Since the sectional curvatures are nonnegative, we
have that the Ricci curvature is nonnegative. From the arguments in the
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Proof of Theorem 1, we infer that at each point, there exists a unit vector
~u such that Ric(~u) = 0.

Let {e1, · · · , en} be a local orthonormal frame field such that hij = λiδij ,
where λi’s are principal curvatures on M . Then, from Gauss Equation
(2.2), we have 1 + λiλj ≥ 0 for i 6= j. Further, there exists an i such that∑

j 6=i(1 + λiλj) = 0 from the definition of Ricci curvature. Hence, we must
have 1 + λiλj = 0 for j 6= i. Therefore, M has only two distinct principal
curvatures one of which is simple. Let µ = λi and λ = λj for j 6= i. From
(2.4), we have

µ =
n(r − 1)

2λ
− n− 2

2
λ.(2.13)

Since 1 +µλ = 0 and (2.13) hold, we have λ2 = n(r−1)+2
n−2 and µ2 = n−2

n(r−1)+2 .
Hence, we have

S = (n− 1)λ2 + µ2 = (n− 1)
n(r − 1) + 2

n− 2
+

n− 2
n(r − 1) + 2

.

By making use of the same assertion as in the Proof of Theorem 1, we infer
that M is isometric to the Riemannian product S1(

√
1− c2)×Sn−1(c). This

completes the Proof of Theorem 2.
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INJECTIVE ENVELOPES OF C∗-ALGEBRAS AS
OPERATOR MODULES

Michael Frank and Vern I. Paulsen

In this paper we give some characterizations of M. Hama-
na’s injective envelope I(A) of a C∗-algebra A in the set-
ting of operator spaces and completely bounded maps. These
characterizations lead to simplifications and generalizations
of some known results concerning completely bounded pro-
jections onto C∗-algebras. We prove that I(A) is rigid for
completely bounded A-module maps. This rigidity yields a
natural representation of many kinds of multipliers as multi-
plications by elements of I(A). In particular, we prove that
the(n times iterated) local multiplier algebra of A embeds into
I(A).

1. Introduction.

Let A denote a unital C∗-algebra. M. Hamana [13, 14, 16] introduced
the injective envelope of A, I(A), as a “minimal” injective operator system
containing A and established various characterizations and properties of
I(A) in the setting of completely positive mappings and operator systems.

In recent years attention has shifted from completely positive maps and
operator systems to completely bounded maps, operator algebras and ope-
rator spaces. In particular a theory has evolved of operator spaces that are
completely contractive as modules over operator algebras. See for example,
[3, 20].

This theory gives a new categorical framework where one can examine
injective envelopes. While other author’s have pursued this viewpoint they
have generally defined injectivity and rigidity in terms of completely con-
tractive maps. For example, defining injectivity by requiring completely
contractive maps to have completely contractive extensions. This is equiv-
alent to requiring that completely bounded maps have completely bounded
extensions of the same completely bounded norm. Since unital completely
contractive maps on C∗-algebras are completely positive this approach ge-
nerally reduces to M. Hamana’s results in the C∗-algebra setting.

Our approach is different in that we are interested in a setting where our
objects are A-modules and injectivity is defined by requiring that completely
bounded A-module maps have completely bounded A-module extensions,
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but not necessarily of the same norm. We show for example that, as well as
being a minimal injective operator system containing A, that I(A) is in a
certain sense the “minimal” injective left operator A-module containing A.
This immutability of the “injective hull” of C∗-algebras under change of ca-
tegory has some immediate applications to completely bounded projections
and multiplier algebras.

In this paper our primary focus is on the new properties of I(A) and
their applications. For this reason we take the quickest approach, which is
to restrict our attention to the unital case and use M. Hamana’s results to
deduce these new properties by our off-diagonalization trick.

Many of our results do carry over to the case of a non-unital C∗-algebra B
by the simple device of adjoining a unity to B, letting A denote this unital
C∗-algebra and observing that any B-modules are automatically A-modules.
For a greater development of the non-unital case we refer the reader to the
subsequent paper [4].

2. Mapping properties of I(A).

Throughout this section A will denote a unital C∗-algebra and I(A) will
denote its injective envelope as defined in [13, Def. 2.1, Th. 4.1]. We assume
that the reader is familiar with the definitions and elementary properties of
completely bounded and completely positive maps as presented in [20] or
[23].

One of M. Hamana’s fundamental results about I(A) was his rigidity
theorem. This theorem says that if ϕ : I(A) → I(A) is completely positive
with ϕ(a) = a for all a in A then ϕ(x) = x for all x in I(A).

A direct analog of this result is false for general completely bounded
maps. If A 6= I(A), then there exists a nonzero bounded linear functional
f : I(A) → C with f(A) = {0}. Defining the map ϕ : I(A) → I(A) via
ϕ(x) = x + f(x)1 yields a completely bounded map with ϕ(a) = a for
all a in A, but ϕ(x) 6= x for all x in I(A). However, if one recalls that
completely positive maps that fix A are automatically A-bimodule maps
[6], [20, Exercise 4.3] then one is led to the appropriate generalization of
M. Hamana’s rigidity. Surprisingly one does not need bimodules, only left
or right A-modules as the following results show.

Theorem 2.1. Let E ⊆ I(A) be a subspace such that AE ⊆ E (respectively,
EA ⊆ E) and let ϕ : E → I(A) be a completely bounded left (resp., right)
A-module map. Then there exists an element y in I(A) such that ϕ is right
(resp., left) multiplication by y, i.e., ϕ(e) = ey (ϕ(e) = ye) for all e in E
and ‖y‖ = ‖ϕ‖cb . When AEA ⊆ E and ϕ is a bimodule map, then y may
be taken in the center of I(A).

In particular, ϕ extends to a completely bounded, left (resp., right) A-
module map ψ : I(A) → I(A) such that ψ|E = ϕ and ‖ϕ‖cb = ‖ψ‖cb. If
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E ⊆ I(A) contains an invertible element of I(A), then the element y ∈ I(A)
and consequently the extension ψ are unique.

Proof. It will suffice to assume that ‖ϕ‖cb ≤ 1. Let S ⊆M2(I(A)) be defined
as

S =
{(

a e
f∗ λ

)
: a ∈ A, e, f,∈ E, λ ∈ C

}
and Φ : S →M2(I(A)) by

Φ
((

a e
f∗ λ

))
=
(

a ϕ(e)
ϕ(f)∗ λ

)
.

Arguing as in [20] or [28] one sees that Φ is completely positive and hence
can be extended to a completely positive map on all of M2(I(A)) which we

still denote by Φ. Using the fact that Φ fixes A⊕C=
{(

a 0
0 λ

)
:a ∈ A, λ∈C

}
and again arguing as in [28], we see that there exists ϕi : I(A) → I(A), i =
1, 2, 3, 4 such that

Φ
((

x1 x2

x3 x4

))
=
(
ϕ1(x1) ϕ2(x2)
ϕ3(x3) ϕ4(x4)

)
.

Clearly, ϕ1 and ϕ4 must be completely positive and ϕ2 extends ϕ.
Since ϕ1(a) = a for all a in A, by M. Hamana’s rigidity result ϕ1(x) = x

for all x in I(A). Thus, Φ fixes the C∗-subalgebra, I(A) ⊕ C and so by
[6] (see also [20]) Φ must be a bimodule map over this algebra. Thus,(

0 ϕ2(x)
0 0

)
= Φ

((
0 x
0 0

))
= Φ

((
x 0
0 0

)(
0 1
0 0

))
=
(
x 0
0 0

)(
0 ϕ2(1)
0 0

)
and we have that ϕ2(x) = x · ϕ2(1). Finally, ‖ϕ‖cb = ‖ϕ2‖cb = ‖ϕ2(1)‖ .

The proof for right A-module maps is similar. For the bimodule case let

S =
{(

a e
f∗ b

)
: a, b ∈ A, e, f ∈ E

}
and deduce that ϕ2 is an I(A)-bimodule

map. If E contains an invertible element e, then y = e−1ϕ(e) and so y is
unique. �

In particular, the above results show that every completely bounded left
(resp., right or bi-) A-module map of A into I(A) admits a unique extension
to a completely bounded left (resp., right or bi-) A-module map of I(A) into
itself and this extension has the same completely bounded norm.

Corollary 2.2 (Rigidity). Let A be a unital C∗-algebra and I(A) be its in-
jective envelope C∗-algebra. Let E be a subspace of I(A) with A ⊆ E and
AE ⊆ E (respectively, EA ⊆ E) and let ϕ : E → I(A) be a completely
bounded left (resp., right) A-module map. If ϕ(a) = a for all a in A, then
ϕ(e) = e for all e in E.

Proof. There exists y in I(A) with ϕ(e) = e · y for all e in E. Since ϕ(1) =
1, y = 1 and hence, ϕ(e) = e for all e in E. �
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3. Injective bimodule extensions of C*-algebras A and the
injective envelope I(A).

Let A and B be unital C∗-algebras. Recall the definition of operator A-
B-bimodules. These are operator spaces E which are A-B-bimodules and
such that the trilinear module pairing A × E × B → E, (a, e, b) → aeb is
completely contractive in the sense of E. Christensen and A. Sinclair [7].
This is equivalent to requiring that for matrices (ai,j), (ei,j) and (bi,j) of the
appropriate sizes, the induced matricial module product is contractive, i.e.,∥∥∥∥∥∥

∑
k,m

ai,kek,mbm,j

∥∥∥∥∥∥ ≤ ‖(ai,j)‖‖(ei,j)‖‖(bi,j)‖ .

These are the objects of the category AOB, [3], [21] and the morphisms
between two operator A-B-bimodules in this category are the completely
bounded A-B-bimodules maps. When we want to restrict the morphisms to
be completely contractive A-B-bimodule maps we will denote the category
by AO1

B.
We assume that all module actions are unital, i.e., 1 · e · 1 = e. We set

AO = AOC and call these left operator A-modules, and OA = COA and call
these right operator A-modules.

Definition 1. An operator A-B-bimodule I is A-B-injective, if whenever
E ⊆ F are operator A-B-bimodules, then every completely bounded A-
B-bimodule map from E into I has a completely bounded A-B-bimodule
extension to F. Note that we do not require that the cb-norm of the extension
is the same as the cb-norm of the original map. When this is the case we
will call I a tight A-B-injective A-B-bimodule.

Some comments on terminology are helpful. Our definition of A-B-
injective is the usual definition of injectivity in the category AOB, while
what we are calling tight A-B-injective is the corresponding definition of
injectivity in the category AO1

B.
IfA andB are both C∗-subalgebras ofB(H), then by the bimodule version

of G. Wittstock’s extension theorem [29, Thm. 4.1] (see also [28]) B(H) is
a tight A-B-injective. Thus, if M ⊆ B(H) is the range of a completely
bounded projection ϕ : B(H) → M, which is also an A-B-bimodule map,
then M is A-B-injective, but it is not evidently tight A-B-injective. A C∗-
subalgebra I ⊆ B(H) is generally called “injective” if it is the range of a
completely positive projection. This term is so widespread we continue to
use it here. Note that such a map is also automatically an I-bimodule map.
Thus, such an I is a tight A-B-injective for any C∗-subalgebras A and B of
I.
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In particular, M. Hamana’s injective envelope I(A) is a tight A-A-injective
A-A-bimodule, a tight A-C-injective left A-module and a tight C-A-injective
right A-module.

On the other hand there are many C-C-injectives which are not tight, i.e.,
not injective in the usual sense. For example, for any subspace E of B(H) of
finite codimension, it is easy to show that there exists a completely bounded
projection from B(H) onto E and hence E is C-C-injective.

T. Huruya [17] has given an example of a unital C∗-subalgebra of an
injective C∗-algebra of finite codimension that is not injective. By the above
argument, this algebra is the range of a completely bounded projection and
hence is C-C-injective. Thus there exist C∗-algebras that are C-C-injective,
but are not injective in the usual sense.

In our terminology, M. Hamana’s rigidity result implies that if A ⊆ E ⊆
I(A) and E is a tight C-C-injective, then E = I(A). We prove this fact in
the remarks following the theorem.

Theorem 3.1. Let A be a unital C∗-algebra and let A ⊆ E ⊆ I(A). Then
the following are equivalent:

a) E is A-C-injective,
b) E is C-A-injective,
c) E is A-A-injective,
d) E = I(A).

Proof. By the Hahn-Banach extension theorem for completely bounded A-
B-bimodule maps [29, Thm. 4.1] (see also [28], [20]), it follows that I(A)
is A-C-injective, C-A-injective and A-A-injective. Thus, d) implies a), b)
and c). It will suffice to prove that a) implies d), the other implications are
similar.

If E is A-C-injective then the identity map from E to E extends to a
completely bounded left A-module projection from I(A) to E. Letting I(A)
play the role of E in the rigidity theorem yields the result. �

The module actions are necessary in the above theorem. Since there
always exists a completely bounded projection from any operator space onto
a subspace of finite codimension, if A ⊆ E ⊆ I(A) with E a subspace of
finite codimension then E is C-C-injective but E 6= I(A).

On the other hand, if we required E to be tight, then there would exist
a completely contractive projection ϕ onto E. Since 1 belongs to E we
would have ϕ(1) = 1 and, consequently, this projection would be completely
positive. Hence E would be an operator system. Thus, E = I(A) by
M. Hamana’s rigidity theorem and we would be adding nothing new.

We now are in a position to clarify the relationship between these new
notions of injectivity and injectivity in the usual sense for C*-algebras.
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Theorem 3.2. Let A be a unital C*-algebra. Then the following are equiv-
alent:

a) A is an injective C*-algebra (in the usual sense),
b) A is a tight A-C-injective module,
c) A is a A-C-injective module,
d) A is a tight C-A-injective module,
e) A is a C-A-injective module,
f) A is a tight A-A-injective module,
g) A is a A-A-injective module.

Proof. We prove the equivalence of a), b) and c), the remaining arguments
are similar. We have that a) implies b) by Wittstock’s Hahn-Banach exten-
sion theorem for module maps. Clearly, b) implies c). We now prove that
c) implies a). Since A is a A-C-injective module, the identity map on A
extends to a completely bounded left A-module map from I(A) into A. But
by the Rigidity Theorem, this extended map must be the identity map on
I(A) and hence I(A) = A. Thus, A is injective. �

Definition 2. Let M be an operator A-B-bimodule. Call I a minimal A-
B-injective extension of M , if M ⊆ I and M ⊆ E ⊆ I with E A−B-injective
implies E = I.

By Theorem 3.1, I(A) is a minimal A-C-injective extension of A and also
a minimal C-A and A-A injective extension of A.

We call a map ϕ a completely bounded isomorphism if both ϕ and ϕ−1

are completely bounded.

Theorem 3.3. Let A be a unital C∗-algebra and let I be a minimal A-C-
injective extension of A, then there exists a completely bounded left A-module
isomorphism ϕ : I(A) → I with ϕ(a) = a for all a in A. If we require that I
is also a tight A-C-injective then ϕ may be taken to be a complete isometry.
Analogous statements hold for right modules and bimodules.

Proof. Since I and I(A) are A-C-injective, there exist completely bounded
left A-module maps ϕ : I(A) → I and ψ : I → I(A) which fix A. By the
rigidity of I(A), ψ ◦ϕ is the identity on I(A) and hence ϕ◦ψ is the identity
restricted to E = range (ϕ). This makes E an A-C-injective module and
hence E = I and ψ = ϕ−1. �

If we required I to be tight and only minimal among all tight injectives,
then as in the remark following Theorem 3.1, our result would reduce to
M. Hamana’s theory.

We now turn to some applications to projections. In [5] it was shown
that if M ⊆ B(H) is a von Neumann algebra and there exists a bounded
M -bimodule projection, ϕ : B(H) → M, then M is injective. Such a map
ϕ is easily shown to be automatically completely bounded.
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In [21] the same result was shown to hold for C∗-algebras. The above
results on injective envelopes allow us to extend these results a bit. Perhaps,
more importantly, the new proof is much simpler than the proof in [21].

Theorem 3.4. Let A ⊆ B(H) be a unital C∗-algebra. If there exists a
completely bounded left (or right) A-module projection of B(H) onto A, then
A is injective.

Proof. Since B(H) is A-A-injective the identity map on A extends to a
completely bounded A-bimodule map from I(A) to B(H). Composing with
the projection onto A gives a completely bounded left A-module map from
I(A) to A which is the identity on A. By rigidity (Corollary 2.2) I(A) = A
and hence A is injective. �

The following example gives an indication of the obstacles that arise in
attempting to generalize Theorem 2.1, Corollary 2.2 and Theorem 3.4 to
the case of non-involutive operator algebras in B(H). Consider the operator
algebra A ⊂M2(C) defined by

A =
{
X ∈M2(C) : X = S−1 · diag(a, b) · S , a, b ∈ C

}
, S =

(
1 1
0 1

)
.

If ω : M2(C) → C⊕C ⊂M2(C) is the canonical conditional expectation on
M2(C) preserving the diagonal and mapping off-diagonal elements to zero,
then the map φ : M2(C) → A defined by the rule φ(X) = S−1 ·ω(SXS−1) ·S
is a completely bounded A-bimodule projection. However, the smallest C∗-
subalgebra of M2(C) generated by A is M2(C) itself, and since M2(C) is
injective we obtain I(A + A∗) = M2(C). Consequently, Theorem 2.1 and
Corollary 2.2 cannot be extended to this situation, and Theorem 3.4 is not
true for the described operator algebra A.

In [8] and [24] it was proven that if M ⊆ B(H) is a von Neumann algebra
and if there exists a completely bounded projection of B(H) onto M then
M is injective, cf. [25]. The direct analogue of this result is false for C∗-
algebras. T. Huruya [17] gave an example of a non-injective C∗-subalgebra
of codimension 1 of an injective C∗-algebra. It is easily shown that any time
Huruya’s algebra is represented as a C∗-subalgebra of B(H), then there
will exist a completely bounded projection of B(H) onto this non-injective
algebra. Thus, to generalize the results of [8] and [24], we will need an
additional condition.

Definition 3. An operator A-B-bimodule R is relatively A-B-injective if
whenever E ⊆ F are operator A-B-bimodules such that there exists a com-
pletely bounded projection of F onto E, then every completely bounded
A-B-bimodule map of E into R has a completely bounded A-B-bimodule
extension to F. It is important to note that we do not require that the
projection of F onto E is an A-B-bimodule map.



64 M. FRANK AND V.I. PAULSEN

The concept of relative injectivity was introduced in [21] with slightly
different notation, relative A-B-injective was denoted (A-B,C-C)-injective.
A C∗-algebra A is A-A-injective if and only if A is injective in the usual sense.
In contrast, [21] showed that every von Neumann algebra M is relatively
M -M -injective, M -C-injective and C-M -injective.

Theorem 3.5. Let A ⊆ B(H) be a unital C∗-subalgebra. If there exists
a completely bounded projection of B(H) onto A and A is relatively A-C-
injective (or C-A-injective), then A is injective.

Proof. Since A is A-C-injective, the identity map from A to A has a com-
pletely bounded left A-module extension to B(H). This map is clearly a
projection. Hence A is injective by Theorem 3.4. �

Because von Neumann algebras are relatively injective [21], Theorem 3.5
implies the result of [8] and [24].

Corollary 3.6. Let M ⊆ B(H) be a von Neumann algebra. If there exists
a completely bounded projection of B(H) onto M, then M is injective.

Relative injectivity was shown in [21] to be equivalent to the vanishing of
certain completely bounded “Ext” groups, which in turn implied the vanish-
ing of completely bounded Hochschild cohomology. Thus, relative injectivity
captures both the vanishing of cohomology and these projection results. It
is still unknown which C∗-algebras A are relatively A-C-injective. By The-
orem 3.5, T. Huruya’s C∗-algebra A, cannot be relatively A-C-injective.

4. Local multiplier algebras, injective envelopes and regular
completions.

We close this paper with some applications to multiplier algebras. Our main
point is that by invoking Theorem 2.1, we will see immediately that mul-
tipliers are “naturally” represented as multiplication by elements in I(A).
This concrete representation of multipliers can be used to simplify some
arguments. Thus, Theorem 2.1 provides an alternative starting point for
developing the theory of multipliers.

In particular, we show that I(A) contains the local multiplier algebra of
A, Mloc(A), intrinsically as a C∗-subalgebra. Recall that a closed 2-sided
ideal J of A is called essential if J ∩ K 6= {0} for every nontrivial 2-sided
ideal K. All ideals in this section are norm-closed.

The left multiplier algebra LM(J) of J is just the set of right A-module
maps ψ : J → J. Such a map is automatically (completely) bounded and
‖ψ‖ = ‖ψ‖cb . The right multiplier algebra RM(J) is defined similarly. The
multiplier algebra M(J) consists of pairs of linear maps ϕ,ψ : J → J satis-
fying ϕ(j1)j2 = j1ψ(j2). This identity implies that ψ ∈ LM(J), ϕ ∈ RM(J)
and ‖ϕ‖ = ‖ψ‖ = ‖ϕ‖cb = ‖ψ‖cb .
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The local multiplier algebra Mloc(A) is defined by taking a direct limit of
M(J) over all essential ideals J of A ordered by reverse inclusion. See [1]
for details.

Lemma 4.1. Let A be a unital C∗-algebra and let J be a 2-sided essential
ideal of A and let ϕ : J → I(A) be a completely bounded left (resp., right)
A-module map. Then there exists a unique element x in I(A) such that ϕ
is right (resp., left) multiplication by x. Moreover, ‖x‖ = ‖ϕ‖ = ‖ϕ‖cb .

Proof. By Theorem 2.1 such an x exists, it remains to show that x is unique.
To this end consider, F = {y ∈ I(A) : Jy = 0} which is clearly a right A-
submodule of I(A). It will suffice to show that F = {0}. Let {eα} be a
contractive approximate identity for J. For a ∈ A, y ∈ F, we have,

‖a− y‖ ≥ sup
α
‖eα(a− y)‖ = sup

α
‖eαa‖ = ‖a‖

with the last equality using the fact that J is essential. The same calculation
for matrices shows that the quotient map q : I(A) → I(A)/F is a complete
isometry on A and a right A-module map. Now since I(A) is injective,
there exists a completely contractive right A-module map ϕ : I(A)/F →
I(A). Hence by rigidity ϕ ◦ q(b) = b for all b in I(A), and it follows that
F = {0}. �

The fact that F must be {0} is related to the fact that I(A) is in a certain
sense an “essential extension” of A.

Theorem 4.2. Let A be a unital C∗-algebra, let J be a 2-sided essential
ideal in A and let (ϕ,ψ) be in M(J). Then there exists a unique element x
in I(A) such that ϕ(j) = jx, ψ(j) = xj for all j in J.

Proof. By Lemma 4.1, there exist unique elements x1, x2 in J such that
ϕ(j1) = j1x1, ψ(j2) = x2j2 for all j1, j2 in J. But j1x1j2 = ϕ(j1)j2 =
j1ψ(j2) = j1x2j2 and so j1(x1 − x2)j2 = 0 for all j1. Applying Lemma 4.1
we conclude that (x1 − x2)j2 = 0 for all j2 and so x1 = x2. �

Corollary 4.3. The inclusion of A into I(A) extends in a unique way to
a ∗-monomorphism of Mloc(A) into I(A). The image of Mloc(A) under this
map is the norm closure of the set

{x ∈ I(A) : xJ ⊆ J and Jx ⊆ J for some essential ideal J}.

Proof. For each (ϕ,ψ) in M(J) there exists a unique x in I(A) implementing
(ϕ,ψ). By this uniqueness the map (ϕ,ψ) → x must be a ∗-monomorphism
on M(J). Furthermore, let Ji be essential ideals, and let (ϕi, ψi) in M(Ji)
be implemented by xi. If ϕ1 = ϕ2 and ψ1 = ψ2 on J1∩J2 then, since J1∩J2

is essential, we must have x1 = x2.
This shows that the inclusions of M(Ji) into I(A) are coherent and allows

us to extend these ∗-monomorphism to the direct limit, Mloc(A).
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Now assume that π : Mloc(A) → I(A) is any ∗-monomorphism with
π(a) = a for all a in A. Then for (ϕ,ψ) in M(J)

π((ϕ,ψ))j = π((ϕ,ψ)j) = π(ψ(j)) = ψ(j),

and jπ((ϕ,ψ)) = ϕ(j) from which it follows that π((ϕ,ψ)) is the unique
element implementing (ϕ,ψ).

Finally, since {x ∈ I(A) : xJ ⊆ J and Jx ⊆ J} is exactly the image of
M(J) we have the last claim. �

Remark. The above results allow one to define a local left (resp., right)
multiplier algebra of A easily, which we have not seen in the literature.
Indeed, if LMloc(A) = {x ∈ I(A) : xJ ⊆ J for some essential ideal J}−−,
then this set is easily seen to be completely isometrically isomorphic to the
direct limit of LM(J). It is interesting to note that if J1 and J2 are essential
ideals and ϕ ∈ LM(J1) then ϕ(J1 ∩ J2) ⊆ J1 ∩ J2 and by Lemma 4.1,
‖ϕ‖ = ‖ϕ |J1∩J2‖ . We define the local right multiplier algebra RMloc(A) of
A, analogously.

To define the local quasi-multiplier space QMloc(A) of A we have to recall
that the injective envelope I(A) of A is a monotone complete C∗-algebra
and, hence, an AW ∗-algebra. On the other hand norm-closed two-sided
ideals J of C∗-algebras are automatically hereditary, and so we can apply
[10, Cor. 1.4]: For every norm-closed two-sided ideal J ⊆ A and every
quasi-multiplier x ∈ QM(J) there exists an element x ∈ I(A) such that
j1xj2 = j1xj2 for any j1, j2 ∈ J and ‖x‖ equals the norm of x estimated
in the bidual von Neumann algebra A∗∗. For essential ideals J the element
x has to be unique, in fact it can be found as a quasi-strict limit of nets
of J . Since inclusion relations of essential ideals and their corresponding
quasi-multiplier spaces are respected inside I(A) we can define QMloc(A) =
{x ∈ I(A) : JxJ ⊆ J for some essential ideal J}−−, to be the local quasi-
multiplier space of A.

Note that in any situation where Mloc(A) 6≡ LMloc(A) then necessarily
Mloc(A) 6≡I(A). (In general, the conditions Mloc(A) 6≡LMloc(A), Mloc(A) 6≡
QMloc(A) and LMloc(A) 6≡ QMloc(A) are equivalent by general multiplier
theory.) If A is any simple, unital, non-injective C∗-algebra like a non-
injective Type II1 or Type III von Neumann factor then A = Mloc(A) =
LMloc(A) 6= I(A). However, in some cases we obtain the coincidence of the
C∗-algebras Mloc(A) = I(A).

Proposition 4.4. Let A be a unital C∗-algebra, K ⊆ A ⊆ B(H) where
K denotes the ideal of compact operators, then Mloc(A) = I(A) = B(H),
∗-isomorphically.

Proof. Since K is necessarily an essential ideal of A and M(K) = B(H) we
have B(H) ⊆ Mloc(A). By Corollary 4.3 we have a ∗-monomorphism π of
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Mloc(A) into I(A). Hence, A ⊆ B(H) ⊆ Mloc(A) ⊆ I(A), as C∗-algebras.
Since B(H) is A-A-injective, by Theorem 3.1, we have B(H) = I(A) and
the result follows. �

The fact that I(A) = B(H) is due to M. Hamana [13] with a different
proof.

Theorem 4.5. Let A be a commutative unital C∗-algebra, then Mloc(A) =
I(A), ∗-isomorphically.

Proof. By [1, Thm. 1] Mloc(A) is a commutative AW ∗-algebra. However,
commutative AW ∗-algebras are injective by [26, Th. 25.5.1] since bounded
linear maps between C*-algebras are positive whenever their norm equals
their evaluation at the identity of the C*-algebra. Consequently, the ∗-
monomorphism of Mloc(A) into I(A) must be onto. �

In the theory of local multiplier C∗-algebras the problem of whether
Mloc(A) coincides with Mloc(Mloc(A)) for any C∗-algebra A is one of the
main open questions, cf. [1, 27]. Set Mk+1

loc (A) = Mloc(Mk
loc(A)), which

is called the (k + 1)-order local multiplier algebra of A. We show that any
higher order local multiplier C∗-algebra of a given C∗-algebra A is contained
in its injective envelope I(A) and, what is more, that the injective envelopes
I(A) and I(Mk

loc(A)) coincide for any C∗-algebra A. The latter is of special
interest since general C∗-subalgebras A of injective C∗-algebras B might not
admit an embedding of their injective envelopes I(A) as a C∗-subalgebra of
B that extends the given embedding of A into B, see [14, Rem. 3.9] for an
example.

Theorem 4.6. Let A be a unital C∗-algebra and Mloc(A) be its local mul-
tiplier C∗-algebra. Then the injective envelope I(A) of A is the injective
envelope I(Mloc(A)) of Mloc(A) and consequently, Mk

loc(A) is contained in
I(A) for all k.

Proof. Since Mloc(A) is ∗-isomorphically embedded into I(A) extending the
canonical ∗-monomorphism of A into I(A) by Theorem 2.1, the C∗-algebra
I(A) serves as an injective extension of the C∗-algebra Mloc(A), cf. [13].
However, the identity map on Mloc(A) admits a unique extension to a com-
pletely positive map of I(A) into itself with the same completely bounded
norm one since A ⊆ Mloc(A) ⊆ I(A) by construction and I(A) is the in-
jective envelope of A. So I(A) has to be the injective envelope of Mloc(A),
too. �

Problem. Characterize the C∗-algebras A for which the local multiplier
C∗-algebra Mloc(A) of A coincides with the injective envelope I(A) of A or
at least with the regular monotone completion A of A in I(A).

This question is surely difficult to answer: If A is an AW ∗-algebra then the
local multiplier algebra Mloc(A) of A coincides with A by [22]. However,
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A coincides with its regular monotone completion A if and only if A is
monotone complete. So we arrive at a long standing open problem of C∗-
theory dating back to the work of I. Kaplansky in 1951 ([18]): Are all
AW ∗-algebras monotone complete, or do there exist counterexamples?

Remark. If A is a non-unital C∗-algebra and B denotes its unitization, then
A is a 2-sided essential ideal in B. Hence, by Theorem 4.2, M(A) ⊆ I(B).
However, in [4], it is observed that I(A) = I(B), and so the hypothesis
that A is unital can be removed from Theorem 4.2. Similarly, every 2-sided
essential ideal in A is an essential ideal in B, so that Corollary 4.3 applies
for non-unital A as well. Similar arguments show that the unital hypothesis
can be dropped in Proposition 4.4, Theorem 4.5 and Theorem 4.6.
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A FAMILY OF ARITHMETIC SURFACES OF GENUS 3

Jordi Guàrdia

The aim of this paper is the study of the genus 3 curves

Cn : Y 4 = X4 − (4n − 2)X2 + 1,

from the Arakelov viewpoint. The Jacobian of the curves
Cn splits as a product of elliptic curves, and this fact gives
enough arithmetical datum to determine the stable model and
the canonical sheaf of the curves. We use this information to
look for explicit expressions of the modular height and the
self-intersection of the dualizing sheaf of the curves Cn.

1. Introduction.

The study of a curve from the arithmetical or the Arakelov viewpoints is a
hard task, since it involves a very good knowledge of its geometry (differen-
tial forms, periods), its arithmetic (locus of bad reduction, stable models)
and its analysis (Green function). Classically, two families of curves have
been extensively studied: Fermat curves and modular curves. The study
of these curves is feasible because they have a large automorphism group.
On the other hand, the curves in these families have variable genus. If one
wants to study the behaviour of some arithmetical or Arakelov invariants
on the moduli space of curves of a given genus, these families are not useful.

The Arakelov invariants of elliptic curves are completely determined
([Fa84]). Some concrete examples of Arakelov invariants for curves of
genus 2 were provided by Bost, Mestre and Moret-Bailly in [Bo-M-M90].
We present here the study of a family of curves of genus 3.

Let n ∈ N, n ≥ 2 be a natural number such that n ≡ 2 (mod 3) and n 6≡
0, 1 (mod 25), and consider the projective curve Cn given by the equation

Y 4 = X4 − (4n− 2)X2Z2 + Z4.

We have studied the geometry of the curves Cn in [Gu01]. They are non-
singular curves of genus 3. They have a large group of automorphisms,
which gives the chance of performing a great deal of calculations on them.
In this article we study the curves Cn from the arithmetical and Arakelov
viewpoints. We find the stable models of the arithmetic surfaces given by
them. Combining both the geometric and the arithmetic information com-
piled about the curves Cn, we initiate the study of their Arakelov invariants:
Their modular height and the self-intersection of their canonical sheaf.
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The conditions n 6≡ 0, 1 (mod 25), n ≡ 2 (mod 3) are assumed only for
technical reasons, to simplify the exposition. They are necessary essentially
for the results about the reduction of the curves Cn at primes over 2, and
to avoid some particular cases of supersingularity.

2. Automorphisms. Splitting of the Jacobian.

The following results are proved in [Gu01]:

Proposition 2.1. The automorphisms of Cn (n > 2) are the restrictions of
the following projectivities of P2(C):

ϕ0k =

 1 0 0
0 ik 0
0 0 1

 , ϕ1k =

 1 0 0
0 ik 0
0 0 −1

 ,

ϕ2k =

 0 0 1
0 ik 0
1 0 0

 , ϕ3k =

 0 0 1
0 ik 0
−1 0 0

 ,

for k = 0, 1, 2, 3. The automorphisms α = ϕ01, β = ϕ12, γ = ϕ20 form
a system of generators for Aut(Cn), with relations α4 = β2 = γ2 = Id,
αβ = βα, αγ = γα, βγ = γβα2. The group Aut(Cn) is isomorphic to a
semidirect product Z/4Z n V4, where V4 denotes the Klein group.

Remark. The curve C2 has a larger group of automorphisms, because it is
isomorphic to the Fermat curve of fourth degree. For our purposes, we only
need to know that the above matrices also give automorphisms of C2.

The automorphisms βα2, β and α2 provide three elliptic quotients of Cn.
We denote the subgroups that they generate by G1 = 〈βα2〉, G2 = 〈β〉,
G3 = 〈α2〉.

Notation 2.2. We will use the following notation for the rest of the paper:

a =
√
n+

√
n− 1, µ = i 4

√
4n(n− 1),

m = 2n− 1, ζ =
1 + i√

2
,

K0 = Q(a, ζµ),

E1 = E2 = E : Y 2Z = X3 −XZ2,

E3 = E(n) : Y 2Z = X(X − Z)(X − nZ).
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Proposition 2.3. The degree 2 maps

ψ1 : Cn −→ E
(x, y, z) −→ (i(y2 − ζ2µ2x2), (i− 1)(z2 −mx2), (y − ζµx)2),

ψ2 : Cn −→ E
(x, y, z) −→ (i(y2 − ζ2µ2z2), (i− 1)(x2 −mz2), (y − ζµz)2),

ψn : Cn −→ E(n)

(x, y, z) −→ (2(a2+1)(z−ax)(az−x), (a4−1)y2, 4a(z − ax)2)

are the quotient maps Cn −→ Cn/G1, Cn −→ Cn/G2, Cn −→ Cn/G3,
respectively. They induce an isogeny of degree 8

Ψ : J(Cn) −→ E × E × E(n),(1)

defined over the field K0.

This isogeny will be the key of our calculations, because it relates the
type of reduction of the curve Cn with that of the elliptic curves E,E(n),
which is easy to determine.

An automorphism ϕ of Cn which commutes with Gi induces an automor-
phism ϕEi of the elliptic curve Ei. Let us compute these induced automor-
phisms.

Proposition 2.4. The automorphisms of Cn induce the following automor-
phisms of E through the quotient map ψ2:

ϕE00 = ϕE12 = IdE ,

ϕE01 = ϕE13 = [−i]E + (1, 0, 1),

ϕE02 = ϕE10 = [−1]E + (0, 0, 1),

ϕE03 = ϕE11 = [i]E + (−1, 0, 1).

Proof. It is enough to consider the affine part Z = 1. Put x = X/Z,
y = Y/Z, so that

(u, v) := ψ2(x, y) =
(
i
y + ζµ

y − ζµ
, (i− 1)

x2 −m

(y − ζµ)2

)
.

After some algebraic manipulation we obtain that

ϕE01(u, v) =
(
u− 1
u+ 1

,− 2iv
(u+ 1)2

)
.

We will now identify this map. Let us consider the associated map f(Q) =
ϕE01(Q) +P1, where P1 = ϕE01(OE) = (1, 0) (OE denotes the point at infinity
of E). We may use the addition formulas for E to calculate the equations
which define f . We find that:

f(u, v) = (−u, iv).
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Thus, the map f is multiplication by −i on E, and hence it follows that
ϕE01 = [−i]E + P1. The rest of the cases are solved in a similar way. Note
that they can be grouped in pairs of the form ϕ,ϕ ◦ β. �

The same kind of calculations yields:

Proposition 2.5. The automorphisms of Cn induce the following automor-
phisms of E(n) through the quotient map ψ3:

ϕ
E(n)

00 = ϕ
E(n)

02 = IdE(n)
, ϕ

E(n)

01 = ϕ
E(n)

03 = [−1]E(n)
,

ϕ
E(n)

11 = ϕ
E(n)

13 = IdE(n)
+ Pn, ϕ

E(n)

10 = ϕ
E(n)

12 = [−1]E(n)
+ Pn,

ϕ
E(n)

21 = ϕ
E(n)

23 = IdE(n)
+ P0, ϕ

E(n)

20 = ϕ
E(n)

22 = [−1]E(n)
+ P0,

ϕ
E(n)

31 = ϕ
E(n)

33 = IdE(n)
+ P1, ϕ

E(n)

30 = ϕ
E(n)

32 = [−1]E(n)
+ P1,

where Pt = (t, 0, 1).

3. Reduction of the curves Cn.

We now begin the arithmetical study of the curves Cn. For the definitions
and basic results concerning reduction of curves, we refer to [Ds81].

For n 6≡ 0, 1 (mod 25), let us denote by Xn the arithmetic surface

Proj (Z[X,Y, Z]/(Y 4 −X4 + (4n− 2)X2Z2 − Z4)).

This surface is a model over Z of the curve Cn. Hence, the generic fibre of
Xn is smooth, but Xn has singularities in some special fibres.

Proposition 3.1. The arithmetic surface Xn has good reduction outside the
primes dividing n(n− 1).

Proof. The special fibre of Xn in a prime p is given by the reduction mod p
of the equation Y 4 = X4 − (4n − 2)X2Z2 + Z4. This reduction is singular
only at the double roots of the polynomial X4 − (4n − 2)X2Z2 + Z4. The
discriminant of this polynomial is 212n2(n− 1)2. �

We must centre our attention on the primes dividing n(n− 1). It is well-
known that there exists a stable model of Cn over the ring of integers of a
certain number field Kn. We will determine this field and the stable model of
Cn , taking into account the isogeny Ψ. We introduce some more notations:

Notation 3.2. Let α = 3
√

18− 6
√

3, and let αn be a root of the equation

t3(t3 − 24)3 − 28 (n2 − n+ 1)3

n2(n− 1)2
(t3 − 27) = 0.

We put Kn = K0(α, αn), and we denote by On the ring of integers of Kn,
and write Sn = Spec(On).
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We enumerate the reduction properties of the elliptic curves E,E(n) in
the following two propositions. Note that the algebraic numbers α, αn allow
to define the Deuring normal form of the curves (cf. [Si85]). The techni-
cal condition n 6≡ 0, 1(mod 25) is necessary to assure the potentially good
reduction at p = 2 of the curve E(n).

Proposition 3.3.
a) The elliptic curve E : Y 2 = X3 −X has good reduction outside p = 2,

where it has potentially good reduction.
b) The curve E has good reduction everywhere over the field Q(α). Its

Deuring normal form Y 2 + αXY + Y = X3 has good reduction at the
primes dividing 2.

c) The curve E is supersingular for a prime p if and only if p = 2 or
p ≡ 3 (mod 4).

Proposition 3.4.
a) The j-invariant of the curve E(n) is

jn = 28 (n2 − n+ 1)3

n2(n− 1)2
,

and hence the curve has good reduction outside the primes dividing
n(n− 1).

b) If p|n(n− 1) is an odd prime, E(n) has multiplicative reduction at p.
c) The curve E(n) has potentially good reduction at p = 2. Over the field

Q(αn), the curve E(n) has good reduction at the primes dividing 2. Its
Deuring normal form Y 2 + αnXY + Y = X3 has good reduction at
these primes.

d) The curve E(n) is supersingular at p = 2. It is supersingular at p = 3
if and only if n ≡ 2 (mod 3). If E(n) is supersingular at a prime p > 3
then p ≡ 3 (mod 4).

The assertions concerning the supersingularity of E and En follow from
the characterization of supersingular elliptic curves, and from the fact that
En(Fp) has an evident subgroup of order 4 whenever p > 2.

Theorem 3.5. Let Jn = Pic0
Xn/Kn

be the Jacobian of Xn/Kn
= Cn, and let

N be its Néron model over On .
a) The curve Cn has a stable model X st

n and a semistable minimal regular
model X reg

n over On.
b) At the primes p in On which divide 2, N has abelian reduction.
c) At the odd primes p in On which divide n(n− 1), N has semi-abelian

reduction, and its toric part has dimension 1.
d) At any prime p in On we have canonical isomorphisms over the residual

field kp:
Pic0

X st
n /kp

' Pic0
X reg

n /kp
' N 0

p .
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Proof. The elliptic curves E,E(n) have semi-stable reduction over Kn, so
that the isogeny Ψ guarantees that Jn also has semi-stable reduction over
Kn, by the Néron-Ogg-Safarevic criterion ([Se-Ta68]). But this is equiva-
lent to the existence of a stable model X st

n for Cn over Kn (cf. [De-Mu69]).
Blowing up the singular points of X st

n we obtain a semistable minimal regular
model.

We can extend the isogeny Ψ to the Néron models of Jn, E,E(n), and again
the criterion of Néron-Ogg-Safarevic translates Propositions 3.3 and 3.4 into
Parts b) and c).

Finally, the second isomorphism in Part d) is well-known (cf. [BLR90]),
while the first isomorphism is given by (the reduction of) the map from
X reg
n onto X st

n which blows down the rational components with self-inter-
section -2 in the special fibre. �

4. Height of the curves Cn.

We are already in position to calculate the modular height of the curves Cn.
For the definition of the modular height and the remaining basic concepts
of Arakelov geometry, we refer to [MB85] or [La88].

The modular height of abelian varieties has a good behaviour with respect
to isogenies: Raynaud proved the following result:

Proposition 4.1 ([Ra85], Cor. 2.1.4). Let AK , BK be two abelian varieties
over a number field K, and let A,B be their Néron models over OK . If there
exists an isogeny φ : AK −→ BK of degree pe, with p a prime, then:

h(A) = h(B) + k log p,

for some k ∈ Z, |k| ≤ e/2.

Being clear that the height of a product of abelian schemes is the sum of
the heights of the factors, we will have a good approximation to the height
of the curves Cn once we have the height of the elliptic curves E,E(n). The
computation of the height of an elliptic curve amounts to the computation
of its period lattice and of its reduction, following Tate’s algorithm. We
obtain:

Proposition 4.2. The height of the elliptic curve E(n) is given by

h(E(n)) =
1
6

log n(n− 1)− 1
6
v2(n(n− 1)) log 2− 1

12
log(|∆(τn)|(Im τn)6),

where
τn = iK(

√
1− 1/n)/K(1/

√
n)

is the fundamental period of E(n), K() denotes the complete elliptic integral
of the first kind, v2 is the 2-adic valuation and ∆ is the discriminant modular
form.
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Remark. For n = 2 this formula gives h(E) = log
Γ(3/4)

√
2

Γ(1/4)
√
π

, as in [De85].

The modular height of a curve is that of the Néron model of its Jacobian.
Combining Propositions 4.1 and 4.2 we arrive at:

Theorem 4.3. The height of the curve Cn is given by

h(Cn) = 2 log
Γ(3/4)

√
2

Γ(1/4)
√
π

+
1
6

log
n(n− 1)

2v2(n(n−1))

− 1
12

log(|∆(τn)|(Im τn)6) + k log 2,

for a certain k ∈ {0,±1} (which depends on n).

We can draw a graphic of the height h(Cn) as a function of n, where its
logarithmic behaviour when n approaches the singular curves of the family
(n = 1, n→∞) will become evident:

200 400 600 800 1000
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-0.75
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Figure 1.

5. The stable model of the curves Cn over odd primes.

Let p|n(n − 1) be an odd prime, and let p be a prime divisor of p in On .
We will now determine the fibre over p of X st

n .

Lemma 5.1. The irreducible components of X st
n/kp

are smooth.

Proof. If we reduce the equation of Cn mod p

Y 4 = X4 − (4n− 2)X2Z2 + Z4 = (X2 + Z2)2 − 4nX2Z2

= (X2 − Z2)2 − 4(n− 1)X2Z2,
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we have that the fibre at p has equation (Y 2−X2−Z2)(Y 2 +X2 +Z2) = 0
if p divides n, and (Y 2−X2 +Z2)(Y 2 +X2−Z2) = 0 if p divides n− 1. In
both cases, the fibre is reduced and its components are smooth and rational.
Thus, we can obtain a semi-stable minimal regular model for Cn blowing-
up, normalizing and blowing down exceptional components. None of these
operations introduces singular components. The stable model is obtained
from the minimal regular model contracting the rational components with
self-intersection -2, but again this does not introduce singularities ([Li69]).

�

Lemma 5.2. X st
n/kp

is not irreducible.

Proof. The irreducibility of X st
n/kp

would imply that it is a nonsingular curve
of genus 3, and then Pic0

X st
n /kp

would be an abelian variety of dimension 3,
contradicting Theorem 3.5. �

These results drastically reduce the number of possible configurations for
X st
n/kp

. The dimension of the toric part of Pic0
X st

n /kp
being 1 (Theorem 3.5),

the geometric configuration of the fibre must form exactly one cycle (cf.
[BLR90], pp. 245-249).

Suppose that X st
n/kp

has a component of genus 2. Then, the other compo-
nents should be rational, and they should form a cycle. But this is impos-
sible, since the rational components must intersect the other components
at least at three points. Hence, the components of X st

n/kp
must be rational

or elliptic. It remains only one possibility: X st
n/kp

must have two elliptic
components, intersecting at two points:

X1

X2

Figure 2.

Theorem 5.3. The special fibre of X st
n at an odd prime p in On dividing

n(n−1) has two elliptic components X1,p, X2,p, intersecting at two different
points.

6. Automorphisms of X st
n .

The automorphisms of Cn can be extended to automorphisms of the stable
model X st

n (cf. [Ra90]), which we will denote by the same letters. The
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quotients E0
i := X st

n /Gi exist and are semi-stable curves (cf. [Ra90]). The
generic fibre of E0

i is the elliptic curve Ei = E for i = 1, 2, and the elliptic
curve E3 = E(n) for i = 3.

An automorphism ϕ of X st
n which commutes with Gi induces an automor-

phism ϕE
0
i of E0

i , leaving the smooth part invariant, and hence determines
an automorphism ϕEi of the Néron model Ei of the elliptic curve Ei. We will
denote by ϕEi/kp the reduction of this automorphism mod a prime p, i.e.,
the automorphism induced by ϕ in the special fibre of Ei. We remark that
at good reduction primes the special fibres of Ei and E0

i are the same, and
we have a canonical isomorphism between them.

When Ei has good reduction at p, we can read the maps ϕEi/kp from the
maps ϕEi calculated in Propositions 2.4 and 2.5, thanks to the universal
property of the Néron model. We also have to control the reduction of the
points appearing on those propositions, i.e., we have to control the super-
singular character of Ei at p, which we know from Propositions 3.3 and 3.4.
We obtain:

Theorem 6.1. Let p be a prime in On dividing 2.

a) The automorphisms of Cn induce the following automorphisms in the
special fibre E/kp

of E at p:

ϕ
E/kp

00 = ϕ
E/kp

10 = IdE/kp
, ϕ

E/kp

02 = ϕ
E/kp

12 = [−1]E/kp
,

ϕ
E/kp

01 = ϕ
E/kp

11 = [−i]E/kp
, ϕ

E/kp

03 = ϕ
E/kp

13 = [i]E/kp
.

b) The automorphisms of Cn induce the following automorphisms in the
special fibre E(n)/kp

of En at p:

ϕ
E(n)/kp

00 = ϕ
E(n)/kp

02 = ϕ
E(n)/kp

11 = ϕ
E(n)/kp

13 =

ϕ
E(n)/kp

21 = ϕ
E(n)/kp

23 = ϕ
E(n)/kp

31 = ϕ
E(n)/kp

33 = IdE(n)/kp
,

ϕ
E(n)/kp

01 = ϕ
E(n)/kp

03 = ϕ
E(n)/kp

10 = ϕ
E(n)/kp

12 =

ϕ
E(n)/kp

20 = ϕ
E(n)/kp

22 = ϕ
E(n)/kp

30 = ϕ
E(n)/kp

32 = [−1]E(n)/kp
.

Note that this implies that the points in E/kp
fixed by the induced au-

tomorphisms must be 2-torsion points. The same kind of reasoning proves
that, at the odd primes, the points in the special fibre of E/kp

fixed by the
induced automorphisms must be 4 torsion points, a fact that will be used
in Proposition 9.2.
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7. The stable model of the curves Cn over p = 2.

We now determine the fibre of X st
n over a prime p of On dividing 2. In

analogy with Lemmas 5.1 and 5.2, we have:

Lemma 7.1.
a) Pic0

X st
n /kp

is an abelian variety of dimension 3.
b) The geometric configuration of X st

n/kp
contains no cycle.

c) The irreducible components of X st
n/kp

are smooth.

Proof. The first assertion follows from the isogeny Ψ. Parts b) and c) are
consequence of a) by [BLR90], Cor. 9.12. �

The study of the special fibre of X st
n/kp

is not so easy in this case, since
the dimension of the Jacobian does not provide further information. We are
now obliged to use the results obtained in previous section.

Proposition 7.2. X st
n/kp

is not irreducible.

Proof. The reduction of the quotient maps ψi : X st
n/kp

−→ E0
i yields an

isogeny of degree 8

Ψp : Pic0
X st

n/kp

−→ E/kp
× E/kp

× E(n)/kp
.

As Pic0
X st

n/kp

is an abelian variety, we can consider the dual isogeny Φp of

Ψp. The Hasse-Witt invariant of the elliptic curves E,E(n) is 0, since its j-
invariant is 0. Hence, their product admits no separable isogenies of degree a
power of 2. Thus, the composition Ψp ◦Φp = [2] must be purely inseparable,
which implies that also Ψp is purely inseparable.

Suppose that X st
n/kp

is irreducible. It should be smooth, since its Jacobian
has dimension 3. As the maps ψ have degree 2, they must be separable or
purely inseparable. In the last case, X st

n/kp
would be isomorphic to the elliptic

curve E/kp
, which is not possible. Hence, the three maps ψ1, ψ2, ψ3 should

be separable. But the isogeny Ψp that they induce would be also separable
(this can be seen in terms of differential forms), and we have seen that this
is not the case. �

The reduction of the maps ψi being exhaustive, we must have non-rational
irreducible components X1, X2, X(n) such that ψi|Xi : Xi −→ Ei/kp

is a
degree 2 map. A priori, we do not know whether these components are
really different or they coincide. In any case, we know that X st

n/kp
cannot

have more than three non-rational components, since it has genus 3.
Let Xi be one of the non-rational components of X st

n/kp
. If ψi(Xi) is not

a point, then ψi|Xi must be purely inseparable (otherwise the isogeny Ψp
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would not be purely inseparable), i.e., it must be a degree 2 Frobenius map.
In particular, Xi must have genus 1.

Let us consider the reduction of the automorphism ϕ01 over X st
n/kp

, and
its action on E1/kp

and E(n)/kp
:

ϕ
E1/kp

01 = [−i]E1/kp
, ϕ

E(n)/kp

01 = [−1]E(n)/kp
.

As ψ1|X1 and ψ3|Xn are bijective maps, we see that ϕ01(X1)=X1, ϕ01(X(n))
= X(n). Moreover,

ψ01|X1 = ψ−1
1/kp

◦ ϕ
E1/kp

01 ψ1/kp
= ψ−1

1/kp
◦ [−i]E1/kp

ψ1/kp
,

and hence ψ01|X1 = [−1]X1 . We can see in the same way that ψ01|X(n) =
IdX(n)

. This fact ensures that X1 6= X(n). We can argue similarly to prove
that X2 6= X(n) and X1 6= X2. At this moment we have seen that the
special fibre X st

n/kp
has exactly three elliptic components, and the rest of

the components must be rational. We know that ψ2 = ψ1 ◦ γ, so that
X2 = γ(X1), and this forces γ(X(n)) = X(n). Moreover, X1 ∩ X(n) 6= ∅ if
and only if X2 ∩ X(n) 6= ∅. Gathering all these restrictions on the special
fibre X st

n/kp
, only two possibilities remain:

pa = 0

X1 X2 Xn X1 X2

Xn

Figure 3.

Let us denote by Oi the neutral point of the group law on the elliptic
component Xi.

Lemma 7.3. The components X1, X(n) can intersect only at their neutral
point. The same is true for the components X2, X(n).

Proof. Let P ∈ X1 ∩ X(n). We know that ϕ12|X(n) = IdX(n)
, so that

ϕ12(P ) = P . On the other hand, ϕ12|X1 = [−1]X1 implies ϕ12(P ) = −P ,
where we denote by −P the opposite of P with respect to the group law on
X1. The component X1 is isomorphic to the elliptic curve E/kp

, which is
supersingular, so that there are no 2-torsion points on X1, that is, we must
have P = O1. Using the automorphism ϕ01 we see that we must also have
P = O(n). The second assertion is proved using the automorphism γ. �
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The lemma excludes the second option in Figure 3. We have finally
reached:

Theorem 7.4. The special fibre of the stable model of Cn at a prime p in
On dividing 2 consists of three elliptic components X1,p, X2,p, X3,p, which
intersect a rational component X0,p at three different points. The map ψi :
X st
n/kp

−→ E/kp
restricted to the component Xi,p is the Frobenius map, and

contracts the other components.

8. A lower bound for Arakelov self-intersection.

We now begin the study of the self-intersection of the Arakelov dualizing
sheaf of the arithmetic surfaces given by the curves Cn. For the definitions,
we refer again to [MB85] or [La88].

In this section we use a result of Moriwaki to precise a lower bound for
the self-intersection of the canonical sheaf of the curves Cn .

Proposition 8.1 ([Mo96]). Let X −→ S = Spec(OK) a stable arithmetic
surface of genus g ≥ 2. Let p1, . . . , pt be the primes in OK where the fibres
of X are reducible. We have that

(ωX/S , ωX/S)Ar ≥
1

6(g − 1)

t∑
i=1

logNK/Q(pi).

We apply this result to the arithmetic surface given by the curve Cn to
obtain:

Proposition 8.2. For the stable model X st
n −→ Sn of the curve Cn over

the ring of integers of the field Kn, we have:(
ωX st

n /Sn
, ωX st

n /Sn

)
Ar
≥ 1

12
log

∏
p∈Sn,p|n(n−1)

NKn/Q(p).

The normalized Arakelov self-intersection of a curve CK defined over a
number field K is

e(CK) :=
1

[L : K]
(ωCst , ωCst)Ar,

where L/K is an extension over which CK has a stable model Cst. The curves
Cn provide examples of curves with normalized Arakelov self-intersection as
large as desired:

Theorem 8.3. For any H > 0, there exist infinitely many curves CQ de-
fined over Q such that e(CQ) > H.

Proof. We know from Sections 5 and 7 that the primes where the stable
model of the curve Cn has reducible fibres are those dividing n(n − 1).



A FAMILY OF ARITHMETIC SURFACES OF GENUS 3 83

Hence, the curves Cn satisfy

e(Cn) ≥ 1
12[Kn : Q]

log
∏

p|n(n−1)

p.

The degree of the extension Kn/Q is always less than or equal to 1152, while
we can take infinitely many values of n which make the product

∏
p|n(n−1) p

as large as desired. �

9. Canonical divisors.

We will ultimately give an explicit formula for the self-intersection of the
Arakelov dualizing sheaf of the arithmetic surfaces given by the curves Cn.
The purpose of this section is the determination of two canonical divisors on
the minimal model of these curves. We shall need to make a base extension
to determine such divisors.

Let us consider the following points on the (affine part of the) curve
Cn (Q):

P1 =
(√

2n− 2u
√
n(n− 1)− 1,

4√12−
√

3−1
2 ζµ

)
,

P2 =
(
−
√

2n− 2u
√
n(n− 1)− 1,

4√12−
√

3−1
2 ζµ

)
,

P3 =
(√

2n+ 2u
√
n(n− 1)− 1,

4√12−
√

3−1
2 ζµ

)
,

P4 =
(
−
√

2n+ 2u
√
n(n− 1)− 1,

4√12−
√

3−1
2 ζµ

)
,

where u=
√
−6 + 4 4

√
12− 4

√
3+2 4

√
108. The images of these points through

the map ψ2 are two different nontrivial 3-torsion points R1 = ψ2(P1) =
ψ2(P2), R2 = −R1 = ψ2(P3) = ψ2(P4) of the elliptic curve E.

In the proof of Lemma 10.2, we shall need the following result:

Lemma 9.1. The pair of points P1, P2 is conjugate over Q to the pair of
points P3, P4.

Proof. It is enough to see that the pairs are conjugate over the larger field
L = Q(bζµ), where b =

4√12−
√

3−1
2 . This, in turn, reduces to proving that

u2n(n − 1) is not a square in L. Since Q(b) = Q(b4) = Q( 4
√

12) ⊂ L =
Q( 4
√

12, 4
√
−4n(n− 1)), we have ζµ ∈ L, and (ζµ)4 = −4n(n−1) is a square

in L. Hence, we must check that −u2 = b4− 1 6∈ L∗2. Let F := Q(
√
b4 − 1);

we want to see that [FL : L] = 2, or equivalently, that [FL : F ] = 4, so
that it suffices to prove that the polynomial X4 − (ζµ)4 = X4 + 4n(n − 1)
is irreducible over F . This can only happen if −4n(n− 1) is a square or -4
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times a fourth power in F . The first possibility is excluded, since F ⊂ R.
So, it remains to prove that H := Q( 4

√
n(n− 1)) may not be embedded in

F . Using PARI ([BBBCO99]), we see that the only quartic subfield of F
is M = Q( 4

√
12). If H = M the discriminants of the polynomials X4 − 12

and X4 − n(n − 1) should agree up to a square, i.e., 3n(n − 1) should be
a rational square, which is not possible since we are assuming that n ≡ 2
(mod 3). �

Let Ln be a finite extension of the field Kn(P1, P3) satisfying the following
condition: The prime ideals in Kn(P1, P3) which divide n(n − 1) become
principal in Ln (the convenience of this condition will be clear later, just
before Theorem 9.4). We will denote by Tn the spectrum of the ring of
integers O′

n of Ln, and by `p the residual field of Ln at a prime p in O′
n .

Since the stable model is stable under base extensions, the stable model Vn of
Cn over Tn is the base change of X st

n to O′
n . In particular, the configuration

of the special fibres of Vn is exactly the same of the special fibres of X st
n (so

that we are going to use the same notation for them).

Proposition 9.2. Let U be the smooth part of Vn, and let U1 be the com-
plement of the bad fibres of Vn.

a) The points P1, P2, P3, P4 extend to sections M1,M2,M3,M4 on Vn con-
tained in U .

b) Let D0
1 = M1 +M2 +M3 +M4. We have a canonical isomorphism:

ωVn/Tn
|U1 ' OVn/Tn

(D0
1)|U1.

Proof. a) The non-smooth points in Vn are the singular points of the fi-
bres at primes of bad reduction. At an odd prime of bad reduction, any
automorphism ϕ2 leaves the singular points of the fibre invariant, so that
the corresponding induced automorphism on E leaves invariants the images
of these singular points through ψ2. Hence, these points must be 4-torsion
points (cf. remark at the end of Section 6). In the fibres over even primes,
a similar argument shows that the singular points must be the neutral el-
ements of the elliptic components. The reductions of the sections Mi are
3-torsion points on the special fibre, which can only be trivial at places of
characteristic 3, (where E is supersingular), but these are primes of good
reduction, since n ≡ 2 (mod 3). Thus, the sections Mi do not pass through
the non-smooth points of Vn .

b) On U1 we have an isomorphism ωVn/Tn
|U1 ' ΩVn/Tn

|U1, where ΩVn/Tn

denotes the sheaf of relative differential forms. On the generic fibre Cn we
have

ΩCn ' OCn(P1 + P2 + P3 + P4),
since the genus of Cn is 3, every plane embedding of Cn is canonical, and
the points Pi are collinear. This isomorphism extends to an isomorphism
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ΩVn/Tn
|U1 ' OVn/Tn

(D0
1)|U1, since the surface Vn|U1 is described by a global

nonsingular plane quartic, and the line through the points Pi is globally
defined over Z, since it is of the form y = λ, with λ and algebraic integer. �

In order to extend the above isomorphism to the whole surface Vn , we
must add some vertical components of the bad fibres to the divisor D0

1. To
control these extra components, we have to determine the intersection of D0

1

with the bad fibres.

Lemma 9.3.
a) Let p an odd prime in O′

n dividing n(n− 1). The divisor D0
1 intersects

each of the two components of Vn,p at two points (which may coincide).
b) Let p a prime in O′

n dividing 2. The divisor D0
1 intersects X2,p at two

points with multiplicity 2, and does not cut any other component of the
fibre.

Proof. a) From ϕ12(P1) = P2, we deduce that ϕ12(M1) = M2. Moreover,
ϕ12 permutes X1,p and X2,p, because ψ1 = ψ2 ◦ ϕ12. Thus, M1,M2 must
intersect Vn,p at different components. The same is true for M3,M4.

b) The reduced map ψ2,p|X2,p is a Frobenius map of degree 2, so that is
totally ramified. The images of the reduction of the sections Mi are two
different 3-torsion points in the special fibre of E, and thus the Mi must
pass through two points on X2,p. �

From now on, we will work on the minimal regular model V ′n of the curves
Cn. It may be obtained blowing up the singularities of the stable model.
Let us introduce some notation to describe the bad fibres of V ′n.

At a prime p in O′
n dividing n(n − 1), we write Vn,p = X1,p + X2,p,

and denote by W1,p,W2,p the intersection points of these two components;
these points may be singular points on the surface Vn; we call s1,p, s2,p
respectively the number of blow-ups necessary to desingularize these points.
The fibre of V ′n consists of the two elliptic components X1,p, X2,p, linked by
rational components A1,p, . . . , As1,p,p (lying above W1,p), B1,p, . . . , Bs2,p,p

(lying above W2,p).
At a prime p in O′

n dividing 2, we write Vn,p = X0,p +X1,p +X2,p +X3,p,
where X0,p is a rational component, and X2,p is the elliptic component
that dominates the special fibre of E through the map ψ2. Again, the
intersection points Y1,p, Y2,p, Y3,p of the three elliptic components with the
rational component may be singular points on Vn; we will denote by rp, sp, tp
the number of blow-ups needed to desingularize these points. Since the
automorphism γ permutes X1,p and X2,p, we know that rp = sp. The fibre
of V ′n consists of the three elliptic components, linked to X0,p by rational
components A1,p, . . . , Arp,p (lying above Y1,p), B1,p, . . . , Brp,p (lying above
Y2,p), and C1,p, . . . , Csp,p (lying above Y3,p). All these rational components
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are numbered starting from the corresponding elliptic component and ending
in X2,p.

We shall determine a canonical divisor on V ′n, that is, a divisor D = D0
1 +∑

pDp such that ωV ′
n/Tn

' OV ′
n
(D). We write Dp =

∑
i ai,pXi,p +Ep, with

the ai,p integer coefficients, and Ep a sum of rational components coming
from blow-ups. The advantage of working on a regular model is that we
may use the adjunction formula for every component X of a fibre V ′n,p:

2gX − 2 = ωV ′
n/Tn

|X +X2 = (D0
1, X) + (Dp, X) +X2,

to obtain a linear system of equations on the coefficients of Dp. By Propo-
sition 9.2, we only have to deal with the primes of bad reduction.

Let p be an odd prime in O′
n of bad reduction. We write Dp = a1,pX1,p +

a2,pX2,p +
∑

i αiAi,p +
∑

j βjBj,p. The adjunction formula applied to every
component of V ′n,p yields a (degenerate) linear system of equations in the
coefficients of D; solving this system we see that Dp must be an integral
multiple of the whole fibre V ′n,p.

In a prime p dividing 2, we write Dp =
∑3

k=0 ak,pXk,p +
∑

i αiAi,p +∑
j βjBj,p +

∑
k γkCk,p. The solutions of the linear system provided by the

adjunction formula are

αi = a1,p + i, βj = a2,p − 3j, γk = a3,p + j,
a1,p = a0 − rp − 1, a2,p = a0 + 3(rp + 1), a3,p = a0 − sp − 1.

We may take a0,p = rp + sp + 1, and hence, up to integral multiples of the
fibre:

Dp = (rp + sp + 1)X0,p + spX1 + (sp + 4(rp + 1))X2,p + rpX3 + Ep,

where Ep =
∑rp

i=1(sp + i)Ai,p +
∑sp

i=1(rp + i)Ci,p +
∑rp

j=1(sp + 4(rp + 1) −
3j)Bj,p. From now on, we shall denote by F2 the sum of all the Dp for p
dividing 2:

F2 :=
∑
p|2

(
(rp + sp + 1)X0,p + spX1 + (sp + 4(rp + 1))X2,p + rpX3 + Ep

)
.

We have thus seen that, for certain divisor V on Vn coming from an ideal
I in O′

n dividing n(n− 1),

ωVn/Tn
' OVn(M1 +M2 +M3 +M4 + F2 + V ).

In order to avoid the determination of the divisor V coming from the
base, we have imposed the condition defining the field Ln at the beginning
of the section. Then, the divisor V becomes a principal ideal, and we can
ignore it 1 .

1Anyway, the computations in Section 10 could be carried on without additional effort
if we define Ln = K(P1, P3) and take into account the (indeterminate) divisor V ; we have
chosen our definition of Ln to simplify the expressions to be obtained later on.
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Theorem 9.4. The divisor D1 = M1 +M2 +M3 +M4 + F2 is a canonical
divisor on V ′n:

ωV ′
n/Tn

' OV ′
n
(D1).(2)

We note that for any automorphism σ of Cn, σ(D1) is also a canonical
divisor on V ′n. Let us take D2 = ϕ01(D1). Putting Qi = ϕ01(Pi), Ni =
ϕ01(Mi), we have that D2 = N1 + N2 + N3 + N4 + F2, since ϕ01 leaves
the components of the fibres at even primes invariant, as we have seen in
Section 7. Since Qi 6= Pj , the divisors D1 and D2 are disjoint on the
generic fibre, so that we can use them to compute the self-intersection of the
canonical sheaf.

Let us write R1 = ψ2(P1) = ψ2(P2), R2 = ψ2(P3) = ψ2(P4), T1 =
ψ2(Q1) = ψ2(Q2), T2 = ψ2(Q3) = ψ2(Q4). We know that ϕ01 induces
the automorphism ϕE01 = [−i]E + (1, 0) on E through ψ2. Thus Tk =
[−i]ERk + (1, 0), and 3(Tj − Rk) = (1, 0) has exact order 2; in particu-
lar Tj 6= Rk. Let us denote by Rj,p, Tk,p the reductions of the points Rj , Tk
modulo a prime p. It is clear that if these reductions do not coincide, the cor-
responding sections Mj , Nk do not intersect on the fibre at p. If p is an odd
prime, the elliptic curve E has good reduction at p and everything reduces
properly, so that Rj,p 6= Tk,p. If p|2, the reduction of ϕE01 is [−i]E/`p

, and we
have T1,p = −T2,p = [−i]E/`p

R1 = [i]E/`p
R2, so that again Rj,p 6= Tk,p. We

have seen:

Proposition 9.5. The divisors D0
1 = D1 − F2 and D0

2 = D2 − F2 are
disjoint.

In the following section we will need the following computation:

Lemma 9.6. (F2, F2) = −
∑

p|2(10rp + sp + 11) log ]`p.

Proof. We have F2 =
∑

pDp, and (Dp, Dp) = −(10rp + sp + 11) log ]`p
follows from the equalities (where the factor log ]`p is skipped):

Dp = (rp + sp + 1)X0,p + spX1 + (sp + 4(rp + 1))X2,p + rpX3 + Ep,

Ep =
rp∑
i=1

(sp + i)Ai,p +
sp∑
i=1

(rp + i)Ci,p

+
rp∑
j=1

(sp + 4(rp + 1)− 3j)Bj,p,

( rp∑
i=1

(s+ i)Ai,p

)2

= −(rp + sp + 1)2 − s2p + rp + 1,

( sp∑
i=1

(r + i)Ci,p

)2

= −(rp + sp + 1)2 − r2p + sp + 1,



88 J. GUÀRDIA rp∑
j=1

(sp + 4(rp + 1)− 3j)Bj,p

2

= −17r2p − 10rpsp − 25rp − 2s2p − 10sp − 8,

(Ep, Ep) =

( rp∑
i=1

(s+ i)Ai,p

)2

+

 rp∑
j=1

(sp + 4(rp + 1)− 3j)Bj,p

2

+

( sp∑
i=1

(r + i)Ci,p

)2

= −20r2p − 14rpsp − 28rp − 5s2p − 13sp − 8,

(X0,p, Ep) = 3(rp + sp) + 4, (X0,p, X0,p) = −3,

(X1,p, (rp + sp + 1)X0,p + Ep) = sp + 1, (X1,p, X1,p) = −1,

(X2,p, (rp + sp + 1)X0,p + Ep) = sp + 4rp + 1, (X2,p, X2,p) = −1,

(X3,p, (rp + sp + 1)X0,p + Ep) = rp + 1, (X3,p, X3,p) = −1.

�

10. A formula for Arakelov self-intersection.

We will now give an explicit expression for the Arakelov self-intersection of
the canonical sheaf of the arithmetic surfaces Vn. Since this self-intersection
is unaltered after a blow-up, we can compute it with the canonical divisors
on V ′n which we have found in previous section.

First of all, we must extend the isomorphism (2) to an Arakelov isomor-
phism. The curvature of ωV ′

n/Tn
and OV ′

n
(Dj) being the same, it will be

enough to add some vertical Arakelov components to the divisors D1, D2.
Let us write:

ωV ′
n/Tn

' OV ′
n

(
Dj +

∑
σ:Ln→C

rj,σCn,σ

)
.

We have taken D2 = ϕ01(D1), and ϕ01 is defined over Kn, so that r1,σ = r2,σ
for every immersion σ : Ln → C, and the divisors D1, D2 are Arakelov
equivalent. Moreover, this equality yields:

(ωV ′
n/Tn

, ωV ′
n/Tn

)Ar = (D1, D2)Ar + 8
∑
σ

r1,σ.

We can determine this sum using the arithmetic adjunction formula (cf.
[Sz85]), which in our case gives: (ωV ′

n/Tn
,OV ′

n
(Mj))Ar = −(Mj ,Mj)Ar.

Combining this relation with the first equality we obtain∑
σ

r1,σ = −(Mj ,Mj)Ar − (Mj , D1)Ar,
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and summing up for all Mj ’s:

4
∑
σ

r1,σ = −
4∑
j=1

(Mj ,Mj)Ar − (D1, D1)Ar + (F2, D1)Ar.

The self-intersection of the Mj ’s can be eliminated using the equality (D0
1,

D0
1)Ar =

∑4
j=1(Mj ,Mj)Ar + 2

∑
j<k(Mj ,Mk)Ar:

4
∑
σ

r1,σ = −2(D1, D1)Ar + 3(D1, F2)Ar − (F2, F2)Ar + 2
∑
j<k

(Mj ,Mk)Ar.

If we now take into account that (D1, D1)Ar = (D1, D2)Ar since the divi-
sors D1, D2 are Arakelov equivalent, we obtain that:

(ωV ′
n/Tn

, ωV ′
n/Tn

)Ar = −3(D1, D2)Ar + 4
∑
j<k

(Mj ,Mk)Ar

+ 6(D1, F2)Ar − 2(F2, F2)Ar.

We will now give more concrete expressions for the terms in the right
of the previous equality. We must introduce some notations. For every
σ : Ln → C, we denote by P σj (resp. Qσk) the points given by the sections
Mj (resp. Nk) on the fibre Cn,σ of Vn at σ.

Lemma 10.1. Let G be the Green function of the Riemann surface given
by the curve Cn. We have:

(D1, D2)Ar =
∑
σ

4∑
j,k=1

logG(P σj , Q
σ
k) + 2(D0

1, F2)Ar + (F2, F2)Ar.

Proof. We have:

(D1, D2)Ar = (D0
1, D

0
2)Ar + (D0

1, F2)Ar + (D0
2, F2)Ar + (F2, F2)Ar.

By Proposition 9.5, the first term equals
∑

σ

∑4
j,k=1 logG(P σj , Q

σ
k). The

two intermediate terms are equal since D0
2 = ϕ01(D0

1), and F2 is invariant
through ϕ01. �

Lemma 10.2.∑
j<k

(Mj ,Mk)Ar =
∑
σ

∑
j<k

logG(P σj , P
σ
k )

+ 2
∑
p|2

(M1,M2)p + 2
∑
p|3

(M1,M3 +M4)p.

Proof. We calculate the finite part of this intersection. If p|2, then

(M1,M3)p = (M1,M4)p = (M2,M3)p = (M2,M4)p = 0,

because the images of these pairs of points through the map ψ2 are different.
On the other hand, the pair of points M1,M2 are conjugated to the pair
M3,M4 over Q by Lemma 9.1, and thus

∑
p|2(M1,M2)p =

∑
p|2(M3,M4)p.
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We now look at an odd prime p dividing n(n − 1). We know from Lem-
ma 9.3 that two of the sections M1,M2,M3,M4 intersect the component
X1,p of the fibre Vn,p, and the other two intersect the component X2,p.
Moreover, M1 and M2 must intersect different components, since M2 =
ϕ12(M1), X2,p = ϕ12(X1,p). The same assertion is true for M3,M4. The Mj

are contained in the smooth part of Vn , so that we must have:

(M1,M2)p = (M3,M4)p = 0.

Now, (M1,M3 + M4)p = (M2,M3 + M4)p, again because M2 = ϕ12(M1),
M4 = ϕ12(M3). Note that ψ2(P1) = R1 is a 3-torsion point distinct from
ψ2(P3) = ψ2(P4) = R2 = 2R1. Hence, if these sections do intersect at p, the
points R1,p, R2,p must specialize both to 0. This can only happen at those
primes with residue characteristic 3. �

Putting all the above equalities together, and taking into account Lem-
ma 9.6 we obtain:

Theorem 10.3. The self-intersection of the Arakelov dualizing sheaf of the
arithmetic surface V ′n can be expressed as:

(ωV ′
n/Tn

, ωV ′
n/Tn

)Ar = 4
∑
σ

∑
j<k

logG(P σj , P
σ
k )

− 3
∑
σ

4∑
j,k=1

logG(P σj , Q
σ
k)

+ 8
∑
p|2

(M1,M2)p + 8
∑
p|3

(M1,M3 +M4)p

−
∑
p|2

(10rp + sp + 11) log ]`p.
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QUOTIENTS OF NILALGEBRAS AND
THEIR ASSOCIATED GROUPS

Lakhdar Hammoudi

We show that every finitely generated nilalgebra having ni-
lalgebras of matrices is a homomorphic image of nilalgebras
constructed by the Golod method (Golod, 1965 and 1969).
By applying some elements of module theory to these results,
we construct over any field non-residually finite nilalgebras
and Golod groups with non-residually finite quotients. This
solves Šunkov’s problem (Kourovka Notebook, 1995, Prob-
lem 12.102). Also, we reduce Kaplansky’s problem on the
existence of a f.g. infinite p-group G such that the augmenta-
tion ideal ωK[G] over a nondenumerable field K is a nilideal
(Kaplansky, 1957, Problem 9) to the study of the just-infinite
quotients of Golod groups.

1. Introduction.

This paper deals with finitely generated (f.g.) infinite dimensional nilal-
gebras and their associated groups. Using Golod’s algebras Anan’in and
Puczy lowski constructed over fields of characteristic zero f.g. non-nilpotent
nilalgebras which are not residually finite [2, 15]. On the other hand, Rowen
has proved their existence over every field [16]. Here we shall construct
such examples over every field. This will enable us to solve in the negative
Šunkov’s problem [11, Problem 12.102] by constructing Golod groups with
non-residually finite quotients. To this end we shall first start construct-
ing Golod algebras as extensions of some nilalgebras. This is a completely
different view from the classical one where Golod algebras are seen as ho-
momorphic images. On the other hand the proofs of Theorems 2 and 3 are
careful analysis of the Golod method. However, a great deal of informa-
tion is extracted. For example, we prove that every f.g. nilalgebra over a
nondenumerable field is a homomorphic image of a Golod algebra. As a con-
sequence, Kaplansky’s problem on the existence of a f.g. infinite p-group G
such that the augmentation ideal ωK[G] over a nondenumerable field K is a
nilideal [10, Problem 9] is reduced to the study of the just-infinite quotients
of Golod groups. In the denumerable case we obtain some results, although
because of the Köthe conjecture [12] the situation is quite complicated and
we are far from understanding it.
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Let K be any field and let F (1) be the free associative algebra of polynomi-
als without constant terms in the non-commuting indeterminates X1, . . . , Xd

(d ≥ 2) over K. In this work an algebra means an associative algebra unless
otherwise stated.

Lemma 1 ([6, 7]). Let I be an ideal of F (1) generated by a family of ho-
mogeneous polynomials f1, f2, . . . of non-decreasing degrees greater than or
equal to 2. Let ri be the number of polynomials of each degree i ≥ 2 in the

sequence f1, f2, . . . . If the coefficients of the series
(

1−dt+
+∞∑
i=2

rit
i

)−1

are

positive, then the algebra F (1)/I is of infinite dimension. In particular this
is true if for a fixed real ε, 0 < ε < 1/2, ri ≤ ε2(d− 2ε)i−2, for every i ≥ 2.

A Golod algebra is a f.g. non-nilpotent nilalgebra which satisfies Lemma 1
and which is constructed by the Golod method as in [6, 7].

An algebra A over a field k is absolutely nil if for every extension field
K ⊃ k, A

⊗
K is a nilalgebra [1, 1c, p. 51].

We shall use the following characterization of absolutely nilalgebras:

Lemma 2 ([1, 3c, p. 52]). The algebra A is absolutely nil if for every finite
set g1, . . . , gn of elements of A, there exists an integer m such that for every
partition m = µ1 + · · ·+ µn, µi ≥ 0, φµ1...µn(g1, . . . , gn) =

∑
gi1 · · · gim = 0,

where
∑

ranges over all the products which contain gj, µj times for every
j.

The smallest such integer m is called the degree of absolute nillity of
g1, . . . , gn. It is obvious that φµ1...µn(g1, . . . , gn) is a homogeneous polyno-
mial of degree m in the subalgebra generated by g1, . . . , gn. φµ1...µn(g1, . . . ,
gn) is called a φµ1,µn(g1, . . . , gn) homogeneous polynomial. When there is
no ambiguity, we speak about the φµ1,µn homogeneous polynomials (parts,
components) where µ1, . . . , µn range over all the partitions of m.

It is well-known that every f.g. nilalgebra over a nondenumerable field
and every locally nilpotent algebra are absolutely nil [1]. It is observed [1,
p. 56] and is proved below (see Remark 2) that Golod algebras are examples
of non-locally nilpotent absolutely nilalgebras.

2. Residually finite case.

Theorem 1. Let A = F (1)/I be a nilalgebra with an absolutely nil ideal J/I
such that J is a homogeneous ideal of F (1). Then A is a homomorphic image
of a residually finite nilalgebra B = F (1)/T such that T is a homogeneous
ideal.
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Proof. Let g ∈ F (1) and n be an integer such that gn ∈ J . Then gn =∑
i

Mi, where Mj are homogeneous polynomials of J . Since J/I is an ab-

solutely nilalgebra, there exists an integer m = m(Mi1 , . . . ,Mik) such that
all the homogeneous polynomials in the Mj , φµ1,µk

=
∑

Mj1 · · ·Mjm ∈ I.
But every element Mj is homogeneous in F (1), so all the polynomials φµ1,µk

are homogeneous in F (1). From the fact that (gn)m =
∑

µ1+···+µk=m

φµ1,µk

we see that (gn)m is a sum of homogeneous elements of I. Let T be the
ideal of F (1) generated by all the homogeneous polynomials φµ1,µk

, so con-
structed. It is obvious that T ⊂ I is a homogeneous ideal and that F (1)/T
is a residually finite nilalgebra.

In view of this theorem we ask the following natural question:

Question 1. Let A be an algebra as in the previous theorem. Is A abso-
lutely nil?

Although this question seems to be difficult, one can observe that if J/I
is an ideal of A of finite codimension then A is absolutely nil. This gives
the following characterization of f.g. non-absolutely nilalgebras. Examples
of this sort are the nilalgebras generated by 3 elements constructed recently
by Smoktunowicz [18].

Corollary 1. Let A be a f.g. non-absolutely nilalgebra. Then for every n ≥
1, An is a f.g. nilalgebra which is not absolutely nil.

Theorem 2. Let A = F (1)/I be a nilalgebra over a denumerable field such
that I is a homogeneous ideal. Then A is a homomorphic image of a resid-
ually finite nilalgebra B = F (1)/J which satisfies Lemma 1.

Proof. We will construct by induction a family of homogeneous polynomials
f1, f2, . . . which generate the ideal J .

We suppose that the base field K is denumerable. In this case F (1) is
denumerable. Let us enumerate its elements as {y1, y2, . . . }. Choose an
integer n greater than or equal to the index of nilpotency of (y1 + I). Then
yn1 is in I and since I is homogeneous, each of its homogeneous components
f1, . . . , ft (with degfj < degfj+1) is in I. Given any number k, there is no
more than one fi with degree k. So we have the set {f1, . . . , ft} satisfying
Lemma 1. In particular , there exit homogeneous polynomials f1, . . . , ft
with increasing degrees in I satisfying Lemma 1 such that yn1 is in the ideal
generated by {f1, . . . , ft} ⊆ I.

Suppose by induction, we have a Golod set {f1, . . . , fs} ⊆ I such that
degfi < degfi+1 and for each i = 1, . . . , k there is an integer ni with yni

i in
the ideal generated by {f1, . . . , fs}. For yk+1 choose an integer m greater
than both the index of nilpotency of (yk+1 + I) and degfs. Since A is
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nil and since I is a homogeneous ideal, we can write (yk+1)m in terms of
its homogeneous components all of which are in I, and all of which have
degree larger than degfs. Label these components fs+1, . . . , fr. Then the set
{f1, . . . , fs, fs+1, . . . , fr} ⊆ I of homogeneous polynomials satisfies Lemma 1
such that for each i = 1, . . . , k+1, there is an integer ni with yni

i in the ideal
generated by {f1, . . . , fr}. Now, by the induction we have an infinite set of
homogeneous polynomials f1, f2, . . . in I satisfying Lemma 1, and which
generates the ideal J , such that F (1)/J is a nilalgebra.

Theorem 3. Let A = F (1)/I be an absolutely nilalgebra. Then A is a
homomorphic image of a Golod algebra B = F (1)/J .

Proof. The proof is by induction on the degrees of general polynomials. Let
g1 = c1X1 + · · · + cdXd be a general polynomial of degree 1 in F (1) and
choose an integer l greater than or equal to the degree of absolute nillity
of X1 + I, . . . ,Xd + I. Since A is absolutely nil, by Lemma 2, for every
partition l = µ1 + · · · + µd, µi ≥ 0, the φµ1,µd

(X1, . . . , Xd) polynomials are
in I. These polynomials are just the coefficients (homogeneous polynomials
in X1, . . . , Xd) of gl1 when seen as a polynomial in the commuting unknowns
c1, . . . , cd. Let us denote these φµ1,µd

(X1, . . . , Xd) polynomials as f1, . . . , fl1 .
Now, since the number ri of polynomials of each degree i (in this case i = l)
in {f1, . . . , fl1} does not exceed (l + d − 1)d−1, for l big enough, ri ≤ (l +
d− 1)d−1 ≤ ε2(d− 2ε)i−2. Thus, the set {f1, . . . , fl1} satisfies Lemma 1.

Suppose that we have constructed in I a system of homogeneous polyno-
mials f1, . . . , flk satisfying Lemma 1 and that for every polynomial y ∈ F (1)

of a degree not exceeding k there exists an integer l′ = l′(y) such that the
homogeneous parts of yl

′
are in the ideal generated by f1, . . . , flk . Let

gk+1 = c
(1)
1 X1 + · · ·+ c

(1)
d Xd + c

(2)
1 X2

1 + c
(2)
2 X1X2 + · · ·+

c
(2)
d2
X2
d + · · ·+ c

(k+1)

dk+1 X
k+1
d

be a general polynomial of F (1) of degree k+ 1. Let n be an integer greater
than max (deg f1, . . . ,deg flk , m(X1, . . . , X1Xd, . . . , X

k+1
d )), where, m(X1,

. . . , Xk+1
d ) is the degree of absolute nillity of X1, . . . , X1Xd, . . . , X

k+1
d . By

Lemma 2, for every partition n = µ1 + · · ·+ µq, µi ≥ 0, q = d+ · · ·+ dk+1

the φµ1,µq(X1, . . . , X
k+1
d ) polynomials are in I. As in the case of g1, by the

choice of the integer n, the coefficients of gnk+1, seen as a polynomial in the

commuting unknowns c(1)
1 , . . . , c

(k+1)

dk+1 , are the φµ1,µq(X1, . . . , X
k+1
d ) ∈ I. Let

us denote them by flk+1, . . . , flk+1
and construct a new family of homoge-

neous polynomials f1, . . . , flk , flk+1, . . . , flk+1
satisfying Lemma 1. Indeed,

the number ri of polynomials of degree i > max(degf1, . . . ,degflk) does not
exceed (n + q − 1)q−1. For n big enough, we have ri ≤ (n + q − 1)q−1 ≤
ε2(d − 2ε)i−2. For i ≤ max(degf1, . . . , degflk) this property is satisfied in
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the system f1, . . . , flk . So we have constructed a family of polynomials
f1, . . . , flk+1

satisfying Lemma 1 and for every polynomial z ∈ F (1) of a
degree not exceeding k + 1 there exists an integer n′ = n′(z) such that the
homogeneous parts of zn

′
are in the ideal generated by f1, . . . , fnk+1

. The
union of all these families so constructed gives an infinite system of homo-
geneous polynomials f1, f2, . . . which generate the ideal J . We have proved
the theorem.

Remarks.
1. If A is such that specific elements generate a nilpotent (soluble, finite

dimensional,. . . ) subalgebra, then one can construct B with the same
properties as A.

2. From the proof of Theorem 3, we see that the Golod algebras are
absolutely nil. Therefore, Golod algebras have nilalgebras of matrices.
This solves P.M. Cohn’s question [4, p. 387 and Exercise 6o, p. 395].

Having in mind that a f.g. nilalgebra over a nondenumerable field is ab-
solutely nil [1], we obtain:

Corollary 2. Every f.g. nilalgebra over a nondenumerable field is a homo-
morphic image of a Golod algebra.

Let A be a Golod algebra generated by X1, . . . , Xd (d ≥ 2). The group
generated by 1 +X1, . . . , 1 +Xd is called the Golod group of A and the Lie
algebra generated by X1, . . . , Xd is the Golod-Lie algebra.

Corollary 3. For any integer d ≥ 2, every d-generator group arising from
an absolutely nilalgebra is a homomorphic image of a d-generator Golod
group. In particular, so is every finite p-group, for every prime integer p.

In [10, Problem 9], Kaplansky asked whether the augmentation ideal
ωK[G] of a f.g. infinite p-group G could be a nilideal. A particular case is
Passman’s question on the use of Golod groups to solve this problem [13,
p. 121 and Problem 18, p. 133], [14, p. 415]. The following result confirms
Passman’s observation and reduces Kaplansky’s problem to the study of the
quotients of Golod groups:

Corollary 4. Let K be a nondenumerable field of characteristic p > 0.
Then, there exists a f.g. infinite p-group G such that the augmentation ideal
ωK[G] is nil if and only if there exists a just-infinite homomorphic image
G of a Golod p-group such that ωK[G] is nil.

Proof. Let G be as in the corollary. Since it is f.g and infinite., it has a
just-infinite homomorphic image G. Hence, the augmentation ideal ωK[G]
is a quotient of ω K[G] and so it is a nilalgebra over a nondenumerable field
K. By Corollary 2, G and G are quotients of a Golod group. The converse
is obvious.
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On the other hand we point out that since non-absolutely nilalgebras
cannot be quotients of Golod algebras, their associated groups have non-nil
augmentation ideals. The only examples of this type are the nilalgebras
generated by 3 elements constructed by Smoktunowicz [18]. The following
result is analogous to the results obtained in the case of the 2-generated
Grigorchuk groups [5], the 3-generated Gupta-Sidki groups [17] and the
free Burnside groups [9]:

Corollary 5. Let K be a nondenumerable field of characteristic p > 0.
Let G be a f.g. p-group associated to a non-absolutely nilalgebra. Then the
augmentation ideal ωK[G] is not nil. Moreover ωK[G] has a just-infinite
primitive homomorphic image.

Question 2. Could the group algebra in the preceeding Corollary contain
a free associative algebra with two non-commuting indeterminates ?

Corollary 6. For any integer d ≥ 2, every d-generator Lie algebra aris-
ing from an absolutely nilalgebra is a homomorphic image of a d-generator
Golod-Lie algebra.

3. Non-residually finite case.

We turn now to non-residually finite quotients of nilalgebras and their as-
sociated groups. We point out that a f.g. just-infinite nilalgebra or a f.g.
just-infinite Jacobson radical ring is residually finite [9] and that some in-
finite dimensional quotients of Golod algebras are also Golod algebras (the
same result holds for Golod groups and Golod-Lie algebras) [8, 19]. A subset
E of a ring A is T -nilpotent if for every sequence g1, g2, . . . of elements of E,
there exists an integer k with g1g2 · · · gk = 0. It is obvious that T -nilpotency
implies local nilpotency. In our investigations, a key role is played by the
following generalization of Nakayama’s lemma:

Lemma 3 ([20, §43.5, p. 386]). Let A be an algebra. Then, AM 6= M for
every left A-module M , if and only if A is T -nilpotent.

The existence of f.g. non-residually finite, infinite dimensional nilalgebras
over every field was first proved in [16]. A simple observation yields a
stronger result. Indeed, let d ≥ 2 be an integer and suppose that for any
d-generator nilalgebra A, any left A-module M satisfies ∩AiM = 〈0〉. So,
AM 6= M and by Lemma 3, A is T -nilpotent. Thus every d-generator
nilalgebra is nilpotent. This contradicts the Golod construction [6, 7] and
proves:

Proposition. For every integer d ≥ 2 and over any field, there exists a
non-residually finite, non-nilpotent d-generator nilalgebra.

Theorem 4. Over any field, any f.g. non-nilpotent nilalgebra with involu-
tion is a homomorphic image of a f.g. non-residually finite nilalgebra.
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Proof. Let A be a f.g. non-nilpotent nilalgebra with involution. Since A is
not locally finite, by Lemma 3 there exists a nondegenerate left A-module
M such that AM = M . It is well-known that every left A-module can be
considered as a right module over the opposite algebra Ao of A. But the fact
that A has an involution yields A ∼= Ao and turns M to a nondegenerate
(A, A)-bimodule such that AM = MA = M . Let m be a nondegenerate
element of M and consider the submodule N = 〈m〉. Since A has an invo-
lution and N is nondegenerate, we have AN = NA = N . Denote by A the
trivial extension of A by N ,

A = {(a, n), a ∈ A, n ∈ N}.
With the usual addition and the following multiplication:

(a, n)(a′, n′) = (aa′, an′ + na′), a, a′ ∈ A, n, n′ ∈ N,
A is a non-nilpotent nilalgebra such that A/I = A, where I is the ideal
〈(0, n), n ∈ N〉. From the fact that AN = NA = N , it follows that I is in
A
k for every integer k; thus A is not residually finite. Since A is f.g. and

N = 〈m〉, A is f.g. Therefore, we proved the theorem.

Corollary 7. Over every field, there exists a Golod algebra with non-re-
sidually finite quotients.

Proof. Apply Theorems 1 and 2 or 3 to the non-residually finite nilalgebras
of Theorem 4.

The following corollary solves in the negative Šunkov’s problem [11, Prob-
lem 12.102]:

Corollary 8. For every prime p (respectively p = 0), there exists Golod p-
groups (respectively torsion free groups) with non-residually finite quotients.

Proof. Let A be a non-residually finite homomorphic image of a Golod al-
gebra B and denote by Y1, . . . , Yd its generators which are images of fixed
generators of B. Since A is f.g., and N = 〈m〉 is a nondegenerate module
satisfying AN = NA = N (see the proof of Theorem 4), 1 + (0, m) ∈ G
where, G = 〈1 + Y1, . . . , 1 + Yd〉. Thus the Golod group of B has G as a
non-residually finite quotient.

We conclude with the following question which is related to Bergman’s
[3, Question 63]:

Question 3. Anan’in and Puczy lowski constructed over fields of charac-
teristic zero, f.g. non-residually finite, non-nilpotent nilalgebras with non-
radical tensor square [2, 15]. Could we construct such examples in charac-
teristic p > 0?
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SYMMETRIC SPACE VALUED MOMENT MAPS

Matthew Leingang

For a compact Lie group G, three examples of G-spaces
which can serve as the target of a moment map are discussed.
Abstracting the work of Alekseev, Meinrenken, and Malkin,
we cast these theories into a unified framework.

Let G be a compact, connected Lie group, and M a manifold on which
G acts. There are several natural G-spaces which can be considered as the
target of a moment map originating from G. The first is the dual g∗ to the
Lie algebra of G; we say that M is a Hamiltonian G-space if M has a G-
invariant symplectic form ω and there exists an equivariant map Φ: M → g∗

such that

ι(ξM )ω = d 〈Φ, ξ〉(1)

for all ξ ∈ g. Φ is called the moment map [5], [4].
In [3], Alekseev, Meinrenken, and Malkin define a Hamiltonian theory in

which the moment map has the group itself as target. Given an invariant
inner product B on g, M is called q-Hamiltonian if there is an invariant
two-form ω and an equivariant map Φ: M → G (again called a moment
map) such that

dω = 1
12Φ∗B(θ, [θ, θ]),(2a)

and for all ξ ∈ g,

ι(ξM )ω = 1
2Φ∗B(θ + θ, ξ);(2b)

kerωx =
{
ξM (x) | ξ ∈ ker

(
AdΦ(x) +1

)}
.(2c)

Here θ and θ are the left- and right-invariant Maurer-Cartan forms on
G. This theory is more complicated, especially when G is nonabelian. For
(2a) requires that ω may not be closed and (2b) requires that ω may not be
nondegenerate.

If G is given the structure of a Poisson-Lie group, one can also consider
the class of Poisson-Lie G-spaces [11], [10]. These have a symplectic form
ω and equivariant map Φ: M → G∗ such that

ι(ξM )ω = Φ∗ 〈θG∗ , ξ〉(3)

for all ξ. Here θG∗ , the right-invariant Maurer-Cartan form on G∗, takes
values in g∗, and hence pairs with g. The complications here are that the
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individual maps g : M →M do not preserve the full structure of M , i.e., the
Poisson structure, as they do in the two cases above. Rather, the action map
itself G ×M → M is a Poisson map. However, in [1], Alekseev introduces
another target: The canonical noncompact symmetric space Y within GC
transverse to G. Let i : Y → GC be the inclusion. The differential equations
a moment map Φ: M → Y must satisfy are

dω = 1
2Φ∗i∗ ImB

(
θGC , [θGC , θGC ]

)
;(4a)

and for all ξ,

ι(ξM )ω = 1
2
√
−1

Φ∗i∗B(θGC + θGC , ξ);(4b)

kerωx = 0.(4c)

They are similar to (2a)-(2c). The spaces G∗ and Y are equivariantly dif-
feomorphic, and Alekseev uses Y to construct a correspondence between
ordinary Hamiltonian G-spaces and Poisson-Lie G-spaces. Both G∗ and Y
are equivariantly diffeomorphic to a slightly more natural space, GC/G.

Thus we have three moment map theories, or at least three natural G-
spaces which serve as targets for moment maps: g∗ for the classical Hamil-
tonian theory; G for the q-Hamiltonian theory, and GC/G representing the
Poisson or Y -valued theory. In this note we bring these theories into a uni-
fied framework. Abstracting from [3], we show that given a symmetric pair
(H,G), with a special pairing on the Lie algebra of H, we may construct
an equivariantly-closed three-form on P = H/G and a moment map the-
ory. The three most obvious P which arise this way are G o g∗/G = g∗,
(G × G)/G = G, and GC/G ∼= Y , and the moment map theories we will
construct coincide with those which have already arisen in the literature.
Furthermore, if (H,G) is one of these special symmetric pairs with H con-
nected and G simply connected, H/G must decompose into a product of
smaller such symmetric spaces each one of which is isomorphic to k∗, K, or
KC/K for a subgroup K of G.

These results were announced in [8]. Shortly thereafter, similar results
were related to the author by Yvette Kosmann-Schwarzbach [2]. The au-
thor’s preprint eventually developed into [9]. He would like to thank his
advisors, Victor Guillemin and Shlomo Sternberg, as well as Eckhard Mein-
renken and Chris Woodward for many useful discussions. The reviewer also
deserves thanks for thoughtful and detailed feedback.

1. Definitions.

1.1. Moment space and moment map. There is a basic notion of a
differential equation a moment map should obey, regardless of the target, as
well as certain conditions of minimal degeneracy. Here we generalize these
requirements.
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Definition 1. A (possibly degenerate) moment space for G is a pair (P, χ̃),
where P is a G-manifold and χ̃ is an equivariantly closed three-form on P .

The form χ̃ may be called the moment form. Since

Ω3
G(P ) = Ω3(P )G ⊕ (Ω1(P )⊗ g∗)G,

we can write χ̃ as χ + τ , where χ ∈ Ω3(P )G is the invariant piece and
τ : g → Ω1(P ) is the equivariant piece. For any G-manifold Q, the vector
field generated by ξ ∈ g will be denoted ξQ. The condition that dGχ̃ = 0
can be written as three equations:

dχ = 0,(5a)

and for all ξ ∈ g,

ι(ξP )χ = dτ(ξ);(5b)

ι(ξP )τ(ξ) = 0.(5c)

Example 1. Let φ : g → g∗∗ ⊂ C∞(g∗) be the map φ(ξ)(`) = 〈ξ, `〉. Then
an equivariantly closed three-form on g∗ is τg∗ = dGφ, which has no invariant
part. Written as a map g → Ω1(g∗), it takes the form

τg∗(ξ)`(λ) = 〈λ, ξ〉 ,(6)

for each ξ ∈ g, ` ∈ g∗, and λ ∈ T`g∗ = g∗.

Example 2. As explained in the introduction, the second example of a
moment space is G itself. Let g have an invariant, positive-definite inner
product B. Then the form

χ̃G(ξ) = χG + τG(ξ) def= 1
12B(θG, [θG, θG]) + 1

2B(ξ, θG + θG)(7)

is equivariantly closed. This is a consequence of the Cartan structure equa-
tions

dθ = −1
2 [θ, θ](8a)

dθ = 1
2 [θ, θ].(8b)

Example 3. There are two perspectives on the last example of moment
space. The first connects with the Poisson-Lie G-spaces of Lu and Weinstein.
Let T be a maximal torus for G, t its Lie algebra, and a =

√
−1t ⊂ gC. a is

the Lie algebra of a subgroup A ⊂ GC. Let n be the sum of a set of positive
root spaces. Then there is the Iwasawa decomposition of gC:

gC = g⊕ a⊕ n;
GC = GAN.

Then the imaginary part of BC restricts to a nondegenerate pairing between
g and a⊕n, and thus a⊕n ∼= g∗. Call the group AN by G∗; then GC = G∗G.
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The groups G and G∗ are both Poisson-Lie groups, and G∗ the dual Poisson-
Lie group to G. Left multiplication of G on GC descends to an action of G
on G∗, called the left dressing action.

We do not seek an equivariantly closed three-form on G∗, the main dif-
ficulty arising from the fact that the dressing action does not preserve the
Poisson structure of G∗. However, one may also consider the space GC/G
as a subspace of GC. Set

Y =
{
h ∈ GC

∣∣h = h−1
}
.

Y is invariant under the adjoint action of G and equivariantly diffeomorphic
to G∗, and TeY = p. Let θY , θY ∈ Ω1(Y, p) be the restrictions of the
Maurer-Cartan forms from GC to Y . Then the form

χ̃Y (ξ) = χY + τY (ξ) def= 1
12 ImBC(θY , [θY , θY ]) + 1

2
√
−1
BC(ξ, θY + θY )(9)

is real and equivariantly closed.

The equivariantly closed three-form allows us to define a moment map.

Definition 2. Let M be a G-manifold and P a moment space for G. M is
called a P -Hamiltonian G-space if there exists an invariant two-form ω ∈
Ω2(M)G and an equivariant map Φ: M → P such that

dGω = −Φ∗χ̃.(10)

The P -Hamiltonian G-space M will further be called nondegenerate if in
addition

kerωx =
{
ξM (x)

∣∣∣ξ ∈ ker τΦ(x) : g → T ∗Φ(x)P
}

(11)

for all x ∈M .

We may write (10) in terms of its components

dω = −Φ∗χ;(12a)

ι(ξM )ω = Φ∗τ(ξ),(12b)

for all ξ ∈ g. For p ∈ P , τp is defined to be the linear map g → T ∗pP
which takes ξ ∈ g to the evaluation of the one-form τ(ξ) at the point p. In
light of (12b), we have that for p ∈ P , the fundamental vector fields of all
Lie algebra vectors in the kernel of τp must annihilate ω. Thus (11) is a
condition of minimal degeneracy.

Example 4. To revisit Example 1, the condition (12b) applied to χ̃g∗ = τg∗
is precisely (1). Equations (12a) and (11) state that ω must be closed and
nondegenerate, respectively.

Example 5. The conditions on G-valued moment maps are also clearly
generalized by Definition 2 (in fact, one could say this example motivates
the abstract theory). Alekseev-Meinrenken-Malkin show that the moduli
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space of flat G-connections on a Riemann surface with r > 0 boundary
components (divided by the action of the restricted gauge group) has the
structure of a Hamiltonian Gr+2-space with Gr+2-valued moment map.

Example 6. A G-space M with Poisson action is called a Poisson-Lie G-
space if there is a G-invariant symplectic form ω and an equivariant map Φ
such that for all ξ ∈ g,

ι(ξM )ω = 2Φ∗ Im(ξ, θG∗).(13)

Choosing instead to work with Y -valued moment maps, we may apply
Definition 2 to χ̃Y and we get (4a)-(4c). Alekseev exhibits equivariant dif-
feomorphisms G∗ ∼= Y , and shows that the corresponding moment map
theories are isomorphic.

For any moment space P , the most immediate candidates for P -Hamil-
tonian G-spaces are the orbits O of G. These have a natural inclusion map
i : O → P . Indeed, χ̃ induces a two-form on each orbit O. If p ∈ O, TpO is
spanned by {ξP (p) |ξ ∈ g}, and we define

ωO (ξP (p), ηP (p)) = τ(ξ)p (ηP (p)) .(14)

By (5c), this form is well-defined and alternating, and we immediately see
that it satisfies (12b). In fact, ωO is characterized by the property that
ι(ξM )ωO = i∗τ(ξ) for all ξ ∈ g. We claim ωO is G-invariant, and this is a
consequence of the equivariance of τ . For, given ξ, η ∈ g and g ∈ G,

g∗ωO|p (ξP (p), ηP (p)) = ωO|g p (g∗ · ξP (p), g∗ · ηP (p))

= ωO|g p ((Adg ξ)P (gp), g∗ · ηP (p))

= τ(Adg ξ)gp (g∗ · ηP (p))

= τ(ξ)p
(
(g−1)∗ · g∗ · ηP (p)

)
= ωO|p (ξP (p), ηP (p)) .

Therefore, by the relation

0 = LξOωO = dι(ξO) + ι(ξO)dωO,

we must have that

ι(ξO)dωO = −dι(ξO)ωO
= −di∗τ(ξ)

= i∗dτ(ξ)

= −i∗ι(ξO)χ,

which verifies the moment condition (12a). We have proved the following:

Proposition 1. Let P be a moment space for G. Consider a G-orbit O ⊆ P
with two-form ωO given by (14) and moment map given by inclusion. Then
(O, ωO, i : O → P ) is a P -Hamiltonian G-space.
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We incorporate the minimal degeneracy along orbits into our definition.

Definition 3. A moment space P is called nondegenerate if all orbits O ⊆
P are nondegenerate P -Hamiltonian G-spaces with two-form given by (14)
and moment map inclusion. This means that for all p ∈ P ,

ker τp ∩ gp = {0} ,(15a)

and for all ξ ∈ g,

τ(ξ)p
(
ηp(p)

)
= 0 ∀η ∈ g =⇒ τ(ξ)p ≡ 0.(15b)

Lemma 1. Let M be a nondegenerate P -Hamiltonian G-space with two-
form ω and moment map Φ: M → P . Let x ∈M . Then:

(a) The map ξ 7→ ξM (x), restricted to ker τx → kerωx, is an isomorphism.
(b) We have ker dΦ|x ∩ ker ω|x = {0}.

Proof. The first claim is obvious given (15a). For the second, let v ∈
ker dΦ|x ∩ ker ω|x. Then v = ξM (x) for some ξ ∈ ker τΦ(x). However, since

0 = dΦ(v) = dΦ(ξM (x)) = ξP (Φ(x)),

(the last equality is by the equivariance of Φ), we must have that ξ ∈ gΦ(p).
Hence again by (15b), we have ξ = 0. �

Proposition 2. Let M1 and M2 be nondegenerate P -Hamiltonian G-spaces
and F : M1 →M2 an equivariant map such that F ∗ω2 = ω1 and F ∗Φ2 = Φ1.
Then F is an immersion.

Proof. Since F ∗ω2 = ω1, we have that ker dF |x = ker ω1|x. Also, since
F ∗Φ2 = Φ1, we have

ker ω1|x ∼= ker ω2|F (x)
∼= ker τΦ1(x).

Thus ker dF |x ∩ ker ω1|x = {0}, and therefore dF |x is injective. �

From this we can prove the “P -Hamiltonian Kostant Theorem.”

Theorem 1. Let M a transitive nondegenerate P -Hamiltonian G-space.
Then the moment map Φ: M → P is a covering map onto an orbit.

Proof. For x0 ∈ M , let O be the orbit of Φ(x0) ∈ P . Then since M is
transitive, the image of Φ consists of O alone. That Φ is a submersion onto
its image is clear since TpO = gP (p) and ξP (p) = dΦ(ξM (x)) if p = Φ(x).
Finally, we have that Φ∗ωO = ω by (12b) and (14), and applying the previous
proposition, Φ is an immersion as well. �

Definition 4. Let M be a P -Hamiltonian G-space. Suppose that o ∈ M
is a G-fixed point. We define the reduced space of M at o to be Mo =
Φ−1(o)/G.
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Mo has a special two-form on it arising from that on M . To see this, put
Z = Φ−1(o), and let i : Z →M , π : Z →Mo be the inclusion and projection.
Denote the P -Hamiltonian two-form on M is by ω. It is G-invariant, and
therefore so it is restriction to Z. Furthermore, for ξ ∈ g,

ι(ξZ)i∗ω = i∗ι(ξM )ω

= i∗Φ∗τ(ξ)
= 0,

since Φ ◦ i is the constant map o. Thus i∗ω is G-basic; there exists ωo ∈
Ω2(Mo) such that π∗ωo = i∗ω. Notice also that since

π∗dωo = dπ∗ωo = di∗ω = i∗dω = i∗Φ∗χ = 0,

we must have that dωo = 0.

Theorem 2. Let M be a nondegenerate P -Hamiltonian G-space. Suppose
that dimP = dimG. Then ωo is a symplectic form if and only o is a regular
value of the moment map Φ.

Proof. Let z ∈ Z. The map τo is injective by (15a) and therefore an iso-
morphism since dimP = dimG. Thus ω|z is nondegenerate. Therefore, we
have a commutative diagram

g
τo−−−→ T ∗o Py Φ∗

y
TzM

ω−−−→ T ∗zM

where the horizontal maps are both isomorphisms. It follows from the basic
(kerT ∗)0 = imT theorem of linear algebra that

(ker dΦ|z)
ω = gM (z).

Now TzZ ⊆ ker dΦ|z, by the definition of Z as the inverse image of o. Thus
we have

Tz(G · z) = gM (z) = (ker dΦ|z)
ω ⊆ (TzZ)i

∗ω.

The left-hand side of the above is the kernel of π∗ : TzZ → Tπ(z)Mo, and
the right-hand side is the kernel of i∗ωo at z. The two are equal (and ωo is
therefore nondegenerate) if and only equality holds in the last step. This is
true if and only if TzZ = ker dΦ|z, i.e., if z is regular. �

2. Manin structure.

A symmetric pair over G consists of a Lie group H ⊃ G and an involution σ
of H such that Hσ = G. Let h be the Lie algebra of H and s the derivative
of σ at the identity. Then (h, s) is a symmetric Lie algebra, and hσ = g. h
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has a canonical decomposition h = g⊕ p, where p is the −1 eigenspace of s.
We have the commutation relations

[g, g] ⊂ g; [g, p] ⊂ p; [p, p] ⊂ g.(16)

Let P = H/G where, and o = eG. Then P is a symmetric space and p is
canonically identified with ToP . See [6].

We will often take the involution to be understood and refer to the sym-
metric pair as (H,G). There are three important example of symmetric
pairs over G.

Example 7. On H0 = Gng∗, the involution σ0 is the map (g, `) 7→ (g,−`).
The corresponding symmetric Lie algebra is h0 = g n g∗ with Lie bracket
and involution

[(ξ, λ), (η, µ)] =
(
[ξ, η] , ad∗ξ µ− ad∗η λ

)
;

s0(ξ, λ) = (ξ,−λ).

Example 8. On H+ = G × G, G is embedded as the diagonal. This sub-
group is fixed by the involution σ+(g1, g2) = (g2, g1). The corresponding
symmetric Lie algebra is h+ = g× g with involution

σ+(ξ1, ξ2) = (ξ2, ξ1)

fixing the diagonal subalgebra.

Example 9. Let G be simply connected as well, so that there is a complex,
simply connected group GC with G as its real form. There are the conjuga-
tion automorphisms of GC and h− = gC = g⊗ C singling out the real forms
as their fixed point sets.

s−(ξ +
√
−1η) = ξ −

√
−1η.

In order to consider the quotient spaces H/G as moment spaces for G,
we need to pair elements of g with elements of p. The following structure
makes this possible:

Definition 5. Let (h, s) be a symmetric Lie algebra. h will be called a
Manin symmetric Lie algebra if it admits a nondegenerate symmetric bilin-
ear form q with respect to which s is skew-symmetric: I.e., for all ζ1, ζ2 ∈ h:

q(sζ1, ζ2) = −q(ζ1, sζ2).(17)

The pairing q will be called a Manin form or Manin pairing. It is also
assumed to be invariant with respect to the adjoint action of h on itself: For
all ζ1, ζ2, ζ3 ∈ h,

q(adζ1 ζ2, ζ3) = q(ζ2, adζ1 ζ3), or

q([ζ1, ζ2], ζ3) = q(ζ1, [ζ2, ζ3]).
(18)

Let (H,G) be a symmetric pair. H will be called a Manin symmetric
pair if the associated symmetric Lie algebra h admits a Manin form which is
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invariant with respect to the adjoint action of H on h. That is, in addition
to (17) and (18), we must have, for all ζ1, ζ2 ∈ h and h ∈ H,

q(Adh ζ1, ζ2) = q(ζ1,Adh−1 ζ2).(19)

Proposition 3. Let G be a compact, connected Lie group and g its Lie
algebra.

(a) h0 = g o g∗ has a Manin pairing given by

q0 ((ξ1, λ1), (ξ2, λ2)) = 〈ξ1, λ2〉+ 〈ξ2, λ1〉 .(20)

(H0 = Gog∗, G) is a Manin symmetric pair. The resulting symmetric
space is isomorphic to g∗.

(b) Let g have an invariant inner product B. h+ = g × g has a Manin
pairing given by

q+ ((ξ1, η1), (ξ2, η2)) = 1
2 (B(ξ1, ξ2)−B(η1, η2)) .(21)

Since G is connected, (H+ = G×G,∆(G)) is a Manin symmetric pair.
The resulting symmetric space is isomorphic to G.

(c) Again assume g has an inner product B. Then B extends to a C-
bilinear inner product on h− = g⊗C. h− has a a Manin pairing given
by

q−(ζ1, ζ2) = ImB(ζ1, ζ2).(22)

Proof. Clear. �

3. Construction of the moment form.

The purpose of this section is to show that given a Manin symmetric pair,
we can construct a moment space. This space will in fact be the space of
right cosets.

For this section (H,G) will be a Manin symmetric pair with involution σ
and a Manin pairing q. The corresponding involution of h will be denoted
s.

3.1. The equivariant form. Let θ be the left-invariant Maurer-Cartan
form on H taking values in h. Using s, we can decompose θ into its “g-part”
and its “p-part,” defining:

γ =
1 + s

2
θ; π =

1− s

2
θ,

so γ ∈ Ω1(H, g) and π ∈ Ω1(H, p). Let j : H → P = H/G be the quotient
map.

Proposition 4. Define for ξ ∈ g a one-form

β(ξ)h = q(ξ,Adh π) ∈ Ω1(H).(23)

Then:
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(a) β(ξ) is basic with respect to the right action of G on H, so there is a
unique one-form τ(ξ) ∈ Ω1(P ) such that j∗τ(ξ) = β(ξ).

(b) The map ξ 7→ β(ξ) is equivariant with respect to the left action of G
on H, so τ is an equivariant three-form on P .

(c) We have, for all ξ ∈ g,

ι(ξP )τ(ξ) = 0,

where ξP is the vector field on P generated by the left action of G in
the direction ξ.

Proof. For h ∈ H, let Rh and Lh denote left and right multiplication by h
as diffeomorphisms of H. Since R∗gθ = Adg−1 θ and σ(g) = g, it follows that
R∗gπ = Adg−1 π. Then(

R∗gβ(ξ)
)
h

= q
(
ξ,R∗g Adh π

)
= q

(
ξ,Adhg Adg−1 π

)
= q (ξ,Adh π) = β(ξ)h,

so β(ξ) is right-invariant. Moreover, if ηR(h) = (Lh)∗η is the fundamental
vector field associated to the right action corresponding to η, then θ(ηR) = η.
Hence π(θR) = 0 and

β(ξ)h(ηR) = 0.

Thus β(ξ) is also right-horizontal, hence right-basic. This proves the first
claim of the proposition.

For the second, note that θ and hence π are left H-invariant, so(
L∗g−1β(ξ)

)
h

= q(ξ,Adg−1 π)

= q(Adg ξ,Adh π) = β(Adg ξ)h.

Finally, to prove the third claim, we will show that for ξ ∈ g,

ι(ξL)β(ξ) = 0,(24)

where ξL is the fundamental vector field on H associated to the left action.
Indeed,

β(ξh)(ξL) = q

(
ξ,Adh

Adh−1 −Adσ(h−1)

2
ξ

)
= 1

2q(ξ, ξ)−
1
2

(
Adh−1 ξ,Adσ(h−1) ξ

)
= 0.

(25)

�

Remark. It is only in (25) that we used the full AdH -invariance of the
pairing q. In fact, the first two claims of Proposition 4 can be proven with
only a pairing between g and p which is AdG-invariant (note AdG preserves
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the decomposition h = g⊕ p). There is a unique extension of such a pairing
to an s-skew pairing of the full Lie algebra, and to force the associated
one-form to obey (24) is to require that

q(Adh ξ, η) = q(ξ,Adh−1 η),

for all ξ, η ∈ g, and for all h of the form σ(k)k−1. Such h lie in a submanifold
V =

{
h ∈ H

∣∣σ(h) = h−1
}

, which is transverse to G at the identity of H. In
fact TeV = p.

3.2. The invariant form. Here we will extend τ ∈ Ω3
G(H/G) to an equiv-

ariantly closed three-form.

Proposition 5. Define Ξ ∈ Ω3(H) by

Ξ = 1
3q(π, [π, π]).(26)

Then:
(a) Ξ is right G-basic and left G-invariant. Hence there exists a unique

χ ∈ Ω3(P )G such that Ξ = j∗χ.
(b)

dχ = 0.(27)

(c) For ξ ∈ g,

ι(ξP )χ = dτ(ξ).(28)

Proof. Writing θ = γ + π as the decomposition of θ relative to that of h, we
have

dγ = −1
2 ([γ, γ] + [π, π]) ;

dπ = −[γ, π].

This is an immediate consequence of the bracket identities for a symmetric
Lie algebra (16) and the Cartan structure equation (8a). The proposition
reduces to a formal calculation.

(a) This is proved similarly to the analogous claim in Proposition 4.
(b) By the Jacobi identity[

π, [π, π]
]

=
[
θ, [θ, θ]

]
=
[
γ, [γ, γ]

]
= 0.

Thus,

dΞ = 1
3dq(π, [π, π])

= q(dπ, [π, π])

= −q([γ, π], [π, π])

= −q
(
γ,
[
π, [π, π]

])
= 0.

So (27) is proved.
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(c) Let ξ ∈ g. Then

ι(ξL)Ξ = 1
3 ι(ξL)q(π, [π, π])

= q(π(ξL), [π, π])

= q(Adh−1 ξ, [π, π]).

On the other hand,

dβ(ξ) = dq(ξ,Adh π)

= q(ξ,Adh adθ π)− q(ξ,Adh[π, γ])

= q(ξ,Adh[γ + π, π])− q(ξ,Adh[π, γ])

= q(ξ,Adh[π, π]).

Thus (28) is true as well.
�

As an immediate consequence, we have:

Theorem 3. If (H,G, σ, q) is a Manin symmetric pair, the equivariant
three-form χ̃ = χ + τ is equivariantly closed, thus giving H/G the struc-
ture of a moment space for G. �

3.3. Nondegeneracy. Along with the equivariant condition (Definition 1),
which we have just satisfied for an arbitrary Manin symmetric pair, there is
the nondegeneracy (actually, minimal degeneracy) condition of Definition 3.
Here we will use the nondegeneracy of the pairing to satisfy nondegeneracy
of τ .

Proposition 6. Let (H,G) be a Manin symmetric pair, and O an orbit of
G in P = H/G. Then P with two-form given by (14) and moment map
i : O → P satisfies

kerωp =
{
ξP (p)

∣∣ξ ∈ ker τp : g → T ∗pP
}
.(29)

Hence O is a nondegenerate P -Hamiltonian G-space.

Thus:

Theorem 4. Let (H,G, σ, q) be a Manin symmetric pair. Then P = H/G
is a nondegenerate moment space for G.

Proof. What we are attempting to prove is

ι(ξP )ωp = 0 ⇐⇒

{
ξP (p) = 0 or
ξ ∈ ker τp.

(30)

Suppose that ξ ∈ ker τp, where p = hG. This means that

0 = q

(
Adh−1 ξ,

1− s

2
Adh−1 η

)
= −1

2q
(
Adh−1 ξ,Adσ(h−1) η

)
(31)
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for all η ∈ g. Since the q-orthogonal space to g within h is g itself, we have
that

Adσ(h)h−1ξ ∈ g.(32)

Write k = σ(h)h−1 and note that σ(k) = k−1. Then by (32) we must have
that

Adk−1 ξ = σ(Adk ξ) = Adk ξ

and therefore ξ = Ad2
k ξ or

ξ ∈ ker(1−Ad2
k).

Now we have a direct sum decomposition

ker(1−Ad2
k) = ker(1−Adk)⊕ ker(1 + Adk).(33)

If ξ is in the first summand, we have Adh−1 ξ = Adσ(h−1) ξ ∈ g and therefore
ξP (p) = 0. On the other hand, if ξ is in the second summand we have

Adh−1 ξ = −Adσ(h−1) ξ ∈ p

and thus β(ξ)h = 0. Therefore (30) is true. �

Proof of Theorem 4. The first summand in the right-hand side of (33) in-
tersected with g is ker τp, and the second summand intersected with g is gp.
Hence ker τp ∩ gp = {0}. Since q is nondegenerate, g and p∗ are isomorphic
as vector spaces. Hence all nondegeneracy conditions are satisfied. �

4. Recovery of the original moment spaces.

Propositions 3, 4, and 5 give equivariantly closed three-forms on each of the
symmetric spaces g∗, G, and GC/G. In this section we will how the forms
we have constructed here coincide with those developed independently.

Consider first H0 = Gng∗. The map j0 : Gng∗ → g∗, given by projection
onto the g∗ factor, is right G-invariant. Thus it gives a left G-equivariant
diffeomorphism between H0/G and g∗.

Proposition 7. We have j∗0τg∗ = β0, where β0 is the form given by applying
Proposition 5 to the Manin form q0 on h0 = g n g∗.

Proof. Let ξ ∈ g and h = (g, `) ∈ Gn g∗. Then a tangent vector to h ∈ H0

can be written as L(g,`)∗(η, λ) for some (η, λ) ∈ g n g∗. We have

(j∗0τg∗(ξ))(g,`)
(
L(g,`)∗(η, λ)

)
= τg∗(ξ)`

((
j0 ◦ L(g,`)

)
∗ (η, λ)

)
= τg∗(ξ)`(Ad∗g λ) =

〈
ξ,Ad∗g λ

〉
.
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On the other hand,

β0(ξ)(g,`)
(
L(g,`)∗(η, λ)

)
= q0

(
ξ,Ad(g,`) π

(
L(g,`)∗(η, λ)

))
= q0

(
ξ,Ad(g,`)(0, λ)

)
= q0

(
(ξ, 0), (0,Ad∗g λ)

)
=
〈
ξ,Ad∗g λ

〉
.

�

Let H+ = G × G and define the map j+ : H+ → G, (g1, g2) 7→ g1g
−1
2 .

Embed G into H+ as the diagonal; it acts on H+ on the left and the right.
j+ is then seen to be right G-invariant and thus a left G-equivariant diffeo-
morphism between H+/G and G.

Proposition 8. The map j+ pulls back the Alekseev-Meinrenken-Malkin
moment form (7) to Ξ+ + β+, the form constructed on H+ from the Manin
pairing q+.

Proof. We may write θH+ = θ1
G + θ2

G, etc. Then for each (g1, g2) ∈ H+,

j∗+θG
∣∣
(g1,g2)

= Adg2(θ1
G − θ2

G);

j∗+θG
∣∣
(g1,g2)

= Adg1(θ1
G − θ2

G).

Therefore

j∗+χ+ = j∗+
1
12B(θG, [θG, θG]) = 1

12B(θ1
G − θ2

G, [θ
1
G − θ2

G, θ
1
G − θ2

G]).

Now π =
(
θ1G−θ

2
G

2 ,
θ1G−θ

2
G

2

)
, so

Ξ+ = 1
3q+(π, [π, π])

= 1
24q+

(
(θ1
G − θ2

G, θ
1
G − θ2

G), [(θ1
G − θ2

G, θ
1
G − θ2

G), (θ1
G − θ2

G, θ
1
G − θ2

G)]
)

= 1
24q+

(
(θ1
G − θ2

G, θ
1
G − θ2

G),
(
[θ1
G − θ2

G, θ
1
G − θ2

G], [θ1
G − θ2

G, θ
1
G − θ2

G]
))

= 1
12B(θ1

G − θ2
G, [θ

1
G − θ2

G, θ
1
G − θ2

G]).

Similarly,

J∗+τ(ξ) = 1
2B(ξ, j∗+θG + θG)

= 1
2B
(
ξ, (Adg2 + Adg1)(θ1

G − θ2
G)
)
,

while

β+(ξ) = q+

(
(ξ, ξ),Ad(g1,g2)

(
θ1
G − θ2

G

2
,
θ1
G − θ2

G

2

))
= q+

(
(ξ, ξ),

(
Adg1

θ1
G − θ2

G

2
,Adg2

θ1
G − θ2

G

2

))
= 1

2B(ξ, (Adg1 + Adg2)(θ1
G − θ2

G)).

�
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Let j− : GC → GC be the map h 7→ hh
−. Then j− takes values in Y , is

right G-invariant, and descends to a left G-equivariant diffeomorphism of
GC/G with Y .

The factor of 2 appearing in (13) is not in its original definition; it is
introduced in [3] to make the theorem connecting Y to G∗ more clear. Up
to that same factor of 2, we can connect our moment form on GC/G to that
on Y .

Proposition 9. The map j− pulls back the moment form χ̃Y to Ξ− + β−,
the equivariantly closed three-form on GC arising from applying Propositions
5 and 6 to 2q−.

Proof. Let θGC be the left Maurer-Cartan form, and θ̃GC its complex conju-
gate. Then for all h ∈ GC,

j∗−θY
∣∣
h

= Adh(θGC − θ̃GC) = 2 Adh π;

j∗−θY
∣∣
h

= Adh(θGC − θ̃GC) = 2 Adh π.

So

j∗−χY = 1
2 ImBC

(
j∗−θY , [j

∗
−θY , j

∗
−θY ]

)
= 2

3 ImBC(π, [π, π]) = Ξ−.

Likewise, we compute

j∗−τY (ξ) = 1
2
√
−1
BC(ξ, j∗−θY + j∗−θY )

= 1
2
√
−1
BC

(
ξ, (Adh + Adh)(θGC − θ̃GC)

)
.

Note that Adh + Adh is real and θGC − θ̃GC is imaginary, so the above is in
fact real. One the other hand

β−(ξ)h = q(ξ,Adh π) = 2 ImBC(ξ,Adh π)

=
1√
−1

(
BC

(
ξ, 1

2 Adh(θGC − θ̃GC)
)
−BC

(
ξ, 1

2 Adh(θGC − θ̃GC)
))

=
1

2
√
−1

BC

(
ξ, (Adh + Adh)(θGC − θ̃GC)

)
.

�

5. Decompositions.

We have shown how Manin symmetric pairs can give rise to moment spaces.
We now show to extent to which the known examples of Manin symmetric
pairs are the only ones.

If G = G1 × G2 is a direct product of Lie groups, and P1 and P2 are
moment spaces for G1 and G2, respectively, then P1×P2 with the equivariant
form χ̃1 + χ̃2 is a moment space for G. Thus we have a way of “building up”
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moment spaces. It is natural to try to go the other way—i.e., to decompose.
We start this process at the linear level, and integrate from there.

5.1. Structure of Manin symmetric pairs. We say that a symmetric
pair (H,G) is Riemannian if G acts by isometries on H. We say that a
symmetric Lie algebra (h, s) is orthogonal if g = hs is compactly embedded
in h and effective if g ∩ h = 0. These last two conditions are satisfied
whenever (h, s) is the symmetric Lie algebra associated to a Riemannian
symmetric pair (H,G).

Theorem 5. let (h, s) be an effective, orthogonal symmetric Lie algebra
with Manin pairing q. Then there exists a unique canonical decomposition

h = h0 ⊕ h+ ⊕ h−; (direct sum of ideals)(34a)

g = g0 ⊕ g+ ⊕ g−; (direct sum of ideals)(34b)

p = p0 ⊕ p+ ⊕ p−; (direct sum of subspaces)(34c)

such that, with the induced symmetric and Manin pairings given by restric-
tion, we have

h0 = g0 ⊕ p0
∼= g0 n g∗0;

h+ = g+ ⊕ p+
∼= g+ × g+;

h− = g− ⊕ p− ∼= g− ⊗ C.
These isomorphisms are in fact isometries with respect to q.

We will prove this in a series of lemmas. To begin, assume that g is simple.
Let κ be the negative of the Killing form on h. Then κ is positive-definite
on g, adh-invariant, and

κ(sζ1, ζ2) = κ(ζ1, ζ2),

or,

κ(sζ1, ζ2) = κ(ζ1, sζ2),

for all ζ1, ζ2 ∈ h. Define J : h → h by

q(Jζ1, ζ2) = κ(ζ1, ζ2).

Lemma 2. (a) The map J commutes with the adjoint action of h on itself.
That is, for all ζ ∈ h,

J ◦ adζ = adζ ◦J ;

or, for all ζ1 and ζ2,

J [ζ1, ζ2] = [Jζ1, ζ2].

(b) The map J anticommutes with s: J ◦ s = −s ◦ J . So J takes g into p
and vice versa.

(c) The map J is self-adjoint with respect to q.
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(d) The restriction J |g is a vector space isomorphism g ∼= p.

Proof. The first two parts are straightforward. The third is a simple conse-
quence of the symmetry of κ and of q. The last follows from the fact that κ
is positive definite on g. �

It follows that J2 is an endomorphism of g as a g-module. By Lemma 2,
Part (c), J2 is self-adjoint. Therefore, g has an orthonormal basis of eigen-
vectors with real eigenvalues. Since each eigenspace is an ideal of J2, it
follows by simplicity that g = gλ is a single eigenspace. Thus for all ξ, η ∈ g,

[Jξ, Jη] = J2[ξ, η] = λ[ξ, η].(35)

If λ = 0, then p is an abelian ideal of h dual by q to g, and hence h ∼= gng∗.
Otherwise, the endomorphism 1√

|λ|
J enjoys all the properties of Lemma 2,

so we may assume that |λ| = 1. If λ = 1, the map

T+ : h −→ g× g;

(ξ, Jη) 7−→ 1
2(ξ + η, ξ − η)

is an isomorphism of (h, s, q) onto (h+, s+, q+). On the other hand if λ = −1
the map

T− : h −→ g⊗ C;

(ξ, Jη) 7−→ ξ +
√
−1η

is an isomorphism onto (h−, s−, q−). This concludes the proof of Theorem 5
in the case that g is simple.

Now if h is effective, then g is at least semisimple. Therefore we have a
decomposition

g =
⊕
λ∈Σ

gλ

where Σ is the set of eigenvalues of J2. The eigenspaces gλ are ideals of g.
For each λ, let pλ = Jgλ.
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Lemma 3. For each pair of eigenvalues (λ, µ), the following commutation
relations hold:

(a)

[gλ, gµ] ⊆

{
0 if λ 6= µ;
gλ if λ = µ.

(b)

[gλ, pµ] ⊆

{
0 if λ 6= µ;
pλ if λ = µ.

(c)

[pλ, pµ] ⊆

{
0 if λ 6= µ;
gλ if λ = µ.

Proof.

(a) Let ξ ∈ gλ and η ∈ gµ. Then since J2 is a g-module homomorphism,
we have that [ξ, η] ∈ gλ ∩ gµ.

(b) Given ξ and η as above, notice

[ξ, Jη] = J [ξ, η] ∈ J [gλ, gµ].

(c) Finally,

[Jξ, Jη] = J2[ξ, η] ∈ [gλ, gµ].

�

This shows that each hλ = gλ⊕ pλ is an ideal of h. Each hλ is isomorphic
to one of the three canonical types, and we can collect them by type. This
proves Theorem 5.

Theorem 6. Let (H,G) be a Manin symmetric pair, with G semisimple
and H connected and simply connected. Then the moment space P = H/G
has a decomposition

P = P0 × P+ × P−

and G has a decomposition

G = G0 ×G+ ×G−

such that P0 is a moment space for G0 isomorphic to g∗0, P+ is a moment
space for G+ isomorphic to G+, and P− is a moment space for G− isomor-
phic to (G−)C/G−.
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Proof. It follows from the homotopy exact sequence for the fibration G →
H → H/G that if H is simply connected and G is connected, then H/G is
simply connected.

Since G is semisimple, h is an effective, orthogonal, Manin symmetric
Lie algebra. Therefore, we can decompose h as in Theorem 5 into h =
h0⊕h+⊕h−. Let H0×H+×H− be the corresponding decomposition of H.
Likewise g decomposes and we can write G = G0 ×G+ ×G−. Then

P = H/G =
H0 ×H+ ×H−
G0 ×G+ ×G−

= H0/G0 ×H+/G+ ×H−/G−.

�

5.2. Relaxing H-invariance. This shows that we have exhausted all pos-
sibilities of creating moment spaces from Manin symmetric pairs, once we
allow suitable assumptions about semisimplicity and connectedness. In fact,
we can relax one of the conditions of a Manin form, weakening a hypothesis
in Theorem 5, and thus arriving at a stronger Theorem 6.

Let (H,G) be any symmetric pair such that H/G is a moment space. Let
χ̃ = χ + τ be the equivariantly closed three-form. Then τ pulls back to a
linear map β : g → Ω1(H)G

op
, where we use the op-superscript to denote

the right action of G on H. Evaluating β at the identity of H gives a map
b : g → h∗. Notice that for g ∈ G, ξ ∈ g, and ζ ∈ h,

b(Adg, ξ, ζ) = β(Adg ξ)e(ζ).

By left-equivariance of β, we have

= β(ξ)g−1(Lg−1∗ζ).

Because β is right-invariant, this is

= β(ξ)e(Rg∗Lg−1∗ζ)

= b(ξ,Adg−1 ζ).

Furthermore, again by right-invariance,

b(ξ, η) = β(ξ)e(η)

= 〈β(ξ), ηR〉e
= 0.

Since h is symmetric and has a canonical decomposition, we can uniquely
extend b to an inner product q on h with respect to which g and p are dual
isotropic subspaces and s is skew-symmetric. This form is not necessarily
completely h-invariant, however, only g-invariant. Nevertheless, this suffices.

Theorem 7. Let (h, s, q) be an effective orthogonal symmetric Lie algebra,
with g semisimple and q a Manin pairing assumed to be only g-invariant.
Then there is a canonical decomposition of h as in Theorem 5.
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Then we can immediately, using techniques similar to Theorem 6, prove:

Theorem 8. let (H,G) be a Riemannian symmetric pair, with G connected
and H simply connected. Suppose that H/G is a moment space for G. Then
there is a decomposition of H, H, and H/G as in Theorem 6.

Proof of Theorem 7. Assume that g is simple, and complexify h, g, s, and
q. Then J : g → p can still by constructed by q(Jξ, η) = κ(ξ, η). Define for
ξ, η ∈ g,

{ξ, η} def= [Jξ, Jη].

Then clearly

[ξ1, {ξ2, ξ3}] = {[ξ1, ξ2], ξ3}+ {ξ2, [ξ1, ξ3]} .
Hence {·, ·} is a homomorphism of g-modules. For simple Lie algebras,
however, all such homomorphisms are scalar multiples of the Lie bracket
(see below). Thus there exists a complex number λ such that {ξ, η} = λ[ξ, η]
for all ξ and η. But since J is real, λ must be real, too, and we are in the
same situation as in Theorem 5. �

It remains to prove that

Homg

(∧2
g, g
)

= C[·, ·].

Since g is simple, it is enough to show that
(∧2 g

)
ad

= g, where for any
g module M , Mad denotes the ad-primary component of M . Though κ we
may identify g∗ ∼= g; thus the algebra

∧
g (on which g acts preserving the

grading) has a differential d which is also a g-module homomorphism. Then
as shown by Kostant [7, Theorems D and E], (

∧
g)ad = Aad⊗ (

∧
g)g, where

A is the exterior subalgebra generated by the image of d1g →
∧2 g. By

restricting to the degree two subspace, we see that
(∧2 g

)
ad

is the image

of d1. But since H1(g,C) = 0, d1 is injective, and so the image of d1 is
isomorphic to g.
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LE SYSTÈME DIFFÉRENTIEL DE HÉNON–HEILES ET
LES VARIÉTÉS DE PRYM

A. Lesfari

On montre que la fibre F définie par l’intersection des in-
variants du système différentiel de Hénon–Heiles se complète
en une surface abélienne F̃, par l’adjonction d’une surface de
Riemann Γ lisse hyperelliptique de genre 3; laquelle est un
revêtement double ramifié le long d’une courbe elliptique Γ0.

Aussi F̃ peut être identifiée à la duale d’une variété de Prym
̂Prym(Γ/Γ0) et le système se linéarise sur cette variété.

1. Position du problème.

Le système différentiel de Hénon-Heiles [7] s’écrit sous la forme

•
q1= p1,
•
q2= p2,
•
p1= −Aq1 − 2q1q2,
•
p2= −Bq2 − q21 − εq22,

(1.1)

où A, B, ε sont des constantes et admet les invariants (intégrales premières)
suivants:

(i) Pour ε = 1, on a

H1 =
1
2
(
p2
1 + p2

2

)
+ q21q2 +

1
3
q32,

H2 = p1p2 +
1
3
q31 + q1q

2
2.

(ii) Pour ε = 6, on a

H1 =
1
2
(
p2
1 + p2

2 +Aq21 +Bq22
)

+ q21q2 + 6q32,

(1.2)

H2 = q41 + 4q21q
2
2 − 4p1 (p1q2 − p2q1) + 4Aq21q2 + (4A−B)

(
p2
1 +Aq21

)
.

L’intégration des équations (1.1) dans le cas ε = 1, s’effectue au moyen
d’intégrales elliptiques et ne pose pas de problèmes. Le cas ε = 6, est plus
intéressant mais plus compliqué [4] et [5]. Lorsque A = B = 0, Adler
et van Moerbeke [2] ont montré que ce cas est lié par une transformation

125
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birationnelle au problème de Kowalewski ainsi qu’au flot géodésique sur
SO(4) pour une métrique de Manakov. Le but de cette note est d’étudier
géométriquement et d’une manière rigoureuse ce problème pour A et B
quelconque. Dans tout ce qui va suivre, on pose ε = 6.

2. Complète intégrabilité algébrique.

Considérons un systéme hamiltonian complètement intégrable

XH :
•
x= J

∂H

∂x
, x ∈ R2n, J =

(
0 −I
I 0

)
,(2.1)

où H est l’Hamiltonian et I est la matrice unité. Le système (2.1) possède
n intégrales premières H1 = H,H2, . . . ,Hn en involution et indépendantes.
Pour presque tous les ci ∈ R, les variétés invariantes

n⋂
i=1

{
x ∈ R2n : Hi (x) = ci

}
,

sont compactes, connexes et par le théorème d’Arnold-Liouville [3] et [18],
elles sont difféomorphes aux tores réels Rn/réseau sur lesquels les flots gt

i (x)
définies par les champs de vecteurs XHi , 1 ≤ i ≤ n, sont des mouvements
rectilignes.

Soient x ∈ C2n, t ∈ C et ∆ ⊂ C2n un ouvert de Zariski. Notons que
l’application moment

ϕ : (H1, ...,Hn) : C2n → Cn,

est submersive sur ∆. Soit

Π = ϕ
(
C2n \∆

)
,

=
{
c = (ci) ∈ Cn : ∃x ∈ ϕ−1 (c) avec dH1 (x) ∧ · · · ∧ dHn (x) = 0

}
,

le lieu critique de ϕ où c = (ci) est le point courant de C2n et soit Π la
fermeture de Zariski dans C4. Rappelons [1] et [14] que le système (2.1)
est algébriquement complètement intégrable si pour c ∈ Cn \ Π, la fibre
F =ϕ−1 (c) est la partie affine d’une variété abélienne (tore complexe algébri-
que F̃ ' Cn/réseau), les flots gt

i (x) , x ∈ F, t ∈ C, définies par les champs
de vecteurs XHi , 1 ≤ i ≤ n, sont des mouvements rectilignes sur F̃ et les co-
ordonnées xi = xi (t1, . . . , tn) du problème sont des fonctions méromorphes
de (t1, . . . , tn) . En outre, si le flot hamiltonian (2.1) est algébriquement
complètement intégrable, alors ce système admet des solutions sous la forme
de séries de Laurent en t telles que chaque xi explose pour au moins une
valeur finie de t et les séries de Laurent de xi admettent n − 1 paramètres
libres.
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Le système (1.1) s’écrit sous la forme (2.1) avec n = 2. Plus précisément,
on a

•
x≡ f (x) = J

∂H

∂x
,(2.2)

avec x = (q1, q2, p1, p2) et H = H1 (1.2). Comme l’application polynomiale
est continue pour la topologie de Zariski, l’ensemble{

x ∈ C4 : ϕ (x) ∈ C4 \ Π
}
,

est un ouvert de Zariski dans C4. On cherche à montrer que pour c ∈ C4 \
Π, la fibre

F = ϕ−1 (c) ,(2.3)

=
2⋂

i=1

{
x ∈ C4 : Hi (x) = ci

}
,

forme la partie affine d’une surface abélienne et qu’en outre les flots définis
par les champs de vecteurs hamiltoniens (engendrés par H1 et H2) sont des
mouvements rectilignes sur cette surface abélienne. On procède comme suit:
d’abord l’on montre l’existence de solutions x = (q1, q2, p1, p2) du système
(2.2) sous la forme de séries de Laurentq1 = q

(0)
1
t + q

(1)
1 + q

(2)
1 t+ q

(3)
1 t2 + . . . , p1 =

•
q1,

q2 = q
(0)
2
t2

+ q
(1)
2
t + q

(2)
2 + q

(3)
2 t+ q

(4)
2 t2 + . . . , p2 =

•
q2,

(2.4)

dépendant de trois paramètres libres: α, β, γ. En substituant ces développe-
ments dans le système (2.2), on voit que les coefficients x(0), x(1), . . . , satis-
font aux équations

x(0) + f(x(0)) = 0,(2.5)

(L− kI)x(k) = polynôme en x(0), x(1), . . . , x(k−1), k ≥ 1,(2.6)

où L est la matrice jacobienne de (2.5). Les trois paramètres libres α, β et
γ apparaissent respectivement dans l’équation (2.5), l’équation (2.6) pour
k = 1 et l’équation (2.6) pour k = 6. L’étape suivante est fondamentale et
consiste à considérer l’ensemble

Γ = fermeture des composantes continues de

{séries de Laurent de x (t) tels que: H1 (x) = c1 et H2 (x) = c2} ,

=
2⋂

i=1

{
coefficient de t0 dans Hi (x (t)) = ci

}
,

= deux relations polynomiales entre les variables α, β et γ,
= une surface de Riemann hyperelliptique de genre 3 d’équation:
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a1β
2 + a2α

8 + a3α
6 + a4α

4 + a5α
2 + a6 = 0,(2.7)

où

a1 = 36, a2 =
7

432
, a3 =

5
12
A− 13

216
B,

a4 =
671

15120
B2 +

17
7
A2 − 943

1260
BA,

a5 =
2
9
AB2 − 1

2520
B3 − 10

7
c1 −

13
6
A2B + 4A3, a6 = −c2.

Notons que l’application

σ : Γ → Γ, (α, β) 7→ (−α, β),(2.8)

est une involution sur Γ et que cette dernière est un revêtement double

Γ → Γ0, (α, β) 7→ (ζ, β),(2.9)

ramifié en 4 points d’une courbe elliptique:

Γ0 : a1β
2 + a2ζ

4 + a3ζ
3 + a4ζ

2 + a5ζ + a6 = 0.(2.10)

Par conséquent, on a le:

Théorème 1. Le système d’équations différentielles (2.2) admet une famille
de solutions en séries de Laurent méromorphes (2.4) dépendant de trois
paramètres libres. En outre, le diviseur Γ (2.7) des poles des fonctions
x = (q1, q2, p1, p2) est une surface de Riemann lisse hyperelliptique de genre
3; c’est un revêtement double ramifié en quatre points d’une courbe elliptique
Γ0 (2.10).

On va procèder maintenant à la compactification de la fibre F (2.3) en
une surface abélienne F̃. La méthode consiste à plonger F dans l’espace
projectif complexe P7 (C) à l’aide des fonctions de L (2Γ). Ce sont des
fonctions polynomiales (1, f1, . . . , f7) ayant au pire un pôle double de telle
façon que:

dim L (2Γ) = genre de (2Γ)− 1 = 8.

Par ailleurs, on montre qu’il existe sur la surface F̃ deux différentielles holo-
morphes dt1 et dt2 telles que:

dt1 |Γ= ω1, dt2 |Γ= ω2,

où ω1, ω2 sont des différentielles holomorphes (voir Section 3, pour une
expression explicite) sur la surface de Riemann Γ. En outre, l’espace des
différentielles holomorphes sur Γ est{

f
(0)
i ω2, 1 ≤ i ≤ 7

}
⊕ {ω1, ω2} ,
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où les f
(0)
i sont les premiers coefficients des fonctions fi ∈ L (2Γ) et le

plongement de Γ dans P7 (C) est à deux différentielles holomorphes prés le
plongement canonique:

(α, β) ∈ Γ 7→ [ω2, f
(0)
1 ω2, . . . , f

(0)
7 ω2] ∈ P7 (C) .

La suite consiste à montrer que les orbites du champ de vecteurs (2.2) pas-
sant à travers Γ forment une surface lisse S tout le long de Γ tel que: S \
Γ ⊆ F. Alors, on prouve que F̃ = F∪S est une variété compacte (grâce au
fait que les solutions issues des points de Γ pénètrent immédiatement dans
la partie affine F, plongée dans P7 (C) à l’aide des fonctions de L (2Γ)) et
est munie de deux champs de vecteurs réguliers, indépendants en chaque
point et commutants. D’après le théorème d’Arnold-Liouville [3] et [18],
la variété F̃ est un tore complexe et comme celui-ci possède un plongement
projectif, alors F̃ est une surface abélienne. Par conséquent, on a le:

Théorème 2. La fibre F (2.3) forme la partie affine d’une surface abélienne
F̃ et le système (2.2) est algébriquement complètement intégrable.

3. Surface abélienne en tant que variété de Prym.

Soit (a1, b1, A,B, a2, b2) une base de cycles de Γ de telle façon que les in-
dices d’intersection de cycles deux à deux s’écrivent: AoB = 1, aiobj = δij
(symbole de Kroneker), aioaj = aioA = aioB = biobj = bioA = bioB =
AoA = BoB = 0 et qu’en outre: σ(a1) = a2, σ(b1) = b2, σ(A) = −A,
σ(B) = −B pour l’involution σ (2.8). Comme Γ est une surface de Riemann
hyperelliptique de genre 3, alors les trois différentielles holomorphes sur Γ
sont

ω0 =
αdα

β
, ω1 =

α2dα

β
, ω2 =

dα

β
,

et évidemment σ∗(ω0) = ω0, σ
∗(ωk) = −ωk, k = 1, 2. Rappelons que

l’involution σ échangeant les feuillets du revêtement double Γ → Γ0, identi-
fie Γ0 au quotient Γ/σ. Cette involution induit une involution σ : Jac(Γ) →
Jac(Γ) et modulo un sous-groupe discret, la variété jacobienne Jac(Γ) se
décompose en deux parties : une partie paire à savoir Γ0 et une partie
impaire qui n’est autre que la variété de Prym Prym(Γ/Γ0). Soit ω0 (A) ω0 (B) ω0 (a1) ω0 (b1) ω0 (a2) ω0 (b2)

ω1 (A) ω1 (B) ω1 (a1) ω1 (b1) ω1 (a2) ω1 (b2)
ω2 (A) ω2 (B) ω2 (a1) ω2 (b1) ω2 (a2) ω2 (b2)

 ,

la matrice des périodes de Jac(Γ) où ωk (>) =
∫

> ωk, k = 1, 2, 3. Or
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ω0 (A) = ω0 (B) = 0,

ω0 (a2) = ω0 (a1) ,

ω0 (b2) = ω0 (b1) ,

ωk (a2) = −ωk (a1) , k = 1, 2,

ωk (b2) = −ωk (b1) , k = 1, 2,

donc la matrice précédente s’écrit sous la forme 0 0 ω0 (a1) ω0 (b1) ω0 (a1) ω0 (b1)
ω1 (A) ω1 (B) ω1 (a1) ω1 (b1) −ω1 (a1) −ω1 (b1)
ω2 (A) ω2 (B) ω2 (a1) ω2 (b1) −ω2 (a1) −ω2 (b1)

 .

En effectuant des combinaisons linéaires simples sur les colonnes, on obtient
les deux matrices suivantes: 0 0 ω0 (a1) ω0 (b1) 2ω0 (a1) 2ω0 (b1)

ω1 (A) ω1 (B) ω1 (a1) ω1 (b1) 0 0
ω2 (A) ω2 (B) ω2 (a1) ω2 (b1) 0 0

 ,

et  0 0 ω0 (a1) ω0 (b1) 0 0
ω1 (A) ω1 (B) ω1 (a1) ω1 (b1) 2ω1 (a1) 2ω1 (b1)
ω2 (A) ω2 (B) ω2 (a1) ω2 (b1) 2ω2 (a1) 2ω2 (b1)

 .

Notons que (
2ω0 (a1) 2ω0 (b1)

)
,

est la matrice des périodes de Γ0, tandis que

Ω =
(
ω1 (A) ω1 (B) 2ω1 (a1) 2ω1 (b1)
ω2 (A) ω2 (B) 2ω2 (a1) 2ω2 (b1)

)
,

est celle de Prym(Γ/Γ0). Considérons l’application (uniformisante)

F̃ → C2/LΛ : p 7→
∫ p

p0

(
dt1
dt2

)
,

où (dt1, dt2) est une base (considérée dans la Section 2) de différentielles
holomorphes sur F̃ telles que: dtk |Γ= ωk, k = 1, 2,

LΛ =

{
4∑

k=1

nk

(
dt1
dt2

)
(νk) : nk ∈ Z

}
,

est le réseau associé à la matrice des périodes

Λ =
(
dt1 (ν1) dt1 (ν2) dt1 (ν3) dt1 (ν4)
dt2 (ν1) dt2 (ν2) dt2 (ν3) dt2 (ν4)

)
,
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et (ν1, ν2, ν3, ν4) une base de cycles dans le groupe d’homologie H1(F̃,Z).
D’après le théorème de Lefschetz sur les sections hyperplanes [6], l’applica-
tion H1(Γ,Z) →H1(F̃,Z) induite par l’inclusion Γ ↪→ F̃ est surjective et
par conséquent on peut trouver quatre cycles ν1, ν2, ν3, ν4 sur la surface de
Riemann Γ tels que:

Λ =
(
ω1 (ν1) ω1 (ν2) ω1 (ν3) ω1 (ν4)
ω2 (ν1) ω2 (ν2) ω2 (ν3) ω2 (ν4)

)
,

et

LΛ =

{
4∑

k=1

nk

(
ω1

ω2

)
(νk) : nk ∈ Z

}
.

Ces cycles sont ν1 = a1, ν2 = b1, ν3 = A, ν4 = B et ils engendrent H1(F̃,Z)
de telle sorte que

Λ =
(
ω1 (a1) ω1 (b1) ω1 (A) ω1 (B)
ω2 (a1) ω2 (b1) ω2 (A) ω2 (B)

)
,

est une matrice de Riemann. On montre que Λ = Ω? ; la matrice des périodes
de ̂Prym(Γ/Γ0) duale de Prym(Γ/Γ0). Dès lors, les deux variétés abéliennes
F̃ et ̂Prym(Γ/Γ0) sont analytiquement isomorphes au même tore complexe
C2/LΛ et d’après le théorème de Chow, ces variétés sont algébriquement
isomorphes. Par conséquent, on a le:

Théorème 3. La surface abélienne F̃ qui complète la fibre F (2.3) peut
être identifiée à la duale d’une variété de Prym ̂Prym(Γ/Γ0) du revêtement
double (2.9).
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CHARACTERIZATION OF THE SIMPLE L1(G)-MODULES
FOR EXPONENTIAL LIE GROUPS

Jean Ludwig, Salma Mint Elhacen, and Carine Molitor-Braun

Let G = exp g be a connected, simply connected, solv-
able exponential Lie group. Let l ∈ g∗ and let p be an
appropriate Pukanszky polarization for l in g. For every
p = (p1, . . . , pm) ∈ [1, ∞]m we define a representation πl,p,p by
induction on an Lp-space, where the norm ‖·‖p of this space is
in fact obtained by successive Lpj -norms, with distinct pj’s in
different directions. These representations are topologically
irreducible and their restrictions to the subspaces generated
by the vectors of the form πl,p,p(f)ξ with f ∈ L1(G), πl,p,p(f)
of finite rank and ξ ∈ Hl,p,p are algebraically irreducible. All
the simple L1(G)-modules are of that form, up to equivalence.
We show that these representations may in fact be character-
ized (up to equivalence) by the G-orbits of couples (l, ν), where
l ∈ g∗ and ν is a real linear form on g(l)/g(l) ∩ n satisfying a
certain growth condition and where g(l) is the stabilizer of l
in g.

1. Introduction.

The aim of the present paper is to give an explicit description of the alge-
braically irreducible representations of L1(G), where G is a connected, simply
connected, exponential, solvable Lie group. These representations have first
been studied by D. Poguntke in 1983 ([Po2]). The method of Poguntke
which has been adapted and used in ([LuMo2]), is an important ingredient
in the present paper, as we shall see later with more details. But first we
have to recall the following definitions: We say that (T,V) is a representa-
tion of L1(G), if V is a vector space, L(V) the space of all linear operators
on V and

T : L1(G) → L(V)
an algebra homomorphism. Moreover (T,V) is said to be algebraically ir-
reducible if V has no nontrivial invariant subspaces for the action of L1(G)
under T . In that case we also say that V is a simple L1(G)-module. If V
is a topological vector space, we require moreover the action of L1(G) on V
to be strongly continuous. In that case we say that (T,V) is a topologically
irreducible representation of L1(G), if V has no nontrivial closed invariant
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subspaces. As in the general theory, we can always assume for any represen-
tation (T,V) of L1(G) that V is a Banach space and that the representation
(T,V) is bounded (see [BoDu]).

Assume that (T,V) is a topologically irreducible representation on a Ba-
nach space and that there exists f ∈ L1(G) such that T (f) is a nonzero
operator of finite rank. Consider

V0 = span {T (f)ξ | f ∈ L1(G), T (f) of finite rank, ξ ∈ V}.
Then V0 6= {0} and the restriction of T to V0, (T |V0 ,V0), is a simple
L1(G)-module ([Wa]). We shall see that in our situation all the simple
L1(G)-modules are obtained in that way (up to equivalence) and we shall
give a precise description of the representations (T,V) to consider.

The previous definitions and results may of course be given for an arbi-
trary Banach algebra A instead of L1(G). Moreover the representations of
L1(G) may be considered as the integrated forms of bounded representations
of the group G. In fact, recall that (T,V) is said to be a representation of the
group G if T is a group homomorphism of G into the general linear group of
V. This representation is said to be bounded if supx∈G ‖T (x)‖ <∞, where
‖T (x)‖ is the operator norm of T (x). For such a representation of G, we get
a representation of L1(G) by T (f) =

∫
G f(x)T (x)dx,∀f ∈ L1(G).

A representation π of G, resp. L1(G) on a Hilbert space Hπ is said to be
unitary, if π(x−1) = π(x)∗, resp. π(f∗) = π(f)∗ for all x ∈ G, resp. f ∈
L1(G). Recall that the unitary topologically irreducible representations π
of a solvable exponential Lie group G = exp g may be described as induced
representations. There exist l ∈ g∗ and a Pukanszky polarization p ⊂ g at
l such that π = ind G

Pχl (up to unitary equivalence), where P = exp p and
χl(exp X) = e−i〈l,X〉 for all X ∈ p ([LeLu]). The set of equivalence classes
of topologically irreducible unitary representations of G is noted by Ĝ.

If G is a connected, simply connected nilpotent Lie group, then all the
simple L1(G)-modules are equivalent to a module of the form (π|H0

π
,H0

π),
where π ∈ Ĝ and

H0
π = span {π(f)ξ | f ∈ L1(G), π(f) of finite rank, ξ ∈ Hπ}.

The same remains true for L1(G, ω), where G is a connected, simply con-
nected, nilpotent Lie group and ω is a polynomial weight on G ([MiMo]).
In this paper these results are generalized in the following way: If G is a con-
nected, simply connected, solvable exponential Lie group, we define repre-
sentations πl,p,p by induction on Lp-spaces, where p = (p1, . . . , pm) ∈ [1,∞]m

is a multi-index. The norm ‖ · ‖p of such an Lp-space is obtained by suc-
cessive Lpj -norms with distinct pj ’s in different directions. To do this, we
have to introduce a precise decomposition of the Lie algebra g of the group
G. These representations are topologically irreducible and admit nontrivial
operators of finite rank. Hence, if we write Hl,p,p for the space of such a
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representation and

H0
l,p,p = span {πl,p,p(f)ξ | f ∈ L1(G), πl,p,p(f) of finite rank, ξ ∈ Hl,p,p},

then
(
πl,p,p|H0

l,p,p
,H0

l,p,p

)
=
(
π0
l,p,p,H

0
l,p,p

)
is a simple L1(G)-module. We

show that all the simple L1(G)-modules (T,V) are of this type (up to equiv-
alence). To do this we rely on the work of Poguntke ([Po1], [Po2]). In his
paper ([Po2]) Poguntke gives a first description of simple L1(G)-modules.
Let’s notice first that a representation (T,V) of L1(G) defines unique repre-
sentations of G, of N (by restriction) and of L1(N ), where N = exp n and n
is the nilradical of g. We shall write kerL1(N ) T for the corresponding kernel
in L1(N ). This kernel is of the form ker(G · τ), where τ ∈ N̂ is the represen-
tation induced from a character χq defined by a linear form q ∈ n∗. Let l ∈ g∗

such that l|n = q. The method of Poguntke ([Po2]) which has been adapted
and used for the description of topologically irreducible representations in
([LuMo2]) consists in constructing an algebra of the type L1(Rn, ω), where
ω is an exponential weight in general, uniquely determined by the given sim-
ple module (T,V) and where Rn ≡ G(l)/G(l) ∩N , with G(l) = exp g(l) and
g(l) is the stabilizer of l in g. Then one shows that the simple L1(G)-module
(T,V) with given kerL1(N ) T is completely characterized by a continuous
character on L1(Rn, ω). Conversely every such character on L1(Rn, ω) leads
to a unique simple L1(G)-module (up to equivalence) with given kerL1(N ) T .
In order to show that every simple L1(G)-module is equivalent to a module
of the form

(
πl,p,p|H0

l,p,p
,H0

l,p,p

)
, it is then enough to show that every (con-

tinuous) character on L1(Rn, ω) is associated to such a representation. To do
this we have to give an estimation of the weight ω using a method developed
by Poguntke in ([Po2]). The equivalence classes of simple L1(G)-modules
are then completely characterized by the G-orbits of the couple (l, ν), where
l ∈ g∗ and ν is a real linear form on g(l)/g(l)∩ n satisfying a certain growth
condition.

2. Construction of special irreducible representations.

2.1. . For the rest of this paper G = exp g will be a connected, simply
connected, solvable exponential Lie group with Lie algebra g. The nil-radical
of g will be denoted by n and N = expn will be the corresponding subgroup
of G. Take l ∈ g∗ and write q = l|n ∈ n∗. We define the following stabilizers:

g(l) = {X ∈ g | 〈l, [X, g]〉 ≡ 0},
g(q) = {X ∈ g | 〈q, [X, n]〉 = 〈l, [X, n]〉 ≡ 0},
n(q) = {X ∈ n | 〈q, [X, n]〉 = 〈l, [X, n]〉 ≡ 0} = g(q) ∩ n.
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Then we decompose the Lie algebra as follows:

g(l) + n = u⊕ n with u ⊂ g(l) ⊂ g(q),

g(q) + n = w⊕ (g(l) + n) = w⊕ u⊕ n with w ⊂ g(q),

g = v⊕ (g(q) + n) = v⊕w⊕ u⊕ n.

2.2. . Now we choose Y ⊂ w ⊂ g(q) a maximal l-isotropic subspace of w,
i.e., a maximal subspace of w such that 〈l, [Y,Y]〉 ≡ 0. Then there exist a
subspace X in w and bases {X1, . . . , Xc} of X, resp. {Y1, . . . , Yc} of Y such
that w = X⊕Y with

〈l, [Xi, Xj ]〉 = 0, 〈l, [Yi, Yj ]〉 = 0, 〈l, [Xi, Yj ]〉 = δij ,

i.e., X is a dual space of Y with respect to l. This is possible because {Z ∈
w | 〈l, [Z,w]〉 ≡ 0} = {0}. As a matter of fact, w⊕ n(q) modulo ker(q|n(q))
is a Heisenberg algebra. We write U = exp u, V = exp v, W = exp w,
X = exp X, Y = exp Y.

2.3. Polarizations. First let us choose p0 a g(q)-invariant polarization of q
in n (for example a Vergne polarization). Then p = Y⊕p0⊕u is a Pukanszky
polarization of l in g. Moreover p0 = p ∩ n. For the rest of this paper we
shall stick to these polarizations. We write P0 = exp p0, P = exp p.

2.4. Jordan-Hölder decomposition. Let

n = n0 ⊃ n1 ⊃ · · · ⊃ nk ⊃ nk+1 = {0}
be a Jordan-Hölder sequence for the action of g(q) + n on n. Let

Y = {i | p0 + ni 6= p0 + ni+1, i = 0, . . . , k}
= {ij | 1 ≤ j ≤ m, 0 ≤ i1 ≤ · · · ≤ im ≤ k}.

We write pj = p0 + nij , for j = 1, . . .m, and pm+1 = p0. Obviously p1 = n.
For each j ∈ {1, . . . ,m} we choose a subspace vj ⊂ nij ⊂ pj such that
vj ⊕ pj+1 = pj . Then

∑m
j=1

⊕
vj ⊕ p0 = n and

Φ :
m∑
j=1

⊕

vj −→ N/P0

V1 + · · ·+ Vm ≡ (V1, . . . , Vm) 7−→ exp (V1) . . . exp (Vm) · P0

is a diffeomorphism.

2.5. Special representations. Let’s write

ñ =
m∑
j=1

⊕

vj , Vj = exp vj and Ñ =
m∏
j=1

Vj =
m∏
j=1

exp vj .

Consider the following decomposition of G : G = V · X · Ñ · P. Take p =
(p1, . . . , pm) ∈ [1,∞]m. The representation space Lp(G/P, χl) is then defined
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to be the completion, for the norm ‖ · ‖p given below, of the space of all
functions ξ : V · X · Ñ · P → C continuous with compact support mod P,
such that ξ(x · p) = χl(p)ξ(x),∀x ∈ G,∀p ∈ P, and

‖ξ‖p =
(∫

V

∫
X

((∫
V1

(
. . .

(∫
Vm

|ξ(vxv1 . . . vm)|pmdvm

) 1
pm

. . .

)p1
dv1

) 1
p1

)2

dxdv

) 1
2

<∞,

the different measures being the Lebesgue measures on v,X, v1, . . . , vm. If

pj = ∞, then
(∫
Vj
| . . . |pjdvj

) 1
pj is replaced by the corresponding sup-norm.

Let Lp(G/P, χl) = Hl,p,p be the space we get by completion. On this space
we want to define a representation by isometric operators given essentially
by left translation. This representation will be of the form

(πl,p,p(s)ξ)(y) = ∆
− 1
p (s)ξ(s−1y), ∀s, y ∈ G,

where the modular function ∆
− 1
p has to be defined in order to get isometric

operators on Hl,p,p. It is easy to check that

∆
1
p (v · x · n · p) = e

Pm
j=1

1
pj

tr adpj/pj+1
(logp)

= e
Pm

j=1
1

pj
trλj(logp)

,

if we use the notation λj(·) = adpj/pj+1
(·). For p = 2 = (2, . . . , 2) we have

∆
1
2 (s) = e

1
2
tr adn/p0 (logs) = e

1
2
tr adg/p(logs),

as n/p0 = (u ⊕ Y ⊕ n)/p and as tr adg/(u⊕Y⊕n) = 0. The representation
πl = πl,p,2 is the usual induced unitary representation indGP(χl, 2). Notice
that

πl,p,p(s) = ∆
1
2
− 1

p (s)πl(s)
on the dense subspace of all continuous functions of Lp(G/P, χl) with com-
pact support in G/P, or, more generally, on the generalized Schwartz space
ES(G/P, χl) (see (2.7.) for the precise definition of this space).

2.6. Remarks.

a) As G(l) ⊂ P and as ∆
1
p ≡ 1 on N ∩ G(l), ∆

1
p may be considered as a

character on G(l)/G(l) ∩N ≡ G/H given by

∆
1
p (ṡ) = e

Pm
j=1

1
pj

tr adpj/pj+1
(logs)

for all ṡ ∈ G(l)/G(l) ∩N .
b) There is a relation between the Haar measures on G, P and the measure

on G/P ≡ V ·X ·Ñ = V ·X ·
∏m
j=1 Vj : If the Lie algebra g is decomposed

by
g = v⊕ X⊕Y⊕ u⊕ (ñ⊕ p0),
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we get a Haar measure on G by∫
G
f(g)dg =

∫
v

∫
X

∫
Y

∫
u

∫
v1

· · ·
∫

vm

∫
P0

f
(
expV · expX · expY · expU

· expV1 . . . expVm · p0
)
dp0dVm . . . dV1dUdY dXdV,

where we use the Haar measure on P0 and the Lebesgue measures on
v,X,Y, u, vj . The Haar measure on P is given by∫

P
f(p)dp =

∫
Y

∫
u

∫
P0

f
(
expY · expU · p0

)
dp0dUdY.

We check that∫
G
f(g)dg =

∫
G/P

∫
P
f(gp)∆−1(gp)dpdġ.

2.7. The ES-spaces. Let the polarizations be chosen as in (2.3.). Let
B1 = {A1, . . . , Aj} be a coexponential basis for p0 in n, which has for
instance been chosen in the subspaces vj . Let B2 = {B1, . . . , Bk} be a
coexponential basis for n + p in g. Then B = B1 ∪B2 is a coexponential
basis for p in g. Given a function F on G/P × G/P, we define a function F̃
on (Rk × Rj)× (Rk × Rj) by

F̃
(
b1, . . . , bk, a1, . . . aj ; b′1, . . . , b

′
k, a

′
1, . . . a

′
j

)
= F

(
exp b1B1 . . . exp bkBk exp a1A1 . . . exp ajAj ;

exp b′1B1 . . . exp b′kBk exp a′1A1 . . . exp a′jAj
)
.

We proceed similarly for a function defined on G/P. This allows us to give
the following definition:

Definition 2.7.1. a) The space ES(G/P × G/P, χl) is the space of all
C∞-functions F : G × G → C such that:

(1) F (xs, x′s′) = χl(s)χl(s′)F (x, x′), ∀x, x′ ∈ G,∀s, s′ ∈ P.

(2) ‖F‖∂,α,α′,R,R′

= sup
a,a′∈Rj ,b,b′∈Rk

(
eα|b|eα

′|b′||R(a)R′(a′)∂a∂b∂a′∂b′F̃ (b, a; b′, a′)|
)
<∞

for all α, α′ ≥ 0, for all polynomials R and R′, for all derivation oper-
ators ∂, if |b| and |b′| denote the euclidean norm on Rk.

(3) The same conditions as in (2) are required for all partial Fourier trans-
forms of F̃ in b and b′.

b) The space ES(G/P, χl) is defined similarly (see [Lu]).

Remark. The previous spaces are independent of the choice of the coex-
ponential bases. They also contain real analytic functions which, therefore,
may be extended to functions with complex variables ([LeLu]).
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Let B3 = {C1, . . . , Ci} be a coexponential basis for n in g. We may choose
the elements of B3 in a nilpotent subalgebra Q of g such that g = Q + n.
Let B4 = {D1, . . . , Dg} be a Jordan-Hölder basis for n. For a function f

defined on G, we define f̃ on Ri × Rg as previously. We then define:

Definition 2.7.2. The space ES(G) is the space of all C∞-functions f :
G → C such that

‖f‖∂,α,R = sup
c∈Ri,d∈Rg

(
eα|c|

∣∣∣R(d)∂c∂df̃(c, d)
∣∣∣) <∞

for every α ≥ 0, for every polynomial R, for all derivation operators ∂, if |c|
denotes the euclidean norm on Ri.

Remarks.

a) The space ES(G) is independent of the choice of the bases. It is dense
in L1(G) ([Lu]). Similarly for ES(G/P, χl) and Lp(G/P, χl).

b) The space ES(G/P × G/P, χl) is in the image of the map that sends
every f ∈ L1(G) to the kernel function of the operator πl(f) ([LeLu],
[Lu]). Similarly for πl,p,p(f) instead of πl thanks to the following

observation: For f ∈ ES(G) ⊂ L1(G), we have πl,p,p(f) = πl(∆
1
2
− 1
p · f)

and πl(f) = πl,p,p(∆
1
p
− 1

2 · f), where 1
2 −

1
p =

(
1
2 −

1
p1
, . . . , 1

2 −
1
pm

)
.

c) Put H0
l,p,p = span {πl,p,p(f)ξ | ξ ∈ Hl,p,p, f ∈ L1(G) such that πl,p,p(f)

of finite rank}. Hence ES(G/P, χl) ⊂ H0
l,p,p, by b).

As in ([Wa]) we can prove the following theorem, using c):

Theorem 2.7.3. The representation
(
πl,p,p,Hl,p,p

)
is topologically irreduc-

ible and the sub-representation
(
πl,p,p|H0

l,p,p
,H0

l,p,p

)
=
(
π0
l,p,p,H

0
l,p,p

)
is alge-

braically irreducible.

3. Analysis of an arbitrary simple L1(G)-module.

3.1. . In this chapter we shall use the methods of Poguntke ([Po1], [Po2])
which have been used and modified in ([LuMo2]) in order to study the topo-
logically irreducible representations. As a matter of fact most of the analysis
of ([LuMo2]) remains true in the situation of simple L1(G)-modules. There-
fore we shall give no proofs in this chapter and just recall the main results
of ([LuMo2]) and ([Po2]).

Proposition 3.2. Let (T,U) be an algebraically irreducible representation
of L1(G). Let’s write kerL1(N ) T for the kernel of the corresponding repre-
sentation of L1(N ). Then there exist τ ∈ N̂ and q ∈ n∗, p0 a polarization
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of q in n and P0 = exp p0, such that

τ = indNP0χq and kerL1(N ) T = ker(G · τ) =
⋂
g∈G

ker(gτ).

The kernel kerL1(N ) T is completely determined by the G-orbit G · τ .

3.3. Corresponding unitary representations. The aim of this section
is to introduce the largest subgroup H on which it is possible, in a certain
sense, to work with a unitary representation. Let l ∈ g∗ be such that
l|n = q. Using the same decompositions as in (2.1.), we define h = v⊕w⊕n,
H = exp h, r = l|h. Then p1 = Y⊕ p0 is a Pukanszky polarization of r in h.
Moreover, p1 = p∩ h. Let P1 = exp p1. As in (2.5.) we get a decomposition
of H by writing H = V · X · Ñ · P1. Imitating the definition of πl,p,p, we
similarly define representations γp of H and L1(H) on the representation

space Hγp
= Lp(H/P1, χr). Notice that the corresponding character ∆

1
p is

the same as for πl,p,p. For p = 2 = (2, . . . , 2) we simply write γ = γ2 = γ2.
For every extension l of r to g, the representation γp may be extended to a
representation γl,p of G in the following way:

(1) Hγl,p
= Hγp

(2) γl,p(h) = γp(h), ∀h ∈ H

(3)
(
γl,p(t)ξ

)
(x) = ∆

− 1
p (t)χl(t)ξ(t−1xt), ∀ξ ∈ Hγp ,∀t ∈ U ,∀x ∈ H

(4) γl,p(th) = γl,p(t)γl,p(h), ∀t ∈ U ,∀h ∈ H.

For p = 2 we simply write γl instead of γl,2. It is easy to check that γl,p
is a well-defined representation that is equivalent to πl,p,p. Hence γp may
also be viewed as the restriction of πl,p,p to the subgroup H. One may check
that different extensions r and r′ of q ∈ n∗ to h give the same representation
γp (up to equivalence), whereas different extensions l and l′ of r ∈ h∗ to g
lead to representations γl,p and γl′,p that differ by the unitary character χl−l′
on U . One defines of course the spaces ES(H), ES(H/P1, χr), ES(H/P1 ×
H/P1, χr) and one has the equivalent of (2.7.3.) for the representations γp.

Take λ ∈ ES(H/P1, χr) such that 〈λ, λ〉 = 1 and let pλ ∈ L1(H) be an
element such that the kernel of the operator γ(pλ) is the projector Pλ,λ, i.e.,
such that (

γ(pλ)ξ
)

(x) =
∫
H/P1

λ(x)λ(y)ξ(y)dẏ.

Put p = pλ mod ker γ. Then p is an idempotent element of L1(H)/ ker γ.
We have that

ker γ =
(
L1(H) ∗ ker(G · τ)

)−L1(H) = kerL1(H) T,
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where kerL1(H) T stands for the kernel of the corresponding representation
of L1(H) (obtained by T |H) and(

L1(G) ∗ ker γ
)−L1(G) ⊂ kerT.

In particular,
T (pλ) 6= 0 and W = T (pλ)U 6= {0}.

3.4. Some quotient algebras. Thanks to the decomposition g = u ⊕ h
with u ⊂ g(l), we put U = exp u and we may identify the sets U and
G(l)/G(l)∩N . As in ([Po2]) and ([LuMo2]) we introduce generalized con-
volution and involution formulas in L1(U , L1(H)/ ker γ). It is then easy to
check that the algebras L1(U , L1(H)/ ker γ) and L1(G)/(L1(G) ∗ker γ)−L1(G)

= L1(G)/(L1(G) ∗ kerL1(N ) T )−L1(G) are isomorphic and isometric (see [Po2]
and [LuMo2]). Notice that the latter algebra is completely determined by
the initial representation (T,U).

3.5. A special subalgebra. Take pλ as in (3.3.). For any f ∈ L1(G), let’s
define f̃ ∈ L1(U , L1(H)) by f̃(u)(h) = f(u · h) for almost all u ∈ U and
almost all h ∈ H. It is then easy to check that

(pλ ∗ f ∗ pλ)e(x) = pxλ ∗L1(H) f̃(x) ∗L1(H) pλ

for every f ∈ L1(G) and every x ∈ G, where pxλ is the function of L1(H)
obtained by the action of x on pλ:

pxλ(y) = ∆G(x)pλ(xyx−1), ∀y ∈ H.
We recall that π = πl,p,2 = indGPχl, that γ = indHP1χr and that the extension
γl is equivalent to π. One has the following formulas:

γ(pxλ) = Pγl(x)∗λ,γl(x)∗λ,

γ(pxλ ∗ g ∗ pλ) = 〈γ(g)λ, γl(x)∗λ〉Pγl(x)∗λ,λ,

for every g ∈ L1(H). By ([LeLu], [Lu]) there exists vλ,l(x) ∈ L1(H) such
that γ(vλ,l(x)) = Pγl(x)∗λ,λ and the map x → vλ,l(x) from G to L1(H) is
continuous. Hence, for every g ∈ L1(H)/ ker γ and every x ∈ G, there is a
constant c(x, g) = 〈γ(g)λ, γl(x)∗λ〉 such that

pxλ ∗ g ∗ pλ = c(x, g)vλ,l(x) mod ker γ.

Moreover
vλ,l(x) = pxλ ∗ vλ,l(x) ∗ pλ mod ker γ.

Let’s write

p = pλ mod ker γ, vl(x) = vλ,l(x) mod ker γ

in the quotient space L1(H)/ ker γ. Then the space

px ∗ (L1(H)/ ker γ) ∗ p = (pxλ ∗ L1(H) ∗ pλ)/ ker γ
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is one dimensional for every fixed x ∈ G and it has vl(x) as a basis.
On the other hand, it is easy to check that

γ(pxλ ∗ pλ) = 〈γl(x)λ, λ〉Pγl(x)∗λ,λ = 〈γl(x)λ, λ〉γ(vλ,l(x)),

i.e., that
pxλ ∗ pλ = 〈γl(x)λ, λ〉vλ,l(x) mod ker γ.

If we apply the representation γp instead of γ, the formulas are more com-
plicated. As kerL1(H) πl,p,p = kerL1(H) γl,p = ker γ (by (3.3.)),

γl,p(vλ,l(x)) =
1

〈γl(x)λ, λ〉
γl,p(pxλ ∗ pλ)

=
1

〈γl(x)λ, λ〉
γl,p(x−1)γl,p(pλ)γl,p(x)γl,p(pλ).

In order to compute the exact value of γl,p(vλ,l(x)), we have to introduce a
more precise decomposition of the Lie algebra g (see (5.)).

Definition of v(x). The previous definition of vl(x) is the one used in
([Po2]) and ([LuMo2]). It depends on the extension l of q we have chosen.
If l and l′ are two different extensions such that l|h = l′|h = r, then γl and γl′
differ only by the unitary character χl−l′ on U . Hence, if the corresponding
functions are named vλ,l and vλ,l′ , then

vλ,l′(x) = χl−l′(x)vλ,l(x) mod ker γ,∀x ∈ U .
Let l0 ∈ g∗ be a fixed extension of r. We have

vλ,l0(x) = χl−l0(x)vλ,l(x) mod ker γ

and we define v(x) to be vl0(x) = vλ,l0(x) mod ker γ.

Let’s put ω(x) = ‖v(x)‖L1(H)/ ker γ . By ([Po2], [LuMo2]) the function
ω is a symmetric weight function on G, which is constant on the classes
modulo H. Notice that ω is independent of the choice of the fixed linear
form l0 used to define v. Moreover, ω may be considered as a function on
G(l)/G(l) ∩N = G(l0)/G(l0) ∩N .

Recall that pλ acts on L1(G) and p = pλ mod ker γ acts on L1(G)/(L1(G)∗
ker γ)−L

1(G) by convolution. Moreover f mod (L1(G)∗ker γ)−L
1(G) 7→ f̃ mod

ker γ is an isometric isomorphism between L1(G)/(L1(G) ∗ ker γ)−L
1(G) and

L1(U , L1(H)/ ker γ). As

(pλ ∗ f ∗ pλ)e(x) = pxλ ∗L1(H) f̃(x) ∗L1(H) pλ

for every f ∈ L1(G) and every x ∈ G, we may consider a similar action on
L1(U , L1(H)/ ker γ) by

(p ∗ f̃ ∗ p)(x) = px ∗L1(H)/ ker γ f̃(x) ∗L1(H)/ ker γ p ∈ px ∗ (L1(H)/ ker γ) ∗ p
= C · v(x)
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for every f̃ ∈ L1(U , L1(H)/ ker γ). As a matter of fact,

(p ∗ f̃ ∗ p)(x) = 〈γ(f̃(x))λ, γl(x)∗λ〉χl(x)χl0(x) · v(x) mod ker γ

= h(x) · v(x) mod ker γ,

if we define the function h : U→C by h(x) = 〈γ(f̃(x))λ, γl(x)∗λ〉χl(x)χl0(x).
Of course the same argument is valid for every function f ∈ L1(G) and every
x ∈ G, if we define f̃(x) ∈ L1(H)/ ker γ by f̃(x)(h) = f(xh)mod ker γ. As
shown in ([LuMo2]), the map Λ : p ∗ f̃ ∗ p = h · v 7→ h is an isometric
isomorphism from p ∗ L1(U , L1(H)/ ker γ) ∗ p onto L1(U , ω).

Remarks.
a) Notice that the function h given by

h(x) = 〈γ(f̃(x))λ, γl(x)∗λ〉χl(x)χl0(x) = 〈γ(f̃(x))λ, γl0(x)∗λ〉
is independent of the choice of l such that l|h = r is fixed.

b) For a given f in L1(G)/(L1(G)∗ker γ)−L
1(G), the function h defined by

the previous formulas may be considered as a function on all of G(l).
It is then constant on the classes of G(l) modulo G(l) ∩ N . Hence we
may consider h as a function in L1(G(l)/G(l) ∩N , ω), where G(l) just
depends on l|n = q. In particular, h is independent of the choice of
the supplementary space u in g(l).

c) If we take another l0 ∈ g∗ having the same restriction to h and another
v(x) = vλ,l0(x) mod ker γ, then the h functions are all multiplied by
the same unitary character χ such that χ|H ≡ 1.

d) Let’s take λ, µ ∈ ES(H/P1, χr) such that 〈λ, λ〉 = 〈µ, µ〉 = 1. If
pλ, pµ ∈ L1(H) are such that γ(pλ) = Pλ,λ and γ(pµ) = Pµ,µ, then the
algebras

(pλ mod ker γ) ∗ L1(U , L1(H)/ ker γ) ∗ (pλ mod ker γ)

and

(pµ mod ker γ) ∗ L1(U , L1(H)/ ker γ) ∗ (pµ mod ker γ)

are ∗-isomorphic. The resulting weights are equivalent. In fact, take
sλ,µ ∈ L1(H) and s = sλ,µ mod ker γ such that γ(sλ,µ) = Pλ,µ. Then
the map

Φ : (pλmod ker γ) ∗ f̃ ∗ (pλmod ker γ)

7→ s∗ ∗ ((pλmod ker γ) ∗ f̃ ∗ (pλmod ker γ)) ∗ s
is the corresponding ∗-isomorphism. Moreover the different λ, µ ∈
ES(H/P1, χr) together with the corresponding ∗-isomorphism lead
to the same function h, for given functions f and f̃ . The algebra
L1(G(l)/G(l) ∩N , ω) is hence independent of the choice of λ.
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e) The algebra L1(U , ω) ≡ L1(G(l)/G(l) ∩ N , ω) is abelian (see [Po2],
[LuMo2]).

3.6. Relation with the simple L1(G)-module. Let’s recall that if (T,U)
is a simple L1(G)-module, there is a unique orbit G · τ ⊂ N̂ , τ ∈ N̂ , such
that kerL1(N ) T = ker(G · τ). Then we construct H ⊂ G and γ ∈ Ĥ as
explained previously. To characterize completely (T,U) with a given kerT ,
it is of course enough to study the algebraically irreducible representations
of

L1(G)/
(
L1(G) ∗ kerL1(N ) T

)−L1(G) = L1(G)/(L1(G) ∗ ker γ)−L1(G)

' L1(U , L1(H)/ ker γ),

as
(
L1(G) ∗ kerL1(N ) T

)−L1(G) ⊂ kerT . By ([Po2], Theorem 1) these are de-
termined by the simple (p ∗ L1(U , L1(H)/ ker γ) ∗ p)-modules. But B =
p ∗ L1(U , L1(H)/ ker γ) ∗ p ' L1(Rn, ω) is abelian and its simple mod-
ules coincide with the characters of L1(Rn, ω). Hence, if we put A =
L1(U , L1(H)/ ker γ) and if (S,U) is a simple A-module, this means that
the subspace V = S(p)U is one-dimensional. So there exists a character
χ on L1(Rn, ω) ' p ∗ L1(U , L1(H)/ ker γ) ∗ p such that for every v ∈ V
and f ∈ B we have S(f)v = χ(f)v. Hence the maximal modular left ideal
M of A consisting of all f in A for which S(f)v = 0, v ∈ V, is given by
M = {f ∈ A | χ(p ∗ A ∗ f ∗ p) ≡ 0}. The given simple L1(U , L1(H)/ ker γ)-
module is then isomorphic to (L,A/M) where L is the left multiplication
on A/M .

On the other hand, for a given (T,U), let q ∈ n∗ be as in (3.2.). We
want to show that (T,U) is equivalent to π0

l,p,p for some l, p, p such that
l|n = q. But kerL1(N ) T = ker(G · τ) = kerL1(N ) πl,p,p for every l ∈ g∗

such that l|n = q, for every multi-index p, τ being given by τ = indNP0χq.

Hence the algebraically irreducible representations
(
πl,p,p|H0

l,p,p
,H0

l,p,p

)
give

rise to the same algebra L1(U , L1(H)/ ker γ) as (T,U) does (if we make the
same choices for H,U , p, . . . ). To show that (T,U) is equivalent to such a(
πl,p,p|H0

l,p,p
,H0

l,p,p

)
with l|n = q it is therefore enough to show that the

corresponding characters on L1(Rn, ω) coincide for some p. To do this we
first have to study the weight ω.

Example 3.7. Let γl ≡ πl,p,2 ∈ Ĝ such that γl|H = γ and consider the
simple module (γl|H0

γ
,H0

γ). Let’s compute the character of L1(Rn, ω) ≡
p ∗ L1(U , L1(H)/ ker γ) ∗ p associated to γl|H0

γ
. Recall that this is done by

considering the action of p ∗ L1(U , L1(H)/ ker γ) ∗ p on γ(p)H0
γ = γ(pλ)H0

γ .
Take h ·v ∈ p∗L1(U , L1(H)/ ker γ)∗p corresponding to h ∈ L1(Rn, ω). Then
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one checks that

γl(h · v)(γ(pλ)ξ) =
∫
U

∫
H
h(t)v(t)(s)γl(t)γ(s)γ(pλ)ξdsdt = ĥ(l − l0)γ(pλ)ξ.

Hence the character of L1(Rn, ω) ≡ L1(U , ω) corresponding to γl ≡ πl,p,2 is
χl−l0 . Similarly, we may compute γl,p(h · v):

γl,p(h · v)(γp(pλ)ξ) =
∫
U
h(t)χl−l0(t)

1
〈γl(t)λ, λ〉

γp(pλ)γl,p(t)γp(pλ)ξdt,

by (3.5.). In order to conclude, we need to know γp(pλ). This computation
requires a more precise decomposition of the Lie algebra g and will be done
in (5.6.1.). We shall see that the character corresponding to γl,p ≡ πl,p,p is

χl,p = ∆
1
2
− 1

p · χl−l0 .

4. Characters of L1(Rn, ω).

4.1. . Let’s fix x = expX ∈ U ⊂ G(l) and let’s study the growth of
ω(exp tX) for t ∈ R and X fixed. Take λ, pλ, vλ, v as in (3.3.) and (3.5.).
Recall that

ω(exp tX) = ‖v(exp tX)‖L1(H)/ ker γ

where v(exp tX) = vλ,l0(exp tX) mod ker γ. Moreover let’s choose for λ
the Gaussian function. This is possible because different choices of λ give
equivalent weights. Put σ(g) = e

1
2

Pm
j=1 |trλj(logg)| for g ∈ G(l), where λj(·) =

adpj/pj+1
(·). Using a method developed by Poguntke ([Po2]), one checks

that there are constants C and C ′ (depending on the choice of X but not
on t) such that

ω(exp tX) ≤ C ′ · (1 + |t|)C · e
|t|
2

Pm
j=1 |trλj(X)| = C ′ · (1 + |t|)C · σ(exp tX).

Proposition 4.2. Let χ be a continuous character on L1(G(l)/G(l)∩N , ω)
≡ L1(U , ω) ≡ L1(Rn, ω). Then

|χ(expX)| ≤
m∏
i=1

e
1
2
|trλi(X)| = σ(expX)

for all X ∈ u ≡ g(l)/g(l) ∩ n.

Proof. As χ is a continuous character on L1(U , ω), |χ(expX)| ≤ ω(expX),
X ∈ U . Let’s write χ(expX) = eρ(X) with ρ a complex linear form on
U ≡ Rn. Then |χ(expX)| = eReρ(X), ∀X ∈ U . Assume that there is
X0 ∈ U such that Reρ(X0) > 0 (otherwise, change X0 to −X0) and such
that

|χ(expX0)| = eReρ(X0) = e|Reρ(X0)| >

m∏
i=1

e
1
2
|trλi(X0)|.
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Hence
m∏
i=1

e
|t|
2
|trλi(X0)| < |χ(exp |t|X0)|

≤ ω(exp |t|X0) ≤ C ′(1 + |t|)C
m∏
i=1

e
|t|
2
|trλi(X0)|

and
1 < e|t|(|Reρ(X0)|− 1

2

Pm
i=1 |trλi(X0)|) ≤ C ′(1 + |t|)C

for all t ∈ R∗. As this is impossible, we have that

|χ(expX)| ≤
m∏
i=1

e
1
2
|trλi(X)| = σ(expX),

for all X ∈ U . �

5. Characterization of all the simple modules.

We proceed now as written in (3.6.).

5.1. Identification of Hγp
= Lp(H/P1, χr) and Lp(K/P0, χr)⊗̂L2(X ).

a) We use the decompositions and notations introduced in (2.1.) to (2.5.)
and in (3.3.). Recall in particular that h = v⊕ n⊕w = v⊕ n⊕Y⊕X. Let’s
define k = v⊕ n. Hence h = k⊕Y⊕X. In order to get an isometry between
Hγp

= Lp(H/P1, χr) and Lp(K/P0, χr)⊗̂L2(X ), let’s define

ξ̃(k, x) = ξ(k · x), ∀k ∈ K,∀x ∈ X ,∀ξ ∈ Hγp
,

and

(Spξ)(k, x) = e
−

Pm
j=1

1
pj

tr adpj/pj+1
(logx)

ξ̃(k, x)

= e
−

Pm
j=1

1
pj

tr adpj/pj+1
(logx)

ξ(k · x).

Let’s write δ
− 1
p (x) = e

−
Pm

j=1
1

pj
tr adpj/pj+1

(logx)
, ∀x ∈ X . Then it is easy to

see that the map Sp : ξ 7→ δ
− 1
p · ξ̃ is an isometry between Lp(H/P1, χr) and

Lp(K/P0, χr)⊗̂L2(X ) if the norm on Lp(K/P0, χr)⊗̂L2(X ) is given by

‖f̃‖ =
(∫

X
‖f̃(·, x)‖2

pdx

) 1
2

=
(∫

X

∫
V

((∫
V1

(
. . .

(∫
Vm

|f̃(vv1 . . . vm, x)|pmdvm

) 1
pm

. . .

)p1
dv1

) 1
p1

)2

dvdx

) 1
2

.
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In particular, for ξ ∈ Hγp
,

(Spξ)(k · p0, x) = δ
− 1
p (x)ξ(k · p0 · x)

= δ
− 1
p (x)χr(x−1p0x)ξ(k · x) = χr(p0)(Spξ)(k, x),

because x ∈ X ⊂ G(q), p0 ∈ P0, P0 is G(q)-invariant and 〈r, [logx, logp0]〉 =
0.
b) Notice that L2(X ) may be identified with L2(X). In fact, if x, x′ ∈ X ⊂
G(q), then

x · x′ = q(x, x′) · exp (logx+ logx′)
with q(x, x′) ∈ N (q) ⊂ P0 and χr(q(x, x′)) = 1. Hence

ξ(k · x · x′) = ξ(k · q(x, x′) · exp (logx+ logx′)) = ξ̃(k, exp (logx+ logx′))

and we may identify L2(X ) with L2(X) where X = exp X as before. More-
over

(Spξ)(k, x · x′) = e
−

Pm
j=1

1
pj

tr adpj/pj+1
(logx+logx′) · ξ̃(k, exp (logx+ logx′))

and we may consider Spξ as a function on (K/P0) × X. Similarly we shall
consider

ES(X ) ≡ ES(X) ⊂ L2(X ) ≡ L2(X),
an ES-space with decay conditions as in (2.7.1.).

5.2. Equivalent representations. Let γp be the representation defined
on Hγp

= Lp(H/P1, χr). If we define κp on Lp(K/P0, χr)⊗̂L2(X ) by

(κp(h)(Spξ))(k, x) = Sp(γp(h)ξ)(k, x) = δ
− 1
p (x)∆

− 1
p (h)ξ(h−1kx)

∀h ∈ H, then the representations (κp, Lp(K/P0, χr)⊗̂L2(X )) and (γp,
Lp(H/P1, χr)) are equivalent. Similarly, we define κl, p on Lp(K/P0,

χr)⊗̂L2(X ) by

(κl,p(t)(Spξ))(k, x) = Sp(γl,p(t)ξ)(k, x)

= δ
− 1
p (x)∆

− 1
p (t)χl(t)ξ(kt

−1 · (t−1xtx−1)x)

for t ∈ U ⊂ G(l) and κl,p(h) = κp(h) for h ∈ H. As t−1xtx−1 ∈ G(q) ∩ N ⊂
P0 and as χr(t−1xtx−1) = 1, we have that

(κl,p(t)(Spξ))(k, x) = δ
− 1
p (x)∆

− 1
p (t)χl(t)ξ̃(kt

−1
, x)

= ∆
− 1
p (t)χl(t)(Spξ)(kt

−1
, x),

i.e., t ∈ G(l) acts only on K. The representations (κl,p,Lp(K/P0, χr)⊗̂L2(X ))
and (γl,p, Lp(H/P1, χr)) are equivalent by construction.
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5.3. Kernel of κp(f). The kernel of the operator κp(f), f ∈ ES(H) ⊂
L1(H), is given by the following computations:

(κp(f)(Spξ))(k′, x′)

= δ
− 1
p (x′)

∫
Y

∫
X

∫
K
f((xy)k)∆− 1

p (xyk)ξ(k−1(xy)−1k′x′)dkdxdy

= δ
− 1
p (x′)

∫
Y

∫
X

∫
K
f((xy)((k′)(xy)

−1
)k−1) ·∆− 1

p (k′(xy)k−1)

·∆K(k)−1ξ(k(xy)−1x′)dkdxdy

=
∫
Y

∫
X

∫
K
f((xy)((k′)(xy)

−1
)k−1)∆

− 1
p (k′(xy)k−1)

·∆K(k)−1 · e−i〈r,log(y)〉e−i〈r,[log(y),log(x−1x′)]〉

· δ−
1
p (x)(Spξ)(k, x−1x′)dkdxdy

=
∫
Y

∫
X

∫
K
f((x′x−1y)((k′)(x

′x−1y)−1
)k−1)∆

− 1
p (k′(x′x−1y)k−1)

·∆K(k)−1 · e−i〈r,log(y)〉e−i〈r,[log(y),log(x)]〉

· δ−
1
p (x′x−1)(Spξ)(k, x)dkdxdy

=
∫
Y

∫
X

∫
K/P0

∫
P0

f(((x′x−1)y)((k′)((x
′x−1)y)−1

) · p0k
−1)

·∆K(k)−1 ·∆− 1
p (y) · e−i〈r,log(p0)〉 · e−i〈r,log(y)〉

· e−i〈r,[log(y),log(x)]〉δ
− 1
p (x′x−1)(Spξ)(k, x)dp0dk̇dxdy,

as ∆ ≡ 1 on K. Consider ρp = indKP0(χq, p) and ρ2 = indKP0(χq, 2). Let’s
write f(x, y)(k) = f(x · y · k), k ∈ K. Then the kernel of κp(f) may be
written

(fκp)((k′, x′), (k, x))

=
∫
Y
f((x′x−1), y)ρp((k′)((x

′x−1)·y)−1
, k)

·∆− 1
p (y) · e−i〈r,log(y)〉 · e−i〈r,[log(y),log(x)]〉δ

− 1
p (x′x−1)dy,

where the kernel of ρp(g), g ∈ L1(K), is given by

(ρp(g))(k′, k) =
∫
P0

g(k′p0k
−1) · e−i〈r,logp0〉∆K(k)−1dp0.

In particular, for g ∈ ES(K), gρp(k′, k) = gρ2(k′, k) for every multi-index p.
Hence the representations ρp and ρ2 are given by the same formulas (but
act on different spaces).
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5.4. Behavior of projectors. For p = (p1, . . . , pm) we define q = (q1, . . . ,
qm) such that 1

q = 1 − 1
p , which means that 1

qi
= 1 − 1

pi
for each i. Take

α, β ∈ ES(H/P1, χr) ⊂ Lp(H/P1, χr) ∩ Lq(H/P1, χr). One checks that
〈α, β〉 = 〈Spα, Sqβ〉. Hence, if γp(f) is the projector Pα,β, then κp(f) is
the projector PSpα,Sqβ . Conversely, every projector κp(f) = Pα′,β′ , with
α′, β′ ∈ ES(K/P0, χr)⊗̂ES(X ), comes from a projector γp(f) = Pα,β where

α(vxv1 . . . vm) = δ
− 1

p (x−1)α′(v · (xv1x−1) . . . (xvmx−1), x). Similarly for β
and β′.

5.5. Choice of a particular pλ. Let µ be an arbitrary function in
ES(K/P0, χr) such that 〈µ, µ〉 = 1. For every s ∈ G there is a function
g(s) ∈ ES(K) such that the kernel of ρ2(g(s)) is given by g(s)ρ2(k′, k) =
µ((k′)s)µ(k). Moreover, as ∆|P0 ≡ 1, the kernels g(s)ρp and g(s)ρ2 coincide.
Let’s choose a real-valued analytic function ν ∈ ES(X ) ≡ ES(X) ⊂ L2(X )
such that 〈ν, ν〉 = 1. Put

α(x) = e
1
2

Pm
j=1 tr adpj/pj+1

(logx)
ν(x) = δ

1
2 (x)ν(x)

and define λ ∈ ES(H/P1, χr) by the formulas

λ(vxv1 . . . vm) = λ̃(v(xv1x−1) . . . (xvmx−1), x)

= µ(v(xv1x−1) . . . (xvmx−1)) · α(x).

One checks that

〈λ, λ〉 = 〈µ, µ〉〈ν, ν〉 = 1 = 〈Spλ, Sqλ〉 = 〈S2λ, S2λ〉,

where the last equalities are due to (5.4.). Moreover, for k = vv1 . . . vm ∈ K,

(S2λ)(k, x) = µ(k)ν(x),

(Spλ)(k, x) = e
Pm

j=1( 1
2
− 1

pj
)tr adpj/pj+1

(logx)
µ(k)ν(x) = δ

1
2
− 1
p (x)µ(k)ν(x).

In order to construct the function pλ ∈ L1(H) that will give us the projectors
associated to λ, let’s put

a(x, y) =
∫
X
α(xu)α(u)ei〈r,[logy,logu]〉 · ei〈r,logy〉 ·∆

1
2 (y)du, ∀x ∈ X ,∀y ∈ Y,

and define pλ ∈ ES(H) ⊂ L1(H) by pλ(xyk) = pλ(x, y)(k) = a(x, y)g(xy)(k).

Proposition 5.5.1. For every p ∈ [1,∞]m, the operator γp(pλ) is a rank
one operator. This is in particular true for the operator γ(pλ) = γ2(pλ).
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Proof. Using the previous computations and the observation (5.1.b) we get

pλ(x′x−1, y)ρp((k′)(x
′x−1y)−1

, k)

= a(x′x−1, y)µ(k′)µ(k)

= µ(k′)µ(k)
∫
X
α(x′x−1u)α(u)

· ei〈r,[logy,logu]〉ei〈r,logy〉∆
1
2 (y)δ−1(u)du,

where δ−1(u) = e
−

Pm
j=1 tr adpj/pj+1

(logu). Hence

(pλ)κp((k′, x′), (k, x))

= µ(k′)µ(k)
∫
Y

∫
X
α(x′x−1u)α(u)

· ei〈r,[logy,logu]〉e−i〈r,[logy,logx]〉∆
1
2
− 1
p (y)δ−1(u)δ

− 1
p (x′x−1)du,

= µ(k′)µ(k)
∫
Y

∫
X
ν(x′x−1u)ν(u)

· ei〈r,[logy,logu]〉e−i〈r,[logy,logx]〉∆
1
2
− 1
p (y)δ

1
2
− 1
p (x′x−1)du.

In particular, for p = 2 and κ = κ2, we have

(pλ)κ((k′, x′), (k, x)) = µ(k′)µ(k)
∫
Y

∫
X
ν(x′x−1u)ν(u)

· ei〈r,[logy,logu]〉e−i〈r,[logy,logx]〉dudy

= µ(k′)µ(k)ν(x′)ν(x)

= (S2λ)(k′, x′)(S2λ)(k, x),

as ν is in fact a real-valued function. Hence κ(pλ) is a projector, i.e.,

κ(pλ) = PS2λ,S2λ
and γ(pλ) = Pλ,λ.

In order to characterize the kernel of κp(pλ), let’s recall that

∆( 1
2
− 1

p
)(y) = e

Pm
j=1

„
1
2
− 1

pj

«
trλj(logy)

where
∑m

j=1

(
1
pj
− 1

2

)
trλj(·) is a linear form on Y and may hence be iden-

tified with an element of X, because of the duality between X and Y (see
(2.2.)). Let’s write 1

p −
1
2 for this element of X, i.e.,〈

r,

[
1
p
− 1

2
, logy

]〉
=

m∑
j=1

(
1
pj
− 1

2

)
trλj(logy), ∀y ∈ Y,
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by definition. The function ν has been chosen analytic in ES(X ) ≡ ES(X).
Hence it admits an extension to a complex-valued analytic function on XC
which we shall also denote by ν. We compute

(pλ)κp
((k′, x′), (k, x))

= µ(k′)µ(k)δ
1
2
− 1

p (x′x−1)
∫
Y

∫
X
ν((x′x−1) · u)ν(u)

· ei〈r,[logy,logu]〉e
−i〈r,[logy,logx−i( 1

p
− 1

2
)]〉
dudy

= µ(k′)µ(k)δ−
1
p (x′)δ

1
2 (x′)ν

(
logx′ − i

(
1
p
− 1

2

))
· δ−

1
q (x)δ

1
2 (x)ν

(
logx− i

(
1
p
− 1

2

))
,

if we identify ν with a function on the complex vector space XC and if
1
q = 1− 1

p .
Let’s define new functions νp ∈ ES(X ) ≡ ES(X), ζ1, ζ2 ∈ Lp(K/P0,

χr)⊗̂L2(X ) and λp, λ
′
p ∈ ES(H) ⊂ L1(H) by

νp(x) = δ
1
2 (x)ν

(
logx− i

(
1
p
− 1

2

))
, ∀x ∈ X ,

(Spλp)(k, x) = δ
− 1

p (x)µ(k)νp(x) = ζ1(k, x)

(Sqλ′p)(k, x) = δ
− 1

q (x)µ(k)νp(x) = ζ2(k, x),

i.e., λp = S−1
p (ζ1) and λ′p = S−1

q (ζ2). Hence

(pλ)κp
((k′, x′), (k, x)) = (Spλp)(k′, x′)(Sqλ′p)(k, x),

i.e., κp(pλ) is the projector PSpλp,Sqλ
′
p
. So γp(pλ) is also a projector, more

precisely γp(pλ) = Pλp,λ
′
p
. Both projectors are idempotent because

〈λp, λ′p〉 = 〈Spλp, Sqλ′p〉

=
∫
X

∫
K
δ
− 1

p (x)µ(k)νp(x)δ−
1
q (x)µ(k)νp(x)dkdx

= 〈µ, µ〉 ·
∫
X
δ−1(x)(νp(x))2dx

=
∫
X

(
ν

(
logx− i

(
1
p
− 1

2

)))2

dx = 1,

as 1
p + 1

q = 1, 〈µ, µ〉 = 1 and∫
X

(
ν

(
logx− i

(
1
p
− 1

2

)))2

dx =
∫
X

(ν(x))2dx = 〈ν, ν〉 = 1
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by Cauchy’s theorem. �

5.5.2. . The following computation will be important in the characteriza-
tion of the character associated to γl,p ≡ πl,p,p:

〈γl,p(t)λp, λ′p〉
= 〈κl,p(t)(Spλp), Sqλ′p〉

= ∆− 1
p (t)χl(t)

∫
X

∫
K

(Spλp)(kt
−1
, x)(Sqλ′p)(k, x)dkdx

= ∆− 1
p (t)χl(t)

∫
X

∫
K
δ−1(x)µ(kt

−1
)νp(x)µ(k)νp(x)dkdx

= ∆− 1
p (t)χl(t)〈µt

−1
, µ〉.

In particular, for p = 2 = (2, . . . , 2), λ2 = λ′
2

= λ (as ν is real-valued) and

〈γ̃l,p(t)λp, λ′p〉
〈γ̃l(t)λ, λ〉

= ∆
1
2
− 1

p (t).

5.6. Character of L1(Rn, ω) corresponding to γl,p.

5.6.1. . Using the computations of (3.5.) and (3.7.) we get

γl,p(vλ,l(t)) =
1

〈γl(t)λ, λ〉
γl,p(t−1)Pλp,λ

′
p
γl,p(t)Pλpλ

′
p

= ∆
1
2
− 1

p (t)γl,p(t−1)γp(pλ)

and

(γl,p(h · v))(γp(pλ)ξ) =
(∫

U
h(t)χl−l0(t)∆

1
2
− 1

p (t)dt
)

(γp(pλ)ξ).

Hence χl,p(t)=∆
1
2
− 1

p (t)χl−l0(t) is the character of L1(U , ω)≡L1(G(l)/G(l)∩
N , ω) associated to the representation γl,p.

Remark. If l and l′ are two different extensions of r ∈ h∗ to g, then
χl′,p(t) = χl′−l(t) · χl,p(t), ∀t ∈ U ⊂ G(l). Hence, if l and l′ are in the
same G-orbit, then χl′,p(t) = χl,p(t), ∀t ∈ U ⊂ G(l).

Corollary 5.6.2. The weight ω satisfies the inequality

∆( 1
2
− 1

p
)(x) = e

Pm
j=1

„
1
2
− 1

pj

«
trλj(logx)

≤ ω(x), ∀x ∈ G(l),

for all p. Hence

e
|t|
2

Pm
j=1 |trλj(X)| ≤ ω(exp tX)

≤ C ′(1 + |t|)Ce
|t|
2

Pm
j=1 |trλj(X)|, ∀t ∈ R,∀X ∈ g(l).
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Proof. If t ∈ G(l) ∩ N , then ∆( 1
2
− 1

p
)(t) = 1 and ω ≥ 1. For t ∈ U , for every

multi-index p ∈ [1,∞]m, ∆( 1
2
− 1

p
)(t) = |χl,p(t)| ≤ ω(t) as χl,p is a continuous

character on L1(Rn, ω) ≡ L1(G(l)/G(l) ∩ N , ω) (see proof of (4.2.)). See
(4.1.) for the last assertion. �

5.7. Characterization of an arbitrary simple L1(G)-module.

Proposition 5.7.1. Let S1 and S2 be the following subsets of (Rn)∗ ≡ u∗ ≡
(g(l)/g(l) ∩ n)∗:

S1 =

{
m∑
i=1

(
1
2
− 1
pi

)
trλi(·) | 1 ≤ pi ≤ ∞

}

=

{
m∑
i=1

Citrλi(·) | |Ci| ≤
1
2
, Ci ∈ R

}

S2 =

{
ρ ∈ u∗ | |ρ(X)| ≤

m∑
i=1

1
2
|trλi(X)|, ∀X ∈ u ≡ Rn

}
.

Then S1 = S2.

Proof. Notice first that the linear form ν(·) =
∑m

i=1(1
2 −

1
pi

)trλi(·) of g(l) is
constant on the classes modulo g(l) ∩ n and may hence be considered as a
linear form on g(l)/g(l) ∩ n. The sets S1 and S2 are closed convex subsets
of (Rn)∗ such that S1 ⊂ S2. Assume there exists ρ ∈ S2\S1. By the Hahn-
Banach theorem there is X0 ∈ Rn ≡ u and α ∈ R such that s1(X0) < α <
ρ(X0), ∀s1 ∈ S1. Let’s then choose s1 ∈ S1 by s1(X) =

∑m
i=1

1
2εitrλi(X),

∀X ∈ u, where εi = 1 if trλi(X0) ≥ 0 and εi = −1 if trλi(X0) < 0. Hence
m∑
i=1

1
2
|trλi(X0)| = s1(X0) < ρ(X0),

which contradicts the fact that ρ ∈ S2. �

Corollary 5.7.2. Let χ be a continuous character on L1(Rn, ω) ≡ L1(U , ω).
Then there is a multi-index p = (p1, . . . , pm) and l′ ∈ g∗ with l′|h = l|h such
that

|χ(expX)| = e
Pm

i=1

“
1
2
− 1

pi

”
trλi(X)

, ∀X ∈ u

and such that

χ(expX) = χl′−l0(expX) · e
Pm

i=1

“
1
2
− 1

pi

”
trλi(X) = χl′,p(expX), ∀X ∈ u,

i.e., every continuous character on L1(G(l)/G(l) ∩N , ω) is of the form

χ(expX) = χl′−l0(expX)eν(X),
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where l′ − l0 ∈ h⊥ and ν ∈ (g(l)/g(l) ∩ n)∗ such that

|ν(X)| ≤ 1
2

m∑
j=1

|trλj(X)|.

Proof. We may write χ(expX) = e−iρ1(X) · eρ2(X) with ρ1, ρ2 ∈ (Rn)∗ ≡
u∗ ≡ (g(l)/g(l) ∩ n)∗. By (4.2.) and (5.6.1.) ρ2 ∈ S2 = S1 and hence there
is a multi-index p = (p1, . . . , pm), pi ∈ [1,∞] for all i, such that

|χ(expX)| = eρ2(X) = e
Pm

i=1

“
1
2
− 1

pi

”
trλi(X)

, ∀X ∈ u ≡ (g(l)/g(l) ∩ n)∗.

We may then choose l′ ∈ g∗ such that l′|h = l|h and such that l′ − l0 = ρ1

on u. �

Theorem 5.7.3.

a) Let (T,U) be a simple L1(G)-module. Then there exists l ∈ g∗, a
polarization p for l in g and a multi-index p ∈ [1,∞]m, such that
(T,U) is equivalent to the simple module

(
π0
l,p,p,H

0
l,p,p

)
.

b) Let p, q ∈ [1,∞]m be two multi-indices. Then
(
π0
l,p,q,H

0
πl,p,q

)
'
(
π0
l,p,p,

H0
πl,p,p

)
if and only if

m∑
i=1

(
1
2
− 1
qi

)
trλi(·) =

m∑
i=1

(
1
2
− 1
pi

)
trλi(·) = ν(·)

on u and hence on g(l), i.e., if the corresponding linear forms ν ∈
(g(l)/g(l) ∩ n)∗ are the same.

Proof. By (3.6.) and (5.7.2.). �

5.7.4. Remarks.

a) One can show that up to equivalence the representations π0
l,p,p are

independent of the choice of the polarization p.
b) Let’s write G̃ for the space of the equivalence classes of simple L1(G)-

modules. Let’s write g̃∗ for the collection of all pairs (l, ν) with l ∈ g∗,
ν ∈ (g(l)/g(l) ∩ n)∗ such that |ν(X)| ≤ 1

2

∑m
j=1 |trλj(X)|,∀X ∈ g(l).

The group G acts on g̃∗ by conjugation. Let g̃∗/G be the set of all
equivalence classes for this action.

We then get our final theorem:

Theorem 5.7.5. There is a bijection between g̃∗/G and G̃.
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6. Final remarks.

As it was already pointed out in the introduction, the algebraically simple
L1(G)-modules for a solvable exponential Lie group are essentially obtained
in the same way as in the case of the nilpotent groups, except that one has to
generalize the induced representations. This is no longer true for topologi-
cally irreducible representations, as it was shown in ([LuMo2]). Two major
differences exist. Usually there are a lot of extensions of a topologically ir-
reducible representation of the subalgebra p∗L1(G/H, L1(H)/ ker γ)∗p to a
topologically irreducible representation of the algebra L1(G/H,L1(H)/ker γ),
whereas this extension is unique in the algebraic case. These different exten-
sions are characterized by different extension norms. But the main difference
arises from the irreducible representations of L1(Rn, ω). These representa-
tions coincide with the characters in the algebraic case. In the topological
case there are a lot of irreducible inifinite dimensional representations of
L1(Rn, ω) if the weight ω is exponential, which happens if and only if the
group G is nonsymmetric. The corresponding representations of L1(G) are
fundamentally different from induced representations. The construction of
such representations is linked to the invariant subspace problem, as it was
shown in ([LuMo2]).
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EXPLICIT REALIZATION OF THE DICKSON GROUPS
G2(q) AS GALOIS GROUPS

Gunter Malle

For any prime power q we determine a polynomial fq(X) ∈
Fq(t, u)[X] whose Galois group over Fq(t, u) is the Dickson
group G2(q). The construction uses a criterion and a method
due to Matzat.

1. Introduction.

In this paper we are concerned with the construction of polynomials whose
Galois groups are the exceptional simple Chevalley groups G2(q), q a prime
power, first discovered by Dickson; see Theorems 4.1 and 4.3.

It was shown by Nori [7] that all semisimple simply-connected linear alge-
braic groups over Fq do occur as Galois groups of regular extension of regular
function fields over Fq, but his proof does not give an explicit equation or
even a constructive method for obtaining such extensions. On the other
hand, in a long series of papers Abhyankar has given families of polynomials
for groups of classical types (see [1] and the references cited there). His
ad hoc approach hasn’t yet led to families with groups of exceptional type
(but see [2] for a different construction of polynomials with Galois group the
simple groups of Suzuki). Thus it seems natural to try to fill this gap. In his
recent paper Matzat [6] describes an algorithmic approach which reduces
the construction of generating polynomials for such extensions to certain
group theoretic calculations.

More precisely, let F := Fq(t), with t = (t1, . . . , ts) a set of indetermi-
nates. We denote by φq : F → F , x 7→ xq, the Frobenius endomorphism.
Let G be a reduced connected linear algebraic group defined over Fq, with a
faithful linear representation Γ : G(F ) ↪→ GLn(F ) in its defining character-
istic, also defined over Fq. We identify G(F ) with its image in GLn(F ). Fix
an element g ∈ G(F ) and assume that g ∈ GLn(R), where R := Fq[t]. Any
specialization homomorphism ψ : R → Fqa , tj 7→ ψ(tj), can be naturally
extended to GLn(R). We define

gψ := ψ(g) · ψ(φq(g)) · · ·ψ(φa−1
q (g)) ∈ GLn(Fq).

With these notations Matzat [6, Thm. 4.3 and 4.5] shows the following:

Theorem 1.1 (Matzat). Let G(F ) ≤ GLn(F ) be a reduced connected linear
algebraic group defined over Fq. Let g ∈ GLn(R) such that:
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(i) g ∈ G(F ),
(ii) there exist specializations ψi : R → Fqai , 1 ≤ i ≤ k, such that no

proper subgroup of G(Fq) ≤ GLn(Fq) contains conjugates of all the
gψi

, 1 ≤ i ≤ k.
Then G(Fq) occurs as regular Galois group over F , and a generating polyno-
mial f(t, X) ∈ F [X] for such a G(Fq)-extension can be computed explicitly
from the matrix g.

Thus the strategy for the computation of a G2(q)-polynomial will be the
following: First construct a small faithful matrix representation of G2(F )
in its defining characteristic. For this we use the well-known facts that
G2(F ) is a subgroup of an 8-dimensional orthogonal group over F , and
that this 8-dimensional representation has a faithful irreducible constituent
of dimension 6 for G2(F ), if char(F ) = 2, respectively of dimension 7 if
char(F ) > 2. Secondly, we need to find an element g ∈ G2(F ) with the
properties required in the Theorem. For this, we make use of the known
lists of maximal subgroups of G2(q) by Cooperstein and Kleidman. (These
results require the classification of finite simple groups, but only in a very
weak form.) Finally, the corresponding polynomial has to be computed
using a version of the Buchberger algorithm.

2. Identifying G2(F ) inside the 8-dimensional orthogonal group.

We first introduce some notation. Let V be an 8-dimensional vector space
over a field F of characteristic p ≥ 0, with basis e1, . . . , e8 and Q the qua-
dratic form on V defined by

Q : V → F, Q

(
8∑
i=1

xiei

)
=

4∑
i=1

xix9−i.

We denote by GO8(F ) the group of isometries of Q, the full orthogonal
group, and by SO8(F ) the connected component of the identity in GO8(F ),
of index 2. Thus SO8(F ) is a simple split algebraic group over F of type D4.
The subgroup of upper triangular matrices of GL8(F ) contains a Borel sub-
group B of SO8(F ). More precisely, the unipotent radical of B is generated
by the root subgroups

Xi := {xi(t) | t ∈ F}, i = 1, . . . , 12,

where the xi(t) are defined as in Table 1. Here Ei,j(t) denotes the matrix
having 1’s on the diagonal and one further nonzero entry t in position (i, j).

A maximal torus T in B is given by the set of diagonal matrices

T := {t = diag(t1, t2, t3, t4, t−1
4 , t−1

3 , t−1
2 , t−1

1 ) | ti ∈ F×}.
The simple roots with respect to T are now αi, i = 1, . . . , 4, with αi(t) =
ti/ti+1 for i = 1, 2, 3 and α4(t) = t3t4. In Table 1 we have also recorded the
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Table 1. Root subgroups of SO8(F ).

x1(t) = E1,2(t)− E7,8(t) 1000 x7(t) = E2,5(t)− E4,7(t) 0101
x2(t) = E2,3(t)− E6,7(t) 0100 x8(t) = E1,4(t)− E5,8(t) 1110
x3(t) = E3,4(t)− E5,6(t) 0010 x9(t) = E2,6(t)− E3,7(t) 0111
x4(t) = E3,5(t)− E4,6(t) 0001 x10(t) = E1,5(t)− E4,8(t) 1101
x5(t) = E1,3(t)− E6,8(t) 1100 x11(t) = E1,6(t)− E3,8(t) 1111
x6(t) = E2,4(t)− E5,7(t) 0110 x12(t) = E1,7(t)− E2,8(t) 1211

decomposition of the root corresponding to a root subgroup into the simple
roots α1, . . . , α4. Note that the simple root α2 (with label 0100) is the one
belonging to the central node in the Dynkin diagram of type D4.

The group PSO8(F ) := SO8(F )/Z(SO8(F )) possesses an outer automor-
phism γ of order 3 induced by the graph automorphism of the Dynkin dia-
gram D4 which cyclically permutes the nodes 1, 3 and 4 and fixes the middle
node 2. The group PSO8(F )γ of fixed points in PSO8(F ) under γ is again
a simple connected algebraic group over F , of type G2. Note that γ does
not stabilize the natural representation of SO8(F ). Nevertheless we can
construct G2(F ) as a preimage G of PSO8(F )γ in SO8(F ).

The Borel subgroup B of SO8(F ) contains a Borel subgroup of G. Its
unipotent radical is the product of the subgroups

Xi,j,k := {xi(t)xj(t)xk(t) | t ∈ F}

where (i, j, k) ∈ {(1, 3, 4), (5, 6, 7), (8, 9, 10)}, together with the root sub-
groups Xi = {xi(t) | t ∈ F} for i ∈ {2, 11, 12} (see for example Carter [3,
Prop. 13.6.3]). A maximal torus of G inside T consists of the elements

{t = diag(t1, t2, t1t−1
2 , 1, 1, t−1

1 t2, t
−1
2 , t−1

1 ) | ti ∈ F×}.

From this description we find that the simple roots for G2(F ) are now α, β,
with α(t) := t1/t2 and β(t) := t22/t1, and with corresponding root subgroups
Xα := X1,3,4, Xβ := X2 respectively.

An easy calculation with the generators of root subgroups given above
now shows that G leaves invariant the hyperplane V1 of V consisting of
vectors with equal fourth and fifth coordinate, as well as the 1-dimensional
subspace V2 of V spanned by e4 − e5. Thus we obtain an induced action
of G on V1, respectively on V1/V2 when char(F ) = 2. This yields a faithful
matrix representation Γ : G2(F ) ↪→ GLn(F ) of G2(F ), of dimension n = 7
when char(F ) 6= 2, respectively of dimension n = 6 when char(F ) = 2. It
is well-known that the smallest possible degree of a faithful representation
of G2(F ) is 7, respectively 6 if char(F ) = 2, so our representation Γ is
irreducible.
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Remark 2.1. The matrices given in [4, p. 34] do not define a representation
of G2(2f ). Indeed, the matrix for ha(t) does not have determinant 1, as it
should have (since G2(2f ) is simple for f > 1). Its second diagonal entry
should be t−1. Conjugating Xa(t) by ha(t′) one sees that the middle off-
diagonal entry of Xa(t) should be t2 instead of t. The commutator relations
(see Carter [3, 12.4]; [4, (2.1)] contains misprints) then show that similarly
in the matrices for Xa+b(t) and X2a+b(t) the second nonzero off-diagonal
entry t should be replaced by t2. In this way one recovers the representation
constructed above.

3. Finding a suitable element.

Let first q = 2f be even. Then an easy calculation shows that in our 6-
dimensional representation Γ : G2(F ) → GL6(F ) constructed above, we
have

xα(t) =


1 t 0 0 0 0
0 1 0 0 0 0
0 0 1 t2 0 0
0 0 0 1 0 0
0 0 0 0 1 t
0 0 0 0 0 1

 , xβ(t) =


1 0 0 0 0 0
0 1 t 0 0 0
0 0 1 0 0 0
0 0 0 1 t 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

and the longest element of the Weyl group of G2(F ) is represented by

w0 =


0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

 .

We choose g := xα(t)xβ(u)w0 ∈ G2(F ) and let

D := Γ(g) =


0 0 0 tu t 1
0 0 0 u 1 0
0 t2u t2 1 0 0
0 u 1 0 0 0
t 1 0 0 0 0
1 0 0 0 0 0

 .(1)

Proposition 3.1. Let q be even and D be defined as above. Then no proper
subgroup of G2(q) contains conjugates of all specializations of D.

Proof. We use the fact that all maximal subgroups of the finite groups G2(q)
are known by Cooperstein [4]. For q = 2 specializations into F8 yield el-
ements of orders 7 and 12, and no maximal subgroup of G2(2) contains
elements of both orders. For q = 4 specializations into F4 yield elements of
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orders 13, 15 and 21. The only maximal subgroup of order divisible by 7 ·13
is PSL2(13), but its order is not divisible by 5, so we are done again.

Now let q ≥ 8. Let G be a subgroup of G2(q) containing conjugates of
all specializations of D. Let α ∈ F×

q2
of order q + 1. Then the minimal

polynomial of α over Fq has the form X2 + Tr(α)X + 1, where Tr(α) =
α + αq ∈ Fq. Thus any element of F×

q2
of order q + 1 occurs as a root of a

polynomial of the shape

X2 + vX + 1, v ∈ Fq.

Clearly, all elements of F×q also occur as zeros of such a polynomial. Now
for v ∈ Fq consider the specialization

ψv : Fq[t, u] → Fq, t 7→ 0, u 7→ v.

Then the specialization ψv(D) of D has characteristic polynomial

X6 + (v2 + 1)X4 + (v2 + 1)X2 + 1 = (X + 1)2(X2 + vX + 1)2.

The 1-eigenspace of ψv(D) only has dimension 1 for v 6= 0, so the order of
ψv(D) is divisible by 2. By our above considerations, we hence find elements
of orders 2(q + 1) and 2(q − 1) as specializations of D. (This can also be
seen as follows: If t = 0 then g specializes to

xβ(u)w0 = xβ(u)(wβwα)3 = xβ(u)wβ · w′

where w′ = wαwβwαwβwα has order 2, centralizes xβ(u)wβ, and xβ(u)wβ
represents the element (

u 1
1 0

)
in the subgroup 〈Xβ, X−β〉 ∼= SL2(q).)

Next, consider the specialization

ψ′v : Fq[t, u] → Fq, t 7→ v, u 7→ 0.

Here, ψ′v(D) has characteristic polynomial

(X2 + vX + 1)2(X2 + v2X + 1).

By the argument above, this again yields elements of orders 2(q−1) and 2(q+
1). But note that this time these elements never have an eigenvalue 1, nor
have any of their powers of order larger than 2. Thus G contains subgroups
of order (q± 1)2. Theorem 2.3 in [4] shows that either G ≤ SL2(q)× SL2(q)
or G = G2(q).

Finally, consider the specialization

ψ′′v : Fq[t, u] → Fq, t 7→ v, u 7→ 1.

The corresponding specialization of D has characteristic polynomial

(X3 + v2X + 1)(X3 + v2X2 + 1).
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If X3 + v2X + 1 is reducible over Fq, then it has a linear factor X + a,
a ∈ Fq, and X3 + v2X + 1 = (X + a)(X2 + aX + 1/a). Clearly, the case
a = 0 is not possible, so for at least one of the q possibilities for v ∈ Fq
the characteristic polynomial has an irreducible factor of degree 3. In this
case, the specialization of D has order dividing q2 + q + 1, but not q − 1.
Since SL2(q) × SL2(q) doesn’t contain such elements, we have G = G2(q),
as claimed. �

For odd q = pf we again choose g := xα(t)xβ(u)w0 ∈ G2(F ). With

xα(t) =



1 t 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 t −t2 0 0
0 0 0 1 −2t 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 −t
0 0 0 0 0 0 1


,

xβ(t) =



1 0 0 0 0 0 0
0 1 t 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 −t 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


,

and

w0 =



0 0 0 0 0 0 1
0 0 0 0 0 −1 0
0 0 0 0 1 0 0
0 0 0 −1 0 0 0
0 0 1 0 0 0 0
0 −1 0 0 0 0 0
1 0 0 0 0 0 0


,

this gives

D := Γ(g) =



0 0 0 0 tu −t 1
0 0 0 0 u −1 0
0 −t2u −t2 −t 1 0 0
0 −2tu −2t −1 0 0 0
0 u 1 0 0 0 0
−t −1 0 0 0 0 0

1 0 0 0 0 0 0


(2)
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in this case. This matrix has separable characteristic polynomial

X7 + (t2 + 1)X6 − (2t2 + u2 + 3)X5 − (t4 + 3t2 + u2 + 3)X4

+ (t4 + 3t2 + u2 + 3)X3 + (2t2 + u2 + 3)X2 − (t2 + 1)X − 1.

We need the following result:

Lemma 3.2. Let q > 3 be an odd prime power. Then there exists v ∈ Fq
such that

X3 − (v2 + 2)X − 1
is irreducible over Fq.

Proof. Assume that f := X3− (v2 +2)X−1 is reducible. Then f has a zero
a ∈ Fq, and X3 − (v2 + 2)X − 1 = (X − a)(X2 + aX + a−1). These zeros
are just the first coordinates of the Fq-points on the elliptic curve E defined
by U3− (V 2 + 2)U − 1. By the Weil bounds [8], E has at most q+ 1 + 2

√
q

points (u, v) over Fq. Clearly, with (u, v) the point (u,−v) also lies on E,
hence there are at most q/2 + 1 +

√
q distinct values a which can occur as

zeros of f .
Next, we estimate how often f splits completely into linear factors. This

happens if in addition the discriminant (a3 − 4)/a of X2 + aX + a−1 is a
square in Fq. Thus we need to count points on the Fq-curve C defined by
the two equations

U3 − (V 2 + 2)U − 1, U3 −W 2U − 4.

Subtracting these two equations we see that U lies in the function field
Fq(V,W ). Since both V,W have degree at most 2 over Fq(U), the curve C
has genus at most 4. Moreover, the only singular point of C is the point
with coordinates (4, 0, 0) in characteristic 5. Again by the Weil bounds [8]
this means that C has at least q + 1− 2 · 4√q − 6 points over Fq. For each
such point, changing the sign of the V,W -coordinates again yields a point,
hence there are at least (q − 5 − 8

√
q)/4 distinct a ∈ Fq for which f splits

completely. Thus we obtain at most

q/2 + 1 +
√
q − (q − 5− 8

√
q)/4 = (q + 9)/4 + 3

√
q

factorizations of f into a linear and a quadratic factor. The discriminant of
f is a polynomial in v of degree 6, hence f is inseparable for at most six
values of v. Apart from those, each completely splitting f accounts for three
different values of a, so we obtain a total of at most

(q + 9)/4 + 3
√
q + ((q − 5− 8

√
q)/4− 6)/3 + 6 = (2q + 35)/6 + 7/3

√
q

reducible polynomials when v runs over Fq. Hence there remain at least

(q + 1)/2− ((2q + 35)/6 + 7/3
√
q) = (q − 32)/6− 7/3

√
q

irreducible polynomials. This is positive for q ≥ 257. For the remaining
prime powers 3 < q < 257 a computer check shows that the assertion is
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also satisfied. (For q = 5, 9 there is just one irreducible polynomial of the
required shape, for q = 3 there is none.)

Note that the counting of singular points and of inseparable f was very
rough and a more detailed analysis would have reduced the bound consid-
erably. �

Proposition 3.3. Let q be odd and D be the matrix defined in (2). Then
no proper subgroup of G2(q) contains conjugates of all specializations of D.

Proof. Again all maximal subgroups of G2(q) are known by work of Kleid-
man [5]. For q = 3 specializations into F9 yield elements of orders 7, 9, 13.
The only maximal subgroup of G2(3) of order divisible by 7 ·13 is PSL2(13),
but that has no elements of order 9. For q = 5, specialization into F5 yields
element orders 7, 20 and 31, thus we are done again.

For q ≥ 7 let G be a subgroup of G2(q) containing conjugates of all
specializations of D. We again consider the specialization

ψv : Fq[t, u] → Fq, t 7→ 0, u 7→ v.

Then the square of ψv(D) has characteristic polynomial

(X − 1)3(X2 − (v2 + 2)X + 1)2.

This gives rise to elements of orders q± 1 in G. Similarly, the specialization

ψ′v : Fq[t, u] → Fq, t 7→ v, u 7→ 0,

yields the characteristic polynomial

(X − 1)(X2 − (v4 + 4v2 + 2)X + 1)(X2 − (v2 + 2)X + 1)2

for the image of D2. So as in the previous proof we deduce that G must
contain subgroups of orders (q± 1)2. Theorem A in [5] shows that either G
is contained in the central product SL2(q) ◦ SL2(q), or G = G2(q). Finally,
for the specialization

ψ′′v : Fq[t, u] → Fq, t 7→ v, u 7→ 1,

we obtain the characteristic polynomial

(X − 1)(X3 + (v2 + 2)X2 − 1)(X3 − (v2 + 2)X − 1)

for φ′′v(D). Since q ≥ 7 is odd, Lemma 3.2 shows that there exists v ∈ Fq
such that the degree 3 factors of this polynomial are irreducible over Fq.
But SL2(q) ◦ SL2(q) does not contain such elements, hence we have G =
G2(q). �
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4. The polynomials.

It remains to determine generating polynomials for the G2(q)-extensions
whose existence is guaranteed by Theorem 1.1 in conjunction with Proposi-
tions 3.1 and 3.3.

Theorem 4.1. Let q = 2f be a power of 2. Then the polynomial

Xq6 + ue2te4Xq5 + (ue1te1 + ue3te1 + te1 + te3 + 1)Xq4

+ ue2te4(tq
3+q2 + tq

3−q + 1)Xq3

+ te1(ue1tq
2−1 + ue1tq

2+q + ue1 + ue3 + 1)Xq2

+ ue2tq
4+2q2−qXq + ue1tq

4−1X,

with e1 := q4 − q2, e2 := q4 − q3, e3 := q4 + q3, e4 := q4 − q3 + 2q2, has
Galois group G2(q) over Fq(t, u).

Proof. In Proposition 3.1 we have shown that the assumptions of Matzat’s
Theorem 1.1 are satisfied for the matrix D defined in (1). According to
Matzat [6, §1], a generating polynomial for a field extension with group
G2(q) can now be obtained by solving the non-linear system of equations
given by

y = D yq,
where y = (y1, . . . , y6)t, for one of the variables. Solving for y6 yields the
equation displayed in the statement. �

By the Hilbert irreducibility theorem, there exist 1-parameter specializa-
tions of the polynomial in Theorem 4.1 with group G2(q).

Example 4.2. By arguments similar to those used in the proof of Propo-
sition 3.1 it can be checked that the polynomial

X64 + t24X32+(t36 + t12 + 1)X16 + (t30 + t36 + t24)X8

+(t24 + t36 + t27 + t30 + t12)X4 + t30X2 + t27X

obtained by setting u = t has Galois group G2(2) over F2(t).

Theorem 4.3. Let q = pf be an odd prime power. Then the polynomial

Xq7 + ue1te4(te6 + 1)Xq6 − (te2ue3 + (tq
5+q2 + te2)ue2 + te3 + te2 + 1)Xq5

− ue1te4(te5(uq
4+q3 + ue5) + (te6 + 1)(tq

4+q3 + te5 + 1))Xq4

+ te2(ue3 + (te6 + 1)(te6 + tq
3−q + 1)ue2 + 1)Xq3

+ ue1tq
5+q3−2q2(uq

4+q3 + (tq
2+q + tq

2−1 + 1)ue5 + te6 + 1)Xq2

− ue2tq
5−q(te6 + 1)Xq − uq

5−q2tq
5+q3−q2−1X,

where e1 := q5 − q4, e2 := q5 − q3, e3 := q5 + q4, e4 := q5 − q4 + q3 − q2,
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e5 := q4 − q2, e6 := q3 + q2, has Galois group G2(q) over Fq(t, u).

The proof is as for the preceding theorem, starting this time from the
matrix D given in (2), solving for y7, and using Proposition 3.3.

Remark 4.4. The sporadic simple Janko groups J1 and J2 are subgroups
of G2(11), respectively of G2(4). It would be nice to find Galois extensions
for these groups in characteristic 11 respectively 2 by the above method,
possibly as specializations of the polynomials in Theorems 4.1 and 4.3.

Remark 4.5. The next smallest simple exceptional group is the one of type
F4. Its smallest faithful representation has dimension 26, respectively 25 in
characteristic 3. In principle, the methods of this paper should make it
possible to produce an F4(q)-polynomial.

Remark 4.6. The group G2(q), q odd, has q orbits on nonzero vectors in
its 7-dimensional representation. Thus, the polynomial fq(t, u,X) in The-
orem 4.3 has q factors, of degrees roughly q6, and a linear factor. On the
other hand, any specialization of fq has factors of degree at most q2 + q+ 1,
the maximal element order in G2(q). Thus, fq seems a good candidate for
testing factorization algorithms. Using Maple we have not been able to find
the factorization of fq for q = 3.

Similarly, for q even G2(q) has a single orbit on the nonzero vectors of
the 6-dimensional module. Hence fq(t, u,X) in Theorem 4.1 is irreducible
apart from the trivial linear factor. Again Maple was not able to confirm
this for q = 4.

Acknowledgement. I’m indebted to N. Elkies for pointing out an overzeal-
ous simplification in a previous version.
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POINCARÉ–EINSTEIN METRICS AND
THE SCHOUTEN TENSOR

Rafe Mazzeo and Frank Pacard

We examine the space of conformally compact metrics g
on the interior of a compact manifold with boundary which
have the property that the kth elementary symmetric func-
tion of the Schouten tensor Ag is constant. When k = 1 this
is equivalent to the familiar Yamabe problem, and the corre-
sponding metrics are complete with constant negative scalar
curvature. We show for every k that the deformation theory
for this problem is unobstructed, so in particular the set of
conformal classes containing a solution of any one of these
equations is open in the space of all conformal classes. We
then observe that the common intersection of these solution
spaces coincides with the space of conformally compact Ein-
stein metrics, and hence this space is a finite intersection of
closed analytic submanifolds.

Let M n+1 be a smooth compact manifold with boundary. A metric g
defined on its interior is said to be conformally compact if there is a non-
negative defining function ρ for ∂M (i.e., ρ = 0 only on ∂M and dρ 6= 0
there) such that g = ρ2g is a nondegenerate metric on M . The precise
regularity of ρ and g is somewhat peripheral and shall be discussed later.
Such a metric is automatically complete. Metrics which are conformally
compact and also Einstein are of great current interest in (some parts of)
the physics community, since they serve as the basis of the AdS/CFT cor-
respondence [24], and they are also quite interesting as geometric objects.
Since they are natural generalizations of the hyperbolic metric on the ball
Bn+1, as well as the complete constant negative Gauss curvature metrics
on hyperbolic Riemann surfaces – which exist in particular on the interiors
of arbitrary smooth surfaces with boundary – and which are often called
Poincaré metrics [19], we say that a metric which is both conformally com-
pact and Einstein is Poincaré-Einstein (or P-E for short). Until recently,
beyond a handful of examples, the only general existence result concerning
the existence of P-E metrics was the local perturbation theory of Graham
and Lee [11], which gives an infinite dimensional family of such metrics in
a neighborhood of the hyperbolic metric on the ball, parametrized by con-
formal classes on the boundary sphere near to the standard one. Recently
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many new existence results have been obtained, including further perturba-
tion results by Biquard [7] and Lee [13], and Anderson has some important
global existence results in dimension four [3]. Many interesting geometric
and topological properties of these metrics have also been found [10], [23],
[1] and [2]; this last paper also surveys a number of intriguing examples of
P-E metrics.

A common thread through the analytic approaches to the construction
of these metrics is the possible existence of an L2 obstruction, or more
simply a finite dimensional cokernel of the (suitably gauged) linearization
of the Einstein equations around a solution. For any P-E metric where this
obstruction is trivial, the implicit function theorem readily implies that the
moduli space E of P-E metrics is (locally) a Banach manifold, parametrized
by conformal classes of metrics on ∂M . (Actually, the smoothness of E
is true in generality [3], but this geometric parametrization breaks down.)
Unfortunately, the only known geometric criteria ensuring the vanishing of
this obstruction are strong global ones [13].

One purpose of this note is to introduce some new ideas into this picture
which may help elucidate the structure of this moduli space. We consider
a related family of conformally compact metrics which satisfy certain scalar
nonlinear equations, including and generalizing the familiar Yamabe equa-
tion, which we introduce below. These are sometimes called the σk-Yamabe
equations, k = 1, · · · , n+1. The hyperbolic metric on the ball, or indeed an
arbitrary P-E metric on any manifold with boundary satisfies each of these
equations, and conversely, in this particular (conformally compact) setting,
metrics which satisfy every one of these scalar problems are also P-E. The
punchline is that, in the conformally compact case, the deformation theory
for the σk-Yamabe equations is always unobstructed! This fact seems to
have been unappreciated, except for the case k = 1. The full implications of
this statement in the conformally compact case for the moduli space of P-E
metrics is not completely evident at this point, but this relationship seems
quite likely to be of some value. Furthermore, the deformation theory for
these σk-Yamabe metrics is new, and also of some interest.

To define these equations, recall the Schouten tensor Ag, defined for any
metric g on a manifold of dimension n+ 1 by the formula

Ag :=
1

n− 1

(
Ric− R

2n
g

)
;(1)

here Ric := Ricg and R := Rg are the Ricci tensor and scalar curvature
function for g. This tensor occupies a prominent position in conformal
geometry because it transforms quite nicely under conformal changes of
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metric. In fact, if g̃ := e2ug, then

Aeg = Ag −Ddu+ du⊗ du− 1
2
|du|2g.(2)

We refer to [6] for a derivation of this formula. For later reference, note that
in terms of any local coordinate system w,

|du|2 g :=
∑
i,j,k,`

gk`∂wk
u ∂w`

u gij dw
i dwj ,

du⊗ du :=
∑
i,j

∂wiu ∂wju dw
i dwj ,

and

Ddu :=
∑
i,j

(
∂2
wiwj

u−
∑
k

Γkij∂wk
u

)
dwidwj .

We have (somewhat inconsistently) used raised indices in the differentials
(i.e., dwi, etc.) in accord with the standard summation convention.

Definition 1. The metric g is a σk-Yamabe metric if σk(Ag), the kth ele-
mentary symmetric function of the eigenvalues of Ag computed with respect
to g, is constant.

The problem of finding σk-Yamabe metrics is usually posed as a problem
in conformal geometry: Starting with an arbitrary metric g and given β ∈ R,
the σk-Yamabe problem consists in finding a new metric g̃ = e2ug, in the
conformal class of g, such that σk(Aeg) = (−1)kβ. (In the main case of
interest here, the eigenvalues of Ag are all negative, and so the constant β is
positive; this explains our choice of sign.) This way we reduce the problem
to finding a solution u to some scalar nonlinear partial differential equation.
Notice that when k = 1, σ1(Ag) = R/2n, and so g̃ is a σ1-Yamabe metric if
and only if its scalar curvature is constant. In this case the equation for u
becomes

∆gu+
n− 1

2
|∇gu|2 −

R

2n
= β e2u.

Defining v by v4/(n−1) = e2u (and keeping in mind that dimM = n+ 1), the
equation for v assumes the familiar form

∆gv −
R(n− 1)

4n
v = −n− 1

2
β v

n+3
n−1 ,

and the existence theory when M is compact is complete and by now well-
known [14]. However, when k > 1, the equation for u is fully nonlinear
and the existence theory is much less well understood. Recent significant
progress has been made by Chang-Gursky-Yang [8] when k = 2, and also
by Viaclovsky [22], but much remains to be understood. In particular,
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in contrast with the ordinary Yamabe problem, for k > 1 the σk-Yamabe
problem seems to be somewhat more tractable for positively curved metrics:
a crucial a priori C2 estimate is missing in the case where all eigenvalues of
Ag are negative [22].

We now write out the σk-Yamabe equations (within a conformal class)
more explicitly. Fixing g and using (2), we see that

g̃ = e2u g satisfies σk(Aeg) = (−1)kβ(3)

provided

Fk(g, u, β) := σk

(
Ddu− du⊗ du+

1
2
|du|2g −Ag

)
− βe2ku = 0.(4)

The symmetric function of the eigenvalues of Aeg here is computed with
respect to g rather than g̃, which accounts for the exponential factor; the
sign on the final term comes from taking σk of −Aeg. For any constant β,
we define

Σk(β) :=
{
g̃ = e2u g : Fk(g, u, β) = 0

}
,(5)

which is some subset within the space of all metrics on M .

As already indicated, the main result here involves the perturbation the-
ory for solutions of Fk(g, u, β) = 0, or equivalently, the structure of the sets
Σk(β), in the case where Mn+1 is a manifold with boundary and all metrics
are conformally compact. In this case, we will fix a defining function ρ for
∂M and write any conformally compact metric g on M as g = ρ−2 g where
g is a metric on M .

Since conformally compact metrics have asymptotically negative (in fact,
isotropic) sectional curvatures, Σk(β) is nonempty only when β > 0. Indeed,
a brief calculation shows that when g = ρ−2g, then near any point of the
boundary (where ρ = 0),

Ag = −1
2
|dρ|2g g +O(ρ−1).(6)

Notice that although g only determines ρ and g up to a conformal factor (i.e.,
g is also equal to (aρ)−2(a2g) for any a ∈ C(M)), the function |dρ|2g is well-
defined at ρ = 0, regardless of this choice. Also, since ρ is a defining function
for ∂M , this quantity is by definition strictly positive at the boundary. We
conclude that for any conformally compact metric g,

σk(Ag) =
(
−1

2
|dρ|2g

)k (n+ 1
k

)
+O(ρ),(7)

near ∂M . If σk(Ag) is constant on M , then necessarily |dρ|2g is constant
along the boundary, and so, multiplying g by a constant, we may as well



POINCARÉ-EINSTEIN METRICS 173

assume that

|dρ|2g ≡ 1 when ρ = 0.

In this case, the limit of σk(Ag) at any point of ∂M equals the particular
constant (−1)kβ0

k which corresponds to the hyperbolic metric g0 on Bn+1,
namely

β0
k := 2−k

(
n+ 1
k

)
.(8)

Our main result gives a rich class of conformally compact σk-Yamabe
metrics on the manifold M , granting the existence of at least one such
metric. In particular, it states that the deformation theory for this problem
is always unobstructed whenever β > 0. More precisely, we have:

Theorem 1. Let M be a compact smooth manifold with boundary and ρ a
fixed defining function for ∂M . For any metric g on M , denote by [g] its
conformal class. Suppose that σk(Aρ−2g) = (−1)kβ0

k. Then there is a C2,α-
neighborhood U of [g] in the space of conformal classes on M such that every
conformal class [g′] in this neighborhood contains a unique metric g′u = e2ug′

with

σk(Aρ−2 g′u
) = (−1)kβ0

k,

which is near to g; the set of these solution metrics fills out an (open piece
of an) analytic Banach submanifold, with respect to an appropriate Banach
topology.

As noted above, the analogue of this theorem holds also when M is com-
pact without boundary, and the proof is similar but even more straightfor-
ward. For the record, we state this result too:

Theorem 2. Fix β > 0. Let g be a metric on the compact manifold M and
[g] its conformal class. Suppose that Ag ∈ Γ−k (see §1) and σk(Ag) = (−1)kβ.
Then there is a neighborhood U of [g] in the space of conformal classes on M
such that every conformal class [g′] in this neighborhood contains a unique
metric g′u = e2ug′ with

σk(Ag′u) = (−1)kβ,

which is near to g; the set of these solution metrics fills out an (open piece
of an) analytic Banach submanifold, with respect to an appropriate Banach
topology.

Let us return to conformally compact metrics, and connect Theorem 1
with the first theme discussed in the introduction. To begin with, notice
that a metric g is Einstein if and only if:

Ricg =
R

n+ 1
g.(9)
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It is well-known that if this is the case then the scalar curvature R is con-
stant. Now (9) is equivalent to either of the two conditions:

Ag =
R

2n(n+ 1)
g, or

σk(Ag) =
(

R

2n(n+ 1)

)k (n+ 1
k

)
for k = 1, . . . , n+ 1.

Hence, Poincaré-Einstein metrics are also σk-Yamabe metrics for every k =
1, · · · , n+1 and, if the scalar curvature is normalized so that R = −n(n+1),
the constants σk(Ag) must equal the constants (−1)k β0

k for hyperbolic space.
In particular, the moduli space E of P-E metrics is equal to the intersection
of the Σk(β0

k) over all k. This gives:

Corollary 1. The moduli space E of conformally compact Poincaré-Ein-
stein metrics is a finite intersection of Banach submanifolds, and is closed
in the space of conformally compact metrics on M .

The first statement in this corollary follows directly from the preceding
discussion and Theorem 1, while the second statement follows from the fact
that the space of σ1-Yamabe metrics with scalar curvature equal to a fixed
negative constant is closed.

In some sense, Corollary 1 shows that the somewhat less tractable space
E is a finite intersection of submanifolds Σj , each of which is an analytic
submanifold, but more importantly, each of which has an unobstructed de-
formation theory. This amounts to some sort of figurative ‘factorization’ of
the Einstein equations into n+ 1 scalar (albeit fully nonlinear) equations.

The plan for the rest of this paper is as follows: §1 reviews the structure
of the functionals Fk and their linearizations Lk, and this is followed in §2
by a discussion of the function spaces and of the mapping properties of the
Lk on these spaces. The deformation theory for the σk-Yamabe equations
and the proof of Theorems 1 and 2 is the topic of §3. Finally, §4 contains a
list of some interesting open questions raised by the results here.

1. The functionals Fk.

Let us fix a conformally compact metric g0, which we may as well take to
be smooth, i.e., g0 = ρ−2g0, where both ρ and g0 are C∞ on M . Fix also
a constant β > 0. Recall that the metric g = e2ug0 is in Σk(β), and so has
σk(Ag) = (−1)kβ, provided

F(g0, u, β) = σk

(
Ddu− du⊗ du+

1
2
|du|2g0 −Ag0

)
− β e2ku = 0.
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In this section we recall some facts about the ellipticity of this operator and
the structure of its linearization. These facts are taken from [22], and we
refer there for all proofs and further discussion.

To approach the issue of ellipticity, first consider the kth elementary sym-
metric function σk as a function on vectors λ = (λ1, · · · , λn+1) ∈ Rn+1.
Let Γ+

k denote the connected component of the open set {λ : σk(λ) > 0}
containing the positive orthant {λ : λj > 0 ∀ j}. These are all convex cones
with vertices at the origin and

{λ : λj > 0 ∀j} = Γ+
n+1 ⊂ Γ+

n ⊂ · · · ⊂ Γ+
1 = {λ : σ1(λ) > 0}.

Also, let Γ−k = −Γ+
k . A real symmetric matrix is said to lie in Γ±k if its

eigenvalues lie in the corresponding set.
We may equally well consider symmetric two-tensors and their eigenvalues

relative to a metric g, and so we shall transfer to this setting, which is more
natural in terms of the geometric notation.

Proposition 1. If Ag ∈ Γ−k , then u→ Fk(g, u, β) is elliptic at any solution
of Fk(g, u, β) = 0.

The proof of this in [22] (see also [21]) relies on the computation of the
linearization of Fk in the direction of the conformal factor u. The neatest
formulation of this requires a definition from linear algebra. For any real,
symmetric matrix B, and any q = 0, · · · , n + 1, define the qth Newton
transform of B as the new real, symmetric matrix

Tq(B) = σq(B)I − σq−1(B)B + · · ·+ (−1)qBq.

Of course, Tn+1(B) = 0. If B is a symmetric two-tensor, then Tq(B) is
defined as a symmetric two-tensor in the obvious way. Now suppose that
B = B(ε) depends smoothly on a parameter ε, and write B′(0) = Ḃ. It is
proved in [20] that

d

dε

∣∣∣∣
ε=0

σk(B(ε)) = Tr(ḂTk−1(B)).(10)

(For symmetric two-tensors, this trace is just the g-inner product of Ḃ with
Tk−1(B).)

We apply this to the Schouten tensors associated to the family of met-
rics g(ε) = e2εφg where g ∈ Σk(βk). We may use the metric g to identify
symmetric 2-tensors with (n+ 1)× (n+ 1) matrices, or completely equiva-
lently, compute traces of such tensors using the metric and regard the trace
of the product of matrices on the right side of (10) as the g-inner product
of tensors. We have

B(ε) =
(
−Ag + εD dφ+ ε2

(
1
2
|dφ|2 − dφ⊗ dφ

))
,
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so that B(0) = B = −Ag and Ḃ(0) = Ḃ = Ddφ. This gives the formula

Lkφ := DFk|g,0 (0, φ) = 〈Tk−1(−Ag), Ddφ〉g − 2kβkφ.(11)

The proof of Proposition 1 in general (i.e., when g is not necessarily
a solution itself and when the linearization is computed at some solution
u 6= 0) relies on the (nonobvious) fact that Tk−1(B) is positive definite when
B ∈ Γ+

k . We refer to [22] (or [21]) for further details.

Let us compute Lk more explicitly when g is hyperbolic, or in fact, when
g is an arbitrary Poincaré-Einstein metric. We shall always normalize the
metric so that the scalar curvature is given by R = −n(n+1), in which case
the Einstein condition becomes Ric = −ng and σk(Ag) = (−1)k β0

k. By (9),
if g is P-E then Ag = −1

2 g, and so

Tk−1(−Ag) = 21−kTk−1(g) = 21−k
k−1∑
j=0

(−1)j
(

n+ 1
k − 1− j

)
g.

One may check by induction that this sum has a closed form expression, and
this leads to the identity

Tk−1(−Ag) = ck,n g, where ck,n = 21−k
(
n

k

)
.

The key observation here is that ck,n > 0. Altogether, we obtain the formula

Lkφ = ck,n ∆φ− 2k β0
k φ,(12)

which holds whenever g is Poincaré-Einstein with Ric = −ng.

If g ∈ Σk(β) is a more general solution (i.e., not necessarily P-E), then
Lk is more complicated. However, certain properties remain valid. A direct
calculation yields:

Proposition 2. Suppose g ∈ Σk(β), β > 0, and let Lk denote the lineariza-
tion of Fk at u = 0. Then

Lkφ = ck,n∆gφ− 2kβφ+ ρ3Eφ,(13)

where E is a second order operator with bounded coefficients on M (smooth
if ρ and g = ρ2g are smooth ), and without constant term.

Note especially one of the key point in this result that the operator E
contains no constant term.

We remark that (13) may also be obtained from general principles involv-
ing the theory of uniformly degenerate operators [15] and [16]. Since some
of the main results of this theory will be invoked later anyway, we digress
briefly to explain this setup. Choose coordinates (x, y) := (x, y1, . . . , yn),
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x ≥ 0 near a point of the boundary of M . A second order operator L is said
to be uniformly degenerate if it may be expressed in the form

L =
∑

j+|α|≤2

aj,α(x, y)(x ∂x)j(x ∂y)α.(14)

The coefficients may be scalar or matrix-valued, and although we usually
assume they are smooth, it is easy to extend most of the main conclusions
of this theory when they are polyhomogeneous, or of some finite regularity.
Operators of this type arise naturally in geometry, and in particular all of
the natural geometric operators associated to a conformally compact metric
are uniformly degenerate. Note that the error term ρ3E in (13) is actually of
the form ρE′ where E′ is some second order uniformly degenerate operator
without constant term.

The ‘uniformly degenerate symbol’ of this operator is elliptic provided

σ(L)(x, y; ξ, η) :=
∑

j+|α|=2

aj,α(x, y)ξjηα 6= 0 when (ξ, η) 6= 0.

(For systems, we require σ(L) to be invertible as a matrix when (ξ, η) 6= 0.)
We also define the associated normal operator

N(L) :=
∑

j+|α|≤2

aj,α(0, y)(s∂s)j(s∂v)α.

The boundary variable y enters only as a parameter, while the ‘active’ vari-
ables (s, v) in this expression may be regarded as formal, but in fact are nat-
urally identified with linear coordinates on the inward pointing half-tangent
space T+

(0,y)M . In particular:

Proposition 3. If g is a smooth conformally compact metric (normalized
so that |dρ|2g = 1 at ∂M), then its Laplace-Beltrami operator ∆g is an elliptic
uniformly degenerate operator with normal operator

N(∆g) = ∆Hn+1 := (s ∂s)2 + s2 ∆Rn − n s ∂s.(15)

Furthermore, if g ∈ Σk(β0
k), then the linearization Lk of Fk at u = 0 is also

elliptic and uniformly degenerate, with normal operator

L0
k := N(Lk) = ck,n((s ∂s)2 + s2 ∆Rn − n s ∂s)− 2k β0

k.(16)

As we explain in the next section, the operator Lk is Fredholm on various
natural function spaces. This specializes a criterion which is applicable
to other more general uniformly degenerate operators L, namely that L is
Fredholm if and only if two separate ellipticity conditions hold: First, the
symbol σ(L) should be invertible, and in addition, the normal operator N(L)
must be invertible on certain weighted L2 spaces.
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2. Function spaces and mapping properties.

Let Lk be the linearization considered in the last section. We shall now de-
scribe some of its mapping properties. As indicated above, these properties
also hold for more general elliptic, uniformly degenerate operators L.

We first review one particular scale of function spaces which is convenient
in the present setting, and then state the mapping properties on them en-
joyed by Lk. The material here is taken from [15], to which we refer for
further discussion and proofs.

Fix a reference (smooth) conformally compact metric g0 = ρ−2g0; also,
choose a smooth boundary coordinate chart (x, y) as in the previous section,
and recall the basic vector fields x ∂x and x ∂yj , j = 1, . . . , n. Since x is
a smooth nonvanishing multiple of ρ near ∂M , these vector fields are all
of uniformly bounded lengths with respect to g0, and are also uniformly
independent as x ↘ 0. There are two equivalent ways to define the Hölder
space Λ`,α(M), ` ∈ N, α ∈ (0, 1). In either case, it suffices to work in a
boundary coordinate chart. The first is to set

Λ0,α(M) :=
{
u : sup

|u(x, y)− u(x′, y′)|(x+ x′)α

|x− x′|α + |y − y′|α

}
,

where the supremum is taken first over all points w = (x, y), w′ = (x′, y′),
w 6= w′, which lie in some coordinate cube B centered at a point w0 =
(x0, y0) of sidelength 1

2x0, and then over all such cubes. The other is to let
B denote a ball of unit radius with respect to the metric g0 centered at w0,
and to replace the quotient in this definition by

|u(x, y)− u(x′, y′)|
distg0 (w,w′)α

and then take the supremum over all w 6= w′ ∈ B, and then over all such
balls B.

This latter definition is more geometric, while the former definition clearly
implies the scale invariance of these spaces, namely that if u(w) is defined
(and, say, compactly supported) in one of these coordinate charts and if we
define uε(w) = u(w/ε), then the associated norms of u and uε are the same.

We shall also use a few other closely related spaces:
• For ` ∈ N and α ∈ (0, 1), let

Λ`,α(M) :=
{
u : (x ∂x)j(x ∂y)βu ∈ Λ0,α(M) ∀ j + |β| ≤ `

}
.

• For γ ∈ R, ` ∈ N and α ∈ (0, 1), let

ργΛ`,α(M) :=
{
u : u = ργ ũ, where ũ ∈ Λ`,α(M)

}
.
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Thus the first of these are the natural higher order Hölder spaces associ-
ated to the geometry of g0, or equivalently, to differentiations with respect
to the vector fields x ∂x and x ∂y. The second of these spaces are the usual
weighted analogues. The corresponding norms are || · ||`,α and || · ||`,α,γ ,
respectively.

We could equally easily have defined L2- and Lp-based Sobolev spaces,
corresponding to differentiations with respect to the vector fields x ∂x and
x ∂y. The mapping properties we state below all have direct analogues for
these spaces. However, as usual, Hölder spaces are perhaps the simplest to
deal with for nonlinear PDE.

Now let us turn to the mapping properties of Lk in the case where the
conformally compact metric g at which Lk is computed satisfies σk(Ag) =
(−1)k βk0 . First of all, it follows immediately from the definitions that

Lk : ργ Λ`+2,α(M) −→ ργ Λ`,α(M)(17)

is a bounded mapping for any γ ∈ R and 0 ≤ `. However, this map is not
well-behaved for many values of the weight parameter γ. There are two
ways this may occur. First if γ is sufficiently large positive, then it is not
hard to see that (17) has an infinite dimensional cokernel, while dually, if γ
is sufficiently large negative, then (17) has an infinite dimensional nullspace.
Although we do not use it here, less trivial is the fact that in either of these
two cases the mapping is semi-Fredholm (i.e., has closed range and either
the kernel or cokernel are finite-dimensional).

However, for certain values of γ the range of this mapping may not be
closed. This is determined by a consideration of the indicial roots of Lk. We
say that γ is an indicial root of Lk if Lk(ργ) = O(ργ+1) (note that because
of the uniform degeneracy of Lk, Lk(ργ) = O(ργ) is true for any value of
γ). Thus γ is an indicial root only if some special cancellation occurs. It is
clear that the indicial roots of Lk agree with those of its normal operator
L0
k, and then (16) shows that γ is an indicial root if and only if

ck,n(γ2 − nγ)− 2kβ0
k = 0,

or in other words γ ∈ {γ±} where

γ± :=
n

2
±

√
n2

4
+

2kβ0
k

ck,n
.

In particular

γ− < 0 < n < γ+

since βk, ck,n > 0.
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The relevance of these indicial roots to the mapping properties of (17) is
that when γ is equal to one of these two values, then (17) does not have
closed range. At heart, this stems from the fact that the equation

L0
ku = sγ± ,

has solution u = csγ±(log s) for some constant c, i.e., the inhomogeneous
term is in the appropriate weighted Hölder space but the solution u just
misses being in this space.

Despite these cautions, we have the following basic result:

Mapping properties: If γ− < γ < γ+, then the mapping (17) is Fredholm
of index zero.

The main result of [15] is a considerably more general theorem of this
sort for more general elliptic uniformly degenerate differential operators.
There are two special features of Lk which enter into the precise form of the
statement here. First, there is a nontrivial interval (γ−, γ+) between the two
indicial roots γ±, allowing for the possibility of a ‘Fredholm range’. Second,
the Fredholm index is zero for γ in this interval ultimately because Lk is
self-adjoint on L2(dVg).

We claim that the mapping (17) is actually invertible when γ is in this
Fredholm range. By the result just stated, this claim will be proved if we
show that when γ ∈ (γ−, γ+) the nullspace of Lk is trivial. We do this
now. The basic observation is that the constant term in Lk is negative. If
γ > 0, then any φ ∈ ργΛ`+2,α vanishes at ∂M , and thus if Lkφ = 0, the
maximum principle implies that φ = 0, as desired. To prove the claim for
every γ ∈ (γ−, γ+), we first compute that for any two values γ′, γ′′ ∈ (γ−, γ+)
and constants c′, c′′ > 0 the function

wc′,c′′ := c′ ργ
′
+ c′′ ργ

′′

satisfies Lkwc,c′ < 0 in some small collar neighbourhood M τ of the boundary,
where 0 ≤ ρ ≤ τ . Now fix γ′′ ∈ (γ, γ+) and choose c′′ so that |φ| ≤ c′′ ργ

′′

on the set where ρ = τ . Fixing γ′ ∈ (γ−, γ) and c′ > 0, then for any ε > 0,
the functions v± := wc′,c′′ ± φ satisfy Lkv± < 0 in M τ and v± ≥ 0 both
at the inner boundary ρ = τ and also at near the outer boundary where
ρ = 0. By the maximum principle again, v± > 0 in M τ . Letting c′ ↘ 0, we
conclude that |φ| ≤ c′′ ργ

′′
. Since we may choose γ′′ > 0, this implies that φ

is bounded in M and vanishes at ∂M . This reduces us to the previous case.

This reasoning shows that, if γ ∈ (γ−, γ+) and φ ∈ ργΛ`+2,α is a solution
of Lkφ = 0, then φ ∈ ργ′Λ`+2,α for any γ′ < γ+. However, on account of the
following basic result from [15], a much sharper result is true.
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Regularity of solutions: If γ− < γ < γ+ and φ ∈ ργΛ`+2,α is a solution
of Lkφ = f where f vanishes to all orders at ∂M , then as x→ 0,

φ(x, y) ∼
∞∑
j=0

φj(y)xγ++j , with φj(y) ∈ C∞(∂M),

in particular φ ∈ ργ+C∞(M).

3. Perturbation theory in Σk.

We now proceed to the main deformation result. Let M be a smooth com-
pact, n+ 1 dimensional manifold with boundary. We fix a smooth defining
function ρ for ∂M . For any ` ∈ N and any α ∈ (0, 1) we define

M`,α(M) :=
{
g ∈ C`,α(M ;S2(M)) : |dρ|2g = 1 on ∂M

}
.

Having set things up carefully, the proof of Theorem 1 is almost immedi-
ate. Let g ∈ Σk(β0

k) and consider the mapping

H : M2,α(M)× ργ Λ2,α(M) −→ ργ Λ0,α(18)

defined by

H(h, u) := Fk(ρ−2h, u, β0
k).

Near g, the set Σk(β0
k) is identified with the zero set of H. In particular,

(h, u) = (g, 0) ∈ H−1(0).

To find all other nearby solutions, we shall apply the implicit function
theorem, very much in the spirit of the closely related papers [18] and [11].
Thus we must check two things:

(i) The mapping H in (18) is a smooth mapping between the correspond-
ing Banach spaces.

(ii) The linear map u −→ DH|g,0 (0, u) is surjective between these spaces.
The first of these is straightforward from the definitions and (2) and (7),
provided we choose the weight parameter γ ∈ (0, 1). As for the other, recall
that the restriction of this Fréchet derivative to tangent vectors of the form
(0, u) corresponds to the operator Lk. We have already checked that this is
surjective provided we choose the weight parameter γ ∈ (γ−, γ+). But since
(0, 1) ⊂ (γ−, γ+), these restrictions on γ are not inconsistent. Thus fixing
γ ∈ (0, 1), we obtain a smooth mapping

Φ : M2,α(M) −→ ργΛ2,α(M)

with Φ(g) = 0 and such that

H(h,Φ(h)) ≡ 0.

Furthermore, all solutions of H(h, u) in a sufficiently small neighborhood of
(g, 0) are of this form. This concludes the proof of Theorem 1.
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We omit the proof of Theorem 2 because it is nearly identical; indeed, the
only difference is that standard elliptic theory replaces the Fredholm theory
for uniformly degenerate operators we have quoted.

4. Open questions and further directions.

We conclude this note by raising a few other problems and questions related
to the results and methods here.

a) Because of the difficulty in obtaining a C2 estimate for the σk-Yamabe
problem when k > 1, it is worth wondering whether it might be worth-
while to pose a weaker version of this problem, at least for conformally
compact metrics on manifolds with boundary: Namely, given a confor-
mal class [h0] on ∂M , is it possible to extend this conformal class to at
least some conformal class [g] on the interior such that the σk-Yamabe
problem is solvable in [g]? Probably there are infinitely many such
extensions, as is the case when k = 1, but the added flexibility in this
formulation may be of some use.

b) We have shown in Theorem 1 that Σk(β0
k) is a Banach submanifold

in a neighborhood of g, and furthermore that it may be regarded as a
graph over the space of conformal classes, or at least those conformal
classes near to g. For k = 1, every conformal class on M contains
a unique representative lying in Σ1(β0

1), and thus Σ1(β0
1) is a graph

globally over the space C of all conformal classes. It is not known
whether this remains true when k > 1, and thus we define

Ck =
{
c ∈ C : c contains at least one g ∈ Σk(β0

k)
}
.(19)

Note that C1 = C, and Theorem 1 shows that Ck is open in C for every
k.

It seems central to understand whether Ck = C, or in other words,
whether every conformal class on M contains a conformally compact
σk-Yamabe metric. Related to this is the observation that we do not
know whether each of the submanifolds Σk itself is closed; this depends
ultimately on whether some version of this C2 estimate holds.

It also seems interesting to ask for which `-tuple J = {j1, . . . , j`} ⊂
{1, . . . , n+ 1} is the set

ΣJ := Σj1(β0
j1) ∩ · · · ∩ Σj`(β

0
j`

),

closed. Notice that if 1 ∈ J , then this is certainly true because the
C2 estimate for the conformal factor is routine for the scalar curvature
equation.

c) The regularity of the metrics g ∈ Σk(β0
k) is an interesting question.

When k = 1 this is resolved in [16], cf. also [19]: If g is a smooth con-
formally compact metric, then the conformal factor u corresponding to
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the unique solution g̃ = e2ug ∈ [g] has a polyhomogeneous expansion.
Presumably a similar result holds for all k. Note that unless γ+ ∈ N,
this expansion will involve nonintegral powers of ρ; this should not be
viewed negatively, since functions with expansions of this form may be
manipulated just as easily as smooth functions.

d) The σk-Yamabe problem considered here extends naturally to the more
general setting of the singular σk-Yamabe problem: Given a smooth
metric g0 on a compact manifold M and a closed subset Λ ⊂M , when
is it possible to find a conformally related metric g = e2ug0 which is
both complete on M ⊂ Λ and a σk-Yamabe metric? When k = 1 it
is known that the dimension of Λ is intimately related to the sign of
the imposed scalar curvature of the solution, and very good existence
results are known when Λ is a submanifold [5] and [17]. What is the
correct statement, and to what extent is this true when k > 1? There
are a number of interesting analytic problems of this nature, and we
shall return to this soon.

e) In general (not just in the conformally compact setting), E sits inside
the finite intersection ∩Σk. Does it appear here as a finite codimen-
sional analytic set, and if so, is this related to some sort of Kuranishi
reduction for the perturbation theory for E?

f) If g is a conformally compact metric on M and if σk(Ag) = (−1)kβ
and σk′(Ag) = (−1)k

′
β′ are constant, then necessarily(
β

β0
k

)1/k

=
(
β′

β0
k′

)1/k′

.(20)

This follows at once from (6) and (7).

For any (n+ 1)-tuple of numbers β ≡ (β1, . . . , βn+1), define

Σ(β) :=
n+1⋂
k=1

Σk(βk).

By (20) it is clear that in the class of conformally compact metrics,
Σ(β) = ∅ unless βk = (−λ)k β0

k for some λ > 0 and for all k.

By contrast, on any compact manifold without boundary, it may
happen that for some other (n + 1)-tuple β of positive numbers, the
set Σ(β) is nonempty. If g ∈ Σ(β), then Ricg has constant eigenvalues.
In particular, metrics with ∇Ric = 0 are in Σ(β) for some β. However,
the reverse inclusion may not be true and it appears that very little
is known about metrics with Ricci tensor having constant eigenvalues,
but cf. [4].

The (presumably) smaller class of metrics with parallel Ricci tensor
is more tractable, but it does not seem to be known if the eigenvalues
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can be constant without the Ricci tensor being parallel. Examples
would be very welcome. Also, in any setting (compact or conformally
compact or ...) it seems to be a very basic problem in Riemannian
geometry to ask what are the possible (n+1)-tuples (β1, . . . , βn+1) for
which Σ1(β1) ∩ · · · ∩ Σn+1(βn+1) is nonempty?
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ON ANTIPODES ON A MANIFOLD ENDOWED WITH A
GENERIC RIEMANNIAN METRIC

Joël Rouyer

We prove that a generic point of a Cr manifold endowed
with a generic Riemannian structure has an unique antipode
(i.e., farthest point). Furthermore, in the case of 2-dimensi-
onal manifolds, such a point is joined to its antipode by at
most three minimizing geodesics (r ≥ 2).

1. Introduction.

In a compact metric space (X, d), we call an antipode of a point p ∈ X, any
point which realizes the maximum of the distance from x. Some conjectures
about antipodes were formulated by H. Steinhauss [2]. As an example: Is
the sphere the only surface on which each point admits a single antipode
and such that the antipodal function is an involution? This question was
recently solved by C. Vı̂lcu who exhibits some counterexamples [6]. Now, it
is quite natural to investigate the generic case.

In the case of a convex surface S, Tudor Zamfirescu proves in [7] that
a generic point of S has an unique antipode, and is joined to it by exactly
three segments (A segment, or a minimizing geodesic, is simply a path whose
length equals the distance between its extremities).

The aim of this paper is to give an analogous result in the frame of
Riemannian geometry. We obtain that the generic uniqueness holds for a
Cr manifold (of any dimension) endowed with a generic Riemannian metric
(Theorem 1), and the fact that at most three geodesics go from a generic
point to its antipode holds for such 2-dimensional manifolds (Theorem 2)
(r ≥ 2).

The first result is optimal, in sense that it fails if you remove any occur-
rence of “generic”. The projective plane with constant curvature is obviously
a counterexample to the attempt at deletion of the second occurrence. Con-
cerning the first one, we only need to notice that any sufficiency “long” space
admits points with more than one antipode. The antipodes, in such a space,
are localized near its “extremities”. Any point near enough one extremity
has all its antipodes near the other one. By semicontinuity of the antipodal
function (see Lemma 5), there exists a point which should have (at least)
one antipode near each extremity.
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188 JOËL ROUYER

However, in the case of convex surfaces [8, Theorem 4], as in the case of
manifolds homeomorphic to the 2-dimensional sphere [5], a stronger result
exists.

2. Baire categories notion of genericity.

For elementary results about Baire categories, we refer to any topology book.
We simply recall that a subset of topological space is said to be of first
category or meager if it is included in a countable union of closed sets with
empty interior. A Baire space is a topological space where meager subsets
have empty interior. Baire’s theorem states that complete metric spaces
are Baire spaces. In a Baire space, we say that a generic point satisfies a
property, if all points in a residual subset (i.e., a subset whose complement
is meager) satisfy this property.

Now we need to endow the set Gr of all Cr Riemannian structures on a
given manifoldM , with a topology which makes it a Baire space. This can be
done in several slightly different ways (see [1] for an another construction).

We fix g0 ∈ Gr. On one hand, g0 provides a norm ‖ ‖x, on each fibre over
x of the vector bundle

Bn =

n times︷ ︸︸ ︷
TM∗ ⊗ · · · ⊗ TM∗ ⊗ TM∗ � TM∗,

where � denotes the symmetric tensor product. As M is compact, we can
define a norm ‖ ‖n on the set Γr(Bn) of Crsections of Bn by

‖·‖n = sup
x∈M

‖·‖x .

On the other hand, g0 supplies its Levi-Cività covariant derivation ∇, from
Γr(Bn) to Γr−1 (Bn+1). Put ∇p = ∇ ◦ · · · ◦ ∇, and define for g ∈ G′r

def=
Γr(B0)

‖g‖Cr = max
p=0,...,r

‖∇pg‖p .

It is obvious that this real valued map is a norm on G′r. Moreover G′r

endowed with this norm is a Banach space. For C∞ manifolds, we define
the metric

d∞(g, g′) =
∞∑
r=0

2−r min
(
1,
∥∥g − g′

∥∥
Cr

)
.

It is well-known that (G′∞, d∞) is a complete metric space whose topol-
ogy equals the one defined by the norm family (‖ ‖Cr)r≥0. Moreover, the
topology induced by ‖ ‖Cr does not depend on g0 ∈ Gr.

The set Gr of Cr Riemannian structures can be defined by

Gr =
{
g ∈ G′r |∀x ∈ TM, g(x, x) > 0 ⇔ x 6= 0} .
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It is obvious that Gr is open in G′r, and so, is a Baire space.

3. Some continuity or upper semicontinuity results.

3.1. Some notation. As a matter of geometric notation, we define for
g ∈ Gr, Lg(γ) as the g-length of a curve γ, A

g
x as the set of g-antipodes

of a point x ∈ M , D
g
x as the distance between x and its g-antipodes. The

g-unit tangent bundle over M will be denoted by T 1gM . We also denote by
D the set of all metrics on M which induce its topology. D is endowed by
the metric δ defined by

δ
(
d, d′

)
= max

(x,y)∈M2

∣∣d (x, y)− d′ (x, y)
∣∣ .

For g ∈ Gr, we denote by dg ∈ D the metric corresponding to the Riemann-
ian structure g. At last, we define Σg

xy as the set of g-segments from x to y,
and Ag2 as the set of points of M which admit at least two g-antipodes.

We also need more abstract notations. For any metric space (X, d) we
define H(X) as the set of all nonempty compact subsets of X, which is
endowed with the well-known Hausdorff metric, denoted by the same symbol
d:

d (K1,K2) = max
(
d⊂ (K1,K2) , d⊂ (K2,K1)

)
,

d⊂ (K1,K2) = max
x∈K1

min
y∈K2

d(x, y).

It is well-known that H(X) is compact whenever X is compact. An H(X)-
valued function is said to be upper semicontinuous, if it is continuous for
the topology induced by d⊂. Note that d⊂ satisfies the triangle inequality,
and d⊂ (K1,K2) vanishes if and only if K1 ⊂ K2.

Given a subset P of X, and a positive real number ρ, we denote by P + ρ
the union of all open balls of radius ρ centered at the elements of P .

We define HG as the set of compact metric spaces up to isometries. Given
two spaces X,Y ∈ HG, we say that X is included in Y , and write X ⊂ Y , if
there exists an isometric injective map from X into Y . This defines a partial
order on HG. Now we put for (X, dX), (Y, dY ) ∈ HG

d⊂HG (X,Y ) = inf
(Z,dz),φ,ψ

d⊂Z (φ(X), ψ(Y ))

dHG (X,Y ) = max
(
d⊂HG (X,Y ) , d⊂HG (Y,X)

)
,

where the infimum is taken over all metric spaces (Z, dZ), and all isometric
injective maps, φ, from X to Z, and, ψ, from Y to Z. dHG is nothing but the
well-known Hausdorff-Gromov metric on HG [3]. A HG-valued function is
said to be upper semicontinuous if it is continuous for the topology induced
by d⊂HG. It is easy to see that d⊂HG satisfies the triangle inequality, moreover
we have:
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Lemma 1. Let X,Y ∈ HG. We have d⊂HG (X,Y ) = 0 if and only if X ⊂ Y .

Proof. It is clear that X ⊂ Y implies d⊂HG (X,Y ) = 0. Conversely, if
d⊂HG (X,Y ) = 0, then there exist metric spaces (Zn, dn), and injective isome-
tries φn : X → Zn and ψn : Y → Zn such that d⊂ (φn (X) , ψn (Y )) < 1

n .

Let Z be a coproduct of all compact metric spaces Z ′n
def= φn (X) ∪ ψn (Y ),

n ∈ N. We define on Z an equivalence relation R by zRz′ if and only if both
z and z′ are the image of the same point y ∈ Y by ψn for some n ∈ N. Put
ψ = s ◦ in ◦ ψn, with in : Z ′n → Z the canonical injection, and s : Z → Z/R
the canonical surjection. Z/R is a metric space with the metric dZ defined
by

dZ/R (zn, zm) = inf
y∈Y

(dn (zn, ψ (y)) + dm (zm, ψ (y))) ,

for zi ∈ Zi, i = n or m, n 6= m

dZ/R
(
zn, z

′
n

)
= dn

(
zn, z

′
n

)
, for zn, z′n ∈ Zn.

We claim that Z/R is compact. Let (zp) =
(
s
(
z′p
))

be a sequence of Z/R.

z′p belongs to inp

(
Z ′np

)
for some integer np, and then, there exists a point

yp ∈ ψ (Y ) such that dZ/R (zp, yp) ≤ 1
np

. If the sequence (np) is bounded
by an integer N , then we can select from (zp) a converging subsequence, by
compactness of Z ′1, Z ′2, . . . , Z ′N , else, we can assume by selecting suitable
subsequences, that limp

1
np

= 0. As Y is compact, we can select from (yp),
and so from (zp) too, a converging subsequence. This proves the claim.
Now, as s◦ in ◦φn are isometries (hence, form an equicontinuous family), we
can extract a subsequence converging to an isometry φ : X → ψ (Y ). This
completes the proof. �

Given a compact metric space X, we denote by jX the canonical map from
H(X) to HG. Of course, jX is upper semicontinuous and order preserving.

Let X ∈ HG and P ⊂ HG, we will denote by d⊂HG (X,P ) the infimum
inf
Y ∈P

d⊂HG (X,Y ). As d⊂HG is not a metric, the following lemma is not obvious.

Lemma 2. Let P be a compact subset of HG, take X ∈ HG. Then d⊂HG(X,
P ) = 0 if and only if there exists a compact metric space Y ∈ P such that
X ⊂ Y .

Proof. Given an integer n, there exists a metric space Yn ∈ P such that
d⊂HG (X,Yn) < 1

n . Let Y be the limit of a converging subsequence of (Yn).
We have d⊂HG (X,Y ) ≤ d⊂HG (X,Yn) + dHG (Yn, Y ). As the right-hand side
tends to zero, left-hand side must vanish. �

We have to consider a special subset T ⊂ HG, which is the set of those
metric spaces, included in the unit circle (i.e., R/2πZ), whose cardinality is
at most 3. It is clear that T is compact.
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3.2. Useful lemmas. This miscellany is nothing but the list of lemmas we
need.

Lemma 3. The map from Gr to D which associates to g the corresponding
metric dg is locally Lipschitz continuous with respect to the metric δ and the
norm ‖ ‖C0.

Proof. We denote by N (g) the real number sup
x∈T 1g0M

∣∣∣ 1
g(x,x)

∣∣∣. Consider two

Riemannian structures g and g′ = g + h. Let x, y be two points of M , such
that δ(dg, dg

′
) = dg

′
(x, y)−dg(x, y) (you may exchange g and g′ if necessary).

Let σ be a g-segment from x to y. We have

dg′(x, y) ≤ Lg
′
(σ)

=
∫ √

g + h (σ̇ (t) , σ̇ (t)) dt

≤
∫
√
g (σ̇ (t) , σ̇ (t)) dt+

1
2

∫
|h|
√
g

(σ̇ (t) , σ̇ (t)) dt

≤ Lg(σ) +
1
2
‖h‖C0 N(g)

∫
√
g (σ̇ (t) , σ̇ (t)) dt

≤ dg(x, y) +
1
2
‖h‖C0 N(g)Lg (σ)

≤ dg(x, y) +
1
2
‖h‖C0 N(g)diam(M, g).

Hence

δ(dg, dg
′
) = dg′(x, y)− dg(x, y)

≤ 1
2
‖h‖C0 N(g)diam(M, g).

�

Lemma 4. The map D from Gr ×M to R is locally Lipschitz continuous
with respect to both variables.

Proof. Let x, x′ be in M , g, g′ be in Gr, and take a g-antipode y of x.

Dg
x = dg(x, y)

≤ dg
′
(x′, y) + dg(x, x′) + δ(dg, dg

′
)

≤ D
g′

x′ + dg(x, x′) + δ(dg, dg
′
).

Of course, the same holds when you exchange (x, g) and (x′, g′). Lemma 3
completes the proof. �

Lemma 5. The map A from Gr ×M to H (M) is upper semicontinuous.
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Proof. Suppose the result fails. There exists a real number ε > 0, such that
for each integer n, there exists a point xn and a Riemannian structure gn
such that

‖g − gn‖Cr <
1
n

(1)

dg(x, xn) <
1
n

Agn
xn

* Agx + ε.

The formula (1) implies the existence of a sequence (yn) of gn-antipodes of
xn such that yn /∈ A

g
x + ε. Now, select a converging subsequence from yn,

and denote by y its limit. On one hand, as A
g
x + ε is open, y /∈ A

g
x. On

the other hand, by Lemmas 4 and 3, the identity D
gn
xn = dgn(yn, xn) leads

to D
g
x = dg (y, x), and we obtain a contradiction. �

Lemma 6. The map

Gr ×M ×M → H (H (M))

(g, x, y) 7→ Σg
xy

is upper semicontinuous.

Proof. Suppose the result fails. There exists ε > 0, and three sequences (gn),
(xn) and (yn), converging respectively to g ∈ Gr, x ∈ M , and y ∈ M , such
that a gn-segment σn from xn to yn satisfying min {dg(σn, σ′)|σ′ ∈ Σg

xy} > ε
exists. We can select from σn a converging subsequence which tends to a
g-segment σ from x to y, and a contradiction is found. �

Lemma 7. Let (X, d) be a metric space, K be a subset of HG, and F : X →
HG be an upper semicontinuous function. The map from X to R,

x 7→ d⊂HG(F (x),K)

is upper semicontinuous.

Proof. Choose ε > 0, x ∈ X, and put δ = d⊂HG(F (x),K). Choose χ ∈ K
such that d⊂HG (F (x), χ) < δ+ ε

2 . There exists a compact metric space (Z1, d)
and two isometric injective maps g1 : F (x) → Z1 and h1 : χ→ Z1 such that

g1 (F (x)) ⊂ h1(χ) +
(ε

2
+ δ
)

.

By upper semicontinuity of F , there exists a real number η > 0, such that
for all points y of the open ball {x}+ η we have

d⊂HG (F (y), F (x)) <
ε

2
.

Hence, there exists a metric space (Z2, d) and two isometric injective maps
g2 : F (x) → Z2 and f2 : F (y) → Z2 such that

f2(F (y)) ⊂ g2 (F (x)) +
ε

2
.
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Let Z be a coproduct of Z1 and Z2 where g1(F (x)) and g2(F (x)) have
been identified. We obtain three injective isometric maps f : F (y) → Z,
g : F (x) → Z and h : χ→ Z such that

g (F (x)) ⊂ h(χ) +
(ε

2
+ δ
)

f(F (y)) ⊂ g (F (x)) +
ε

2
.

It follows that

f(F (y)) ⊂ h(χ) + (ε+ δ) .

We have proved that for all y ∈ {x}+ η,

d⊂HG(F (y),K) ≤ d⊂HG(F (y), χ)

≤ d⊂HG(F (x),K) + ε.

�

Lemma 8. Let (X, d) and (Y, d) be metric spaces. Let F : X → H (Y )
be an upper semicontinuous function, and G : H (Y ) → HG be an order
preserving (for order ⊂) and upper semicontinuous function. Then G ◦F is
upper semicontinuous.

Proof. Choose ε > 0 and x ∈ X. The upper semicontinuity of G implies the
existence of a real number ε′ > 0 such that for all K in H (Y ),

d (K,F (x)) ≤ ε′ =⇒ d⊂HG(G(K), G ◦ F (x)) < ε.(2)

By upper semicontinuity of F , there exists a real number η > 0 such that
for all y ∈ {x}+ η

F (y) ⊂ F (x) + ε′.(3)

Put K0 = F (x) ∪ F (y). As G preserves order, we have

G ◦ F (y) ⊂ G (K0) .(4)

As by (3) d(K0, F (x)) ≤ ε′, (2) leads to

d⊂HG (G (K0) , G ◦ F (x)) < ε.

Hence, there exists a metric space (Z, d) and two injective isometric maps
f : G ◦ F (x) → Z and g : G (K0) → Z such that

g ◦G (K0) ⊂ f ◦G ◦ F (x) + ε.

This formula and (4) lead to

g ◦G ◦ F (y) ⊂ f ◦G ◦ F (x) + ε.

Hence d⊂HG (G ◦ F (y), G ◦ F (x)) ≤ ε for all y ∈ {x} + η, and the lemma is
proved. �
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4. Comeback to geometry.

4.1. Generic uniqueness of antipodes. Now, we can enunciate and prove
the theorems described in the introduction.

Theorem 1. Let M be a Cr compact manifold (r = 2, . . . ,∞) endowed
with a generic Riemannian structure of Gr. A generic point of M admits
an unique antipode.

For proving this, we need the following:

Lemma 9. Let n be a positive integer. The interior of

Ux(n) def= {g ∈ Gr |diam (Ag
x) ≥ 1/n}

is empty.

Proof. Let g be in Ux(n), ρ be an integer less or equal to r, and ε be a
positive real number. We shall exhibit a Riemannian structure g′ /∈ Ux(n)
such that ‖g − g′‖Cρ < ε. We denote by λ the g-injectivity radius at point
x. Take y, a g-antipode of x. Let Σ = Σg

xy be the set of segments from x to
y, with their arc length parameter. We define S = {σ(λ/2)|σ ∈ Σ}. Let Φ
be the g-exponential mapping at x. As Φ is continuous on TxM there exists
a real number α such that for all tangent vectors u, v in the ball {0}+ 2D

g
x

of TxM

‖u− v‖ < α =⇒ dg(Φ(u),Φ(v)) <
1

12n
,

where the norm ‖ ‖ is the g-norm. As, restricted to {0}+ 2λ
3 , Φ has a well-

defined and continuous inverse, we can find a positive real number η, such
that

∀z, z′ ∈ {x}+
2λ
3
, dg(z, z′) < η =⇒

∥∥Φ−1(z′)− Φ−1(z)
∥∥ < λα

2D
g
x

def= β.

Choose a positive Cρ function φ such that V def= {x|φ(x) > 0} satisfies
S ⊂ V ⊂ S+ η. Now put g′ = g(1 + ιφ), with ι a positive small real number
such that:

(i) ‖g − g′‖Cρ < ε

(ii) δ(dg, dg
′
) < min(α, 1

4n).
Consider a g′-segment σ′ from x to y. We have the following inequalities:

Dg′
x ≥ dg

′
(x, y) = Lg

′
(σ′) ≥ Lg(σ′) ≥ dg(x, y) = Dg

x.

Moreover, either σ′ passes across V , and Lg
′
(σ′) > Lg(σ′), or σ′ is not a

g-segment, and Lg(σ′) > dg(x, y). In both cases, we have

Dg′
x > Dg

x.(5)
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Let y′ be in A
g′
x and σ be a g-segment from x to y′. If σ ∩ V = ∅, we

would have

Dg
x ≥ dg(x, y′) = Lg(σ) = Lg

′
(σ) ≥ dg

′
(x, y′) = Dg′

x ,

which is in contradiction with (5). Hence σ ∩ V 6= ∅, and there exists a
g-segment σ0 ∈ Σ and a real number τ such that dg(σ0(λ2 ), σ(τ)) < η. Let
u0, u ∈ TxM be two unit vectors such that Φ(tu) = σ(t) and σ0(t) = Φ(tu0).
We have

∣∣λ
2 − τ

∣∣ ≤ ∥∥λ2u0 − τu
∥∥ < β. Hence∥∥∥∥Dg
xu0 − 2

D
g
x

λ
τu

∥∥∥∥ < α∥∥∥∥Dg
xu− 2

D
g
x

λ
τu

∥∥∥∥ < α,

and then

dg
(
σ0(Dg

x), σ
(

2D
g
x

λ
τ

))
<

1
12n

(6)

dg
(
σ(Dg

x), σ
(

2D
g
x

λ
τ

))
<

1
12n

.(7)

On the other hand, by Hypothesis (ii), we have

dg(x, y′) ≤ Dg
x ≤ Dg′

x = dg
′
(x, y′) < dg(x, y′) + α,

hence |dg (x, y′)−D
g
x| < α and

dg
(
σ (Dg

x) , σ
(
dg
(
x, y′

)))
<

1
12n

.(8)

As y = σ0 (Dg
x) and y′ = σ (dg (x, y′)), (6), (7) and (8) lead to dg(y, y′) < 1

4n ,
which becomes together with Hypothesis (ii) dg

′
(y, y′) < 1

2n . This holds for

each g′-antipode y′ of x, hence diamg′
(
A
g′
x

)
< 1

n , and finally g′ /∈ Ux(n). �

Proof of Theorem 1. Put Ug(n) = {x ∈M |diam (Ag
x) ≥ 1/n}. Lemma 5

implies that Ug(n) and Ux(n) are closed subsets of M and Gr respectively.
Let S be a countable dense subset of M . We have

{g ∈ Gr |Ag2 is not meager} =

g ∈ Gr
∣∣∣∣∣∣∃n ∈ N,

◦︷ ︸︸ ︷
Ug(n) 6= ∅


=
⋃
n∈N

g ∈ Gr
∣∣∣∣∣∣

◦︷ ︸︸ ︷
Ug(n) 6= ∅


⊂
⋃
n∈N

⋃
x∈S

{g ∈ Gr |x ∈ Ug(n)}

=
⋃
n∈N

⋃
x∈S

Ux (n) .
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Hence, by Lemma 9, {g ∈ Gr|Ag2 is not meager} is meager. �

4.2. Generic number of segments from a point to its antipode.
Given a Cr manifold M , we denote by S ⊂ Gr ×M the set of all ordered
pairs (g, x) such that A

g
x contains a single point. Let a : S → M be the

continuous function which associates to (g, x) the only g-antipode of x. We
define Sg = M\Ag2 = {x ∈M | (g, x) ∈ S} and Sx = {g ∈ Gr| (g, x) ∈ S}.

In order to prove the result concerning surfaces, we have to use the fol-
lowing:

Lemma 10. Let (M, g) be a Cr Riemannian 2-dimensional manifold (r ≥
2). Let x be a point of M , and y be a g-antipode of x. Denote by ~Σ ⊂ T 1g

y M
the set of unit vectors tangent to a segment from x to y.

Then ~Σ cannot be included in any open half-plane of TyM . This implies
that either ~Σ has cardinality at least three, or ~Σ = {−u, u} for a suitable
vector u ∈ T 1g

y M .

Proof. Assume that ~Σ is included in some open half-plane, and let γ : [0, ε] →
M be a arclength parameterized arc, starting at y, and directed by the
bisector u ∈ T 1g

y M of the other half-plane. For each integer n, there exists
a minimizing geodesic σn from x to γ(1/n). By selecting a subsequence, we
can assume that σn is tending to a segment σ from x to y. Let v be the unit
tangent vector at y to σ. Of course g(u, v) < 0. By a variant of the first
variation formula of arclength Lg(σn) = Lg(σ)− 1

ng(u, v)+o( 1
n), hence yn is

farther from x than y for n large enough, and we obtain a contradiction. �

Now, we can enunciate the following:

Theorem 2. Let M be Cr 2-dimensional manifold (r = 2, 3, . . . ,∞), en-
dowed with a generic Riemannian structure. A generic point of M is joined
to its only antipode by at most three segments.

We need three lemmas.

Lemma 11. We denote by ~Σg
xy the set of the g-unit tangent vectors at y,

to segments from x to y. Assume r ≥ 2. The map ξ from S to HG defined
by ξ(g, x) = jT 1gM

(
~Σg
xag

x

)
, is upper semicontinuous.

Proof. It is obvious, by continuity of a, and Lemma 6, that (g, x) 7−→ Σg
xag

x

is upper semicontinous. Now, with hypothesis r ≥ 2, the convergence of a
sequence of geodesics (σn : I → M)n to σ with respect to the Hausdorff
metric, implies, for a suitable parametrization, the uniform convergence of
the derivatives (σ̇n : I → TM) to σ̇. Hence, the map

τ : Σg
xag

x
7→ ~Σg

xag
x
,
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from a suitable subset of H (H (M)) to H (TM), is continuous. As τ pre-
serves order, we obtain by virtue of Lemma 8 that jTM ◦ τ is an (order pre-
serving) upper semicontinuous map. Applying once again the same lemma
gives the desired result. �

Lemma 12. The map µ from S to R, defined by

µgx = d⊂HG

(
jTM

(
~Σg
xag

x

)
, T
)

is upper semicontinuous.

Proof. This is a consequence of Lemmas 11 and 7. �

Denote by V (n) the set
{

(g, x) ∈ S|µgx ≥ 1
n

}
, and put

Vg (n) = {x ∈M | (g, x) ∈ V (n)}
Vx (n) = {g ∈ Gr| (g, x) ∈ V (n)} .

By Lemma 12, Vx (n) and Vg (n) are closed subsets of Sx and Sg respectively,
moreover we can prove the following:

Lemma 13. Assume r ≥ 2. Vx (n) has empty interior in Sx.

Proof. Fix x ∈ M , n ∈ N, g ∈ Vx (n) and put y = agx. If σ is a curve going
from x to y, we denote by ~σ ∈ T 1g

y M , the g-unit tangent vector to σ. The
g-distance in T 1g

y M (i.e., arccos g (·, ·)) is denoted by (·, ·).
Let σ0 be a g-segment from x to y, and choose a positive function φ :

M → R such that V def= {x ∈M |φ (x) > 0} satisfies:
(i) Each g-segment from x to y passing across V satisfies (~σ, ~σ0) < 1

4n .
(ii) There exists a real number ε > 0, such that all segments from x to y

satisfying (~σ, ~σ0) < ε pass across V .

We define a sequence of Riemannian structures gp =
(

1 + φ
p

)
g. We will

discuss two cases.

Case 1. For p large enough, y ∈ A
gp
x . By Lemma 10, there exists a g-

segment σ from x to y which does not pass across V . We have on one
hand

Dg
x = Lg (σ) = Lgp (σ) ≥ dgp (x, y) = D

gp
x .(9)

On the other hand, as gp ≥ g, we have Dg ≤ Dgp . Hence D
g
x = D

gp
x .

Let σp be a gp-segment from x to y. Suppose that σp passes across V ,
then

D
gp
x = Lgp (σp) > Lg (σp) ≥ dg(x, y) = Dg

x,

which is in contradiction with (9). Hence σp cannot pass across V ,

Lg (σp) = Lgp (σp) = D
gp
x = Dg

x,
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and, by Hypothesis (ii), σp is a g-segment such that (~σ0, ~σ
p) ≥ ε. Now

consider the process consisting on choosing a g-segment σ0, and replacing
g by gp. By repeating this process finitely many times, we would obtain
a situation where no segment from x to y will exist. This is obviously
impossible, so after finitely many steps, we obtain a Case 2.

Case 2. We can select a subsequence of (gp)p such that y 6∈ A
gp
x . For each

integer p, take a sequence (gp,q)q of Riemannian structures of Sx, converging
to gp (this is possible because Lemmas 5 and 9 involve that Sx is dense inGr).
Let yp,q be the only gp,q-antipode of x. By selecting suitable subsequences,
we assume that each sequence (yp,q)q is converging to a gp-antipode, say yp.
We also can assume that yp tends to y. Let σp be a gp-segment from x to yp
which does not pass across V . By Lemma 6, each cluster point σ of (σp)p is
g-segment from x to y, which does not pass across V . It follows that σp and
σ are g-geodesics. By a variant of the first variation formula of arclength

D
gp
x −Dg

x = Lg (σp)− Lg (σ)(10)

= −g(~σ,−→yyp) + o(−→yyp),

where −→yyp ∈ TyM is the tangent vector such that yp = Expy (−→yyp). We

denote by τp the g-norm of −→yyp, and put up =
−→yyp

τp
. As T 1g

y M is compact,
we can assume (otherwise select a subsequence) that (up) is converging to a
unit vector u. Equation (10) leads to

Φ def= lim
p→∞

D
gp
x −D

g
x

τp
= −g(~σ, u).

As Φ does not depend on (σp), there are at most two possible values for ~σ,
say ~σ1 and ~σ2. By Hypothesis (i), we have

lim
p→∞

d⊂
(
~Σgp
xyp , {~σ0, ~σ1, ~σ2}

)
≤ 1

4n
.(11)

Hence, for p large enough, we have

d⊂
(
~Σgp
xyp , {~σ0, ~σ1, ~σ2}

)
≤ 1

3n
.(12)

In order to conclude, we claim that for q large enough, we have

µ
gp,q
x ≤ d⊂

(
~Σgp,q
xyp,q , {~σ0, ~σ1, ~σ2}

)
≤ 1

2n
.

Suppose not, there would exist a sequence (σp,q)qof gp,q-segments from x to
yp,q such that (−→σp,q, ~σi) > 1

2n , 0 ≤ i ≤ 2. A converging subsequence must
tend to a gp-segment σp from x to yp such that (−→σp , ~σi) ≥ 1

2n , which is in
contradiction with (12). �
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Proof of Theorem 2. Take (g, x) ∈ S, x is joined to its only antipode by at
most three segments if and only if ~Σg

xag
x

has cardinality at most 3, that is,
by Lemma 2, µgx = 0. Let T g be the subset of (M, g) of those points which
are joined to their only antipodes by at least four segments. We shall prove
that Gr1

def= {g ∈ Gr|Ag2 ∪ T g not meager} is meager. As

Gr1 ⊂ {g ∈ Gr|Ag2 not meager} ∪ {g ∈ Gr|T g not meager} ,

we only need to prove that Gr2
def= {g ∈ Gr|T g not meager} is meager. As

T g =
⋃
n≥1

Vg (n) and Vg (n) is closed in Sg, we obtain

Gr2 ⊂

{
g ∈ Gr

∣∣∣∣∣∃n ≥ 1,
◦

Vg (n) 6= ∅

}

=
⋃
n≥1

{
g ∈ Gr

∣∣∣∣∣ ◦
Vg (n) 6= ∅

}

⊂
⋃
n≥1

g ∈ Gr
∣∣∣∣∣∣

◦︷ ︸︸ ︷
Vg (n) ∪Ag2 6= ∅

 .

Choosing a dense countable subset S of M ,

Gr2 ⊂
⋃
n≥1

⋃
x∈S

{g ∈ Gr |x ∈ Vg (n) ∪Ag2 }

⊂
⋃
n≥1

⋃
x∈S

{g ∈ Gr |x ∈ Vg (n)} ∪
⋃
x∈S

{g ∈ Gr |x ∈ Ag2 }

=
⋃
n≥1

⋃
x∈S

Vx (n) ∪
⋃
x∈S

Gr\Sx.

By Lemmas 5 and 9, Gr\Sx is meager in Gr; by Lemmas 12 and 13,⋃
n≥1

⋃
x∈S

Vx (n) is meager in Sx and consequently in Gr. �
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niennes, Textes Mathématiques, CEDIC/Fenand Nathan, Paris, 1981, MR 85e:53051.
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Poincaré–Einstein metrics and the Schouten tensor 169
RAFE MAZZEO AND FRANK PACARD

On antipodes on a manifold endowed with a generic Riemannian metric 187
JOËL ROUYER

Pacific
JournalofM

athem
atics

2003
Vol.212,N

o.1

Pacific
Journal of
Mathematics

Volume 212 No. 1 November 2003


	Pacific Journal of Mathematics Vol 212 Issue 1, November 2003
	Copyright and Masthead
	Endocoherent modules
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11

	Area, width, and logarithmic capacity of convex sets
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12

	Perturbation of differential operators admitting a continuous linear right inverse on ultradistributions
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24

	Compact hypersurfaces in a unit sphere with infinite fundamental group
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

	Injective envelopes of C*-algebras as operator modules
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13

	A family of arithmetic surfaces of genus 3
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21

	Quotients of nilalgebras and  their associated groups
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9

	Symmetric space valued moment maps
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21

	Le système différentiel de Hénon--Heiles et les variétés de Prym
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

	Characterization of the simple L1(G)-modules for exponential Lie groups
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24

	Explicit realization of the Dickson groups G2(q) as Galois groups
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11

	Poincaré--Einstein metrics and  the Schouten tensor
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17

	On antipodes on a manifold endowed with a generic Riemannian metric
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14

	Guidelines for Authors
	Table of Contents

