Vol. 213, No. 1, 2004

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
On surfaces of prescribed F-mean curvature

Ulrich Clarenz and Heiko von der Mosel

Vol. 213 (2004), No. 1, 15–36
Abstract

Hypersurfaces of prescribed weighted mean curvature, or F-mean curvature, are introduced as critical immersions of anisotropic surface energies, thus generalizing minimal surfaces and surfaces of prescribed mean curvature. We first prove enclosure theorems in n+1 for such surfaces in cylindrical boundary configurations. Then we derive a general second variation formula for the anisotropic surface energies generalizing corresponding formulas of do Carmo for minimal surfaces, and Sauvigny for prescribed mean curvature surfaces. Finally we prove that stable surfaces of prescribed F-mean curvature in 3 can be represented as graphs over a planar strictly convex domain Ω, if the given boundary contour in 3 is a graph over Ω.

Milestones
Received: 30 September 2002
Published: 1 January 2004
Authors
Ulrich Clarenz
Fachbereich Mathematik
Universität Duisburg-Essen
Lotharstraße 65
47047 Duisburg
Germany
Heiko von der Mosel
Mathematisches Institut
Universität Bonn
Beringstraße 1
53115 Bonn
Germany