Vol. 212, No. 2, 2003

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Ribaucour transformations for constant mean curvature and linear Weingarten surfaces

A.V. Corro, W. Ferreira and K. Tenenblat

Vol. 212 (2003), No. 2, 265–297
Abstract

We provide a method to obtain linear Weingarten surfaces from a given such surface, by imposing a one parameter algebraic condition on a Ribaucour transformation. Our main result extends classical results for surfaces of constant Gaussian or mean curvature. By applying the theory to the cylinder, we obtain a two-parameter family of complete linear Weingarten surfaces (hyperbolic, elliptic and tubular), asymptotically close to the cylinder, which have constant mean curvature when one of the parameters vanishes. The family contains n-bubble Weingarten surfaces which are 1-periodic, have genus zero and two ends of geometric index m, where n∕m is an irreducible rational number. Their total curvature vanishes, while the total absolute curvature is 8πn. We also apply the method to obtain families of complete constant mean curvature surfaces, associated to the Delaunay surfaces, which are 1-periodic for special values of the parameter.

Milestones
Received: 12 June 2002
Revised: 25 October 2002
Published: 1 December 2003
Authors
A.V. Corro
Instituto de Matemática e Estatística
Universidade Federal de Goiás
74001-970 Goiânia, GO
Brazil
W. Ferreira
Instituto de Matemática e Estatística
Universidade Federal de Goiás
74001-970 Goiânia, GO
Brazil
K. Tenenblat
Departamento de Matemática
Universidade de Brasília
70910-900, Brasília, DF
Brazil