GALOIS GROUPS OF ORDER $2n$
THAT CONTAIN A CYCLIC SUBGROUP
OF ORDER n

Y.-S. Hwang, David B. Leep, and Adrian R. Wadsworth
Let n be any integer with $n > 1$, and let $F \subseteq L$ be fields such that $[L:F] = 2$, L is Galois over F, and L contains a primitive n^{th} root of unity ζ. For a cyclic Galois extension $M = L(\alpha^{1/n})$ of L of degree n such that M is Galois over F, we determine, in terms of the action of $\text{Gal}(L/F)$ on α and ζ, what group occurs as $\text{Gal}(M/F)$. The general case reduces to that where $n = p^e$, with p prime. For $n = p^e$, we give an explicit parametrization of those α that lead to each possible group $\text{Gal}(M/F)$.

1. Introduction.

Let $F \subseteq L$ be fields with $[L:F] = 2$ and L Galois over F, and let $n > 1$ be a positive integer. Assume L contains a primitive n^{th} root of unity. Let M be a cyclic Galois field extension of L of degree n. So $M = L(\alpha^{1/n})$ for some $\alpha \in L^*$, by Kummer theory. Let $\text{Gal}(L/F) = \{\sigma, 1\}$. It is easy to verify that M is Galois over F just when $\sigma(\alpha) = \alpha^{t/n}$ for some $\beta \in L^*$ with $t^2 \equiv 1 \mod n$ (that is, the cyclic group $\langle \alpha L^{*n} \rangle \subseteq L^*/L^{*n}$ is stable under the action of $\text{Gal}(L/F)$). The goal of this paper is to describe explicitly in terms of α, β, and t what group arises for $\text{Gal}(M/F)$.

To do this, we first classify in $\S 2$ the possible groups that can arise as $\text{Gal}(M/F)$. These are the groups of order $2n$ containing a cyclic subgroup of order n. There are too many of them for arbitrary n (the number is given in Proposition 2.7). We show in $\S 3$ that the general question of determining $\text{Gal}(M/F)$ can be reduced to the same question when n is a prime power. When $n = p^e$ with p an odd prime, there are just two groups: Cyclic and dihedral. When $n = 2^e$ with $e \geq 3$ there are six groups: One cyclic, four semidirect products, and a generalized quaternion group. We give in Theorem 3.4 a general description of the group $\text{Gal}(M/F)$ in terms of α, β, and t. Since we assume that the group μ_n of n^{th} roots of unity lies in L, but not necessarily in F, we must take into account the action of $\text{Gal}(L/F)$ on μ_n. In order to make the determination of $\text{Gal}(M/F)$ more explicit, we obtain in $\S 4$ precise descriptions of the α satisfying $\sigma(\alpha) = \alpha^{t/n}$. This allows us
in §§5 and 6 to pin down in detail the circumstances under which a given group arises.

There has been much work over the years on the realization of groups as Galois groups. This is still a very active topic of research (see, e.g., [V] and [MM]). For larger groups the question has often been whether the group can be realized at all over a given field. For small groups, there are criteria for exactly when the group appears as a Galois extension, see, e.g., [GSS]. For nonsimple groups one approach has been to examine the embedding problem: Given a Galois field extension \(L/F \), when can we find a field \(M \supseteq L \) Galois over \(F \) with \(\text{Gal}(M/F) \) a given group that has \(\text{Gal}(L/F) \) as a homomorphic image. Most often in this approach \(M/L \) is of prime degree (as in [K] and [GSS]). The work here can be thought of as analyzing an extension problem, but now with \([L : F] \) as small as possible, and \([M : L] \) arbitrarily large, but \(M \) cyclic Galois over \(L \).

In the papers by Damey et. al. [D1], [D2], [DP] and [DM], there is an examination of when dihedral and quaternion groups of 2-power order appear as Galois groups; the 2-power case of Proposition 5.2 below appears as Prop. 1 and Cor. 1 in [D1]. The focus in those papers is primarily on when a quaternion group can occur as a Galois group, particularly over an algebraic number field. Also, the paper by Jensen, [J], especially pp. 447-449, considers all four nonabelian groups of order \(2^e+1 \) containing a cyclic subgroup of order \(2^e \); but, while Jensen is primarily interested in when the groups of order \(2^e \) are realizable over a given base field, we give a full classification of the fields \(M \supseteq L \) that yield these groups as \(\text{Gal}(M/F) \), assuming \(L \) contains all \(2^e \)th roots of unity.

2. Groups of order \(2n \) that contain a cyclic subgroup of order \(n \).

In this section we classify groups of order \(2n \) that contain a cyclic subgroup of order \(n \). When \(n \) is a power of 2, this classification is well-known. A good reference for this case is [G], pp. 191-193. The general case of describing finite metacyclic groups has been considered in [B].

Proposition 2.1. Let \(G \) be a group of order \(2n \) that contains a cyclic subgroup of order \(n \). Then there exist \(\tau, \sigma \in G \) and nonnegative integers \(j, l \) such that \(G = \langle \tau, \sigma \rangle \) and:

1. \(|\tau| = n, \sigma \notin \langle \tau \rangle\),
2. \(\sigma \tau \sigma^{-1} = \tau^j, \sigma^2 = \tau^l\),
3. \(j^2 \equiv 1 \mod n\) and \((j-1) \equiv 0 \mod n\).

Proof. Let \(\tau \) be an element of order \(n \) and let \(\sigma \in G \), but \(\sigma \notin \langle \tau \rangle \). Then \(G = \langle \tau, \sigma \rangle \) and \(\langle \tau \rangle \triangleleft G \). Thus \(\sigma \tau \sigma^{-1} = \tau^j \) for some \(j \geq 0 \), and \(\sigma^2 \in \langle \tau \rangle \) since \(G/(\langle \tau \rangle) \) has order 2. Let \(\sigma^2 = \tau^l \), where \(0 \leq l \leq n-1 \). Since

\[
\tau = \sigma^2 \tau \sigma^{-2} = \sigma(\sigma \tau \sigma^{-1})^{-1} = \sigma \tau^j \sigma^{-1} = (\sigma \tau \sigma^{-1})^j = \tau^{j^2},
\]

\[
\sigma = \tau^l \sigma^{-1} = \tau^l \sigma (\sigma \tau \sigma^{-1})^{-1} = \tau^{l-1} \end{equation}

and

\[
\sigma \tau \sigma^{-1} = \tau^{j_l},
\]

where \(j_l = (j^2)^{l^{-1}} \). Then

\[
\tau = \sigma \tau \sigma^{-1} = \sigma (\sigma \tau \sigma^{-1}) \sigma^{-1} = \sigma \tau^j \sigma^{-1} = (\sigma \tau \sigma^{-1})^j = \tau^{j^2},
\]

and

\[
\sigma = \sigma \tau \sigma^{-1} = \sigma \tau^l \sigma^{-1} = \sigma \sigma \tau \sigma^{-1} = \sigma (\sigma \tau \sigma^{-1}) = \sigma \tau^j = \tau^{j^2}.
\]

Thus

\[
\tau = \tau^{j^2}, \sigma = \tau^{j^2},
\]

and

\[
G = \langle \tau^j, \sigma \rangle.
\]

The classification of the groups is:

- For \(j \) even, \(G \) is a dihedral group.
- For \(j \) odd, \(G \) is a quaternion group.
it follows \(j^2 \equiv 1 \mod n \). Since

\[
\tau^l = \sigma^2 = \sigma \tau \sigma^{-1} = (\sigma \tau \sigma^{-1})^l = (\tau^j)^l = \tau^{jl},
\]

it follows \(jl \equiv l \mod n \) and thus \(l(j - 1) \equiv 0 \mod n \).

\[\square\]

Definition 2.2. Let \((G, j, l)\) denote a group of order \(2n\) as described in Proposition 2.1. We always assume that \(j\) and \(l\) satisfy the conditions in Proposition 2.1(3).

For each ordered pair \((j, l)\) mod \(n\) satisfying Condition (3) of Proposition 2.1, there does in fact exist a group \(G\) as in Proposition 2.1 with such an ordered pair \((j, l)\). A quick construction of such a group is to take any field \(k\) containing a primitive \(n^{th}\) root of unity \(\zeta_n\), and let \(G\) be the subgroup of \(GL_2(k)\) generated by \(\tau = \begin{pmatrix} \zeta_n & 0 \\ 0 & \zeta_n^l \end{pmatrix}\) and \(\sigma = \begin{pmatrix} 0 & 1 \\ \zeta_n & 0 \end{pmatrix}\).

The groups \((G, j, l)\) are clearly determined up to isomorphism by \(j\) and \(l\) mod \(n\), but different values of \(l\) can yield isomorphic groups. In the rest of this section, we will determine the isomorphism classes of the \((G, j, l)\). Let us note immediately the obvious isomorphisms arising from different choices of generators of \((G, j, l)\).

Remark 2.3. If for the group \((G, j, l)\) described in Proposition 2.1 we replace the generator \(\sigma\) by \(\sigma' = \sigma^k\), for any integer \(k\), then \(\sigma' \tau (\sigma')^{-1} = \tau^j\) and \((\sigma')^2 = \tau^{l'}\), where \(l' = k(j + 1) + l\). Of course also, \(\tau^l = \tau^{sn + l}\) for any integer \(s\). Hence, \((G, j, l) \cong (G, j, l')\) whenever \(l' = k(j + 1) + sn + l\), i.e., whenever \(l' \equiv l \mod \gcd(j + 1, n)\). On the other hand, if we take another generator \(\tilde{\tau}\) of \((\tau)\), say \(\tau = (\tilde{\tau})^u\), where \(\gcd(u, n) = 1\), then \(\sigma \tilde{\tau} \sigma^{-1} = (\tilde{\tau})^j\) and \(\sigma^2 = (\tilde{\tau})^l\), where \(l = ul\). So, \((G, j, l) \cong (G, j, \tilde{l})\). But this is an isomorphism we already have, since in fact \(\tilde{l} \equiv l \mod \gcd(j + 1, n)\). To see this congruence, let \(d = \gcd(j + 1, n)\). Then, \(d \mid n\) \(|\) \((j - 1)l\) and \(d \mid (j + 1)\) \(|\) \((j + 1)l\), so \(d \mid 2l\). If \(u\) is odd, then \(d \mid (u - 1)l = \tilde{l} - l\). If \(u\) is even, then \(n\) must be odd, so \(d\) is odd. Then \(d \mid 2l\) implies \(d \mid l\); likewise, \(d \mid \tilde{l}\), so again \(d \mid (\tilde{l} - l)\).

Let \(n = p_0^{e_0} p_1^{e_1} \cdots p_m^{e_m}\) be the prime decomposition of \(n\) where \(2 = p_0 < p_1 < \cdots < p_m\), \(m \geq 0\), \(e_0 \geq 0\), and \(e_i \geq 1\) for all \(i \geq 1\). Then, the Chinese Remainder Theorem shows,

\[
j^2 \equiv 1 \mod n \quad \text{if and only if} \quad \begin{cases} j^2 \equiv 1 \mod 2^{e_0} \\
j^2 \equiv 1 \mod p_i^{e_i}, \quad 1 \leq i \leq m.\end{cases}
\]

If \(p_i\) is an odd prime, then \(j - 1\) or \(j + 1\) must be a unit of the ring \(\mathbb{Z}/p_i^{e_i}\mathbb{Z}\), so

\[
j^2 \equiv 1 \mod p_i^{e_i} \quad \text{if and only if} \quad j \equiv \pm 1 \mod p_i^{e_i}.
\]
For $p_0 = 2$, since $j - 1$ or $j + 1$ is not a multiple of 4,

$$j^2 \equiv 1 \mod 2^{e_0}$$

if and only if

$$\begin{cases} j \equiv 1 \mod 2, & \text{if } e_0 = 1, \\ j \equiv 1, 3 \mod 4, & \text{if } e_0 = 2, \\ j \equiv \pm 1, 2^{e_0-1} \pm 1 \mod 2^{e_0} & \text{if } e_0 \geq 3. \end{cases}$$

Now, fix j with $j^2 \equiv 1 \mod n$. To see how many different groups (G, j, l) might exist for different choices of l, let $A = \{ l \in \mathbb{Z} | lj \equiv l \mod n \}$ and $B = \{ l \in \mathbb{Z} | \gcd(j + 1, n) | l \}$.

Lemma 2.4. With the notation above:

(1) $B \subseteq A$ and $|A/B| = \begin{cases} 2, & \text{if } n \text{ is even and } j \equiv \pm 1 \mod 2^{e_0}, \\ 1, & \text{otherwise}. \end{cases}$

(2) The number of isomorphism classes of groups (G, j, l) with given j (and n) is at most $|A/B|$.

Proof. (1) If $l \in B$, then $l \equiv k(j + 1) \mod n$, for some $k \in \mathbb{Z}$. Then, $l(j - 1) \equiv k(j + 1)(j - 1) \equiv 0 \mod n$, so $l \in A$. Thus, $B \subseteq A$.

Let $d_1 = \gcd(j - 1, n)$ and $d_2 = \gcd(j + 1, n)$. Then $l \in A \Leftrightarrow n | l(j - 1) \Leftrightarrow n/d_1 | l(j - 1)/d_1 \Leftrightarrow n/d_1 | l$. But, $l \in B$ just when $d_2 | l$. So, $A/B = (n/d_1)\mathbb{Z}/d_2\mathbb{Z}$, and $|A/B| = d_1/d_2/n$. For p_i an odd prime, we have $p_i^{e_i} | n | (j^2 - 1)$, but p_i cannot divide both $j - 1$ and $j + 1$. Hence, the power of p_i in one of d_1, d_2 is $p_i^{e_i}$ and the power of p_i in the other is p_i^0. So, $p_i \nmid (d_1d_2/n)$. Thus, if n is odd, we have $d_1d_2/n = 1$. If n is even and $j \equiv \pm 1 \mod 2^{e_0}$, then the power of 2 in one of d_1, d_2 is 2^{e_0}, and the power of 2 in the other is 2; thus $d_1d_2/n = 2$. The only remaining case is $e_0 \geq 3$ and $j \equiv 2^{e_0-1} \pm 1$. In this case, the power of 2 in one of d_1, d_2 is 2^{e_0-1}, and in the other is 2^1; then $d_1d_2/n = 1$.

(2) is clear from Proposition 2.1 and Remark 2.3. □

Proposition 2.5. Let $G = (G, j, l)$.

(1) G is abelian if and only if $j \equiv 1 \mod n$. Suppose this occurs.

(a) If n is odd, then $G \cong \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}/2n\mathbb{Z}$.

(b) If n is even, then

$$G \cong \begin{cases} \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, & \text{if } l \text{ is even}, \\ \mathbb{Z}/2n\mathbb{Z}, & \text{if } l \text{ is odd}. \end{cases}$$

(2) Suppose $j \equiv -1 \mod n$.

(a) If n is odd, then $l \equiv 0 \mod n$ and $G \cong D_n$, the dihedral group of order $2n$.

(b) If n is even, then $n/2 | l$ and

$$G \cong \begin{cases} (G, -1, 0) \cong D_n, & \text{if } l \equiv 0 \mod n, \\ (G, -1, n/2) = Q_n, & \text{if } l \equiv n/2 \mod n, \end{cases}$$

where Q_n is the generalized quaternion group of order $2n$.

Proof. (1) G is abelian just when τ and σ commute, which occurs if and only if $j \equiv 1 \mod n$. Assume this holds. If n is odd, there is only one abelian group of order $2n$ containing a cyclic group of order n. Now, suppose n is even. If l is even, then Remark 2.3 shows that $G \cong (G, j, 0) \cong \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$; if l is odd, then $G \cong (G, j, 1)$, which is cyclic, as σ then has order $2n$.

(2) Assume $j \equiv -1 \mod n$. The condition $lj \equiv l \mod n$ of Proposition 2.1 forces $n \mid 2l$. If $n \mid l$, then $G \cong (G, -1, 0) \cong D_n$. This always holds if n is odd. But, if n is even, we have $n/2 \mid l$. So, when $n \mid l$, we have $l \equiv n/2 \mod n$, and Remark 2.3 shows that $G \cong (G, -1, n/2) \cong Q_n$. (Our terminology in calling this a generalized quaternion group follows [CR], p. 23. Unlike some authors, we do not require a generalized quaternion group to be a 2-group.)

We are going to show how the study of the groups described in Proposition 2.1 can be reduced to the case where n is a prime power. But let us first observe the (well-known) classification of these groups in the prime power situation. If $n = p^e$, where p is an odd prime, then $j \equiv \pm 1 \mod n$, so the two possible groups (G, j, l) are described in Proposition 2.5; one is abelian, the other is dihedral. The classification for n a power of 2 is given in [G], Th. 4.3, p. 191 and Th. 4.4, p. 193: If $n = 2^{e_0}$ with $e_0 \leq 2$, then again $j \equiv \pm 1 \mod n$, and the possibilities for (G, j, l) are given in Proposition 2.5. If $n = 2^{e_0}$ with $e_0 \geq 3$, there are two further groups besides the four given in Proposition 2.5. There is one group (and only one, by Lemma 2.4) with $j \equiv 2^{e_0-1} + 1 \mod 2^{e_0}$, which we write $(G, 2^{e_0-1} + 1, 0)$ and is denoted $M_{e_0+1}(2)$ in [G]. There is also exactly one group with $j \equiv 2^{e_0-1} - 1 \mod 2^{e_0}$, which we write $(G, 2^{e_0-1} - 1, 0)$ and Gorenstein calls the semidihedral group S_{e_0+1}. He proves in [G], Th. 4.3(iii), p. 191 that no two of the four nonabelian groups with $n = 2^{e_0}$ are isomorphic. This clearly applies to the two abelian groups, as well.

For any group $G = (G, j, l) = \langle \tau, \sigma \rangle$ as in Proposition 2.1, let H_i be the unique subgroup of $\langle \tau \rangle$ of order $n/p_i^{e_i}$, $0 \leq i \leq m$. Then, each $H_i \triangleleft G$ and $|G/H_i| = 2p_i^{e_i}$. Furthermore, if we let $\tau = \tau_i H_i$ and $\sigma = \sigma_i H_i$, then $G/H_i = \langle \tau, \sigma \rangle$, where $\langle \tau \rangle$ is a cyclic subgroup of order $p_i^{e_i}$, $\sigma \tau \sigma^{-1} = \tau^j$, $\sigma^2 = \tau^i$, and $\sigma \notin \langle \tau \rangle$. Thus, G/H_i is a group of the type described in Proposition 2.1, with n replaced by $n' = p_i^{e_i}$. Note that every element of G of odd order has trivial image in $G/\langle \tau \rangle$, so must lie in $\langle \tau \rangle$. Thus, H_0 consists of all the elements of G of odd order.

Theorem 2.6. Suppose $(G, \langle \tau \rangle, \sigma, j, l)$ and $(G', \langle \tau' \rangle, \sigma', j', l')$ are each groups of order $2n$ as in Proposition 2.1 and with all the previous notation. Assume (j, l) and (j', l') satisfy Condition (3) in Proposition 2.1. Let H_i and H'_i, $0 \leq i \leq m$, be the subgroups of $\langle \tau \rangle$ and $\langle \tau' \rangle$ defined before. Then the following statements are equivalent:
Proof. (2) ⇒ (1): This was done in Remark 2.3.

(1) ⇒ (4): Let \(\alpha: G \to G'\) be an isomorphism. Since \(H_0\) (resp. \(H'_0\)) consists of all the elements of \(G\) (resp. \(G'\)) of odd order, \(\alpha(H_0) = H'_0\). Therefore, \(\alpha\) induces an isomorphism \(G/H_0 \cong G'/H'_0\). Let \(h\) be any generator of \(H_0\), and let \(h' = \alpha(h)\), which generates \(H'_0\). The conjugacy class of \(h\) in \(G\) is \(\{h, h^j\}\), which must be mapped bijectively to the conjugacy class \(\{h', (h')^j\}\) of \(h'\) in \(G'\). If these classes contain only one element each, then \(j \equiv 1 \equiv j' \mod 2e_0\). If the classes contain two elements each, then \((h')^j = \alpha(h)\) implies \(j \equiv j' \mod 2e_0\).

(3) \(\iff\) (4): For \(i \geq 1\), since \(\langle \tau \rangle/H_i\) is a power of an odd prime, we have \(G/H_i\) is either abelian or dihedral. The first case occurs just when \(j \equiv 1 \mod p_i^{e_i}\), and the second just when \(j \equiv -1 \mod p_i^{e_i}\). Thus, \(G/H_i \cong G'/H'_i\) if and only if \(j \equiv j' \mod p_i^{e_i}\). By the Chinese Remainder Theorem, this occurs for all \(i \geq 1\) if and only if \(j \equiv j' \mod 2e_0\).

(3) ⇒ (2): As observed above, \(G/H_i\) is a group of type \((j, l)\) with \(n\) replaced by \(p_i^{e_i}\). For \(p_i\) odd, we noted in the previous paragraph that \(G/H_i \cong G'/H'_i\) implies \(j \equiv j' \mod p_i^{e_i}\); then Lemma 2.4 shows that the conditions \(lj \equiv l\) and \(l'j' \equiv l' \mod p_i^{e_i}\) from Proposition 2.1 imply that \(l \equiv l' \mod \gcd(j + 1, p_i^{e_i})\). For \(i = 0\), [G], Th. 4.3(iii), p. 191, together with Proposition 2.5, shows that \(G/H_0 \cong G'/H'_0\) implies \(j \equiv j' \mod 2e_0\) and that if \(j \equiv \pm 1\), then \(l\) and \(l'\) must lie in the same congruence class \(\mod \gcd(j + 1, 2e_0)\). (There are just two possible congruence classes, by Lemma 2.4.) When \(e_0 \geq 3\) and \(j \equiv 2e_0 - 1 \mod 2e_0\), Lemma 2.4 shows that the conditions \(j \equiv j'\), \(lj \equiv l\), and \(l'j' \equiv l' \mod 2e_0\) already imply \(l \equiv l' \mod \gcd(j + 1, 2e_0)\). Thus, the Chinese Remainder Theorem yields that \(j \equiv j' \mod n\) and \(l \equiv l' \mod \gcd(j + 1, n)\), as desired. \(\square\)

We can now count the number of isomorphism classes of groups of order \(2n\) containing a cyclic subgroup of order \(n\). Let \(n = 2^{e_0}p_1^{e_1} \ldots p_m^{e_m}\), as usual. Let \(G\) be any such group, let \(H_0\) be its unique (cyclic) subgroup of order \(n/2e_0\), and let \(S\) be any 2-Sylow subgroup of \(G\). Since \(H_0 \triangleleft G\), \(|H_0 \cap S| = 1\) (as \(\gcd(|H_0|, |S|) = 1\)), and \(G = H_0S\) (as \(|G| = |H_0| |S| / |H_0 \cap S|\)), \(G\) is the semidirect product of \(H_0\) by \(S\). (We thank R. Guralnick for pointing out this semidirect product decomposition to us.) So, \(G\) is determined by \(H_0\), \(S\), and the map \(\gamma: S \to \text{Aut}(H_0)\), \(s \mapsto\) conjugation by \(s\). The image of \(\gamma\) consists of the identity map and the \(j^{th}\) power map. Theorem 2.6(4) shows that \(G\) is determined up to isomorphism by the isomorphism class of \(S\) (\(\cong G/H_0\)) and by \(j \mod n/2e_0\). By the results in [G] quoted above, the number of possible choices of \(S\) is \(2^{e_0}\) if \(0 \leq e_0 \leq 2\) and is 6 if \(e_0 \geq 3\). The number of
possible choices of \(j \) mod \(n/2^{e_0} \) is \(2^m \) since we must have \(j \equiv \pm 1 \) mod \(p_i^{e_i} \) for \(1 \leq i \leq m \). Every such choice of \(S \) and \(j \) yields a semidirect product that is a group of the desired type. (For, we obtain a cyclic group of order \(n \) in the semidirect product as the direct product of \(H_0 \) with a cyclic subgroup of \(S \) of order \(2^{e_0} \) lying in \(\ker(\gamma) \).) Theorem 2.6 shows that different isomorphism classes of \(S \) or different choices of \(j \) mod \(n/2^{e_0} \) yield nonisomorphic groups. Thus, we have proved:

Proposition 2.7. Let \(n \) have prime factorization \(n = 2^{e_0} p_1^{e_1} \cdots p_m^{e_m} \). The number of isomorphism classes of groups \(G \) of order \(2n \) containing a cyclic subgroup of order \(n \) is

\[
\begin{cases}
2^{e_0+m}, & \text{if } 0 \leq e_0 \leq 2, \\
6 \cdot 2^m, & \text{if } e_0 \geq 3.
\end{cases}
\]

3. Galois extensions with group \(G \).

Let \(F \) be a field with \(\text{char} \ F \nmid n \) and let \(L/F \) be a Galois quadratic extension. That is, if \(2 \nmid n \) and \(\text{char} \ F = 2 \), assume that the quadratic extension \(L/F \) is also a separable extension.

Let \(G \) be a group of order \(2n \) that contains a cyclic subgroup of order \(n \). We shall continue to use the notation from Section 2.

In this section, we shall determine when there exists a cyclic extension \(M/L \) of degree \(n \) such that \(M/F \) is a Galois extension with \(\text{Gal}(M/F) \cong G \). For most of this section, we shall assume that \(L \) contains a primitive \(n^{th} \) root of unity.

Proposition 3.1. Let \(G \) be a group of order \(2n \) as in Proposition 2.1. Let \(\langle \tau \rangle \) be a cyclic subgroup of \(G \) of order \(n \) and let \(H_i, 0 \leq i \leq m \), be the subgroups of \(\langle \tau \rangle \) defined in Section 2. Let \(L/F \) be a Galois quadratic extension. Then the following statements are equivalent:

1. \(L/F \) extends to a Galois extension \(M/F \) with \(\text{Gal}(M/F) \cong G \).
2. For each \(i, 0 \leq i \leq m \), \(L/F \) extends to a Galois extension \(M_i/F \) with \(\text{Gal}(M_i/F) \cong G/H_i \) and \(\text{Gal}(M_i/L) \cong \langle \tau \rangle H_i \).

Proof. It is clear that (1) implies (2) by letting \(M_i \) be the fixed field of \(H_i \) and recalling that \(H_i \triangleleft G \).

Now suppose (2) holds. Then \(M_i/L \) is a cyclic Galois extension with \([M_i : L] = p_i^{e_i} \), since \([\langle \tau \rangle : H_i] = p_i^{e_i} \). Let \(M = M_0 \cdots M_m \). Then \(M/L \) is a cyclic Galois extension with \([M : L] = p_0^{e_0} \cdots p_m^{e_m} = n \) and \(M/F \) is a Galois extension since \(M_i/F \) is a Galois extension, \(0 \leq i \leq m \). Let \(G' = \text{Gal}(M/F), \langle \tau' \rangle = \text{Gal}(M/L), \) and \(H_i' = \text{Gal}(M_i/M_i) \). Then \(G/H_i \cong \text{Gal}(M_i/F) \cong G'/H_i' \), \(0 \leq i \leq m \). Theorem 2.6 implies \(G \cong G' \).

Let \(\zeta \) denote a primitive \(n^{th} \) root of unity. From here on, assume that \(\zeta \in L \). Let \(\alpha \in L' \) and let \(k \mid n \). Let \(L(\alpha^{1/k}) \) denote a field obtained by adjoining to \(L \) a root of the equation \(x^k - \alpha = 0 \). Since \(\text{char} \ L \nmid k \) and \(L \)}
contains a primitive k^{th} root of unity, it follows $L(\alpha^{1/k})$ is a splitting field
of $x^k - \alpha$ over L and hence $L(\alpha^{1/k})/L$ is a Galois extension. In particular,
the field $L(\alpha^{1/k})$ does not depend on which k^{th} root of α is chosen. If $[L(\alpha^{1/k}) : L] = k$,
then $\text{Gal}(L(\alpha^{1/k})/L) \cong \mathbb{Z}/k\mathbb{Z}$. However, when we write $\alpha^{1/k}$, we will assume some specified k^{th} root of α has been selected and fixed throughout the discussion. Then $\alpha^{s/k}$ will mean $(\alpha^{1/k})^s$ for the given choice of $\alpha^{1/k}$.

Lemma 3.2. Let $\alpha, \beta \in L$. Let r, s be positive integers with $\gcd(r, s) = 1$ and assume $rs \mid n$. Then $L(\alpha^{1/r}, \beta^{1/s}) = L(\gamma^{1/(rs)})$ where $\gamma = \alpha^s \beta^r$.

Proof. We have $L(\gamma^{1/(rs)}) \subseteq L(\alpha^{1/r}, \beta^{1/s})$ since

$$
\gamma^{1/(rs)} = \alpha^{1/r} \beta^{1/s} \in L(\alpha^{1/r}, \beta^{1/s}).
$$

Choose $a, b \in \mathbb{Z}$ such that $ar + bs = 1$. Then

$$
\alpha^{1/r} = \alpha^{(ar+bs)/r} = \alpha^a \alpha^{bs/r} = \alpha^a \beta^{-b} \alpha^{bs/r} \beta^b = \alpha^a \beta^{-b} (\alpha^s \beta^r)^{b/r} = \alpha^a \beta^{-b} \gamma^{b/r} = \alpha^a \beta^{-b} (\gamma^{1/(rs)})^{bs} \in L(\gamma^{1/(rs)}).
$$

Similarly, $\beta^{1/s} \in L(\gamma^{1/(rs)})$.

Let $\text{Gal}(L/F) = \{1, \sigma\}$. Since $\zeta \in L$ is a primitive n^{th} root of unity, we have

$$
\sigma(\zeta) = \zeta^r,
$$

where $\gcd(r, n) = 1$. This equation defines $r \pmod{n}$, which will be a significant invariant from here on. Note that $r^2 \equiv 1 \pmod{n}$ since $\zeta = \sigma^2(\zeta) = \sigma(\zeta^r) = \zeta^{r^2}$.

Definition 3.3. If $L \subseteq M$, we will say that M/F realizes (G, j, l) if M/F is a Galois extension and $\text{Gal}(M/F) = \langle \tau, \sigma \rangle$, where $\text{Gal}(M/L) = \langle \tau \rangle$, σ denotes an extension of $\sigma \in \text{Gal}(L/F)$ to an automorphism in $\text{Gal}(M/F)$, $\sigma \tau \sigma^{-1} = \tau^j$, and $\sigma^2 = \tau^l$.

Theorem 3.4. Assume $\zeta \in L$. Let $M = L(\alpha^{1/n})$, where $\alpha \in L$, and assume $[M : L] = n$. Then the following statements hold:

1. M/F is a Galois extension if and only if $\sigma(\alpha) = \alpha^\ell \beta^n$, where $\beta \in L$, $\gcd(l, n) = 1$. When this occurs, for any $t' \equiv t \pmod{n}$ there is $\beta' \in L$ with $\sigma(\alpha) = \alpha^{t'} (\beta')^n$.

2. If M/F is a Galois extension, then there exist integers j, l such that M/F realizes (G, j, l).

3. The following statements are equivalent:
 a. M/F realizes (G, j, l).
 b. $\sigma(\alpha) = \alpha^l \beta^n$, with $t \equiv jr \pmod{n}$ and $\alpha^{(t^2-1)/n} \beta^l \sigma(\beta) = \zeta^{l_1}$ where $l_1 \equiv l \pmod{\gcd(j+1, n)}$.

If M/F realizes (G,j,l) and we choose ζ so that $\tau(\alpha^{1/n}) = \zeta\alpha^{1/n}$ and β so that $\sigma(\alpha^{1/n}) = \alpha^{t/n}\beta$, then $\alpha^{(t^2-1)/n}\beta'\sigma(\beta) = \zeta t$. If we let $\beta' = \zeta^i\beta$, then $\alpha^{(t^2-1)/n}(\beta')^i\sigma(\beta') = \zeta^{t+ir(j+1)}$.

Proof. (1) M/F is a Galois extension $\Leftrightarrow (x^n - \alpha)(x^n - \sigma(\alpha))$ splits completely in $M \Leftrightarrow M = L(\alpha^{1/n}, \sigma(\alpha)^{1/n}) \Leftrightarrow L(\alpha^{1/n}) = L(\sigma(\alpha)^{1/n})$, since $M = L(\alpha^{1/n})$ and $[L(\alpha^{1/n}) : L] = [L(\sigma(\alpha)^{1/n}) : L]$, $\Leftrightarrow \sigma(\alpha) = \alpha^{t/n}\beta$ with $\gcd(t, n) = 1$ and $\beta \in L$, by Kummer Theory. Finally, if $t' = t + dn$ and $\sigma(\alpha) = \alpha^{t/n}\beta$, then $\sigma(\alpha) = \alpha^{t/n}(\beta')^n$ where $\beta' = \alpha^{-d}\beta$.

(2) Assume M/F is a Galois extension and let $G = \text{Gal}(M/F)$. Since $|G| = [M : F] = 2n$ and M/L is a cyclic extension of degree n, it follows that $\text{Gal}(M/L)$ is a cyclic subgroup of G of order n and thus G is a group as in Proposition 2.1. Let $\text{Gal}(M/L) = \langle \tau \rangle$ and let σ denote an extension of $\sigma \in \text{Gal}(L/F)$ to an automorphism σ in $\text{Gal}(M/F)$. Then $G = \langle \tau, \sigma \rangle$ since $\sigma|_L \neq 1$. Since $[G : \langle \tau \rangle] = 2$, we have $\sigma\tau^{-1} \in \langle \tau \rangle$ and $\sigma^2 \in \langle \tau \rangle$. Thus $\sigma\tau^{-1} = \tau^j$ and $\sigma^2 = \tau^i$ and M/F realizes (G,j,l).

(3) and (4) Assume M/F realizes (G,j,l). Then $\sigma(\alpha) = \alpha^{t/n}\beta$ with $\beta \in L$, from the proof of (1). This equation implies $\sigma(\alpha^{1/n}) = \alpha^{t/n}\beta\omega$ where ω is an n^{th} root of unity. We may replace $\beta\omega$ by β so that we may assume that $\sigma(\alpha^{1/n}) = \alpha^{t/n}\beta$. We have $\tau(\alpha^{1/n}) = \zeta \alpha^{1/n}$, where ζ' is a primitive n^{th} root of unity, since τ has order n and $M = L(\alpha^{1/n})$ is a cyclic extension of degree n. We can assume that $\zeta = \zeta'$. We now apply the equation $\sigma\tau = \tau^j\sigma$ to $\alpha^{1/n}$.

$$\sigma(\alpha^{1/n}) = \sigma(\zeta \alpha^{1/n}) = \zeta^r \sigma(\alpha^{1/n}) = \zeta^{r} \alpha^{t/n}\beta.$$

$$\tau^j \sigma(\alpha^{1/n}) = \tau^j(\alpha^{t/n}\beta) = \tau^j \alpha^{t/n} \tau^j(\beta) = (\zeta \alpha^{1/n})^j \beta = \zeta^j \alpha^{t/n} \beta.$$

Thus $\zeta^j = \zeta^r$ and $jt \equiv r \mod n$. Since $j^2 \equiv 1 \mod n$, it follows $t \equiv jr \mod n$ and $t^2 \equiv j^2r^2 \equiv 1 \mod n$.

Next we apply the equation $\sigma^2 = \tau^i$ to $\alpha^{1/n}$. Since

$$\sigma^2(\alpha^{1/n}) = \tau^i(\alpha^{1/n}) = \zeta^l \alpha^{1/n}$$

and

$$\sigma^2(\alpha^{1/n}) = \sigma(\alpha^{t/n}\beta) = \sigma(\alpha^{1/n})^l \sigma(\beta) = \alpha^{t^2/n}\beta^l \sigma(\beta),$$

it follows $\alpha^{(t^2-1)/n}\beta^l \sigma(\beta) = \zeta^l$. We have now proved the first sentence of (4). For the rest of (4), observe that if $\beta' = \zeta^r\beta$, then

$$\alpha^{(t^2-1)/n}(\beta')^i \sigma(\beta') = (\alpha^{(t^2-1)/n}\beta^l \sigma(\beta))^l \zeta^{(t^2+r)j+1},$$

since $t + r \equiv jr + r \equiv r(j + 1) \mod n$.

To show (3)(a) \Rightarrow (3)(b) we must see what happens if we make different choices of β and ζ. But, if $\sigma(\alpha^{1/n}) = \alpha^{t/n}\beta\omega$ and $\tau(\alpha^{1/n}) = \zeta \alpha^{1/n}$, then there is another generator τ_1 of $\langle \tau \rangle$ and a $\sigma_1 = \sigma \tau^i$ such that $\sigma_1(\alpha^{1/n}) = \alpha^{t/n}\beta$ and $\tau_1(\alpha^{1/n}) = \zeta \alpha^{1/n}$. Then, the calculation made above (using σ_1
and \(\tau_1 \) and noting that \(\sigma_1(\beta) = \sigma(\beta) \) shows that \(\alpha(t^2-1)/n \beta' \sigma(\beta) = \zeta^t \), where \(\sigma^2 = t_1^l \). But, we saw in Remark 2.3 that \(l_1 \equiv l \mod \gcd(j+1,n) \), so we have (3)(b).

Now assume the equations in (3)(b) hold. Then \(M/F \) is a Galois extension by (1). Choose a generator \(\tau \) of \(\text{Gal}(M/L) \) such that \(\tau(\alpha^{1/n}) = \zeta \alpha^{1/n} \) and choose \(\sigma \in \text{Gal}(M/F) \) extending \(\sigma \in \text{Gal}(L/F) \) such that \(\sigma(\alpha^{1/n}) = \alpha t/n \beta' \). Then, (2) implies that \(M/F \) realizes \((G, j', l') \), where \(\sigma \tau \sigma^{-1} = \tau^j \), so \((j')^2 \equiv 1 \mod n \), and \(\sigma^2 = \tau^r \). The equation \(\sigma \tau(\alpha^{1/n}) = \tau^j \sigma(\alpha^{1/n}) \) shows that \(\zeta^{j't} = \zeta^r \), so \(j't \equiv r \equiv jt \mod n \). Hence, \(j' \equiv j \mod n \). Also, the calculation above for \(\sigma^2(\alpha^{1/n}) \) shows that \(\alpha(t^2-1)/n \beta' \sigma(\beta) = \zeta^r \). Hence, \(l' \equiv l \equiv l \mod \gcd(j+1,n) \). But then, since \(M/F \) realizes \((G, j', l') \), it also realizes \((G, j, l) \) with a different choice of \(\sigma \), by Remark 2.3. \(\square \)

Let \(L/F \) be a Galois quadratic extension and assume \(\zeta \in L \) is a primitive \(n^{th} \) root of unity. Thus \(\text{char } F \nmid n \). Let \(\sigma \in \text{Gal}(L/F) \) with \(\sigma \neq 1 \). Then \(\sigma(\zeta) = \zeta^r \) where \(r^2 \equiv 1 \mod n \). If \(\text{char } F \neq 2 \), let \(L = F(\sqrt{a}) \), \(a \in F \).

In this section we study the problem of describing elements \(\alpha \in L^* \) with the property \(\sigma(\alpha) = \alpha t \beta^n \), \(\beta \in L \), for a given integer \(t \) satisfying \(t^2 \equiv 1 \mod n \). By Theorem 3.4(1), this is equivalent to describing elements \(\alpha \in L^* \) with the property that \(L(\alpha^{1/n}) \) is a Galois extension of \(F \). These results will be applied in Sections 5 and 6 to the problem of constructing the Galois extensions discussed in Section 3 with a given group as described in Proposition 2.1. Keeping in mind the intended applications in Sections 5 and 6, we shall consider only the cases \(t \equiv \pm 1 \mod n \) and \(t \equiv \pm 1, 2^{e-1} \pm 1 \mod 2^e \), \(e \geq 3 \), when \(n = 2^e \).

We begin with a lemma to be used in the case \(t \equiv 1 \mod n \).

Lemma 4.1.

(1) If \(\delta, \delta' \in L^* \) and \(\sigma(\delta)/\delta = \sigma(\delta')/\delta' \), then \(\delta' = b \delta \) with \(b \in F \).

(2) Suppose \(\gamma = \sigma(\delta)/\delta \) with \(\gamma, \delta \in L \). Then there exists \(b \in F \) such that

\[
\delta = \begin{cases}
 b(1 + \sigma(\gamma)), & \text{if } \gamma \neq -1, \\
 b\sqrt{a}, & \text{if } \gamma = -1, \text{ char } F \neq 2, \\
 b & \text{if } \gamma = -1, \text{ char } F = 2.
\end{cases}
\]

Proof. The equation in (1) implies \(\sigma(\delta'/\delta) = \delta'/\delta \) and thus \(\delta'/\delta \in F \). This implies (1).

For (2), first assume \(\gamma \neq -1 \). Then \(1 + \sigma(\gamma) \neq 0 \). Since \(\gamma \sigma(\gamma) = N_{L/F}(\gamma) = 1 \), it follows \(\sigma(\delta)/\delta = \gamma = \frac{1 + \gamma}{1 + \sigma(\gamma)} = \frac{\sigma(1 + \sigma(\gamma))}{1 + \sigma(\gamma)}. \) Now (1) implies that \(\delta = b(1 + \sigma(\gamma)) \) with \(b \in F \). Now assume \(\gamma = -1 \). If \(\text{char } F \neq 2 \),
then $\sigma(\sqrt{a})/\sqrt{a} = -1$, and so (1) implies that $\delta = b\sqrt{a}$ with $b \in F$. If char $F = 2$, then $\sigma(\delta)/\delta = -1 = 1$ and hence $\delta \in F$. \hfill \Box

The following proposition covers the case $t \equiv 1 \mod n$:

Proposition 4.2. Let n be a positive integer and let $\alpha \in L$. Then $\sigma(\alpha) = \alpha\beta^n$, $\beta \in L$, if and only if there exists $b \in F$ such that

$$
\alpha = \begin{cases}
 b(1 + \gamma^n), & \text{if } \sigma(\alpha)/\alpha \neq -1, \\
 b\sqrt{a}, & \text{if } \sigma(\alpha)/\alpha = -1, \text{char } F \neq 2, \text{and } -1 \in L^n, \\
 b, & \text{if } \sigma(\alpha)/\alpha = -1, \text{char } F = 2,
\end{cases}
$$

where in the first case above, $\gamma \in L$ and $N_{L/F}(\gamma^n) = 1$.

Proof. First suppose $\sigma(\alpha) = \alpha\beta^n$, $\beta \in L$. Then $\beta^n = \sigma(\alpha)/\alpha$ and Lemma 4.1(2) implies there exists $b \in F$ such that

$$
\alpha = \begin{cases}
 b(1 + \sigma(\beta^n)), & \text{if } \sigma(\alpha)/\alpha \neq -1, \\
 b\sqrt{a}, & \text{if } \sigma(\alpha)/\alpha = -1, \text{char } F \neq 2, \\
 b, & \text{if } \sigma(\alpha)/\alpha = -1, \text{char } F = 2.
\end{cases}
$$

If $\sigma(\alpha)/\alpha \neq -1$, let $\gamma = \sigma(\beta)$. Then

$$
N_{L/F}(\gamma)^n = N_{L/F}(\sigma(\beta)^n) = N_{L/F}(\beta^n) = N_{L/F}(\sigma(\alpha)/\alpha) = 1.
$$

If $\sigma(\alpha)/\alpha = -1$ and char $F \neq 2$, then $-1 = \beta^n \in L$. Therefore the stated formula for α holds.

Now assume that α is given by the formula in the statement of this Proposition. If $\alpha = b(1 + \gamma^n)$ and $N_{L/F}(\gamma)^n = 1$, then

$$
\frac{\sigma(\alpha)}{\alpha} = \frac{b(1 + \sigma(\gamma)^n)}{b(1 + \gamma^n)} = \sigma(\gamma)^n.
$$

Thus $\sigma(\alpha) = \alpha\beta^n$, where $\beta = \sigma(\gamma)$. If $\alpha = b\sqrt{a}$ and $-1 = \beta^n \in L^n$, then $\sigma(\alpha)/\alpha = -1 = \beta^n$. If $\alpha = b$, then $\sigma(\alpha) = \alpha \cdot 1^n$. \hfill \Box

If $t \equiv -1 \mod n$ and $\sigma(\alpha) = \alpha^{-1}\beta^n$, then $N_{L/F}(\alpha) = \alpha\sigma(\alpha) = \beta^n \in F \cap L^n$. Thus to treat the case $t \equiv -1 \mod n$, we shall first study $F \cap L^n$ in Propositions 4.3-4.5. There does not seem to be a good description of $F \cap L^n$ when $L = F(\sqrt{-1})$ and $n = 2^e$, $e \geq 3$, but the result in Proposition 4.5 is sufficient for our purposes.

Proposition 4.3. If n is odd, then $F \cap L^n = F^n$.

Proof. It is clear that $F^n \subseteq F \cap L^n$. Now let $\lambda \in L$ and suppose $\lambda^n = b \in F$. Then $b^2 = N_{L/F}(b) = N_{L/F}(\lambda)^n \in F^n$. Since b^2 and b^n lie in F^n, it follows that $b \in F^n$. Thus $F \cap L^n \subseteq F^n$. \hfill \Box

Proposition 4.4. Assume n is even and let $n = 2^em$, m odd, $e \geq 1$. If $a \notin -F^2$ (i.e., $L \neq F(\sqrt{-1})$), then $F \cap L^n = F^n \cup a^{n/2}F^n$.

4.3 and

\[\sqrt{\alpha} \]

then, Recall that if

Proof. Let

Proposition 4.7. Let

Remark 4.6. Under the hypotheses of Proposition 4.5, there does not seem to be a simple description of \(F \cap L^{e-1} \). As already noted, for \(e = 1 \) we have \(F \cap L^2 = F^2 \cup -F^2 \). For \(e = 2 \) it is easy to show \(F \cap L^4 = F^4 \cup -4F^4 \). For \(e \geq 3 \), the descriptions become more awkward.

The next proposition characterizes the condition \(N_{L/F}(\alpha) \in F^n \) and \(N_{L/F}(\alpha) \in a^{n/2}F^n \) when \(n \) is even. In light of Propositions 4.3 and 4.4, this covers the case \(t \equiv -1 \mod n \), except when \(L = F(\sqrt{-1}) \) and \(n \) is even.

Proposition 4.7. Let \(\alpha \in L, \alpha \neq 0 \).

(1) \(N_{L/F}(\alpha) \in F^n \) if and only if there exist \(b \in F \) and \(\beta, \gamma \in L \) such that

\[
\alpha = \begin{cases}
bn/2N_{L/F}(\gamma)/\gamma^2, & \text{if } n \text{ is even } (e_0 \geq 1), \\
N_{L/F}(\beta)^{(n-1)/2}/\beta, & \text{if } n \text{ is odd } (e_0 = 0).
\end{cases}
\]
(2) $N_{L/F}(\alpha) \in a^{n/2}F^n$ if and only if there exist $b \in F$ and $\gamma, \delta \in L$ such that

$$\alpha = \begin{cases} (b\sqrt{a})^{n/2}N_{L/F}(\gamma)/\gamma^2, & \text{if } n \equiv 0 \mod 4 (e_0 \geq 2), \\ (b\sqrt{a})^{n/2}\delta, \text{ with } N_{L/F}(\delta) = -1, & \text{if } n \equiv 2 \mod 4 (e_0 = 1). \end{cases}$$

Proof. The proofs of each of the cases are very similar and straight-forward. We will give one of the proofs. Suppose $N_{L/F}(\alpha) = a^{n/2}b^n$, with $n \equiv 2 \mod 4$. Let $\delta = \alpha/(b\sqrt{a})^{n/2}$. So, $\alpha = (b\sqrt{a})^{n/2}\delta$ and

$$N_{L/F}(\delta) = N_{L/F}(\alpha/(b\sqrt{a})^{n/2}) = a^{n/2}b^n/(b^n(-a)^{n/2}) = (-1)^{n/2} = -1.$$

The converse is easy as are the other cases. Note that for (1), if $N_{L/F}(\alpha) = b^n \in F^n$, then when n is even we can (by Hilbert 90) choose γ so that $ab^{-n/2} = \sigma(\gamma)/\gamma$; when n is odd, choose $\beta = ab^{-(n-1)/2}$. For (2), if $N_{L/F}(\alpha) = a^{n/2}b^n$ with $n \equiv 0 \mod 4$, then choose γ so that $aa^{-n/4}b^{-n/2} = \sigma(\gamma)/\gamma$. \hfill \Box

Now we assume $n = 2^e$, with $e \geq 3$. If $t^2 \equiv 1 \mod 2^e$, then $t \in \{\pm 1, 2^{e-1} \pm 1\} \mod 2^e$.

The case $t \equiv 1 \mod 2^e$ is covered in Proposition 4.2 and the case $t \equiv -1 \mod 2^e$ is covered in Propositions 4.3-4.7, with a small gap in the case $L = F(\sqrt{-1})$. These cases do not depend on r, where $\sigma(\zeta) = \zeta^r$. Since $r^2 \equiv 1 \mod n$, in general, we have $r \in \{\pm 1, 2^{e-1} \pm 1\} \mod 2^e$ when $n = 2^e$, $e \geq 3$.

The next two results characterize the value of r when $t \equiv 2^{e-1} \pm 1 \mod 2^e$, $e \geq 3$.

Proposition 4.8. $L \neq F(\sqrt{-1})$ (i.e., $\sqrt{-1} \in F$) if and only if $r \equiv 1 \mod 2^{e-1}$. When this occurs, $\zeta^2 \in F$; furthermore, $\zeta \in F$ if and only if $r \equiv 1 \mod 2^e$.

Proof. Recall that $r \equiv \pm 1 \mod 2^{e-1}$. If $r \equiv -1 \mod 2^{e-1}$, then $\sigma(\zeta^2) = (\zeta^2)^{-1}$, so $\sigma(\sqrt{-1}) = (\sqrt{-1})^{-1} = -\sqrt{-1}$, as $\sqrt{-1} = \pm (\zeta^2)^{2^{e-3}}$. Hence, $\sqrt{-1} \notin F$, so $L = F(\sqrt{-1})$. On the other hand, if $r \equiv 1 \mod 2^{e-1}$ then $\sigma(\zeta^2) = \zeta^2$, so $\zeta^2 \in F$. Then, $\sqrt{-1} = \pm (\zeta^2)^{2^{e-3}} \in F$, so $L \neq F(\sqrt{-1})$. Clearly, $\zeta \in F$ if and only if $\zeta = \sigma(\zeta) = \zeta^r$, if and only if $r \equiv 1 \mod 2^e$. \hfill \Box

Proposition 4.9. Assume $L = F(\sqrt{-1})$. Then $r \equiv -1 \mod 2^{e-1}$ and the following statements hold:

1. The following statements are equivalent:
 - (a) $r \equiv -1 \mod 2^e$.
 - (b) $N_{L/F}(\zeta) = 1$.
 - (c) $\zeta \in F \cdot L^2$.

2. The following statements are equivalent:
 - (a) $r \equiv 2^{e-1} - 1 \mod 2^e$.
Proposition 4.10.

(b) $N_{L/F}(\zeta) = -1$.
(c) $\zeta \notin F \cdot L^2$.

Proof. Since $L = F(\sqrt{-1})$, Proposition 4.8 shows that $r \equiv -1 \mod 2e^{-1}$.

If $r \equiv -1 \mod 2e$, then $\sigma(\zeta) = \zeta^{-1}$. This is equivalent to $N_{L/F}(\zeta) = 1$ and hence $\zeta \in F \cdot L^2$.

If $r \equiv 2e^{-1} - 1 \mod 2e$, then $\sigma(\zeta) = \zeta^{2e^{-1} - 1} = -\zeta^{-1}$ and this is equivalent to $N_{L/F}(\zeta) = -1$. Since $-1 \notin F^2$, it follows that $\zeta \notin F \cdot L^2$. \square

Proposition 4.10. Assume $t \equiv 2e^{-1} + 1 \mod 2e$, $e \geq 3$, and let $\alpha \in L$, $\alpha \notin 0$. Suppose $\sigma(\zeta) = \zeta^r$. Then \(\sigma(\alpha) = \alpha^{2e^{-1}+1}\beta^{2e} \), $\beta \in L$, if and only if there exist $\gamma, \eta \in L^*$ with $\eta^2 \in F$ such that

$$\alpha = \varphi N_{L/F}(\gamma)\eta^2/\gamma^{2e^{-1}},$$

where

$$\varphi = \begin{cases} 1, & \text{if } r \equiv 1, -1, \text{ or } 2e^{-1} - 1 \mod 2e, \\ 1 \text{ or } \zeta, & \text{if } r \equiv 2e^{-1} + 1 \mod 2e. \end{cases}$$

Proof. Let $k = 2e^{-1}$. Let

$$A = \{ \alpha \in L^* \mid \sigma(\alpha) = \alpha^{k+1}\beta^{2k} \text{ for some } \beta \in L \}$$

and let

$$B = \{ \alpha \in L^* \mid \alpha = N_{L/F}(\gamma)\eta^2/\gamma^{2e^{-1}} \text{ where } \gamma, \eta \in L^* \text{ and } \eta^2 \in F \}.$$

Clearly A and B are groups.

Let $\alpha = \varphi N_{L/F}(\gamma)\eta^2/\gamma^{2e^{-1}}$ and let $\beta = \gamma^{2e^{-2}}/\sigma(\gamma)\eta$. Then $\alpha\beta^2 = \varphi\gamma/\sigma(\gamma)$. We have $\sigma(\varphi) = \varphi^{2e^{-1}+1}$ in all cases since the case $r \equiv 2e^{-1} + 1 \mod 2e$ and $\varphi = \zeta$ implies $\sigma(\zeta) = \zeta^r = \zeta^{2e^{-1}+1}$. It now follows that

$$\sigma(\alpha)/\alpha = (\gamma/\sigma(\gamma))^{k}(\sigma(\varphi)/\varphi) = ((\alpha\beta^2)^{k}/\varphi^{k})(\sigma(\varphi)/\varphi) = (\alpha\beta^2)^{k}.$$

This implies that $\alpha \in A$. The case $\varphi = 1$ shows that $B \subseteq A$. If $r \equiv k + 1 \mod 2k$, then $\zeta \notin A$, so $B \cup \zeta B \subseteq A$. We must show that $A = B \cup \zeta B$ if $r \equiv k + 1 \mod 2k$ and $A = B$ otherwise.

Take any $\alpha \in A$; so $\sigma(\alpha) = \alpha^{k+1}\beta^{2k}$, i.e., $\sigma(\alpha)/\alpha = (\alpha\beta^2)^{k}$. Let $\omega = N_{L/F}(\alpha\beta^2)$. Then, $\omega^k = N_{L/F}(\sigma(\alpha)/\alpha) = 1$, so, since ω is a power of ζ^2, we have $\omega \in L^2 \cap F = F^2 \cup aF^2$.

Let $\epsilon = \omega^{k/2}$. Then $\epsilon^2 = \omega^k = 1$ and thus $\epsilon = \pm 1$. In either case, $\epsilon = \omega^{k/2} \in F^2$, since $\omega \in F$ and $k/2$ is even. Let $\delta = \alpha\beta^2$. Then,

$$\sigma(\delta^{k/2}) = \alpha\delta^k\sigma(\delta^{k/2}) = \alpha\delta^k(N_{L/F}(\delta))^{k/2} = \alpha\delta^{k/2}\omega^{k/2} = \alpha\delta^{k/2}\epsilon.$$

If $\epsilon = 1$, then $\alpha\delta^{k/2} \in F$. From this we conclude $N_{L/F}(\alpha\delta^{k/2}) \in F^2$, $N_{L/F}(\alpha) \in F^2$, $N_{L/F}(\alpha\beta^2) \in F^2$, and finally $\omega \in F^2$.
If $\epsilon = -1$, then $\alpha \delta^{k/2} \in \sqrt{a} \mathbb{F}$. From this we conclude $N_{L/F}(\alpha \delta^{k/2}) \in -aF^2$, $N_{L/F}(\alpha) \in -aF^2$, $N_{L/F}(\alpha \beta^2) \in -aF^2$, and finally $\omega \in -aF^2 = aF^2$, since $-1 = \epsilon \in F^2$.

Case 1. Assume $\epsilon = 1$. Then $N_{L/F}(\alpha \beta^2) = \omega \in F^2$. Therefore $\alpha \beta^2 = b\gamma^2$ for some $b \in F^\ast$, $\gamma \in L^\ast$. Since, $b^2 N_{L/F}(\gamma)^2 = N_{L/F}(b\gamma^2) = N_{L/F}(\alpha \beta^2) = \omega$, we have $b^k N_{L/F}(\gamma)^k = \omega^{k/2} = \epsilon^k = 1$. This gives

$$\sigma(\alpha)/\alpha = (\alpha \beta^2)^k = (b\gamma^2)^k = \gamma^{2k}/N_{L/F}(\gamma)^k = \gamma^k/\sigma(\gamma)^k.$$

Thus, $\sigma(\alpha \gamma^k) = \alpha \gamma^k$ and we have $\alpha \gamma^k = d \in F$.

Since $(\alpha \beta^2)^k = (\gamma/\sigma(\gamma))^k$, we have $\alpha \beta^2 = \omega'/\gamma/\sigma(\gamma) = \omega' c/\sigma(\gamma)^2$, where $(\omega')^k = 1$ and $c = N_{L/F}(\gamma)$. Note that $\alpha/d = \gamma^{-k} \in L^2$ and $\alpha/c = \omega'/(\sigma(\gamma)^2 \beta^2) \in L^2$; so $d/c \in L^2 \cap F$. Let $\eta^2 = d/c$. Then, $\alpha = c\eta^2 \gamma^k \in B$.

Case 2. Now assume $\epsilon = -1$. Then $\omega \in aF^2$ and $-1 \in F^2$. This implies $r \equiv 1 \mod k$ (see Proposition 4.8). Since $\omega \notin F^2$, it follows $\zeta \notin F$ and $r \neq 1 \mod 2k$. Hence, $r \equiv k + 1 \mod 2k$. Because $L = F(\zeta)$ and $\zeta^2 \in F$ (see Proposition 4.8), we can take $a = \zeta^2$. The congruence condition on r says that $\sigma(\zeta) = \zeta^{1+k}$, showing that $\zeta \in A$. Since $\sigma(\alpha)/\alpha = (\alpha \beta^2)^k$ and $\sigma(\zeta)/\zeta = \zeta^k$, we have $\sigma(\alpha \zeta)/\alpha \zeta = ((\alpha \zeta)/\beta^2)^k$. Also, $N_{L/F}(\alpha \zeta/\beta^2) = \omega(-\zeta^{-2}) = a^{-1}\omega \in F^2$. This shows that $\alpha/\zeta \in A$, and that Case 1 above applies to α/ζ. Hence, $\alpha/\zeta \in B$, so $\alpha \in \zeta B$. Since Case 2 occurs for α only when $r \equiv k + 1 \mod 2k$, the proof is complete.

Proposition 4.11. Assume $t \equiv 2e^{-1} - 1 \mod 2e$, $e \geq 3$, and let $\alpha \in L$, $\alpha \neq 0$. Let $\sigma(\zeta) = \zeta^r$. Then $\sigma(\alpha) = \alpha^{2e^{-1} - 1} \beta^{2e}$, $\beta \in L$, if and only if there exist $c \in F$, $\gamma \in L$, with $N_{L/F}(\gamma) = \pm c$, such that $\alpha = \theta c^{2e^{-2} + 1}/\gamma^2$ where

$$\theta = \begin{cases} 1, & \text{if } L \neq F(\sqrt{-1}), \\ 1, & \text{if } L = F(\sqrt{-1}), r \equiv -1 \mod 2e, \\ 1 \text{ or } \zeta, & \text{if } L = F(\sqrt{-1}), r \equiv 2e^{-1} - 1 \mod 2e. \end{cases}$$

Proof. First assume $\alpha = \theta c^{2e^{-2} + 1}/\gamma^2$ where $N_{L/F}(\gamma) = \pm c$ and $\theta = 1$ or ζ, as above. We see that $\theta^{2e^{-1}} = N_{L/F}(\theta)$ in all three cases since $\zeta^{2e^{-1}} = \zeta^{2e^{-1}-1} = N_{L/F}(\zeta)$ in the third case. Let $\beta = \gamma/c^{2e^{-3}}$. Then $\alpha \beta^2 = \theta c$ and

$$N_{L/F}(\alpha) = N_{L/F}(\theta) c^{2e^{-1} + 2}/c^2 = N_{L/F}(\theta) c^{2e^{-1}} = \theta^{2e^{-1}} c^{2e^{-1}} = (\alpha \beta^2)^{2e^{-1}}.$$

Thus $\sigma(\alpha) = \alpha^{2e^{-1} - 1} \beta^{2e}$.

Now assume $\sigma(\alpha) = \alpha^{2e^{-1} - 1} \beta^{2e}$, $\beta \in L$. Then $N_{L/F}(\alpha) = (\alpha \beta^2)^{2e^{-1}}$.

Since

$$(\alpha \beta^2)^{2e^{-1}} \in F \cap L^{2e^{-1}} = \begin{cases} F^{2e^{-1}} \cup a^{2e^{-2}} F^{2e^{-1}}, & \text{if } L \neq F(\sqrt{-1}), \\ F^{2e^{-1}} \cup -F^{2e^{-1}}, & \text{if } L = F(\sqrt{-1}), \end{cases}$$

we have $\alpha \beta^2 \in F\sqrt{a} F^{2e^{-1}}$.
by Propositions 4.4 and 4.5, there exists \(c \in F \) such that \(\alpha \beta^2 \in \{ \omega, \sqrt{\omega},
abla \omega \} \) where \(\omega^{2e-1} = 1 \). Since \(\omega \in L^2 \), by replacing \(\beta \) by \(\beta \omega^{-1/2} \) we can assume

\[
\alpha \beta^2 = \begin{cases} c \text{ or } \sqrt{ac}, & \text{if } L \neq F(\sqrt{\omega}), \\ c \text{ or } \omega c, & \text{if } L = F(\sqrt{\omega}),
\end{cases}
\]

without affecting the equation \(\sigma(\alpha) = \alpha^{2e-1} \beta^{2e} \).

If \(L \neq F(\sqrt{\omega}) \), then \(-1 \in F^2 \) (since \(-1 \in L^2 \)) and

\[
N_{L/F}(\alpha) \in F^{2e-1} \cup a^{2e-2} F^{2e-1} \subseteq F^2,
\]

since \(e \geq 3 \). If \(\alpha \beta^2 = \sqrt{ac} \), then \(N_{L/F}(\alpha) \in -aF^2 = aF^2 \neq F^2 \), a contradiction. Thus \(\alpha \beta^2 = c \).

If \(L = F(\sqrt{\omega}) \) and \(\alpha \beta^2 = \omega c \), then

\[
N_{L/F}(\alpha) = (\alpha \beta^2)^{2e-1} = (\omega c)^{2e-1} = -c^{2e-1} \in -F^2 \neq F^2.
\]

Then the equation \(\alpha \beta^2 = \omega c \) implies \(N_{L/F}(\omega) \notin F^2 \), and thus \(N_{L/F}(\omega) = -1 \) and \(r \equiv 2e-1 - 1 \mod 2^e \) by Proposition 4.9.

We conclude \(\alpha \beta^2 = \omega c \), where

\[
\theta = \begin{cases} 1, & \text{if } L \neq F(\sqrt{\omega}), \\ 1, & \text{if } L = F(\sqrt{\omega}), r \equiv -1 \mod 2^e, \\ 1 \text{ or } \omega, & \text{if } L = F(\sqrt{\omega}), r \equiv 2e-1 - 1 \mod 2^e.
\end{cases}
\]

Let \(\gamma = c^{2e-3} \beta \). Then

\[
\alpha = \theta \beta^2 = \theta c^{2e-2+1}/(\omega^{2e-2} \beta^2) = \theta c^{2e-2+1}/\gamma^2.
\]

Since \(N_{L/F}(\alpha) = (\alpha \beta^2)^{2e-1} = \theta^{2e-1} c^{2e-1} \) and \(\theta^{2e-1} = N_{L/F}(\theta) \) in all cases, we have

\[
N_{L/F}(\gamma^2) = c^{2e-1} N_{L/F}(\beta^2) = c^{2e-1} N_{L/F}(\theta c/\alpha) = \frac{c^{2e-1} \theta^{2e-1} N_{L/F}(\omega c)}{N_{L/F}(\alpha)} = c^2.
\]

Thus \(N_{L/F}(\gamma) = \pm c. \)

\[\square\]

5. Explicit constructions of Galois extensions \(M/F \).

Proposition 3.1 and Lemma 3.2 let us reduce the problem of describing explicit constructions of Galois extensions \(M/F \) as in Section 3 to the case \(n = p^e \), where \(p \) is a prime number. In this section, we treat the case when \(p \) is an odd prime. The case \(p = 2 \) will be handled in Section 6. Recall that \(r \mod n \) is defined by \(\sigma(\zeta) = \zeta^r \), where \(\zeta \) is a primitive \(n \)th root of unity. Since \(j^2 \equiv r^2 \equiv 1 \mod p^e \), it follows that if \(p \) is odd, then \(j \equiv 1 \mod p^e \) and \(r \equiv 1 \mod p^e \). Since it is no extra trouble, instead of considering only the case \(n = p^e \) with \(p \) odd, we will consider the more general case where
is arbitrary and \(j \equiv \pm 1 \mod n \) and \(r \equiv \pm 1 \mod n \). Of course the case \(r \equiv 1 \mod n \) occurs if and only if \(\zeta \in F \). Recall from Proposition 2.5 that when \(j \equiv 1 \mod n \), either \(G \cong \mathbb{Z}/2n\mathbb{Z} \) or \(G \cong \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \), and when \(j \equiv -1 \mod n \), either \(G \cong D_n \) or \(G \cong Q_{2n} \).

We saw in Theorem 3.4(3) that when \(M = L(\alpha^{1/n}) \) realizes \((G, j, l) \), then \(\sigma(\alpha) = \alpha^{t}\beta^n \), where \(t \equiv jr \mod n \). So, \(t \equiv \pm 1 \mod n \). By Theorem 3.4(1), we can assume that \(t = \pm 1 \). To be able to handle the two possible values of \(t \) at the same time, and to bring out the similarities in the two cases, we consider a modified group action. It will be convenient to use the language of group cohomology, though everything in this section can be derived easily without mentioning cohomology.

Let \(C = \text{Gal}(L/F) = \{1, \sigma \} \). Let \(t = \pm 1 \). For any multiplicative group \(Q \) on which \(\sigma \) acts, we have a “twisted” \(t \)-action of \(C \) on \(Q \) defined by

\[
\sigma \ast q = (\sigma \cdot q)^t.
\]

(Here \(\cdot \) denotes the original action and \(\ast \) denotes the \(t \)-action.) Of course, when \(t = 1 \) the \(t \)-action coincides with the original action. Let \(\mu_n = \langle \zeta \rangle \) denote the group of \(n \text{th} \) roots of unity in \(L \). The short exact sequences

\[
1 \to L^* \to L^n \to L^*/L^* \to 1 \quad \text{and} \quad 1 \to \mu_n \to L^* \to L^n \to 1
\]

are compatible with the usual Galois action of \(\text{Gal}(L/F) \), but also with the \(t \)-action. They lead to connecting homomorphisms in cohomology (using the \(t \)-action):

\[
f: H^0(C, L^*/L^n) \to H^1(C, L^n) \quad \text{and} \quad g: H^1(C, L^n) \to H^2(C, \mu_n).
\]

We describe the maps \(f \) and \(g \): First, \(H^0(C, L^*/L^n) \) consists of the elements \([\alpha] = \alpha L^n \in L^*/L^n \) stable under the \(t \)-action of \(C \), i.e., those \([\alpha] \) such that \(\sigma \ast [\alpha] = [\alpha] \), i.e.,

\[
\sigma \ast \alpha = \alpha \gamma^n \quad \text{for} \ \gamma \in L^*, \quad \text{i.e.,} \quad \sigma(\alpha) = \alpha^{t}\beta^n, \quad \text{where} \ \beta = \gamma^t.
\]

The connecting map \(f \) takes the class of the 0-cocycle \([\alpha]\) to the class of the 1-cocycle \(c_{\gamma^n} : C \to L^n \) mapping \(1 \mapsto 1 \) and \(\sigma \mapsto \gamma^n \). Let \(N_t \) denote the “\(t \)-norm,” given by

\[
N_t([x]) = x \sigma \ast x = x \sigma(x)^t.
\]

Note that by applying \(N_t \) to the equation \(\sigma \ast \alpha = \alpha \gamma^n \) we find that \(N_t(\gamma^n) = 1 \). Let

\[
\omega = N_t(\gamma) = \gamma \sigma(\gamma)^t = \beta^t \sigma(\beta) \in \mu_n.
\]

The map \(g \) takes the class of \(c_{\gamma^n} \) to the class of the 2-cocycle \(h_\omega : C \times C \to \mu_n \) given by \(h_\omega(\sigma, \sigma) = N_t(\gamma) = \omega \) and \(h_\omega(1, 1) = h_\omega(\sigma, 1) = h_\omega(1, \sigma) = 1 \). Thus, \(g \circ f[\alpha] = [h_\omega] \in H^2(C, \mu_n) \).

Now, the \(t \)-action of \(C \) on \(\mu_n \) is determined by \(\sigma \ast \zeta = \sigma(\zeta)^t = \zeta^t \), where \(j = rt \). The group extension of \(C \) by \(\mu_n \) determined by the 2-cocycle \(h_\omega \) is the group \(\mathfrak{S} = \mu_n x_1 \cup \mu_n x_\sigma \), with the multiplication given by (cf. [R], p. 154) \((\zeta^i x_\rho)(\zeta^k x_\psi) = \zeta^i (\rho \ast \zeta^k) h_\omega(\rho, \psi) x_{\rho \psi} \). If \(\omega = \zeta^t \), then
\(\mathfrak{G} \) is the group of order \(2n \) generated by \(\zeta, x_\sigma \) with the relations \(\zeta^n = 1 \),
\(x_\sigma \zeta x_\sigma^{-1} = \sigma \ast \zeta = \zeta^l \), and \(x_\sigma^2 = \zeta^l \). That is, \(\mathfrak{G} \cong (G, j, l) \). Observe also
that for this \(j \) and \(l \), we have \((G, j, l) \cong \text{Gal}(L(\alpha^{1/n})/F)\), by Theorem \ref{thm:3.4}(3)
(assuming \([L(\alpha^{1/n}): L] = n\)). Now, \(\mathfrak{G} \) is the trivial group extension (i.e., a
semidirect product, i.e., \(\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \) when \(j \equiv 1 \mod n \) and \(D_n \) when
\(j \equiv -1 \mod n \)) just when \([h_\omega] = 0 \in H^2(C, \mu_n)\). This occurs just when \(\omega \) is
the \(t \)-norm of an element of \(\mu_n \) (cf. \cite{R}, Th. 10.35, p. 297), i.e., just
when \(\omega = \zeta^l \in \langle N_l(\zeta) \rangle = \langle \zeta^{j+1} \rangle \). Note in any case that since \(\omega = N_l(\gamma) \),
\(\omega = \sigma \ast \omega = \omega^j \). When \(j \equiv -1 \mod n \) this says that \(\omega = \pm 1 \), and \(\mathfrak{G} \) is
the trivial extension just when \(\omega = 1 \). When \(j \equiv 1 \mod n \), \(\mathfrak{G} \) is the trivial
extension just when \(\omega \in \langle \zeta^2 \rangle \). When \(n \) is odd, we have \(H^2(C, \mu_n) = 0 \) as
gcd(\(|C|, |\mu_n|\)) = 1, so then \(\mathfrak{G} \) is always the trivial extension.

When \(t = 1 \) we can say a little more. Then, the \(t \)-action is the usual \(C \)-
action. Since \(H^1(C, L^*) = 0 \) (Hilbert 90), the exact sequence \(H^1(C, L^*) \rightarrow \)
\(H^1(C, L^{*n}) \xrightarrow{\beta} H^2(C, \mu_n) \) shows that the map \(g \) is injective. But, we also
have the exact sequence \(H^0(C, L^*) \rightarrow H^1(C, L^*/L^{*n}) \xrightarrow{f} H^1(C, L^{*n}) \). Thus,
\([\alpha] \in H^0(C, L^*/L^{*n}) \) determines the trivial group extension \(\Leftrightarrow g \circ f[\alpha] = 0 \)
in \(H^2(C, \mu_n) \) \(\Leftrightarrow f[\alpha] = 0 \) \(\Leftrightarrow [\alpha] \in \text{im}(H^0(C, L^*) \rightarrow H^0(C, L^*/L^{*n})) = \)
\(F^*L^{*n}/L^n \alpha \in F^*L^{*n} \). When \(n \) is odd, this always holds because then
\(H^2(C, \mu_n) = 0 \).

The following propositions summarize what the preceding discussion has
shown.

Proposition 5.1. Assume that \(M/F \) is a Galois extension that realizes
\((G, j, l)\). Thus \(\sigma(\alpha) = \alpha^j\beta^n \), with \(\alpha, \beta \in L \). Assume \(j \equiv 1 \mod n \) and
\(r \equiv \pm 1 \mod n \). Then, \(t \equiv r \mod n \). Assume \(t = \pm 1 \) (and adjust \(\beta \)
accordingly). Then, \(\beta^l\sigma(\beta) \) is an \(n \)th root of unity. Furthermore:

1. The following statements are equivalent:
 a) \(\text{Gal}(M/F) \cong \mathbb{Z}/2n\mathbb{Z} \).
 b) The order of \(\beta^l\sigma(\beta) \) is divisible by \(2^e_0 \).
 c) \(\beta^l\sigma(\beta) \in \zeta\langle \zeta^2 \rangle \).
 d) \(n \) is odd or \(l \) is even.
 If \(n \) is odd, then (a)-(d) always hold. If \(n \) is even, then (a)-(d) are
 equivalent to the following statement:
 e) \((\beta^l\sigma(\beta))^{n/2} = -1 \).

2. The following statements are equivalent:
 a) \(\text{Gal}(M/F) \cong \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \).
 b) If \(n \) is even, then the order of \(\beta^l\sigma(\beta) \) is not divisible by \(2^e_0 \).
 c) \(\beta^l\sigma(\beta) \in \langle \zeta^2 \rangle \).
 d) \(n \) is odd or \(l \) is even.
 If \(r \equiv 1 \mod n \) (i.e., \(\zeta \in F \)), so \(t = 1 \), then (a)-(d) are equivalent to
 the following statement:
 e) \(\alpha \in F \cdot L^n \).
 If \(n \) is odd, then (a)-(e) always hold.
Proposition 5.2. Assume M/F is a Galois extension that realizes (G,j,l) with $j \equiv -1 \mod n$ and $r \equiv 1 \mod n$. Then, $t \equiv -1 \mod n$, and we assume $t = -1$. Suppose $\sigma(\alpha) = \alpha^t \beta^n$ with $\beta \in L$.

(1) The following statements are equivalent:
 (a) $\text{Gal}(M/F) \cong D_n$.
 (b) $l \equiv 0 \mod n$.
 (c) $N_{L/F}(\alpha) \in F^n$.
 (d) $\beta \in F$.

 If n is odd, then (a)-(d) always hold.

(2) Assume n is even (and hence $\text{char } F \neq 2$). Let $L = F(\sqrt{a})$. Then $\beta \in F \cup \sqrt{a}F$ and $N_{L/F}(\alpha) \in F^n \cup a^{n/2} F^n$. In addition, the following statements are equivalent:
 (a) $\text{Gal}(M/F) \cong Q_{2n}$.
 (b) $l \equiv n/2 \mod n$.
 (c) $N_{L/F}(\alpha) \in a^{n/2} F^n$.
 (d) $\beta \in \sqrt{a}F$.

Proof. In addition to the observations preceding Proposition 5.1, note the following: Because $t = -1$, we have $\sigma(\alpha) = \alpha^{-1} \beta^n$, so $N_{L/F}(\alpha) = \beta^n$. Since $j \equiv -1 \mod n$, $\beta/\sigma(\beta) = N_t(\beta) \in \{ \pm 1 \} \cap \mu_n$. So $\sigma(\beta) = \pm \beta$. The Galois group is D_n just when $\sigma(\beta) = \beta$, i.e., $\beta \in F$; then $N_{L/F}(\alpha) = \beta^n \in F^n$.

We have $\text{Gal}(M/F) \cong Q_{2n}$ just when $\sigma(\beta) = -\beta$, i.e., $\beta \in \sqrt{a}F$; then n is necessarily even since $-1 \in \mu_n$, and $N_{L/F}(\alpha) \in a^{n/2} F^n \neq F^n$. □

Proposition 5.3. Assume M/F is a Galois extension that realizes (G,j,l) with $j \equiv -1 \mod n$ and $r \equiv -1 \mod n$. Then, we may assume $t = 1$. Suppose $\sigma(\alpha) = \alpha^t \beta^n$ with $\beta \in L$.

(1) The following statements are equivalent:
 (a) $\text{Gal}(M/F) \cong D_n$.
 (b) $l \equiv 0 \mod n$.
 (c) $N_{L/F}(\beta) = 1$.
 (d) $\alpha \in F \cdot L^n$.

 If n is odd, then (a)-(d) always hold.

(2) The following statements are equivalent:
 (a) $\text{Gal}(M/F) \cong Q_{2n}$.
 (b) $l \equiv n/2 \mod n$.
 (c) $N_{L/F}(\beta) = -1$.

6. The case when $n = 2^e$ with $e \geq 3$.

We now study the problem of constructing Galois extensions M/F, which were considered in Section 3, when $n = 2^e$ with $e \geq 1$. We have $L = F(\sqrt{a})$, $a \in F$, since char $F \neq 2$. We continue to assume that $\zeta \in L$ is a primitive $(2^e)^{th}$ root of unity and that $\sigma(\zeta) = \zeta^r$. We shall assume $e \geq 3$ since the
cases when \(e \leq 2 \) are covered in Propositions 5.1-5.3 when \(j \equiv \pm 1 \mod n \) and \(r \equiv \pm 1 \mod n \). If \(M/F \) is a Galois extension that realizes \((G,j,l)\) with \(n = 2^e \) and \(e \geq 3 \), then by Theorem 3.4(3), \(\sigma(\alpha) = \alpha^t \beta^n \) with \(\beta \in L, t \equiv jr \mod 2^e \) and \(t,j,r \in \{1, -1, 2^{e-1} + 1, 2^{e-1} - 1\} \mod 2^e \). By Theorem 3.4(1), we may assume that \(t \in \{1, -1, 2^{e-1} + 1, 2^{e-1} - 1\} \). If \(j \equiv 2^{e-1} + 1 \) or \(2^{e-1} - 1 \mod 2^e \), then the group \(\text{Gal}(M/F) \) is uniquely determined up to isomorphism, by Lemma 2.4. Therefore, we shall focus only on values of \(t \) and \(r \) that give \(j \equiv 1 \) or \(-1 \mod 2^e \). So, if \(t \in \{1, -1\} \), then \(r \equiv 1 \) or \(-1 \mod 2^e \) since \(t \equiv jr \mod 2^e \). These cases have already been discussed in \(\S 5 \). Thus, we can assume in this section that \(t \in \{2^{e-1} + 1, 2^{e-1} - 1\} \). The interesting cases are when \(r \equiv 2^{e-1} + 1 \) or \(2^{e-1} - 1 \mod 2^e \).

Proposition 6.1. Suppose \(M = L(\alpha^{1/2^e}) \) is a Galois extension of \(F \) of degree \(2^{e+1} \) \((e \geq 3)\) that realizes \((G,j,l)\) with \(t = 2^{e-1} + 1 \), i.e., \(\sigma(\alpha) = \alpha^{2^{e-1}+1} \beta^{2^e} \) for some \(\beta \in L \). So, \(\alpha = \varphi N_{L/F}(\gamma)\eta^2/\gamma^{2e-1} \), where \(\gamma \in L^* \), \(\eta \in F \cup \sqrt{aF} \) and

\[
\varphi = \begin{cases}
1, & \text{if } r \equiv 1, -1, \text{ or } 2^{e-1} - 1 \mod 2^e, \\
1 \text{ or } \zeta, & \text{if } r \equiv 2^{e-1} + 1 \mod 2^e.
\end{cases}
\]

(1) Suppose \(r \equiv 2^{e-1} + 1 \mod 2^e \) (so \(j \equiv 1 \mod 2^e \)). Then,
(a) \(\text{Gal}(M/F) \cong \mathbb{Z}/2^{e+1} \mathbb{Z} \) if and only if \(\varphi = \zeta, \) if and only if \(N_{L/F}(\alpha) \in aF^2 \).

(b) \(\text{Gal}(M/F) \cong \mathbb{Z}/2^e \mathbb{Z} \times \mathbb{Z}/2 \mathbb{Z} \) if and only if \(\varphi = 1, \) if and only if \(N_{L/F}(\alpha) \in F^2 \).

(2) Suppose \(r \equiv 2^{e-1} - 1 \mod 2^e \) (so \(j \equiv -1 \mod 2^e \)). Then,
(a) \(\text{Gal}(M/F) \cong D_{2^e} \) if and only if \(\eta \in F \).

(b) \(\text{Gal}(M/F) \cong Q_{2^{e+1}} \) if and only if \(\eta \in \sqrt{aF} \).

Proof. The description of \(\alpha \) is given in Proposition 4.10. We have \(\frac{t^2 - 1}{2^e} = 2^{e-2} + 1 \) and \(\alpha = \varphi N_{L/F}(\gamma)\eta^2/\gamma^{2e-1} \). Equation (1) in the proof of Proposition 4.10 shows that \(\sigma(\alpha)/\alpha = (\alpha(\beta)^2)^{2e-1} \), where \(\beta = \gamma^{2e-2} / (\sigma(\gamma)\eta) \). Thus, we may let \(\beta = \beta' \) here. Let \(\rho = \alpha(\beta^{-1})/2^e \sigma(\beta) \). By Theorem 3.4(3), \(\rho = \zeta^l \), where \(l_1 \equiv l \mod \text{gcd}(j + 1, 2^e) \). Now, \(\alpha\beta^2 = \varphi\gamma/\sigma(\gamma) \), which yields

\[
\rho = (\alpha\beta^2)^{2e-2} \alpha N_{L/F}(\beta) = \varphi^{2e-2+1}\eta/\sigma(\eta).
\]

Note that since \(\eta^2 \in F \), we have \(\eta/\sigma(\eta) = \pm 1 \in \langle \zeta^2 \rangle \). Also, the formula for \(\alpha \) shows that \(N_{L/F}(\alpha) \in N_{L/F}(\varphi)F^2 \).

For (1), suppose \(r \equiv 2^{e-1} + 1 \mod 2^e \). Then, as \(t \equiv jr \mod 2^e \), we have \(j \equiv 1 \mod 2^e \). So, \(\rho = \varphi^{2e-2+1}\eta/\sigma(\eta) \in \varphi\langle \zeta^2 \rangle \). We have \(\text{Gal}(M/F) \cong \mathbb{Z}/2^e \mathbb{Z} \times \mathbb{Z}/2 \mathbb{Z} \) just when \(l \) is even, which (since \(\varphi = 1 \) or \(\zeta \)) occurs just when \(\varphi = 1 \). In this case, \(N_{L/F}(\alpha) \in F^2 \). The only other possibility
is that \(\text{Gal}(M/F) \cong \mathbb{Z}/2^{e+1}\mathbb{Z} \), which occurs just when \(l \) is odd, so just when \(\varphi = \zeta \). Since \(\sigma(\zeta) = -\zeta \) and \(-1 \in F^2\) by Proposition 4.8, we have \(\zeta^2F^2 = aF^2 = -aF^2 \). Thus, when \(\varphi = \zeta \) we have \(N_{L/F}(\alpha) \in N_{L/F}(\varphi)F^2 = -\zeta^2F^2 = aF^2 \not\in F^2 \).

For (2), suppose \(r \equiv 2^{e-1} - 1 \mod 2^e \). Then, \(j \equiv -1 \mod 2^e \) and \(\varphi = 1 \), so \(\rho = \eta/\sigma(\eta) = \pm 1 \). We have \(\text{Gal}(M/F) \cong D_{2e} \) just when \(l = 0 \mod 2^e \), which occurs just when \(\rho = 1 \); this occurs just when \(\sigma(\eta) = \eta, i.e., \eta \in F \). The only other possibility is that \(\text{Gal}(M/F) \cong Q_{2e+1} \), which occurs just when \(l \equiv 2^{e-1} \mod 2^e \). This holds just when \(\rho = -1 \), i.e., \(\sigma(\eta) = -\eta \), i.e., \(\eta \in \sqrt{a}F \). \(\square \)

Proposition 6.2. Suppose \(M = L(\alpha^{1/2^e}) \) is a Galois extension of \(F \) of degree \(2^{e+1} \) \((e \geq 3) \) that realizes \((G,j,l) \) with \(t = 2^{e-1} - 1 \), i.e., \(\sigma(\alpha) = \alpha^{2^{e-1}-1}\beta^{2^e} \). So, \(\alpha = \theta c^{2^{e-2}+1}/\gamma^2 \) where \(\gamma \in L^*, N_{L/F}(\gamma) = \pm c, \) and

\[
\theta = \begin{cases}
1, & \text{if } r \equiv 1, -1, \text{ or } 2^{e-1} + 1 \mod 2^e, \\
1 \text{ or } \zeta, & \text{if } r \equiv 2^{e-1} - 1 \mod 2^e.
\end{cases}
\]

(1) Suppose \(r \equiv 2^{e-1} - 1 \mod 2^e \) (so \(j \equiv 1 \mod 2^e \)). Then,

(a) \(\text{Gal}(M/F) \cong \mathbb{Z}/2^{e+1}\mathbb{Z} \) if and only if \(\theta = \zeta \), if and only if \(N_{L/F}(\alpha) \in -F^2 \).

(b) \(\text{Gal}(M/F) \cong \mathbb{Z}/2^e\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \) if and only if \(\theta = 1 \), if and only if \(N_{L/F}(\alpha) \in F^2 \).

(2) Suppose \(r \equiv 2^{e-1} + 1 \mod 2^e \) (so \(j \equiv -1 \mod 2^e \)). Then,

(a) \(\text{Gal}(M/F) \cong D_{2e} \) if and only if \(N_{L/F}(\gamma) = c \).

(b) \(\text{Gal}(M/F) \cong Q_{2e+1} \) if and only if \(N_{L/F}(\gamma) = -c \).

Proof. The proof is very similar to the proof of Proposition 6.1. The description of \(\alpha \) is given in Proposition 4.11. Since \(\alpha = \theta c^{2^{e-2}+1}/\gamma^2 \), the first paragraph of the proof of Proposition 4.11 shows that we can take \(\beta = \gamma/c^{2^{e-3}} \). Let \(\rho = \alpha^{(t^2-1)/2^e}\beta^t\sigma(\beta) = \zeta^{l_1} \), where \(l_1 \equiv l \mod \gcd(j + 1, 2^e) \). Since \((t^2 - 1)/2^e = 2^{e-2} - 1 \) and \(\alpha\beta^2 = \theta \), we have

\[
\rho = (\alpha\beta^2)^{2^{e-2}} \sigma(\beta)/(\alpha\beta) = \theta^{2^{e-2} - 1} N_{L/F}(\gamma)/c.
\]

The rest of the proof is left to the reader. \(\square \)

In Propositions 6.1 and 6.2 it was assumed that \([L(\alpha^{1/2^e}) : L] = 2^e \). The next three results will allow us to identify when this occurs.

Lemma 6.3. If \(r \equiv 2^{e-1} \pm 1 \mod 2^e \), \(e \geq 3 \), and \(c \in F^* \), then \(\zeta c \notin L^2 \).

Proof. First assume that \(r \equiv 2^{e-1} + 1 \mod 2^e \). If \(\zeta c \in L^2 \), then \(N_{L/F}(\zeta) \in F^2 \), but we saw in the proof of Proposition 6.1 that \(N_{L/F}(\zeta) \in aF^2 \not\in F^2 \). Hence, \(\zeta c \notin L^2 \).
Now assume that $r \equiv 2^{e-1} - 1 \mod 2^e$. Proposition 4.8 implies that $L = F(\sqrt{-1})$. Now Proposition 4.9(2) implies that $\zeta \notin F \cdot L^2$ and thus $\zeta c \notin L^2$.

\textbf{Corollary 6.4.} Let $\zeta = \varphi N_{L/F}(\gamma)\eta^2/\gamma^{2e-1}$ as in Propositions 4.10 and 6.1. Then $[L(\alpha^{1/2^e}) : L] = 2^e$ if and only if $\alpha \notin L^2$; which holds if and only if $\varphi = \zeta$ or $N_{L/F}(\gamma) \notin F \cap L^2 = F^2 \cup aF^2$.

\textbf{Proof.} Since $-1 \in L^2$, it is standard that $[L(\alpha^{1/2^e}) : L] = 2^e$ if and only if $\alpha \notin L^2$, see, e.g., [L], Theorem 9.1, p. 297. The formula for α shows that this is equivalent to: $\varphi N_{L/F}(\gamma) \notin L^2$. This holds if $\varphi = \zeta$ by Lemma 6.3, since then $r \equiv 2^{e-1} + 1 \mod 2^e$; if $\varphi = 1$, this holds just when $N_{L/F}(\gamma) \notin L^2 \cap F$.

\textbf{Corollary 6.5.} Let $\zeta = \theta c^{2^e-2+1}/\gamma^{2}$ as in Propositions 4.11 and 6.2. Then, $[L(\alpha^{1/2^e}) : L] = 2^e$ if and only if $\alpha \notin L^2$, which holds if and only if $\theta \approx \zeta$ or $c \notin F \cap L^2 = F^2 \cup aF^2$.

\textbf{Proof.} The formula for α shows that $\alpha \notin L^2$ just when $\theta c \notin L^2$. The rest of the proof is analogous to the proof of Corollary 6.4. \qed

\textbf{References}

[D\textsubscript{2}] \textit{Sur l’existence de certaines 2-extensions galoisiennes non abéliennes d’un corps \(\mathbb{K} \) de caractéristique différente de 2, cycliques sur une extension quadratique de \(\mathbb{K} \),} C.R. Acad. Sci. Paris, 274 (1972), 441-443, MR 47 #3349, Zbl 0247.12006.

Received October 10, 2002 and revised December 26, 2002. The first author was supported by BK-21 and a Korea University grant.

DEPARTMENT OF MATHEMATICS
KOREA UNIVERSITY
SEOUl 136-701
KOREA
E-mail address: yhwang@semi.korea.ac.kr

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF KENTUCKY
LEXINGTON, KY 40506-0027
E-mail address: leep@ms.uky.edu

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA
SAN DIEGO, CA 92093-0112
E-mail address: arwadsworth@ucsd.edu