THE FINITE SIMPLE GROUPS HAVE COMPLEMENTED SUBGROUP LATTICES

MAURO COSTANTINI AND GIOVANNI ZACHER
THE FINITE SIMPLE GROUPS HAVE COMPLEMENTED SUBGROUP LATTICES

Mauro Costantini and Giovanni Zacher

We prove that the lattice of subgroups of every finite simple group is a complemented lattice.

1. Introduction.

A group G is called a K-group (a complemented group) if its subgroup lattice is a complemented lattice, i.e., for a given $H \leq G$ there exists a $X \leq G$ such that $\langle H, X \rangle = G$ and $H \wedge X = 1$. The main purpose of this Note is to answer a long-standing open question in finite group theory, by proving that:

Every finite simple group is a K-group.

In this context, it was known that the alternating groups, the projective special linear groups and the Suzuki groups are K-groups ([P]).

Our proof relies on the FSGC-theorem and on structural properties of the maximal subgroups in finite simple groups. The rest of this paper is divided into four sections. In Section 2 we collect some criteria for a subgroup of a group G to have a complement and recall some useful known results. In Section 3 we deal with the classical groups, in 4 with the exceptional groups of Lie type and in Section 5 with the sporadic groups.

With reference to notation and terminology, we shall follow closely those in use in [P] and [S]. All groups are meant to be finite.

2. Preliminaries.

We begin with the following:

Proposition 2.1. Given the group G, let T, X be subgroups of G such that $T \leq X < G$. If the interval $[X/T]$ is a complemented lattice and if X is contained in only one maximal subgroup M of G, then every $H \leq G$ with $H \nleq M$ and $H \wedge T = 1$ has a complement in G.

Proof. Let C be a complement of $\langle H, T \rangle \wedge X$ in $[X/T]$. Then $\langle H, C \rangle = \langle H, T, C \rangle \geq \langle \langle H, T \rangle \wedge X, C \rangle = X$. Since $H \nleq M$, we conclude that $\langle H, C \rangle = G$. Moreover $H \wedge C = H \wedge X \wedge C \leq \langle H, T \rangle \wedge X \wedge C = T$, hence $H \wedge C \leq H \wedge T = 1$.

\square
The condition on \(M \) in Proposition 2.1 means that \([G/X]\) is a mono-coatomic interval with coatom \(M \).

Corollary 2.2. Let \(X \) be a \(K \)-subgroup and \([G/X]\) a mono-coatomic interval with coatom \(M \). Then every \(H \leq G \) not contained in \(M \)G has a complement in \(G \). In particular \(G/M \)G is a \(K \)-group.

Proof. There exists a \(g \in G \) such that \(H^g \not\leq M \). By Proposition 2.1 with \(T = 1 \), \(H^g \) has a complement. Hence also \(H \) has a complement \(C \) in \(G \). Moreover, if \(M_G < H \), then \(CM_G/M_G \) is a complement of \(H/M_G \) in \(G/M_G \).

Proposition 2.3. Let \(G \) be a simple group and \([G/X]\) a mono-coatomic interval with coatom \(M \). If \(N \) is a central subgroup of \(M \) of prime order with \(N \leq X \) and if \(X/N \) is a \(K \)-group, then \(G \) is a \(K \)-group.

Proof. Let \(H \) be a proper subgroup of \(G \). Since \(M_G = 1 \), without loss of generality we may assume \(H \not\leq M \). If now \(H \wedge N = 1 \), by Proposition 2.1 \(H \) has a complement in \(G \). Assume now \(N \leq H \); there exists a \(g \in G \) such that \(N^g \wedge H = 1 \). So if \(H \) has no complement in \(G \), by Proposition 2.1 we must have \(N^g \leq C(H) \). It follows that if \(F = \{ N^x \mid x \in G \} \) and \(F_1 = \{ N^x \mid N^x \not\leq H \} \), then \(N(H) \geq \langle H, F_1 \rangle \geq \langle F \rangle = G \), a contradiction.

We finally recall:

1. (2.1) The direct product of a family of groups is a \(K \)-group if and only if each factor is a \(K \)-group, see Corollary 3.1.5 in \([S]\).
2. (2.2) If \(G \) contains an abelian subgroup \(A \) generated by minimal normal subgroups of \(G \) and a complement \(K \) to \(A \) that is a \(K \)-group, then \(G \) is a \(K \)-group, see Lemma 3.1.9 in \([S]\).
3. (2.3) The symmetric and alternating groups, the projective special linear groups \(L_n(q) \) and the simple Suzuki groups \(^2B_2(q) \) are \(K \)-groups, see \([P]\).

For our purpose it will be convenient to know which non-simple groups of Lie type \([C]\), p. 175, p. 268) are complemented.

Proposition 2.4. The following non-simple groups of Lie type are \(K \)-groups:

\(L_2(2), \ L_2(3), \ Sp_4(2), \ G_2(2), \ ^2G_2(3) \).

The following non-simple groups of Lie type are not \(K \)-groups:

\(^2B_2(2), \ ^2F_4(2), \ U_3(2) \).

Proof. In fact \(L_2(2) \cong S_3, \ L_2(3) \cong A_4, \ Sp_4(2) \cong S_6 \), and we are done by (2.3). In \(G_2(2) \) there is a mono-coatomic interval \([G_2(2)/H]\) with \(H \cong L_3(2) \) and corefree coatom, by Theorem 2.5 in \([Co]\): Hence \(G_2(2) \) is a \(K \)-group by
The group $^2G_2(3)$ has a corefree maximal subgroup isomorphic to $Z_7 : Z_6$ ([K3]): Hence it is a K-group by (2.2). On the other hand, we have $^2B_2(2) \cong Z_5 : Z_4$ ([A]), $U_3(2) \cong 3^2 : Q_8$ ([KL], p. 43) and finally $| ^2F_4(2) : ^2F_4(2)' | = 2$, but all involutions of $^2F_4(2)$ are contained in $^2F_4(2)'$ ([AS], p. 75).

To prove the main theorem, we take a counterexample L of minimal order and show that such a group L does not exist.

3. The simple classical groups.

We are going to assume in this section that $L = G_0(n, q)$, a (simple) classical group as in [KL].

a) $G_0(n, q)$ is not of type A_m, $n = m + 1$, $m \geq 1$.

See (2.3).

b) $G_0(n, q)$ is not of type C_m, $n = 2m$, $m \geq 2$.

Proof. Let r be a prime divisor of m, so that $m = rt$, $t \geq 1$. By Theorem 1 and Theorem 2 in [L], the interval $[PSp(2m, q)/PSp(2t, q^r)]$ is mono-coatomic. Moreover $PSp(2t, q^r)$ is simple, since $q^r \geq 4$, of order less than the order of L, hence a K-group. But then by Corollary 2.2, L is a K-group, a contradiction.

d) $G_0(n, q)$ is not of type B_m, $n = 2m + 1$, $m \geq 3$, q odd.
Proof. Assume \(q = p^f \), with \(f > 1 \) and let \(r \) be a prime divisor of \(f \). Then by Theorem 1 in [BGL], \([PO_n(q)/PO_n(q^{1/r})] \) is monoatomic, a contradiction. Therefore we must have \(q = p \). Now, by §5 in [K1] and Proposition 4.2.15 in [KL], \(G_0(n, q) \) contains a maximal subgroup \(M \) which is a split extension of an irreducible elementary abelian 2-group by \(A_n \) or \(S_n \). Therefore \(M \) is a \(K \)-group by (2.2), and \(G_0(n, q) \) is a \(K \)-group, a contradiction. \(\square \)

\[\text{e)} \quad G_0(n, q) \text{ is not of type } D_m, \quad n = 2m, \quad m \geq 4. \]

Proof. Let \(V = \mathbb{F}_q^n \) be the natural (projective) module for \(G_0(n, q) \), and let \(W \) be a nonsingular subspace of \(V \) of dimension 1. Since \(\Pi := G_0(n, q) \) is a counterexample of minimal order, the socle \(\text{soc} \ H_{\Pi} \) of the stabilizer \(H_{\Pi} \) of \(W \) in \(\Pi \), which is isomorphic to \(\Omega_{n-1}(q) \) if \(q \) is odd, and to \(Sp_{n-2}(q) \) if \(q \) is even, must be contained, by Corollary 2.2, in an element \(K_{\Pi} \) of \(\mathcal{C}(\Pi) \cup S \) different from \(H_{\Pi} \) (for the definition of the family \(\mathcal{C}(\Pi) \cup S \) we refer to §1.1 and §3.1 in [KL]).

By order considerations, one can prove that only condition (i) of Theorem 4.2 in [Li] applies: This means that \(K_{\Pi} \) must be an element of \(\mathcal{C}(\Pi) \). Since \(H_{\Pi} \in \mathcal{C}_1 \), one is left to show that there does not exist an element \(K_{\Pi} \) in \(\mathcal{C}_i \), for an \(i \neq 1 \), such that \(\text{soc} \ H_{\Pi} < K_{\Pi} < \Omega_{\Pi} \).

For \(q \) odd, the arguments used in the proof of Proposition 7.1.3 in [KL] show that such a \(K_{\Pi} \) does not exist, taking into account that in our situation \(n_2 = n - 1 \geq 7 \). To deal with the case when \(q \) is even, again one can proceed using arguments suggested in the proof of Lemma 7.1.4 in [KL]. \(\square \)

f) \(G_0(n, q) \) is not of type \(^2D_m, \quad n = 2m, \quad m \geq 4. \)

Proof. Following the notation in [BGL], let \(G \) be the simple adjoint algebraic group over \(\mathbb{F}_q \) with associated Dynkin diagram of type \(D_m, \quad \lambda = \sigma_q \) and \(\mu = 2^\sigma_q \). Then \(O^\mu(G_\lambda) = PO_n^+(q), \quad O^\mu(G_\mu) = PO_n^-(q) = G_0(n, q), \)

\[T := O^\mu(G_\mu \cap G_\lambda) = \begin{cases} \Omega_{n-1}(q) & \text{if } q \text{ is odd} \\ Sp_{n-2}(q) & \text{if } q \text{ is even.} \end{cases} \]

By Theorem 2 in [BGL], \([G_0(n, q)/T] \) is monocoatomic. Since \(n \geq 8 \), \(T \) is simple, hence \(G_0(n, q) \) is a \(K \)-group, a contradiction. \(\square \)

We have therefore completed the proof that \(L \) is not a classical group.

4. The simple exceptional groups of Lie type.

Now we are going to show that the minimal counterexample \(L \) cannot be an exceptional group of Lie type \(G(q) \).

a) \(G(q) \) is not of type \(G_2, \quad ^2G_2. \)
Proof. If \(r \) is a prime divisor of \(f \), where \(q = p^f \), write \(q = q_0^n \). Then
\(G(q_0) \leq G(q) \) ([Co], Theorem 2.3, 2.4, [K3], Theorem A, C). Hence by
Proposition 2.4, we have \(L = G_2(p) \), for an odd prime \(p \). But then \(G_2(2) \) is
maximal in \(G_2(p) \) by [K3], and we are done by Proposition 2.4. \(\square \)

b) \(G(q) \) is not of type \(F_4 \).

Proof. \(F_4(q) \) contains a quasisimple maximal subgroup \(M \) of type \(B_4(q) \),
with \(|Z(M)| = (2, q - 1) \) ([LSS], p. 322). But then, by Proposition 2.3,
\(F_4(q) \) is a \(K \)-group. \(\square \)

c) \(G(q) \) is not of type \(E_6, E_7, E_8 \).

Proof. We have \(F_4(q) \leq E_6(q) \) ([LS], Table 1), which excludes \(E_6 \).

If \(L \) is of type \(E_7 \), there exist subgroups \(H \leq M < \cdot G \) such that \(|M : H| = |Z(H)| = (2, q - 1) \) and \(H/Z(H) \cong L_2(q) \times PΩ^+_{12}(q) \) ([LS], Table 1). Hence
\(H/Z(H) \) is a \(K \)-group by (2.1). We claim that \([G/H] \) is monoatomic.
Clear if \(q \) is even. For \(q \) odd, suppose \(H < M_1 < \cdot G \), with \(M_1 \neq M \). Since
\(|M : H| = 2 \), we have \(|M_1| > |M| \geq q^{64} \). By the Theorem in [LS], \(M_1 \)
either is a parabolic subgroup, or it appears in Table 1 in [LS]: However,
both situations are excluded by rank or order considerations. So again by
Proposition 2.3, \(G \) is a \(K \)-group, a contradiction.

Finally assume \(G \) is of type \(E_8 \). There exist subgroups \(H \leq M \cdot G \) such that
\(|M : H| = |Z(H)| = (2, q - 1) \), with \(H/Z(H) \cong PΩ^+_{16}(q) \) ([I], p.
286, [LS], Table 1), hence a \(K \)-group. Using the Theorem in [LS] again one
shows that \([G/H] \) is monoatomic, giving rise to a contradiction. \(\square \)

d) \(G(q) \) is not of type \(2B_2 \).

See (2.3).

e) \(G(q) \) is not of type \(2F_4 \).

Proof. The group \(2F_4(2) \) is not simple, and we have seen that it is not a \(K \)-
group (Proposition 2.4). Its derived subgroup (the Tits group) is simple and
it is a \(K \)-group, since it has a maximal subgroup isomorphic to \(L_2(25) \) ([A]).
So now assume \(L = 2F_4(2^{2m+1}) \), with \(m \geq 1 \). By the Main Theorem in [M],
there exist \(H < M < L \) such that \(|M : H| = 2 \) and \(H \cong Sp_4(2^{2m+1}) \). Since
the nonabelian composition factors of maximal subgroups of \(L \) not conjugate
to \(M \) are of type \(A_1(q), 2B_2(q), U_3(q) \) and \(2F_4(q^{1/r}) \), \(r \) an odd prime, one
concludes that \([G/H] \) is monoatomic. \(\square \)

f) \(G(q) \) is not of type \(2E_6 \).

Proof. In fact we have \(F_4(q) \leq 2E_6(q) \) from Table 1 in [LS]. \(\square \)
g) $G(q)$ is not of type 3^2D_4.

Proof. From the Theorem in [K2], we have $G_2(q) < 3^2D_4(q)$. Since $G_2(q)$ is a K-group, we get a contradiction.

This concludes the proof that L is not a group of Lie type.

5. Sporadic simple groups.

We are left to deal with the sporadic groups: To this end, for each group we exhibit a maximal subgroup which is a K-group. From the tables in [A] we have:

$L_2(11) < M_{11}$, $L_2(11) < M_{12}$, $A_7 < M_{22}$, $M_{22} < M_{23}$, $M_{23} < M_{24}$, $L_2(11) < J_1$, $A_5 < J_2$, $L_2(19) < J_3$, $43 : 14 < J_4$, $M_{22} < HS$, $A_7 < Suz$, $M_{22} < McL$, $A_8 < Ra$, $S_4 \times L_3(2) < He$, $67 : 22 < L_9$, $A_7 < O'N$, $M_{23} < Co_2$, $M_{23} < Co_3$, $Co_3 < Co_1$, $S_{10} < Fi_{22}$, $S_{12} < Fi_{23}$, $Fi_{23} < Fi_{24}$, $A_{12} < HN$, $S_5 < Th$, $31 : 15 < BM$, $31 : 15 \times S_3 < M$.

We have thus completed the proof of the main theorem:

Theorem. Every finite simple group is a K-group.

Acknowledgements. We are grateful to E. Vdovin for helpful discussions.

References

Finite simple groups are K-groups

Received December 24, 2002 and revised February 24, 2003.