Vol. 213, No. 1, 2004

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Melnikov functions for period annulus, nondegenerate centers, heteroclinic and homoclinic cycles

Weigu Li, Jaume Llibre and Xiang Zhang

Vol. 213 (2004), No. 1, 49–77
Abstract

We give sufficient conditions in terms of the Melnikov functions in order that an analytic or a polynomial differential system in the real plane has a period annulus.

We study the first nonzero Melnikov function of the analytic differential systems in the real plane obtained by perturbing a Hamiltonian system having either a nondegenerate center, a heteroclinic cycle, a homoclinic cycle, or three cycles obtained connecting the four separatrices of a saddle. All the singular points of these cycles are hyperbolic saddles.

Finally, using the first nonzero Melnikov function we give a new proof of a result of Roussarie on the finite cyclicity of the homoclinic orbit of the integrable system when we perturb it inside the class of analytic differential systems.

Milestones
Received: 10 May 2001
Revised: 2 May 2002
Published: 1 January 2004
Authors
Weigu Li
Department of Mathematics
Peking University,
Beijing 100871
P.R. China
Jaume Llibre
Departament de Matemàtiques
Universitat Autònoma de Barcelona
08193 – Bellaterra, Barcelona
Spain
Xiang Zhang
Department of Mathematics
Shanghai Jiaotong University
Shanghai 200030
P.R. China