Vol. 212, No. 2, 2003

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
The mass of asymptotically hyperbolic Riemannian manifolds

Piotr T. Chruściel and Marc Herzlich

Vol. 212 (2003), No. 2, 231–264
Abstract

We present a set of global invariants, called “mass integrals", which can be defined for a large class of asymptotically hyperbolic Riemannian manifolds. When the “boundary at infinity" has spherical topology one single invariant is obtained, called the mass; we show positivity thereof. We apply the definition to conformally compactifiable manifolds, and show that the mass is completion-independent. We also prove the result, closely related to the problem at hand, that conformal completions of conformally compactifiable manifolds are unique.

Milestones
Received: 2 October 2001
Revised: 7 March 2003
Published: 1 December 2003
Authors
Piotr T. Chruściel
Département de Mathématiques
UMR 6083 du CNRS
Université de Tours
Parc de Grandmont
F-37200 Tours
France
Marc Herzlich
Institut de Mathématiques et Modélisation de Montpellier
UMR 5030 du CNRS
Université Montpellier II
F-34095 Montpellier Cedex 5
France