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Let g (resp. g′) be a Lie algebra of dimension d ≤ 3 (resp.
of finite dimension) over a field k of characteristic 6= 2. We
prove that g is isomorphic to g′ as Lie algebras over k if and
only if the enveloping algebra U(g) of g is isomorphic to U(g′)
as k-algebras.

1. Introduction.

In this article, we study the isomorphism theorem on Lie algebras of dimen-
sion ≤ 3. Our goal is the following theorem:

Theorem 1.1. Let g (resp. g′) be a Lie algebra of dimension d ≤ 3 (resp.
of finite dimension) over a field k (of characteristic not equal to 2). Then g
is isomorphic to g′ if and only if the universal enveloping algebra U(g) of g
is isomorphic to the one U(g′) of g′.

For a Lie algebra of dimension 1 or 2, the theorem is clear by classifi-
cation of low dimensional Lie algebras [3, I.4]. Malcolmson [4] proved the
isomorphism theorem for 3-dimensional simple Lie algebras by using their
Killing forms. We describe the simplicity of a 3-dimensional Lie algebra in
terms of its enveloping algebra. To complete the isomorphism theorem on 3-
dimensional Lie algebras, we prove the theorem for non-simple Lie algebras
of dimension 3.

Notation. We denote by σ = σg : g → U(g) a canonical map from a Lie
algebra to its enveloping algebra U(g).

2. Preliminaries on enveloping algebras.

We prove some preliminary properties on the enveloping algebra U(g).

Proposition 2.1. The two-sided ideal Icom generated by {[a, b] := ab−ba ∈
U(g); a, b ∈ U(g)} is equal to the one I[g,g] generated by σ([g, g]).

Proof. We have only to verify Icom ⊂ I[g,g]. Since σ(g1)σ(g2) · · ·σ(gs) (gi ∈
g) generate U(g) as a k-vector space, it is enough to show that

[σ(g1) · · ·σ(gs), σ(h1) · · ·σ(hr)] ∈ I[g,g]
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for gi, hj ∈ g. It follows from the formula

[g, hh′] = [g, h]h′ + h[g, h′] for g, h, h′ ∈ U(g).

�

Proposition 2.2. In the notation of Proposition 2.1, we have a canonical
isomorphism U(g)/Icom = U(g)/I[g,g] → U(g/[g, g]) as k-algebras.

Proof. See [2, 2.2.14, p. 72]. By the functoriality of U(g) with respect to g,
we have a canonical k-algebra homomorphism ϕ : U(g)→ U(g/[g, g]). Since
σ(g) generates U(g) as k-algebra, the homomorphism ϕ is surjective. On the
other hand, every (Lie algebra) homomorphism from g to the Lie algebra
associated to a commutative ring factors through g/[g, g]. Since U(g)/Icom
is commutative, we have a k-algebra homomorphism ψ : U(g/[g, g])→ U(g)/
Icom. Hence we can prove the kernel of ϕ is equal to Icom by the fact that
the composite ψϕ is the canonical projection U(g)→ U(g)/Icom. �

Proposition 2.3. Let GK-dimk U(g) be the Gelfand-Kirillov dimension of
U(g). Then we have GK-dimk U(g) = dimk g.

Proof. See [5, 8.1.15 (iii)]. �

Proposition 2.4. Let h be an ideal of g which is abelian. Let Ih be the right
ideal of U(g) generated by σ(h), which is a two-sided ideal (cf. [2, 2.2.14]).
Then, for any two-sided maximal ideal m with U(g)/m ∼= k which contains
Ih, we have a Lie algebra isomorphism h → Ih/Ihm via σ. Here the Lie
algebra structure of Ih/Ihm is defined by that of U(g).

Proof. First, we prove the proposition in the case m = 〈σ(g)〉. Let g1, . . . , gd
be a basis of g such that g1, . . . , gl is a basis of h. By Poincaré-Birkhoff-Witt
theorem, we have

U(g) = k ⊕
⊕
s≥1

1≤i1≤···≤is≤d

kσ(gi1) · · ·σ(gis).

Here σ(gi1) · · ·σ(gis) (1 ≤ i1 ≤ · · · ≤ is ≤ d) form a k-basis of U . Since h is
abelian, we have similar decompositions:

Ih =
⊕
s≥1

1≤i1≤···≤is≤d
i1≤l

kσ(gi1) · · ·σ(gis);

Ihm =
⊕
s≥2

1≤i1≤···≤is≤d
i1≤l

kσ(gi1) · · ·σ(gis)
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as k-vector spaces. Hence we have an isomorphism

h
∼=−→ Ih/Ihm =

⊕
s=1

1≤i1≤l

kσ(gi1)(1)

via σ. Using Ih ⊂ m and I2
h ⊂ Ihm, one can verify that the Lie algebra

structure of Ih/Ihm is well-defined and abelian.
Next we show the proposition in the general case. Let α : U(g) → k be

a surjective k-algebra homomorphism with kernel m. Using α, we have an
automorphism i : U(g)→ U(g) with iσ(g) = σ(g)− α(σ(g)) · 1 for all g ∈ g.
Since m contains Ih, the restriction of i to σ(h) is the identity of σ(h). One
can easily verify i(〈σ(g)〉) = m. Hence we have an isomorphism h→ Ih/Ihm
using the isomorphism (1) and a commutative diagram

h −−−→ Ih/Ih〈σ(g)〉∥∥∥ ∼=
yi

h −−−→ Ih/Ihm.

�

Corollary 2.5. In the notation of Proposition 2.1, we regard the ideal I :=
I[g,g] as ideal of the underlying Lie algebra U(g). Assume that [g, g] is
abelian. Then, for any maximal ideal m with U(g)/m ∼= k, the composite
[g, g] σ−→ I

pr−→ I/Im is an isomorphism of Lie algebras.

Remark 2.6. The composition [g, g] σ−→ I
pr−→ I/Im is surjective for any Lie

algebra, but not necessarily injective if [g, g] is not abelian. For example,
consider a simple Lie algebra.

Proposition 2.7. Let g0 be an ideal of g. Suppose that there exists a subal-
gebra g1 of g such that g = g0⊕g1 as k-vector spaces. Then g is isomorphic
to the semidirect product g0 o g1.

Proof. It is straightforward to show that the k-linear map g0 o g1 → g
defined by (g0, g1) 7→ g0 + g1 is a Lie algebra isomorphism. �

Proposition 2.8. Let gi and g′i (i = 0, 1) be Lie algebras and g1
d−→Derk g0

(resp. g′1
d′−→ Derk g′0) a derivation of g0 (resp. g′0). Assume that there exist

Lie algebra isomorphisms ϕ0 : g0 → g′0 and ϕ1 : g1 → g′1 with a commutative
diagram

g1
d−−−→ Derk g0

ϕ1

y yϕ∗
0

g′1 −−−→
d′

Derk g′0.



20 J.-H. CHUN, T. KAJIWARA, AND J.-S. LEE

Here ϕ∗0 is the induced homomorphism by ϕ0. Then the semidirect product
g0 o g1 is isomorphic to g′0 o g′1 by (g0, g1) 7→ (ϕ0(g0), ϕ1(g1)).

Proof. Straightforward. See [1, Chapitre 1 §7]. �

3. Proof of Theorem 1.1.

We have only to show that, if U(g) is isomorphic to U(g′), the Lie algebra
g is isomorphic to g′.

Assume that U(g) is isomorphic to U(g′). We remark that dimk g =
dimk g′ and dimk[g, g] = dimk[g′, g′] by Propositions 2.2 and 2.3.

In the case of dimk g = 1, 2, the theorem follows from the classification of
Lie algebras (e.g., [3, I.4]).

We now assume dimk g = dimk g′ = 3. We carry out the proof in each
case of dimk[g, g] = 0, 1, 2, 3.

If dimk[g, g] = 0, i.e., g is abelian, then the theorem is clear.
Suppose dimk[g, g] = 3. Then one can verify that g is simple (cf. [3, I.4]).

Hence the theorem follows from a result of Malcolmson [4, Corollary 1].
Finally, we treat the case dimk[g, g] = 1, 2. Let ψ : U(g) → U(g′) be

an isomorphism. We denote by m (resp. m′) the (two-sided) maximal ideal
generated by σ(g) (resp. the maximal ideal ψ(m)). Let I := I[g,g] and
I ′ := I[g′,g′] be as in Proposition 2.1. Note that [g, g] is abelian in this case
(cf. [3, I.4]). By Proposition 2.2 and Corollary 2.5, we have the following
commutative diagram:

g/[g, g]
σg−−−→ U(g/[g, g])

ψ−−−→ U(g′/[g′, g′])
σg′
←−−− g′/[g′, g′]y yρ yρ′ y

Derk([g, g]) −−−→
∼=

Derk(I/Im) −−−→
ψ∗

Derk(I ′/I ′m′) ←−−−
∼=

Derk([g′, g′]).

Here ρ, ρ′ are Lie homomorphisms defined by inner derivation as usual, and
ψ (resp. ψ∗) is the isomorphism induced by ψ.

Suppose dimk[g, g] = 1. Then there are just two isomorphism classes of 3-
dimensional Lie algebras [3, I.4]: One is nilpotent; the other is not nilpotent.
In this case, a Lie algebra g is nilpotent if and only if its center contains
[g, g], i.e., the above ρ is trivial for a maximal ideal m with U/m ∼= k. The
theorem follows from the above diagram.

Next, we suppose dimk[g, g] = 2. Take elements z ∈ g \ [g, g] and z′ ∈
g′\[g′, g′]. We denote by g1 (resp. g′1) the subalgebra of g (resp. g′) generated
by z (resp. z′). Since

ψ(σg(z mod [g, g])) = aσg′(z′ mod [g′, g′]) + b for some a ∈ k∗, b ∈ k,
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we have the following commutative diagram of Lie algebras:

g1
ψ1−−−→ g′1y y

Derk([g, g]) −−−→
ψ∗

Derk([g′, g′]),

where ψ1 maps z to az′, and ψ∗ is the composite of the lower horizontal maps
in the above diagram. The theorem follows from Propositions 2.7 and 2.8.
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