SYMMETRIES OF REAL CYCLIC \(p\)-GONAL RIEMANN SURFACES

ANTONIO F. COSTA AND MILAGROS IZQUIERDO

A closed Riemann surface \(X\) which can be realised as a \(p\)-sheeted covering of the Riemann sphere is called \(p\)-gonal, and such a covering is called a \(p\)-gonal morphism. A \(p\)-gonal Riemann surface is called real \(p\)-gonal if there is an anticonformal involution (symmetry) \(\sigma\) of \(X\) commuting with the \(p\)-gonal morphism. If the \(p\)-gonal morphism is a cyclic regular covering the Riemann surface is called real cyclic \(p\)-gonal; otherwise it is called real generic \(p\)-gonal. The species of the symmetry \(\sigma\) is the number of connected components of the fixed point set \(\text{Fix}(\sigma)\) and the orientability of the Klein surface \(X/\langle \sigma \rangle\). In this paper we find the species for the possible symmetries of real cyclic \(p\)-gonal Riemann surfaces by means of Fuchsian and NEC groups.

1. Introduction.

A closed Riemann surface \(X\) which can be realised as a \(p\)-sheeted covering of the Riemann sphere is called \(p\)-gonal, and such a covering is called a \(p\)-gonal morphism. The \(p\)-gonal Riemann surfaces have been extensively studied, see [1], [2], [6], [8], [9], [12] and [13]. A \(p\)-gonal Riemann surface is called real \(p\)-gonal if there is an anticonformal involution (symmetry) \(\sigma\) of \(X\) commuting with the \(p\)-gonal morphism.

Let \(X_g\) be a real \(p\)-gonal Riemann surface of genus \(g \geq 2\). A symmetry \(\sigma\) of \(X_g\) is an anticonformal involution of \(X_g\). The topological type of a symmetry is determined by the number of connected components, called ovals, of the fixed-point set \(\text{Fix}(\sigma)\) and the orientability of the Klein surface \(X/\langle \sigma \rangle\). We say that \(\sigma\) has species \(\Sigma_\sigma = +k\) if \(\text{Fix}(\sigma)\) consists of \(k\) ovals and \(X/\langle \sigma \rangle\) is orientable, and \(\Sigma_\sigma = -k\) if \(\text{Fix}(\sigma)\) consists of \(k\) ovals and \(X/\langle \sigma \rangle\) is non-orientable. The set \(\text{Fix}(\sigma)\) corresponds to the real part of a complex algebraic curve representing \(X\), which admits an equation with real coefficients.

If the \(p\)-gonal morphism is a cyclic regular covering, then the Riemann surface is called real cyclic \(p\)-gonal. When \(p = 2\) the surface \(X_g\) is called hyperelliptic. A Riemann surface represented by an algebraic curve given
by an equation of the form
\[y^p = \prod (x - a_i) \prod (x - b_j)^2 \cdots \prod (x - m_j)^{p-1} \] (1.1)
where the coefficients of the polynomial \(\prod (x - a_i) \cdots \prod (x - m_j)^{p-1} \) are real
is a real cyclic \(p \)-gonal Riemann surface. The complex conjugation induces
a symmetry on the above curve. A natural problem is to study and classify
all possible symmetries of such a Riemann surface up to conjugacy, as they
will produce non-isomorphic real models of the complex algebraic curve.
In Section 2 we characterise real cyclic \(p \)-gonal Riemann surfaces, where
\(p \) is an odd prime, in terms of signatures of Fuchsian and NEC groups.
In Section 3 we determine all possible symmetries of a real cyclic \(p \)-gonal
Riemann surface represented by an algebraic curve with equation (1.1).

2. Signatures of real cyclic \(p \)-gonal Riemann surfaces.
Let \(X_g \) be a compact Riemann surface of genus \(g \geq 2 \). The surface \(X_g \) can
be represented as a quotient \(X_g = \mathcal{H}/\Gamma \) of the upper half plane \(\mathcal{H} \) under
the action of a surface Fuchsian group \(\Gamma \), that is, a cocompact orientation-
preserving subgroup of the group \(\mathcal{G} = \text{Aut}(\mathcal{H}) \) of conformal and anticonfor-
mal automorphisms of \(\mathcal{H} \) without elliptic elements. A discrete, cocompact
subgroup \(\Gamma \) of \(\text{Aut}(\mathcal{H}) \) is called an NEC (non-euclidean crystallographic)
group. The subgroup of \(\Gamma \) consisting of the orientation-preserving elements
is called the canonical Fuchsian subgroup of \(\Gamma \), it is denoted by \(\Gamma^+ \). The
algebraic structure of an NEC group and the geometric structure of its quo-
tient orbifold are given by the signature of \(\Gamma \):
\[s(\Gamma) = (h, \pm, [m_1, \ldots, m_r]; \{(n_{11}, \ldots, n_{1s_1}), \ldots, (n_{k1}, \ldots, n_{ks_k})\}) \] (2.1)
The orbit space \(\mathcal{H}/\Gamma \) is an orbifold with underlying surface of genus \(h \), having
\(r \) cone points and \(k \) boundary components, each with \(s_j \geq 0 \) corner points.
The signs \("+" \) and \("-" \) correspond to orientable and non-orientable orbifolds
respectively. The integers \(m_i \) are called the proper periods of \(\Gamma \) and they
are the orders of the cone points of \(\mathcal{H}/\Gamma \). The brackets \((n_{i1}, \ldots, n_{is_i}) \) are
the period cycles of \(\Gamma \) and the integers \(n_{ij} \) are the link periods of \(\Gamma \) and the
orders of the corner points of \(\mathcal{H}/\Gamma \). The group \(\Gamma \) is called the fundamental
group of the orbifold \(\mathcal{H}/\Gamma \).
A group \(\Gamma \) with signature (2.1) has a canonical presentation with generators:
\[x_1, \ldots, x_r, e_1, \ldots, e_k, c_{ij}, 1 \leq i \leq k, 1 \leq j \leq s_i + 1, \text{ and} \]
\[a_1, b_1, \ldots, a_h, b_h \] if \(\mathcal{H}/\Gamma \) is orientable, or
\[d_1, \ldots, d_h \]
otherwise, and relators:

\[(2.3) \quad x_i^{m_i}, \quad i = 1, \ldots, r, \]
\[c_{ij}^2, \ (c_{ij-1}c_{ij})^{n_{ij}}, \ c_{i0}e_i^{-1}c_{i0}e_i, \quad i = 1, \ldots, k,\]

and \(x_1 \cdots x_r e_1 \cdots e_k a_1 b_1 a_1^{-1}b_1^{-1} \cdots a_h b_h a_h^{-1}b_h^{-1}\) or \(x_1 \cdots x_r e_1 \cdots e_k d_1^2 \cdots d_h^2\) according to whether \(\mathcal{H}/\Gamma\) is orientable or not. This last relation is called the long relation.

The hyperbolic area of the orbifold \(\mathcal{H}/\Gamma\) coincides with the hyperbolic area of an arbitrary fundamental region of \(\Gamma\) and equals:

\[(2.4) \quad \mu(\Gamma) = 2\pi \left(\varepsilon h - 2 + k + \sum_{i=1}^{r} \left(1 - \frac{1}{m_i} \right) + \frac{1}{2} \sum_{i=1}^{k} \sum_{j=1}^{s_i} \left(1 - \frac{1}{n_{ij}} \right) \right), \]

where \(\varepsilon = 2\) if there is a \(''^+''\) sign and \(\varepsilon = 1\) otherwise. If \(\Gamma'\) is a subgroup of \(\Gamma\) of finite index then \(\Gamma'\) is an NEC group and the following Riemann-Hurwitz formula holds:

\[(2.5) \quad [\Gamma : \Gamma'] = \mu(\Gamma')/\mu(\Gamma). \]

An NEC group \(\Gamma\) without elliptic elements is called a surface group and it has signature \((h; \pm; [-], \{(-), \ldots, (=-)\})\). In such a case \(\mathcal{H}/\Gamma\) is a Klein surface, i.e., a surface with a dianalytic structure of topological genus \(h\), orientable or not according to the sign \(''^+''\) or \(''^-''\), and having \(k\) boundary components. Conversely, a Klein surface whose complex double has genus greater than one can be expressed as \(\mathcal{H}/\Gamma\) for some NEC surface group \(\Gamma\).

Furthermore, given a Riemann (resp. Klein) surface represented as the orbit space \(X = \mathcal{H}/\Gamma\), with \(\Gamma\) a surface group, a finite group \(G\) is a group of automorphisms of \(X\) if and only if there exists an NEC group \(\Delta\) and an epimorphism \(\theta : \Delta \rightarrow G\) with \(\ker(\theta) = \Gamma\) (see [5]). The NEC group \(\Delta\) is the lifting of \(G\) to the universal covering \(\pi : \mathcal{H} \rightarrow \mathcal{H}/\Gamma\) and is called the universal covering transformation group of \((X,G)\).

Definition 1. For a prime \(p\), a real cyclic \(p\)-gonal Riemann surface is a triple \((X,f,\sigma)\) where \(\sigma\) is a symmetry of \(X\), \(f\) is a cyclic \(p\)-gonal morphism and \(f \circ \sigma = c \circ f\), and \(c\) is the complex conjugation.

Notice that by Lemma 2.1 in [1] the condition \(f \circ \sigma = c \circ f\) is automatically satisfied for genera \(g \geq (p - 1)2 + 1\), since the \(p\)-gonal morphism is unique. From now on, the genera will satisfy the condition above. As a consequence of the assumption \(g \geq (p - 1)2 + 1\) for the genera of the \(p\)-gonal surface \(X_g\) we have that the group \(C_p\) generated by the \(p\)-gonal morphism is a normal subgroup of \(\text{Aut}^+(X_g)\). Notice the the classification method fails for surfaces with genera in the range \(2 \leq g \leq (p - 1)2\). For instance, there are two 7-gonal surfaces of genus 3. One of them, \(X_3\), is the Klein’s quartic with \(\text{Aut}^+(X_3) \simeq PSL_2(7)\), in this case \(C_7\) is non-normal in \(PSL_2(7)\).
We give now a characterisation of real cyclic \(p \)-gonal Riemann surfaces represented by real equations via NEC groups.

Theorem 1 ([7]). Let \(X \) be a Riemann surface with genus \(g \). The surface \(X \) admits a symmetry \(\sigma \) and a meromorphic function \(f \) such that \((X, f, \sigma) \) is a real cyclic \(p \)-gonal Riemann surface represented by a curve with real equation \(y^p = \prod (x - a_i) \cdots \prod (x - m_j)^{p-1} \) if and only if there are an NEC group \(\Delta \) with signature \((0, +, [p, \ldots, p], \{(p, \ldots, p)\}) \) and an epimorphism \(\theta : \Delta \to \mathbb{D}_p \) such that \(X \) is conformally equivalent to \(\mathcal{H}/\text{Ker} \theta \) and \(\text{Ker} \theta \) is an NEC Fuchsian surface group.

Let \((X, f, \sigma) \) be a real cyclic \(p \)-gonal Riemann surface uniformised by a Fuchsian surface group \(\Gamma \). Consider the automorphism \(\varphi : X \to X \) such that \(X/\langle \varphi \rangle \) is the Riemann sphere and \(\varphi \) is a deck-transformation of the covering \(f \). Notice that the group \(\Delta \) is the universal covering transformation group of \((X, \varphi, \sigma) \). Consider the automorphism \(\sigma \) map such that there is a surface Fuchsian subgroup \(\Gamma \). Theorem 2. \(\mathbb{D}_p \) admits a symmetry \(\mathbb{D}_p \), \(\mathbb{D}_p \) is the Riemann sphere and \(\mathbb{D}_p \) is conformally equivalent to \(\mathcal{H}/\text{Ker} \theta \) and \(\text{Ker} \theta \) is an NEC Fuchsian surface group.

With the above notation:

Theorem 2. Let \(X \) be a real cyclic \(p \)-gonal Riemann surface such that \(\langle \varphi, \sigma \rangle \) is isomorphic to \(\mathbb{D}_p \). If \(G \) is the group of conformal and anticonformal automorphisms of \(X \), then \(X/G \) is uniformised by an NEC group \(\Lambda \) such that there is a surface Fuchsian subgroup \(\Gamma \leq \Lambda \) uniformising \(X \) and the group \(\Lambda \) has one of the following signatures:

1. \((0, +, [p, \ldots, p], q \mathbb{D}_q], \{(p, \ldots, p)\}), \) where \(\epsilon = 0 \) or 1 and \(2r + s = \frac{2q + 2(1 - \epsilon)(p - 1)}{q(p - 1)} \), \(G/\langle \varphi \rangle = C_q \times C_2 \).
2. \((0, +, [p, \ldots, p], \{(qp^{s_1}, p, \ldots, p, qp^{s_2}, p, \ldots, p)\}), \) where \(\epsilon_i = 0 \) or 1 and \(2r + s_1 + s_2 = \frac{2q + 2(1 - \epsilon_1 - \epsilon_2)(p - 1)}{q(p - 1)} \), \(G/\langle \varphi \rangle = D_q \).
3. \((0, +, [p, \ldots, p], 2p^{s_1}], \{(pq^{s_1}, p, \ldots, p)\}), \) where \(\epsilon_i = 0 \) or 1 and \(2r + s = \frac{2q + 2(1 - \epsilon_1 - \epsilon_2)(p - 1)}{q(p - 1)} \), \(G/\langle \varphi \rangle = D_q \times C_2 \).
4. \((0, +, [p, \ldots, p], \{(2p^{s_1}, p, \ldots, p, 2p^{s_2}, p, \ldots, p, qp^{s_3} p, \ldots, p)\}), \) where \(\epsilon_i = 0 \) or 1 and \(2r + s_1 + s_2 + s_3 = \frac{2q + 2(1 - \epsilon_1 - \epsilon_2 - \epsilon_3)(p - 1)}{2q(p - 1)} \), \(G/\langle \varphi \rangle = D_q \times C_2 \).
(V) \(0, +, \{ [\hat{p}, \ldots, \hat{p}], \{(2p^{s_1}, \hat{p}, \ldots, \hat{p}, 3p^{s_2}, \hat{p}, \ldots, \hat{p}, 3p^{s_3}, \hat{p}, \ldots, \hat{p})\}\}, \) where \(\epsilon_i = 0\) or 1 and \(2r + s_1 + s_2 + s_3 = \frac{\varphi + (1 - 3\epsilon_1 - 2\epsilon_2 - 2\epsilon_3)(p-1)}{6(p-1)}. \)
\(G/\langle \varphi \rangle = S_4. \)

(VI) \(0, +, \{ [\hat{p}, \ldots, \hat{p}], \{(2p^{s_1}, \hat{p}, \ldots, \hat{p}, 3p^{s_2}, \hat{p}, \ldots, \hat{p}, 5p^{s_3}, \hat{p}, \ldots, \hat{p})\}\}, \) where \(\epsilon_i = 0\) or 1 and \(2r + s = \frac{\varphi + (1 - 4\epsilon_1 - 3\epsilon_2)(p-1)}{6(p-1)}\). \(G/\langle \varphi \rangle = A_4 \rtimes C_2. \)

(VII) \(0, +, \{ [\hat{p}, \ldots, \hat{p}], \{(2p^{s_1}, \hat{p}, \ldots, \hat{p}, 3p^{s_2}, \hat{p}, \ldots, \hat{p}, 4p^{s_3}, \hat{p}, \ldots, \hat{p})\}\}, \) where \(\epsilon_i = 0\) or 1 and \(2r + s_1 + s_2 + s_3 = \frac{\varphi + (1 - 6\epsilon_1 - 4\epsilon_2 - 3\epsilon_3)(p-1)}{12(p-1)}. \)
\(G/\langle \varphi \rangle = S_4 \times C_2. \)

(VIII) \(0, +, \{ [\hat{p}, \ldots, \hat{p}], \{(2p^{s_1}, \hat{p}, \ldots, \hat{p}, 3p^{s_2}, \hat{p}, \ldots, \hat{p}, 5p^{s_3}, \hat{p}, \ldots, \hat{p})\}\}, \) where \(\epsilon_i = 0\) or 1 and \(2r + s_1 + s_2 + s_3 = \frac{\varphi + (1 - 15\epsilon_1 - 10\epsilon_2 - 6\epsilon_3)(p-1)}{30(p-1)}. \)
\(G/\langle \varphi \rangle = A_5 \times C_2. \)

Notice that in cases (VII) and (VIII) the factor group \(C_2\) of \(G/\langle \varphi \rangle\) is generated by the antipodal map.

Proof. Consider the chain of coverings \(X = \mathcal{H}/\Gamma \rightarrow X/\langle \varphi \rangle = \mathcal{H}/\Delta^+ \rightarrow X/G = \mathcal{H}/\Lambda\) with uniformising groups \(\Gamma \leq \Delta^+ \leq \Lambda\), where \(s(\Delta^+) = (0, +, [\hat{p}, \ldots, \hat{p}], \{\}), \) and \(s(\Lambda) = (h, \pm, [m_1, \ldots, m_r], \{(n_{11}, \ldots, n_{1s_1}), \ldots, (n_{k1}, \ldots, n_{ks_1})\})\). Furthermore by Lemma 2.1 in [1] the group \(\langle \varphi \rangle\) is a normal subgroup of \(G\). By Theorem 1 the factor group \(G/\langle \varphi \rangle\) is a finite group of conformal and anticonformal automorphisms of the Riemann sphere. (See also [12].)

In other words, we have an epimorphism \(\theta : \Lambda \rightarrow G\) with \(\text{Ker} \; \theta = \Delta^+\). This yields the signature of the group \(\Lambda\) in terms of the signature of \(\Delta^+\) and the group \(G\). Let \(p_i\) and \(q_{ij}\) be the orders in \(G\) of \(\theta(x_i)\) and \(\theta(c_{ij}c_{ij}^{-1})\) respectively, where \(x_i, c_{ij}\) are generators in the canonical presentation of \(\Lambda\) associated to the signature (2.1). By [3] and [5] each proper period \(m_i\) induces \(\frac{[\Gamma]}{p_i}\) proper periods \(\frac{m_i}{p_i}\) in \(s(\Delta^+)\). Each link-period \(n_{ij}\) induces \(\frac{[\Gamma]}{2q_{ij}}\) proper periods \(\frac{n_{ij}}{q_{ij}}\) in \(s(\Delta^+)\). But \(\frac{m_i}{p_i} = p\) or \(\frac{m_i}{p_i} = 1\) and \(\frac{n_{ij}}{q_{ij}} = p\) or \(\frac{n_{ij}}{q_{ij}} = 1\), since \(\Delta^+\) is the group of the Riemann sphere with conic points of prime order \(p\). We denote \(K_1 = \{(i, j) \mid \frac{m_i}{p_i} = 1\}\), \(K_p = \{(i, j) \mid \frac{m_i}{p_i} = p\}\), \(H_1 = \{(i, j) \mid \frac{n_{ij}}{q_{ij}} = 1\}\), \(H_p = \{(i, j) \mid \frac{n_{ij}}{q_{ij}} = p\}\). Thus \(\rho = \sum_{i \in K_1} \frac{[\Gamma]}{p_i} + \sum_{(i, j) \in H_1} \frac{[\Gamma]}{2q_{ij}}\)
Using the Riemann-Hurwitz formula \(|G| = \mu(\Delta^+)/\mu(\Lambda)| we obtain

\[
2 + \left(\sum_{i \in K_p} \frac{|G|}{p_i} + \sum_{(i,j) \in H_p} \frac{|G|}{2q_{ij}} \right) \frac{(p - 1)}{p} \\
= |G|(\alpha h - 2 + k) + \sum_{i \in K_p} |G| \left(1 - \frac{1}{pp_i} \right) + \sum_{i \in K_1} |G| \left(1 - \frac{1}{p_i} \right) \\
+ \sum_{(i,j) \in H_p} \frac{|G|}{2} \left(1 - \frac{1}{pq_{ij}} \right) + \sum_{(i,j) \in H_1} \frac{|G|}{2} \left(1 - \frac{1}{q_{ij}} \right),
\]

therefore \(h = 0, k = 1, s(\Lambda) = (0, +, [pp_1, \ldots, pp_r], \{(pq_1, \ldots, pq_s)\}) \), where \(p_i, q_{ij} \in \{1, p\} \). By setting \(K_1, K_p, H_1 \) and \(H_p \) in Equation (2.6) we obtain that \(p_i, q_{ij} \) satisfy the equation

\[
|G| - 2 = \sum_{1}^{r} |G| \left(1 - \frac{1}{p_i} \right) + \sum_{1}^{s} \frac{|G|}{2} \left(1 - \frac{1}{q_{ij}} \right).
\]

To find \(s(\Lambda) \) it is enough to find the nontrivial solutions of (2.7). We divide the study of (2.7) in eight cases according to the factor group \(G \) in the epimorphism \(\theta : \Lambda \rightarrow G \) with \(\text{Ker}(\theta) = \Delta^+ \):

(I) \(G = C_q \times C_2 \), where \(C_2 = \langle \sigma \rangle \). The solution of Equation (2.7) is \(p_1 = q \). Applying Riemann-Hurwitz formula to the covering \(X \rightarrow X/G \) we obtain the signature \((0, +, [p_1, \ldots, p], \{(p_1, \ldots, p)\})\), where \(\epsilon = 0 \) or 1 and \(2r + s = \frac{2g + 2(1 - \epsilon)(p - 1)}{q(p - 1)} \).

(II) \(G = D_q \). The solution of (2.7) is \(q_{j_1} = q_{j_2} = q \). Therefore \(s(\Lambda) = (0, +, [p_1, \ldots, p], \{(pq^1_1, p_1, \ldots, p), \{pq^2_1, p_1, \ldots, p\})\), where \(\epsilon_i = 0 \) or 1 and \(2r + s_1 + s_2 = \frac{2g + (2 - \epsilon_1 - \epsilon_2)(p - 1)}{q(p - 1)} \).

(III) \(G = D_q \times C_2 \). The solution of (2.7) is \(p_1 = 2, \) and \(q_1 = q \). Thus \(s(\Lambda) \) becomes \((0, +, [p_1, \ldots, p, 2p^1], \{(qp^1_1, p_1, \ldots, p), \{qp^2, p_1, \ldots, p\})\), where \(\epsilon_i = 0 \) or 1 and \(2r + s = \frac{2 + (1 - \epsilon_1 - \epsilon_2)(p - 1)}{q(p - 1)} \).

(IV) \(G = D_q \times C_2 \). The solution in this case is \(q_{j_1} = q_{j_2} = 2 \) and \(q_{j_3} = q \). This yields \(s(\Lambda) = (0, +, [p_1, \ldots, p], \{(2p^1_1, p_1, \ldots, p), \{2p^1_1, p_1, \ldots, p, q_{p_1}^{2}, p, \ldots, p\})\), where \(\epsilon_i = 0 \) or 1 and \(2r + s_1 + s_2 + s_3 = \frac{2g + (2 - \epsilon_1 - \epsilon_2 - 2\epsilon_3)(p - 1)}{2q(p - 1)} \).
(V) $\overline{G} = S_4$. The solution of (2.7) is $q_{j_1} = 2$, $q_{j_2} = q_{j_3} = 3$. Then $s(\Lambda) = (0, +, \overline{p_1, p_2, ..., p_r}, \{2p_1^3, \overline{p_1, p_2, ..., p_r}, 3p_2^3, \overline{p_1, p_2, ..., p_r}, 3p_3^3, \overline{p_1, p_2, ..., p_r}\})$, where $\epsilon_i = 0$ or 1 and $2r + s_1 + s_2 + s_3 = \frac{g+(1-3\epsilon_1-2\epsilon_2-2\epsilon_3)(p-1)}{6(p-1)}$.

(VI) $\overline{G} = A_4 \times C_2$. The solution of (2.7) is $p_1 = 3$, and $q_1 = 2$. Thus $s(\Lambda)$ becomes $(0, +, \overline{p_1, p_2, ..., p_r}, \{2p_2^3, \overline{p_1, p_2, ..., p_r}, 3p_3^3, \overline{p_1, p_2, ..., p_r}\})$, where $\epsilon_i = 0$ or 1 and $2r + s = \frac{g+(1-4\epsilon_1-3\epsilon_2)(p-1)}{6(p-1)}$.

(VII) $\overline{G} = S_4 \times C_2$. The solution in this case is $q_{j_1} = 2$, $q_{j_2} = 3$ and $q_{j_3} = 4$. This yields $s(\Lambda) = (0, +, \overline{p_1, p_2, ..., p_r}, \{(2p_1^3, \overline{p_1, p_2, ..., p_r}, 3p_2^3, \overline{p_1, p_2, ..., p_r}, 3p_3^3, \overline{p_1, p_2, ..., p_r}, 4p_4^3, \overline{p_1, p_2, ..., p_r}\})$, where $\epsilon_i = 0$ or 1 and $2r + s_1 + s_2 + s_3 = \frac{g+(1-4\epsilon_1-3\epsilon_2-3\epsilon_3)(p-1)}{12(p-1)}$.

(VIII) $\overline{G} = A_5 \times C_2$. The solution now is $q_{j_1} = 2$, $q_{j_2} = 3$ and $q_{j_3} = 5$. This yields $s(\Lambda) = (0, +, \overline{p_1, p_2, ..., p_r}, \{(2p_1^3, \overline{p_1, p_2, ..., p_r}, 3p_2^3, \overline{p_1, p_2, ..., p_r}, 3p_3^3, \overline{p_1, p_2, ..., p_r}, 4p_4^3, \overline{p_1, p_2, ..., p_r}, 5p_5^3, \overline{p_1, p_2, ..., p_r}\})$, where $\epsilon_i = 0$ or 1 and $2r + s_1 + s_2 + s_3 = \frac{g+(1-15\epsilon_1-10\epsilon_2-6\epsilon_3)(p-1)}{30(p-1)}$. This finishes the proof.

Let X be a real cyclic p-gonal Riemann surface X with real equation. In the next theorem we study the topological types of the possible real forms of X.

Theorem 3. Let X be a real cyclic p-gonal Riemann surface with p-gonal automorphism φ admitting a symmetry σ with fixed points and such that $\langle \sigma, \varphi \rangle = D_p$, p prime. If τ is another symmetry of X, then possible species of τ are (and all cases occur):

1. $s(\Lambda)$ as in (I).
 a) $q \equiv 1 \mod (2)$. $\Sigma_\sigma = \Sigma_\tau$. If $r + \epsilon > 0$, then $\Sigma_\sigma = -1$. If $r + \epsilon = 0$, then $\Sigma_\sigma \in \{-1, +1\}$.
 b) $q \equiv 0 \mod (2)$. $\Sigma_\tau = \Sigma_\sigma$ as in case (1a) or $\Sigma_\tau = 0$.

2. $s(\Lambda)$ as in (II).
 a) $q \equiv 1 \mod (2)$. $\Sigma_\sigma = \Sigma_\tau$ and $\Sigma_\sigma = -1$.
 b) $q \equiv 0 \mod (2)$, $\Sigma_\sigma \neq 2$. $\Sigma_\sigma = -1$ and $\Sigma_\tau = -1$ or $\Sigma_\tau = +p, +1$.

3. $s(\Lambda)$ as in (III). $\Sigma_\tau = 0$ or $\Sigma_\sigma = \Sigma_\tau$, besides $\Sigma_\sigma = -1$.

4. $s(\Lambda)$ as in (IV).
 a) $q \equiv 1 \mod (2)$. $\{\Sigma_\sigma, \Sigma_\tau\} \subset \{\Sigma_1, \Sigma_2\}$, where $\Sigma_1 \in \{-1, +1, +p\}$. $\Sigma_2 \in \{-1, +1, +p\}$. In both cases $\Sigma_\sigma \neq +p$ and $\Sigma_\sigma \neq +1$ if σ is of the first type.
we divide the proof in eight cases corresponding to the different types of groups \overline{G} of conformal and anticonformal automorphisms of the Riemann sphere. The signature of Λ in each case is given by the corresponding case in Theorem 2.

(1a) $\overline{G} = C_q \times C_2$, $q \equiv 1 \mod (2)$. In this case \overline{G} contains just one conjugacy class of symmetries and so does G: The one represented by σ. Moreover $D_p = \langle \varphi, \sigma \rangle$ is a normal subgroup of index q in G. By [5] the signature of $\overline{\Theta}^{-1}(\langle \varphi, \sigma \rangle)$ is $\langle 0, +, \{ (\bar{p}, \ldots, \bar{p}) \} \rangle$. By [14] $\Sigma_\sigma = \pm 1$ as $D_p = \langle \varphi, \sigma \rangle$. The sign $+$ can only occur if $\overline{\Theta}^{-1}(\langle \varphi, \sigma \rangle)$ has no proper periods, i.e., $r + \epsilon = 0$. If $s = 0$, then $r + \epsilon > 0$, the possible species is -1.

(1b) $\overline{G} = C_q \times C_2 = \langle \rho, \bar{\sigma} \mid \rho^q, \bar{\sigma}^2, \rho^{-1} \bar{\sigma} \bar{\rho} \bar{\sigma} \rangle$, with $q \equiv 0 \mod (2)$. In this case \overline{G} contains two conjugacy classes of symmetries, with representatives namely σ and $\rho^{n/2} \bar{\sigma} = \bar{\tau}$, and so does G. To find the species of the symmetries we have to consider the normal subgroups $\overline{\Theta}^{-1}(\langle \varphi, \sigma \rangle)$ and $\overline{\Theta}^{-1}(\langle \varphi, \bar{\tau} \rangle)$ of Λ with factor group C_q. By [5] they have signatures $\langle 0, +, \{ \bar{p}, \ldots, \bar{p} \}, \{ (\bar{p}, \ldots, \bar{p}) \} \rangle$ and $\langle 0, +, \{ \bar{p}, \ldots, \bar{p} \}, \{ - \} \rangle$ respectively. So species Σ_σ is as in (1a) and $\Sigma_{\bar{\tau}} = 0$.

(2a) $\overline{G} = D_q = \langle \rho, \bar{\sigma} \mid \rho^q, \bar{\sigma}^2, (\rho \bar{\sigma})^2 \rangle$, with $q \equiv 1 \mod (2)$. The group \overline{G} contains one conjugacy class of symmetries and so does G. By the epimorphism $\theta : \Lambda \rightarrow D_q$ the images of reflections in Λ leave one fixed coset in D_q, so
we get that $\overline{\Lambda}_g$ has signature $(0,+,\{\underbrace{\bar{p},\ldots,\bar{p}}_r\},\{(\underbrace{\bar{p},\ldots,\bar{p}}_s)\})$. Now, $s_1 + s_2 + r > 0$ since Λ is a NEC group, then $\Sigma_\sigma = -1$ by [4] and [14].

(2b) $\overline{G} = D_q = \langle \rho, \sigma | \rho^q, \sigma^2, (\rho^q \sigma^2)^2 \rangle$, with $q \equiv 0 \mod (2)$. The group \overline{G} (and the group G) contains two conjugacy classes of symmetries, with representatives namely σ and $\rho \sigma = \overline{\sigma}$. To find Σ_σ and Σ_τ we have to study the images of reflections by an epimorphism $\theta : \Lambda \to D_q$. Each of these images leaves either $2\overline{\sigma}$-cosets fixed and none from $\overline{\tau}$ or the other way round.

Thus the signatures of Λ_σ and Λ_τ are $(0,+,\{\underbrace{\bar{p},\ldots,\bar{p}}_r\},\{(\underbrace{\bar{p},\ldots,\bar{p}}_s)\})$ and $(0,+,\{\underbrace{\bar{p},\ldots,\bar{p}}_r\},\{(\underbrace{\bar{p},\ldots,\bar{p}}_s)\})$. Now σ has 1 oval and does not separate because $\overline{\theta}^{-1}(\langle \varphi, \sigma \rangle)$ contains proper periods since $s_1 + s_2 + r > 0$ and $q > 2$. If $e_1 + s_2 + e_2 > 0$, then $\langle \varphi, \tau \rangle = D_p$ and as before $\Sigma_\tau = -1$. If $e_1 + s_2 + e_2 = 0$ the signature of $\overline{\theta}^{-1}(\langle \varphi, \tau \rangle)$ becomes $(0,+,\{\underbrace{\bar{p},\ldots,\bar{p}}_r\},\{-\})$. Thus $\Sigma_\tau = -1$, if $\langle \varphi, \tau \rangle = D_p$, and $\Sigma_\tau = +p_1 + 1$ if $\langle \varphi, \tau \rangle = C_{2p}$.

(3) $\overline{G} = D_q \rtimes C_2 = \langle \bar{p}, \overline{\sigma_1}, \overline{\sigma_2} | \bar{p}^2, \overline{\sigma_1}^2, \overline{\sigma_2}^2, (\overline{\sigma_1} \overline{\sigma_2})^q, \overline{\rho \sigma_1 \rho \sigma_2} \rangle$. The group \overline{G} (and G) contains two conjugacy classes of symmetries, with representatives namely $\overline{\sigma} = \overline{\sigma_1}$ and $\overline{\rho \sigma} = \overline{\sigma}$. The images of reflections in Λ are all mapped to conjugate reflections in \overline{G}. They are conjugate to $\overline{\sigma}$ as we know that σ has fixed points. Thus $\Sigma_\sigma = 0$. On the other hand Λ_σ has always proper periods. Therefore $\Sigma_\sigma = -1$.

(4) $\overline{G} = D_q \rtimes C_2 = \langle \overline{\sigma_1}, \overline{\sigma_2}, \overline{\bar{p}} | \overline{\sigma_1}^2, (\overline{\sigma_1} \overline{\sigma_2})^2, (\overline{\sigma_2} \overline{\sigma_1})^2, (\overline{\sigma_3} \overline{\sigma_1})^q \rangle$, with $\overline{\sigma_2}$ central in \overline{G}. First of all the group $\langle \varphi, \sigma_2 \rangle$ is a normal subgroup of G with factor group $D_q = \langle \overline{\sigma_1}, \overline{\sigma_3} \rangle$.

(4a) $q \equiv 1 \mod (2)$. In this case G has two conjugacy classes of reflections with representatives with images σ_1 and σ_2. Then there are two possible species for a symmetry of X: $\Sigma_{\sigma_1}, \Sigma_{\sigma_2}$. The possible signatures for $\overline{\theta}^{-1}(\langle \varphi, \sigma_1 \rangle)$ are given by the epimorphism $\Lambda \to D_q$. By this epimorphism the images of c_0 and c_{s_1+i}, for $i \geq 2$, are conjugated to $\overline{\sigma_1}$ and the image of c_1, \ldots, c_{s_1+1} is the identity (representing the central symmetry). Therefore c_0, c_1, c_{s_1+1} and c_{s+2} fixes $q \langle \overline{\sigma_2} \rangle$-cosets and one $\langle \overline{\sigma} \rangle$-coset each, each c_1, \ldots, c_{s_1+1} fixes $2q \langle \overline{\sigma_2} \rangle$-cosets (and none $\langle \overline{\sigma} \rangle$-coset), and finally each c_{s_1+i}, $i \geq 2$ fixes two $\langle \overline{\sigma_1} \rangle$-cosets (and none $\langle \overline{\sigma} \rangle$-coset) in \overline{G}. Thus $\overline{\Lambda}_1$ and
$\bar{\Lambda}_2$ have signatures

\[
\begin{align*}
&2rq+qs_1+(q-1)(s_2+s_3)+\frac{q-1}{2}(s_2+s_3) + \frac{q-1}{2}(s_2+s_3) + 2s_3 + 2s_2 + 2s_1 + 2s_3 \\
&(0, +, [p, \ldots, p], \{(p, \ldots, p)\}) \text{ and} \\
&2rq+qs_2+qs_3 + \frac{q-1}{2}(s_2+s_3) + \frac{q-1}{2}(s_2+s_3) + 2s_3 + 2s_2 + 2s_1 + 2s_3 \\
&(0, +, [p, \ldots, p], \{(p, \ldots, p)\})
\end{align*}
\]

Altogether we have that Σ_1 is -1 if $s_2 + s_3 + \epsilon_1 + \epsilon_2 + \epsilon_3 > 0$, and Σ_1 is $+p,+1$ if $s_2 + s_3 + \epsilon_1 + \epsilon_2 + \epsilon_3 = 0$ and $\langle \varphi, \sigma_1 \rangle$ is C_2p. On the other hand Σ_2 is -1 if $s_1 + \epsilon_1 + \epsilon_2 > 0$ and and $r + s_2 + s_3 + \epsilon_3 > 0$, Σ_2 is $+1$ if $s_1 + \epsilon_1 + \epsilon_2 > 0$ and $r = s_2 = s_3 = \epsilon_3 = 0$, and finally Σ_2 is $+p,+1$ if $s_1 + \epsilon_1 + \epsilon_2 = 0$ and $\langle \varphi, \sigma_2 \rangle = C_2p$. In both cases $\Sigma_\sigma \neq +p$ since $\langle \varphi, \sigma \rangle = D_p$ and if σ is conjugate to σ_1 then again $\Sigma_\sigma \neq +1$. No further restrictions exist.

(4b) $q \equiv 0 \mod (2)$. In this case G has four conjugacy classes of reflections with representatives with homomorphic images $\bar{\sigma}_1, \bar{\sigma}_2, \bar{\sigma}_3$ and $(\bar{\sigma}_3\bar{\sigma})^{q/2}\bar{\sigma}_2 = \bar{\sigma}_4$. Then there are four possible species for a symmetry of X: $\Sigma_1, 1 \leq i \leq 4$. The species are also given by the epimorphism $\Lambda \xrightarrow{\hat{\theta}} D_q$. By this epimorphism the images of ϵ_0 and $c_{s_1+s_2+i}$, for $i \geq 3$, are conjugate to $\bar{\sigma}_1$, the image of c_1, \ldots, c_{s_1+1} is the identity (representing the central symmetry), and the images of c_{s_1+i}, for $2 \leq i \leq s_2 + 2$, are conjugate to $\bar{\sigma}_3$. First of all $\Sigma_4 = 0$ since no images of reflections by $\hat{\theta}$ are conjugate to $\bar{\sigma}_4$.

If $q = 2$, then all the 3 symmetries are central and, as in (4a) the possible species for them are $-1, +1$ and $+p$.

If $q \neq 2$ then with the same procedure as in (4a) we get the following signatures for $\bar{\Lambda}_1, \bar{\Lambda}_2$ and $\bar{\Lambda}_3$:

\[
\begin{align*}
&2rq+qs_1+(q-1)(s_2+s_3)+\frac{q-1}{2}(s_2+s_3) + \frac{q-1}{2}(s_2+s_3) + 2s_3 + 2s_2 + 2s_1 + 2s_3 \\
&(0, +, [p, \ldots, p], \{(p, \ldots, p)\}), \\
&2rq+qs_2+qs_3 + \frac{q-1}{2}(s_2+s_3) + \frac{q-1}{2}(s_2+s_3) + 2s_3 + 2s_2 + 2s_1 + 2s_3 \\
&(0, +, [p, \ldots, p], \{(p, \ldots, p)\}), \\
&2rq+qs_1+(q-1)(s_2+s_3)+\frac{q-1}{2}(s_2+s_3) + \frac{q-1}{2}(s_2+s_3) + 2s_3 + 2s_2 + 2s_1 + 2s_3 \\
&(0, +, [p, \ldots, p], \{(p, \ldots, p)\})
\end{align*}
\]

Both $\bar{\Lambda}_1$ and $\bar{\Lambda}_3$ must have proper periods because otherwise all parameters in the signature of Λ except ϵ_3 are 0 and then Λ is a spherical group. Therefore Σ_1 is -1 if $s_3 + \epsilon_1 + \epsilon_3 > 0$, Σ_1 is $+p,+1$ if $s_3 + \epsilon_1 + \epsilon_3 = 0$ and $\langle \varphi, \sigma_1 \rangle = C_2p$. Σ_2 is -1 if $s_1 + \epsilon_1 + \epsilon_2 > 0$ and $r + s_2 + s_3 + \epsilon_3 > 0$, Σ_2 is $+1$ if $s_1 + \epsilon_1 + \epsilon_2 > 0$ and $r = s_2 = s_3 = \epsilon_3 = 0$, and finally Σ_2 is $+p,+1$ if $s_1 + \epsilon_1 + \epsilon_2 = 0$ and $\langle \varphi, \sigma_2 \rangle = C_2p$. Finally Σ_3 is -1 if $s_2 + \epsilon_2 + \epsilon_3 > 0$, Σ_3 is $+p,+1$ if $s_2 + \epsilon_2 + \epsilon_3 = 0$ and $\langle \varphi, \sigma_3 \rangle = C_2p$. In all cases $\Sigma_\sigma \neq +p$ since $\langle \varphi, \sigma \rangle = D_p$. Again $\Sigma_\sigma \neq +1$ if σ is conjugate to σ_1 or σ_3. No further restrictions exist.
and (5) $\overline{G} = \langle \sigma_1, \sigma_2, \sigma_3 | \sigma_1^2, (\sigma_1 \sigma_2)^2, (\sigma_2 \sigma_3)^3, (\sigma_3 \sigma_1)^q \rangle$, where $q = 3$ in (5) and $q = 5$ in (8). \overline{G}, and thus G, contains two conjugacy classes of symmetries, with representatives namely $\sigma = \sigma_1$ and τ, with τ conjugated to the antipodal map. Then $\Sigma_\sigma = \Sigma_{\sigma_1}$ and $\Sigma_\tau = 0$. As in case (2a), by [10] and [14], given the epimorphism $\overline{\theta}$, all the generating reflections of Λ induce reflections in $\overline{\theta}^{-1}(\langle \sigma_1 \rangle)$. So $\Sigma_\sigma = -1$ as they induce also proper periods.

(6) $\overline{G} = A_4 \times C_2 = \langle p, \sigma_1, \sigma_2 | p^3, \sigma_1^2, \sigma_2^2, (\sigma_1 \sigma_2)^2, (\sigma_1 \sigma_3)^3, (\sigma_2 \sigma_3)^3 \rangle$, where C_2 is generated by the antipodal map. With the same arguments as in (3) we obtain that G has two types of symmetries with representatives σ and τ where $\Sigma_\sigma = 0$ and $\Sigma_\tau = -1$.

(7) $\overline{G} = \langle \sigma_1, \sigma_2, \sigma_3 | \sigma_1^2, (\sigma_1 \sigma_2)^2, (\sigma_2 \sigma_3)^3, (\sigma_3 \sigma_1)^4 \rangle = S_4 \times C_2$. This case is as case (4b) where the central symmetry is conjugated to the antipodal map and \overline{G} is conjugated to $\overline{\sigma_2}$. There are 3 conjugacy classes of symmetries with species 0, $\Omega_1 = \Sigma_{\sigma_1}$ and $\Omega_2 = \Sigma_{\sigma_2}$. Now Ω_1 is -1 if $s_3 + e_1 + e_3 > 0$, Ω_1 is $+p, +1$ if $s_3 + e_1 + e_3 = 0$ and $\langle \varphi, \sigma_3 \rangle$ is C_{2p}. On the other hand Ω_2 is -1 if $s_1 + s_2 + e_1 + e_2 + e_3 = 0$, Ω_2 is $+p$ if $s_1 + s_2 + e_1 + e_2 + e_3 = 0$ and $\langle \varphi, \sigma_2 \rangle = C_{2p}$. $\Omega_\sigma \neq +p, +1$, since $\langle \varphi, \sigma \rangle = D_p$ and σ has fixed points.

To finish we show the existence of surfaces with the desired symmetries by listing appropriate groups G and epimorphisms θ. The p-gonal surfaces with the desired symmetries will be uniformized by the groups Ker(θ). We distinguish the same eight cases as in Theorem 2.

(1) Let $G = \langle \varphi, \rho, \sigma | \varphi^i, \rho^q, \sigma^2, (\varphi \sigma)^2, (\varphi \rho)^q, \rho^{-1} \sigma \rho \sigma \rangle$ and let $\theta : \Lambda \to G$ be defined by $\theta(x_i) = \varphi^v_i$, $1 \leq i \leq r$, $\theta(x_{r+1}) = \rho \varphi^{u+1} \varphi^{-1}$, $\theta(c_{j-1}) = \sigma$, $\theta(c_{2j}) = \varphi \sigma$, $\theta(e) = \rho^{-1} \varphi^{l}$, where $j_1 + \cdots + j_r + \epsilon + v_{r+1} + l \equiv 0 \text{ mod } p$.

(2) Let $G = \langle \varphi, \tau, \sigma | \varphi^p, \tau^2, (\varphi \sigma)^2, (\varphi \sigma \tau)^2 \rangle$. Let $\theta : \Lambda \to G$ be defined by $\theta(x_i) = \varphi^v_i$, $1 \leq i \leq r$, $\theta(x_{r+1}) = \rho \varphi^{u+1} \varphi^{-1}$, $\theta(c_0) = \tau$, $\theta(c_j) = \sigma \varphi^{u_j}$ for $1 \leq j \leq s_1 + 1$, where $u_1 = e_1$ and $u_j = 1 - u_{j-1}$, $\theta(c_j) = \varphi^{u_j}$, with $s_1 + 2 \leq j \leq s_1 + s_2 + 2$ where $u_{s_1 + 2} = e_2 + 1 - u_{s_1 + 1}$ and $u_j = 1 - u_{j-1}$, $\theta(e) = \varphi^l$, where $v_1 + \cdots + v_r + l \equiv 0 \text{ mod } p$.

To obtain the species $\Sigma_\tau = +p, +1$ we consider groups G with presentation $G = \langle \varphi, \tau, \sigma | \varphi^p, \tau^2, (\varphi \sigma)^2, (\varphi \sigma \tau)^2 \rangle$.

(3) Let $G = \langle \varphi, \rho, \sigma | \varphi^p, \rho^q, \sigma^2, \rho \sigma \rho \tau, (\varphi \rho)^2 (\varphi \sigma)^2, (\varphi \sigma \tau)^2 \rangle$. Let $\theta : \Lambda \to G$ be defined by $\theta(x_i) = \varphi^v_i$, $1 \leq i \leq r$, $\theta(x_{r+1}) = \rho \varphi^{u+1} \varphi^{-1}$, $\theta(c_0) = \tau$, $\theta(c_j) = \sigma \varphi^{u_j}$ for $1 \leq j \leq s_1 + 1$, where $u_1 = e_1$ and $u_j = 1 - u_{j-1}$, $\theta(e) = \rho \varphi^l$, where $v_1 + \cdots + v_{r+1} + e_1 + \epsilon + l \equiv 0 \text{ mod } p$.

(4) Let $G = \langle \varphi, \sigma_1, \sigma_2, \sigma_3 | \sigma_1^2, (\sigma_1 \sigma_2)^2, (\sigma_2 \sigma_3)^2, (\sigma_3 \sigma_1)^q, \varphi^p, (\varphi \sigma_1)^2 \rangle$. Let $\theta : \Lambda \to G$ be defined by $\theta(x_i) = \varphi^v_i$, $1 \leq i \leq r$, $\theta(c_0) = \sigma_1$, $\theta(c_j) = \sigma_2 \varphi^{u_j}$ for $1 \leq j \leq s_1 + 1$, where $u_1 = e_1$ and $u_j = 1 - u_{j-1}$, $\theta(c_j) = \sigma_1 \varphi^{u_j}$, with $s_1 + 2 \leq j \leq s_1 + s_2 + 2$ where $u_{s_1 + 2} = e_2 + 1 - u_{s_1 + 1}$ and $u_j = 1 - u_{j-1}$, $\theta(c_j) = \sigma_1 \varphi^{u_j}$, with $s_1 + s_2 + 3 \leq j \leq s_1 + s_2 + s_3 + 3$ where $u_{s_1 + s_2 + 3} =$
\(\epsilon_3 + 1 - u_{s_1 + s_2 + 2} \) and \(u_j = 1 - u_{j-1} \), \(\theta(e) = \varphi^j \), where \(v_1 + \cdots + v_r + l \equiv 0 \mod p \).

To obtain the species \(+p, +1\) one or two of the relations \((\varphi \sigma_i)^2\) in the presentation of \(G\) must be substituted by relations \(\varphi^{-1} \sigma_i \varphi \sigma_i\).

(5) and (8) \(G = \langle \varphi, \sigma_1, \sigma_2, \sigma_3 \mid \sigma_1^2, (\sigma_1 \sigma_2)^2, (\sigma_2 \sigma_3)^3, (\sigma_3 \sigma_1)^q, \varphi^p, (\varphi \sigma_i)^2 \rangle, \)

where \(q = 3 \) in (5) and \(q = 5 \) in (8) and let \(\theta : \Lambda \to G \) be defined as in (4).

(6) \(G = \langle \varphi, \rho, \sigma_1, \sigma_2 \mid \varphi^p, \rho^3, \sigma_1^2, \sigma_2^2, (\sigma_1 \sigma_2)^2, \rho^2 \sigma_1 \rho \sigma_2, (\varphi \sigma_1)^2, (\varphi \sigma_2)^2, (\varphi \rho)^{3q} \rangle. \)

Let \(\theta : \Lambda \to G \) be defined as \(\theta(x_i) = \varphi^{u_i} \), \(1 \leq i \leq r \), \(\theta(x_{r+1}) = \rho \varphi^{u_0 + v_r + 1} \), \(\theta(c_0) = \sigma_1, \theta(c_j) = \sigma_2 \varphi^{v_j} \) for \(1 \leq j \leq s + 1 \), where \(u_1 = \epsilon_2 \) and \(u_j = 1 - u_{j-1}, \theta(e) = \rho^2 \varphi^j \), where \(v_1 + \cdots + v_r + 1 + \epsilon_1 + l \equiv 0 \mod p \).

(7) \(G = \langle \varphi \sigma_1, \sigma_2, \sigma_3 \mid \sigma_1^2, (\sigma_1 \sigma_2)^2, (\sigma_2 \sigma_3)^3, (\sigma_3 \sigma_1)^4, \varphi^p, (\varphi \sigma_1)^2 \rangle \) and let \(\theta : \Lambda \to G \) be defined as in (4). To obtain the species \(+p, +1\) either the relations \((\varphi \sigma_1)^2\) and \((\varphi \sigma_2)^2\) or the relation \((\varphi \sigma_2)^2\) in the presentation of \(G\) must be changed to the corresponding commuting relation.

The kernels of the above epimorphisms will uniformise surfaces with a symmetry with species \(-1\) for general groups \(\Lambda\). The same epimorphisms yield the species \(+1\) in cases 1 and 4 under the restrictions on \(\Lambda\) given in the first part of the theorem. Again, the same epimorphisms yield the species \(+p, +1\) under the corresponding restrictions on \(\Lambda\) given in the first part of the theorem.

The authors wish to thank to the referee for several helpful suggestions.

References

Received May 21, 2002 and revised May 8, 2003. The first author is partially supported by Ministerio de Ciencia y Tecnologia BFM2002-04801. The second author thanks the hospitality of UNED.

DEPTO. MATEMÁTICAS FUNDAMENTALES
UNED, C/ Senda del Rey 9
28040 MADRID
SPAIN
E-mail address: acosta@mat.uned.es

MATematiska Institutionen
LINKÖPINGS UNIVERSITET
581 83 LINKÖPING
SWEDEN
E-mail address: miizq@mai.liu.se