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Let R and S be arbitrary associative rings. A left R-module
RW is said to be cotilting if the class of modules cogenerated
by RW coincides with the class of modules for which the func-
tor Ext1R(−, W ) vanishes. In this paper we characterize the
cotilting modules which are pure-injective. The two notions
seem to be strictly connected: Indeed all the examples of
cotilting modules known in the literature are pure-injective.
We observe that if RWS is a pure-injective cotilting bimodule,
both R and S are semiregular rings and we give a characteri-
zation of the reflexive modules in terms of a suitable “linear
compactness” notion.

Introduction.

Cotilting modules first appeared as vector space duals of tilting modules
over finite dimensional algebras [12, IV, 7.8]. Recently they have been
introduced [5] in the framework of modules over arbitrary associative rings,
acquiring a proper independent role. The cotilting modules generalize the
notion of injective cogenerator: They are injectives with respect to short
exact sequences of modules cogenerated by them.

For arbitrary rings R and S, a Morita duality between left R-modules and
right S-modules is given by the contravariant Hom functors associated to
a Morita bimodule, i.e., a faithfully balanced bimodule RWS with RW and
WS both injective cogenerators. One of the major component in the theory
of Morita dualities is Müller’s theorem [13] which states that the reflexive
modules are precisely the linearly compact modules. If RWS is a Morita
bimodule, both R and S are semiperfect rings [16, Theorem 2.7].

For arbitrary rings R and S, a cotilting duality between left R-modules
and right S-modules is given by the contravariant Hom functors and the
contravariant Ext functors associated to a cotilting bimodule, i.e., a faith-
fully balanced bimodule RWS with both RW and WS cotilting modules (see
[4]).

All known examples of cotilting modules are pure-injective. In this paper
we characterize the pure-injective cotilting modules. We observe that if
RWS is a pure-injective cotilting bimodule, both R and S are semiregular
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rings and we give a characterization of the reflexive modules in terms of a
suitable “linear compactness” notion.

1. About the pure-injectivity of a cotilting module.

Let R be an associative ring with 1 6= 0. We denote by R-Mod the category
of left unitaryR-modules and their homomorphisms. Given a left R-module
W , we consider the following classes:

• CogenW denotes the class of all left R-modules cogenerated by RW ,
that is all M in R-Mod such that there exist a cardinal λ and a
monomorphism M ↪→W λ;
• ⊥W denotes the class of all left R-modules M such that Ext1R(M,W ) =

0.

A left R-module RW is said to be cotilting [5] if Cogen RW = ⊥W . The
cotilting modules generalize injective cogenerators: Clearly RW is an injec-
tive cogenerator if and only if both the classes Cogen RW and ⊥W coincide
with the whole category of left R-modules. A short exact sequence

0→ K → L→M → 0

is said to be pure if any morphism P → M , with P finitely presented, lifts
to a morphism P → L.

Definition 1.1. A module RW is pure-injective if it is injective with respect
to any pure exact sequence.

All known examples of cotilting modules are pure-injective. It naturally
arises the question how the two notions are related.

Proposition 1.2. Let RW be a cotilting module. If the class CogenW is
closed under direct limits, then W is pure-injective.

Proof. Let us show that for any pure exact sequence 0→ A→ B → C → 0
and for any map f : A → W there exists a map g making the following
diagram commute:

0 // A
� � ∗ //

f

��

B //

g~~

C // 0.

W

Replacing A
∗

↪→ B by A/ RejW A
∗

↪→ B/RejW A,we can assume that RejW A
= 0. The pure exact sequence 0→ A→ B → C → 0 is a direct limit of split
exact sequences 0 → A → Bi → Ci → 0 with Ci finitely presented (cf. 34.2
[14]). For each index i we have the commutative diagram with exact rows
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and columns:

RejW Bi
∼= //

� _

��

RejW Ci� _

��
0 // A // Bi

//

����

Ci
//

����

0

0 // A // Bi/ RejW Bi
// Ci/ RejW Ci

// 0.

Applying the direct limit functor we get

lim−→RejW Bi
∼= //

� _

��

lim−→RejW Ci� _

��
0 // A // B //

����

C //

����

0

0 // A // lim−→(Bi/ RejW Bi) // lim−→(Ci/ RejW Ci) // 0.

Since lim−→RejW Bi is in the kernel of Hom(−,W ) and lim−→(Bi/ RejW Bi) be-
longs to CogenW by the assumption, we infer that lim−→(Bi/ RejW Bi) ∼=
B/RejW B. Also lim−→(Ci/ RejW Ci) belongs to CogenW = ⊥W . So f can
be extended to a morphism g′ : B/RejW B →W ; the composition of g′ with
the canonical projection B → B/RejW B yields the desired map g. �

In the cotilting case, since CogenW = ⊥W , the hypothesized closure
under direct limits of the class of modules cogenerated by W is suggested
by the following proposition:

Proposition 1.3. If RW is a pure-injective module, then ⊥
RW is closed un-

der direct limits.

Proof. Consider a direct system {Mi : i ∈ I} in ⊥W . The canonical exact
sequence

0→ K → ⊕i∈IMi → lim−→ i∈IMi → 0
is pure (cf. [14, 33.9, (2)]). Applying HomR(−,W ) we get the long exact
sequence

· · · → Hom(⊕i∈IMi,W )
f→ Hom(K, W )→ Ext1R(lim−→ i∈IMi,W )→

→ Ext1R(⊕i∈IMi,W ) = 0.

Since W is pure-injective, f is surjective; so lim−→ i∈IMi belongs to ⊥W . �

This result has been used in [9, Lemma 9] to prove that, if C is a class
of pure-injective modules, every module M which has a ⊥C-precover has a
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⊥C-cover (see [15] for an extensive introduction to theory of (pre)covers and
(pre)envelopes of modules, including various recent results).

Corollary 1.4. If RW is a cotilting module, then W is pure-injective if and
only if CogenW is closed under direct limits. In such a case any module
has a CogenW -cover.

Proof. The first claim follows by Propositions 1.2 and 1.3. The second one
follows by [1, Corollary 2.6]. �

Open Problem 1.5. Are all cotilting (bi)modules pure-injective?1

It is well-known that the endomorphism rings of a Morita bimodule are
semiperfect; indeed a Morita bimodule is injective and finitely cogenerated
on both sides (see [16, Theorem 2.7, Proposition 1.19]). We are able to
give an analogous result for cotilting bimodules, assuming the closure under
direct limits of the classes cogenerated by them. We recall that a ring R
is said to be semiregular if R/J(R) is regular and the idempotents lift over
the Jacobson radical J(R).

Proposition 1.6. Let RWS be a pure-injective cotilting bimodule, i.e., faith-
fully balanced and cotilting and pure-injective on both sides. Then both R
and S are semiregular rings.

Proof. The notions of pure-injective and algebraically compact module co-
incide (cf. [14, 34.4]). Then, by [17, Theorem 9], R and S are both semireg-
ular. �

Remark 1.7. Observe that if the ring R is regular, the classes of pure-
injective and of injective R-modules coincide [14, 37.6]. Therefore pure-
injective cotilting bimodules which are not Morita bimodules “live in the
space between semiregular and regular rings”.

2. Characterizing the reflexive modules.

Let RWS be an arbitrary bimodule. In the sequel we denote by ∆ the
functors Hom?(−,W ), and by Γ the functors Ext1?(−,W ), where ? stands
for R or S. We denote by ∆2 both the compositions HomR(HomS(−,W ),W )
and HomS(HomR(−,W ),W ). Given a (left R, or right S)-module M , we
denote by δM the canonical homomorphism M → ∆2(M) defined by m 7→
[f 7→ f(m)]. A module M is called reflexive (resp. torsionless) if δM is an
isomorphism (resp. monomorphism).

Clearly a torsionless module M is reflexive if and only if the evaluation
map δM is surjective. Endowed M and ∆2M with any topology, the surjec-
tivity of δM can be tested in a topological way asking for Im δM to be both
dense and closed in ∆2M . As the approach of Müller [13] to the classical

1Recently Silvana Bazzoni proved that any cotilting module is pure-injective [2].
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case of Morita dualities suggests, we introduce topological tools in order to
characterize the reflexive modules.

Let us endow ∆2M with the finite topology ϕ: The linear topology for
which the family of submodules V (F ) = {α ∈ ∆2M : α(F ) = 0}, where F
is a finite subset of ∆M , is a base for the filter of neighbourhoods of zero.

Let us endow W with the discrete topology. Given any torsionless module
M , we associate with each subset A of ∆M the weak topology with respect to
morphisms in A, denoted by τA. By definition τA is the coarsest topology on
M such that all morphisms in A are continuous: It is a linear topology with
a base for its filter of neighbourhoods of zero formed by finite intersections of
kernels of morphisms in A. In the sequel the topology τ∆M will be shortly
denoted by τ . Note that τ is the maximum element of the set of linear
topologies {τA : A ⊆ ∆M} partially ordered by inclusion. Let Lσ be a
linearly topologized module. Denote by H the σ-closure of zero in L. Note
that H is equal to the intersection of all neighbourhoods of zero and, since
σ is a linear topology, σ is Hausdorff if and only if H = 0. A σ-Cauchy
net in L is a family Xλ, λ ∈ Λ, indexed by the upwards directed partially
ordered set Λ, such that for every neighbourhood U of zero there exists an
upper subset Λ′ of Λ with xλ − xλ′ ∈ U for every λ, λ′ ∈ Λ′. The topology
σ is complete, i.e., any σ-Cauchy net in L converges in L, if and only if
the topological quotient L/H is complete (see [3, Chap. 3, §2]). Note that a
closed submodule of a complete module is complete. The completion of L/H
is called the Hausdorff completion of L: Denoted by J = {Jλ : λ ∈ Λ} a base
for the filter of neighbourhoods of zero in Lσ consisting of open submodules,
it coincides with the inverse limit lim←−L/Jλ (see [10, Proposition 13.7]).

Proposition 2.1. Let M be a torsionless module.
(i) The topologies τ on M and ϕ on ∆2M are Hausdorff.
(ii) δM : Mτ → ∆2Mϕ is a topological embedding.
(iii) The topology ϕ on ∆2M is complete.

Proof. (i) Since M is cogenerated by W , there exists a set X and the fol-
lowing maps:

M
i

↪→WX πx→W.

Clearly {0} is the intersection of Ker(πx ◦ i), x ∈ X. Since any Ker(πx ◦ i) is
τ -open and hence τ -closed, τ is Hausdorff. Let us consider the topology ϕ.
The open submodules V (F ) = {α ∈ ∆2M : α(F ) = 0}, with F finite subset
of ∆M , have intersection zero: Hence ϕ is Hausdorff.

(ii) It follows from the fact that for any finite subset F of ∆M we have

V (F ) ∩ δM (M) = {δM (m) : f(m) = 0 ∀ f ∈ F} = δM (∩f∈F Ker f).

(iii) The topological module ∆2Mϕ is a closed submodule of W∆M en-
dowed with the product of the discrete topologies. Since the product of
complete topologies is also complete, we can conclude. �
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Corollary 2.2. Each reflexive module M endowed with the topology τ is
complete.

Proof. If M is reflexive, δM is an isomorphism. Therefore, by Proposi-
tion 2.1, (ii), it is a topological isomorphism. We conclude by Proposi-
tion 2.1, (iii). �

Proposition 2.3. For a torsionless module M the following statements are
equivalent:

(i) M is reflexive.
(ii) τ is a complete topology and δM (M) is dense in ∆2Mϕ.

Proof. (i) ⇒ (ii): It follows by Corollary 2.2.
(ii) ⇒ (i): Since τ is complete, by Proposition 2.1 δM (M) is a complete,

and hence closed, topological submodule of ∆2Mϕ. Being δM (M) dense in
∆2Mϕ and ϕ an Hausdorff topology, δM is an isomorphism. �

As suggested by Müller [13] in the case of Morita dualities, we look for
a suitable notion of compactness for a module M in order to guarantee the
completeness of the topology τ on M .

Note that δM (M) is dense in ∆2Mϕ if and only if for each α in ∆2M and
f1, . . . , fn in ∆M there exists m in M such that α(fi) = fi(m) for each
i = 1, . . . , n. Following [11], a module M satisfying the above property will
be called W -dense.

Definition 2.4. Let M be a torsionless left R-module. A submodule K of
M is called W -closed if M/K is torsionless (see [11, §2]). A linear topology
on M is said to be a W -topology if it has a basis of neighbourhoods of zero
consisting of W -closed submodules.

Each W -closed submodule K of M is closed in Mτ . Indeed, for a suitable
set X, there exist the following maps:

M
π→M/K

i
↪→WX πx→W.

Then, K =
⋂

x∈X Ker(πx ◦ i ◦ π) is closed, since it is an intersection of open
and hence closed submodules. The converse is not true in general.

Example 2.5. Let R denote the k-algebra given by the quiver 1→ 2→ 3.
It is easy to verify that RRR is a cotilting bimodule. Consider the projective
R-module P (2). The topology τ∆P (2) is discrete since P (2) embeds in RR.
Therefore each submodule of P (2), in particular the simple module S(3),
is closed. Nevertheless S(3) is not a R-closed submodule of P (2), since
P (2)/S(3) ∼= S(2) is not cogenerated by RR.

Definition 2.6. A left R-module M is said to be W -linearly compact (see
[11, §3]), briefly W -lc, (resp. HW -linearly compact, briefly HW -lc) if it is
complete in any W -topology (resp. in any Hausdorff W -topology).
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Analogously to the usual linear compactness, a left R-module M is W -
linear compact if and only if any finitely solvable system of congruences
x ≡ xλ mod Mλ, where {Mλ : λ ∈ Λ} is a downwards directed collection
of W -closed submodules of M , is solvable. Similarly a module M is HW -
linearly compact if and only if it satisfies the previous condition restricted
to downwards directed collections of W -closed submodules of M with inter-
section equal to zero.

Proposition 2.7. Let RM be a torsionless left R-module. If M is HW -
linearly compact, then M is complete in the topology τ .

Proof. Since the intersection of the kernels of a finite number of elements
of ∆M is a W -closed submodule of M , τ is a W -topology. Since M is
torsionless, by Proposition 2.1 the topology τ is Hausdorff. Since M is
HW -lc, τ is complete. �

Corollary 2.8. Let RM be a torsionless left R-module. If M is HW -
linearly compact and W -dense, then M is reflexive.

Proof. It follows by Propositions 2.3 and 2.7. �

We can obtain a more precise result for cotilting bimodules.

Theorem 2.9. Let RWS be a cotilting bimodule. For a torsionless left R-
module M the following statements are equivalent:

(a) M is HW -linearly compact and W -dense.
(b) M is reflexive and τ is the unique Hausdorff topology among those

induced by subsets of ∆M .

Proof. (a⇒ b): By Corollary 2.8 we only have to prove that τ is the unique
Hausdorff topology induced by subsets of ∆M . Since τ is the maximum
element in {τA : A ⊆ ∆M}, it is sufficient to prove that if τA is Hausdorff,
then τ is coarser than τA and hence τA = τ .

Let F be a finite subset of A. We denote by fF : M →WF the diagonal
morphism. Let MF :=

⋂
f∈F Ker f = Ker fF and NF := M/MF . By [4,

Proposition 5] both the left R-modules MF and NF are reflexive. We call
πF the induced map M → NF . Since {MF : F ⊆ A, F finite} is a base
for the filter of τA-neighbourhoods of zero consisting of open submodules,
lim←−NF is the Hausdorff completion of M endowed with the topology τA.

But, since τA is an Hausdorff W -topology and, by hypothesis, M is HW -
lc, τA is complete. Thus M ∼= lim←−NF .

Applying the functors ∆ and lim−→ to the exact sequences

0→MF →M
πF→ NF → 0

we get the exact sequence of right S-modules

0 // lim−→∆NF

lim−→∆(πF )
//∆M // lim−→∆MF //0(∗)
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Now ∆(lim−→∆(πF )) ∼= lim←−∆2(πF ) ∼= lim←−πF is an isomorphism. Then, from
the exact sequence

0→ ∆ lim−→∆MF // ∆2M
∆(lim−→∆(πF ))

// ∆ lim−→∆NF // Γ lim−→∆MF → 0,

we get lim−→∆MF belongs to Ker ∆ ∩Ker Γ = 0. Hence ∆M ∼= lim−→∆NF .
Let now g be in ∆M . Since g belongs to ∆(πF )(∆(NF )) for some finite

subset F of A, there exists a morphism h : NF → W such that g = h ◦ πF .
Then since Ker g ⊇ Ker πF =

⋂
f∈F Ker f , Ker g is τA-open. Therefore τ is

coarser than τA.
(b ⇒ a): We only have to prove that M is HW -lc. Let σ be a Hausdorff

W -topology on M . By definition σ has a basis B for the filter of neighbour-
hoods of zero consisting of W -closed submodules; since σ is Hausdorff, the
intersection of elements in B is equal to zero. Observe that any element V
of B is the intersection of the kernels of a (not necessarily finite) subset AV

of ∆M . Let A the union ∪V ∈BAV . If f belongs to AV , Ker f contains V
and hence it is σ-open. Therefore the topology τA is coarser than σ. Since

∩f∈A Ker f = ∩V ∈BV = {0},
0 is a closed subset of MτA , i.e., τA is Hausdorff. By hypothesis τA = τ
and, since M is reflexive, by Proposition 2.3 τA is complete. By [3, Propo-
sition III.3.10], also the topology σ is complete. �

Lemma 2.10. Let RWS be a cotilting bimodule with CogenWS closed under
direct limits. Let M be a reflexive left R-module. Then τ is the unique
Hausdorff topology among those induced by subsets of ∆M .

Proof. We can follow the first two paragraphs of the proof of Theorem 2.9,
(a⇒ b). Applying the functors ∆ and lim−→ to the exact sequence

0→MF →M
πF→ NF → 0

we get the exact sequence

0→ lim−→∆NF

lim−→∆(πF )
//∆M // lim−→∆MF → 0

of right S-modules. Observe that lim−→∆ MF again belongs to Ker Γ =
CogenW since, by hypothesis, CogenW is closed under direct limits. More-
over

∆ lim−→∆MF
∼= lim←−∆2MF

∼= lim←−MF = ∩f∈A Ker f = 0.

Therefore, since Ker∆ ∩ Ker Γ = 0, we get lim−→∆MF = 0. Hence ∆M ∼=
lim−→∆NF . We can thus conclude following the last paragraph of the proof
of Theorem 2.9, (a ⇒ b). �

Thus we obtain the characterization of reflexive modules for pure-injective
cotilting bimodules.
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Theorem 2.11. Let RWS be a pure-injective cotilting bimodule. For a tor-
sionless module M the following are equivalent:

(a) M is reflexive.
(b) M is HW -linearly compact and W -dense.
(c) M is W -linearly compact and W -dense.

Proof. (c ⇒ b ⇒ a): They follow by Definition 2.6 and by Theorem 2.9.
(a ⇒ c): Trivially M is W -dense. Let σ be a W -topology on M and let

H ≤ M be the τ -closure of zero. Since H is a W -closed submodule of M ,
M/H is reflexive (see [4, Proposition 5]). By Theorem 2.9 and Lemma 2.10
M/H is HW -lc and hence complete endowed with the quotient topology of
τ . Therefore Mτ is complete. �

In [13] Müller proved that if RWS is a Morita bimodule, a module M
is reflexive if and only if it is linearly compact in the discrete topology
if and only if it is complete in any Hausdorff linear topology. In such a
case W cogenerates the whole category of modules, hence any submodule
is W -closed. Therefore the notions of W -linear compactness, of HW -linear
compactness and of linear compactness in the discrete topology coincide. In
our setting a density condition comes out. Let us better investigate its role.

Proposition 2.12. Let RWS be a bimodule such that CogenWS ⊆ Ker Γ. A
left R-module M is W -dense if and only if Im(f) is a reflexive left R-module
for every f ∈ HomR(M,Wn), (n ∈ N).

Proof. Let us consider for each f in Hom(M,Wn), n ∈ N, the following
commutative diagram of linearly topologized modules and continuous mor-
phisms:

Mτ
f //

δM

��

εf

&& &&LLLLLLLLLL Wn

Im fτ∆ Im f

δIm f

��

, �

99tttttttttt

∆2Mϕ

∆2εf // ∆2 Im fϕ′

where ϕ′ is the finite topology on ∆2 Im f . Since Im f ≤ Wn, τ∆Im f is the
discrete topology; in particular it is complete.

Suppose that M is W -dense. Applying ∆ to the exact sequence 0 →
Ker f → M

εf→ Im f → 0, we get the exact sequence 0 → ∆ Im f
∆(εf )
→

∆M → C → 0 with C in CogenWS . Since Cogen WS ⊆ Ker Γ, ∆2(εf ) is
an epimorphism. Therefore, the W -density of M implies the W -density of
Im f . By Proposition 2.3, Im f is reflexive.
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Conversely, let f1, . . . , fn be in ∆M . We denote by f : M → Wn

their diagonal morphism, m 7→ (f1(m), . . . , fn(m)), and by µf ◦ εf the usual
factorization of f through Im f . Since Im f is reflexive, for each α in ∆2M
there exists mα in M such that

∆2(εf )(α) = δIm f (f(mα)).

In particular, denoted by pi : Im f →W the i-th projection, we have

(∆2(εf )(α))(pi) = α(∆(εf ))(pi) = α(pi ◦ εf ) = α(fi)

(δIm f (f(mα))(pi) = pi(f(mα)) = fi(mα);
therefore α and δM (mα) coincide on f1, . . . , fn. Therefore M is W -dense.

�

If RWS is a Morita bimodule, then the class of reflexive modules contains
W and it is closed under submodules and finite direct sums. Therefore the
W -density condition is always satisfied: Any module M is W -dense. This
is not the case for cotilting bimodules.

Example 2.13. Let k be an algebraically closed field. Denote by A the
generalized Kronecker algebra of dimension ℵ0 over k given by the quiver

1 //::CC HH2

...

with a countable set of arrows from 1 to 2, i.e., the ring of lower triangular
matrices (

k 0
V k

)
=

{(
a 0
v b

)
: a, b ∈ k, v ∈ V

}
where V is a k-vector space of dimension ℵ0 (see [7, 8]). Then, by [8, Lemma
2.2], A is a hereditary, coherent and perfect ring. It is easily verified that
AAA is a cotilting bimodule and Cogen(A) consists of projective modules,
while Ker(∆) contains exactly the modules without projective direct sum-
mands. The reflexive modules coincide with the finitely generated projective
modules [8, Lemma 2.3]. Denote by e1, e2 the primitive idempotents, i.e.,

e1 =
(

1 0
0 0

)
, e2 =

(
0 0
0 1

)
. Let Pi = Aei and Qi = eiA, i = 1, 2. The

socle S of P1 is isomorphic to P
(ℵ0)
2 ; therefore it is a not reflexive submodule

of A. By Proposition 2.12, S is not A-dense.

In [6, Definition 1.2] Colpi and Fuller introduced the W -torsionless linear
compactness, a generalization of the notion of linear compactness with re-
spect to the torsion theories associated to a cotilting bimodule RWS . They
prove that if a module is W -torsionless linearly compact, then it is reflexive,
i.e., (see Proposition 2.3) τ is a complete topology and M is W -dense.
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Our notion of W -linear compactness is strong enough to assure the com-
pleteness, but to obtain the ∆-reflexivity we need to assume explicitly the
W -density. Assuming RW and WS pure-injective (as in all examples known
in the literature), these two notions together completely characterize the
classes of reflexive modules. The notion of W -torsionless linear compact-
ness is too strong to characterize the classes of reflexive modules in the
general case; this happens if and only if the classes of reflexive left R- and
right S- modules are closed under submodules [6, Corollary 1.9]. Observe
that in this case, by Proposition 2.12, any module is W -dense. Adding the
hypotheses of both the contexts we get:

Corollary 2.14. Let RWS be a pure-injective cotilting bimodule. Assume
the classes of reflexive left R- and right S- modules being closed under sub-
modules. For a module M , the following statements are equivalent:

(a) M is reflexive;
(b) M is W -torsionless linearly compact;
(c) M is W -linearly compact.
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