INTERSECTION OF CONJUGACY CLASSES WITH BRUHAT CELLS IN CHEVALLEY GROUPS

ERICH W. ELLERS AND NIKOLAI GORDEEV
PACIFIC JOURNAL OF MATHEMATICS
Vol. 214, No. 2, 2004

INTERSECTION OF CONJUGACY CLASSES WITH BRUHAT CELLS IN CHEVALLEY GROUPS

ERICH W. ELLERS AND NIKOLAI GORDEEV

Let $G = \tilde{G}(K)$ where \tilde{G} is a simple and simply-connected algebraic group that is defined and quasi-split over a field K. We investigate properties of intersections of Bruhat cells $B\dot{w}B$ of G with conjugacy classes C of G, in particular, we consider the question, when is $B\dot{w}B \cap C \neq \emptyset$.

1. Introduction.

Let (G, B, N, S) be a Tits system. Some aspects of intersections of conjugacy classes of G with Bruhat cells $B\dot{w}B$ have been investigated by several authors (see e.g., [St1], [K], [V] and [VS]). Here $w \in W = N/(B \cap N)$ and $\dot{w} \in N$ is a preimage of w with respect to the natural surjection $N \to W$. In particular, it is desirable to learn how a conjugacy class C of G is related to those conjugacy classes C_w of W for which $B\dot{w}B \cap C \neq \emptyset$, where $w \in C_w$.

Here we deal with the case where G is a Chevalley group, i.e., G is the group of points $\tilde{G}(K)$ of a simple algebraic group \tilde{G} that is defined and quasi-split over a field K and let $\tilde{G}(K)$ be a Chevalley group (see [St2]). Therefore, one can define a Tits system (G, B, N, S), where $S = \{w_{\alpha_i} | \alpha_i \in \Pi\}$ for a simple root system Π corresponding to G ([St2] and [C1]).

A crucial step to investigate intersections $B\dot{w}B \cap C$ was done by R. Steinberg [St1] who constructed the cross-section of regular conjugacy classes in $B\dot{w}S\dot{w}^{-1}B$, where $\dot{w}S$ is a Coxeter element of W with respect to the fixed set of generators S of W, i.e., $\dot{w}S$ is a product of elements in S in any order, where each $s \in S$ occurs exactly once. The next natural step is to consider intersections of regular classes with cells of the form $B\dot{w}S\dot{w}^{-1}B$. Here we prove the following:

Theorem 1.1. Let \tilde{G} be a simple and simply-connected algebraic group that is defined and quasi-split over a field K and let $G = \tilde{G}(K)$. Further, let $C \subset G$ be a conjugacy class of G such that

\[B\dot{w}S\dot{w}^{-1}B \cap C \neq \emptyset, \]

where w_S is a Coxeter element of W with respect to S. Then C intersects all cells of the form $B\dot{w}S\dot{w}^{-1}B$, where $w \in W$.

245
Note that the condition $B \dot{w} S B \cap C \neq \emptyset$ implies that every element of C is regular in \tilde{G}, except the case when \tilde{G} is not split and has the type A_{2l} ([St1, Remark 8.8]). Condition (∗) holds, for instance, for regular conjugacy classes of G in the following cases (as shown in Section 4):

(a) $G = SL_n(K)$;
(b) $K = \overline{K}$ (where \overline{K} is the algebraic closure of K).

In the cases (c) to (f) below, the field K is supposed to be perfect:

(c) \tilde{G} is split over K and $C = \overline{C} \cap G$ for a conjugacy class \overline{C} of \tilde{G};
(d) $\dim K \leq 1$ and C is a semisimple class (here $\dim K$ is the homological dimension of K);
(e) \tilde{G} is split over K, $C \cap B \neq \emptyset$, and C is a semisimple class;
(f) C is a unipotent class, char K is not a bad prime for \tilde{G}, and if \tilde{G} is not split, then \tilde{G} is not of type A_{2l}.

Theorem 1.1 implies:

Corollary 1.2. Let \tilde{G} be a simple and simply-connected algebraic group that is defined and quasi-split over a field K and let $G = G(K)$. Further, let $C \subset G$ be a regular conjugacy class of G. If one of Conditions (a) to (f) holds, then C intersects all Bruhat cells of the form $B \dot{w} \dot{w}^X \dot{w}^{-1} B$.

Remark. The statement of the Corollary in Case (a) follows from the existence of a normal rational form. Case (b) follows from a much more general fact: Every regular conjugacy class of a simple algebraic group (i.e., $G = \tilde{G}(K)$) intersects all Bruhat cells (see Appendix). Also, in Case (f), if K is a finite field, then a theorem of Kawanaka [K] shows that any regular unipotent conjugacy class intersects all Bruhat cells.

Now let $X \subset S$, $W_X = \langle X \rangle$. By w_X we denote a product (in any order) of elements of X, where each $x \in X$ occurs exactly once, i.e., w_X is a Coxeter element of W_X with respect to X. It is natural to consider intersections $B \dot{w} \dot{w}^X \dot{w}^{-1} B \cap C$ next. In [GS] it has been shown that $B \dot{w} \dot{w}^X B \cap C \neq \emptyset$ for some $X \subset S$ if C is a semisimple class and K is a finite field. Here we prove:

Theorem 1.3. Let \tilde{G} be a simple and simply-connected algebraic group that is defined and quasi-split over a perfect field K such that $\dim K \leq 1$, and let $G = \tilde{G}(K)$. Further, let $C \subset G$ be a noncentral semisimple conjugacy class of G. Then C intersects all Bruhat cells of the form $B \dot{w} \dot{w}^X \dot{w}^{-1} B$ for some $X \subset S$, $X \neq \emptyset$.

Remark. This theorem generalizes Proposition 6 from [GS].

We thank the referee for drawing our attention to a result of Geck and Pfeiffer (see Proposition 3.3) which allows us to extend our results to all Chevalley groups.
CONJUGACY CLASSES AND BRUHAT CELLS

2. S-Coxeter elements in Coxeter groups.

Let W be a finite group of orthogonal transformations of a Euclidean space V generated by reflections. Then W is a Coxeter group. Let $S = \{s_1, \ldots, s_r\}$ be a Coxeter system of generators of W, i.e., $s_i^2 = 1$ for every $i = 1, \ldots, r$ and $(s_is_j)^{m_{ij}} = 1$ is the system of basic relations for the group W (see [Bou, IV, 1]). Then every element of the form $s_{\pi(1)}s_{\pi(2)} \ldots s_{\pi(r)}$, where $\pi \in S_r$, is called a Coxeter element of W. All Coxeter elements of W constructed for all possible Coxeter systems of generators are conjugate in W (see [Bou, V, 6, Proposition 1]), and if $V^W = \{0\}$, each Coxeter element acts on $V \setminus \{0\}$ without fixed points ([Bou, V, 6, 2]).

Definition 2.1. Let $X \subset S$ and let W_X be the subgroup of W generated by X. Every element of W that is conjugate to a Coxeter element in W_X will be called a generalized Coxeter element of W.

Definition 2.2. For a fixed system S of generators the elements of the form $s_{\pi(1)}s_{\pi(2)} \ldots s_{\pi(r)}$, where $|S| = r$, will be called S-Coxeter elements. If $X \subset S$, then X-Coxeter elements in W_X will be called generalized S-Coxeter elements of W.

Let $l_S(w)$ be the S-length of w, i.e., the length of w with respect to S. Obviously, a Coxeter element $w \in W$ is S-Coxeter if and only if $l_S(w) = r$. Below, we shall work with a fixed system S and we shall write $l(w)$ instead of $l_S(w)$. We shall use the well-known fact that $l_X(w) = l_S(w)$ for any $w \in W_X$.

Example 2.3. Let $W = S_4$ and $S = \{(12), (23), (34)\}$. Then we have six Coxeter elements (4-cycles) in W. Among them there are four S-Coxeter elements:

\[(12)(23)(34), \ (34)(23)(12), \ (23)(12)(34), \ (12)(34)(23),\]

and two elements that are not S-Coxeter elements:

Lemma 2.4. Let w_1, w_2 be two S-Coxeter elements of W. Then there exists a sequence $\sigma_1, \sigma_2, \ldots, \sigma_n \in S$ (possibly $\sigma_i = \sigma_j$ for $i \neq j$) such that

\[w_2 = \sigma_n\sigma_{n-1} \ldots \sigma_1w_1\sigma_1\sigma_2 \ldots \sigma_n\]

and $l(\sigma_1\sigma_{i-1} \ldots \sigma_1w_1\sigma_1\sigma_2 \ldots \sigma_{i-1}\sigma_i) = r$ for every $i = 1, \ldots, n$.

Proof. See [C2, Section 10.3].

3. A condition for the intersection of a conjugacy class with Bruhat cells and Gauss cells.

We are going to use the concepts of S-ascent and S-descent and derive some of their properties. The notion of descent was introduced and considered in
Definition 3.1. Let $w_1, w_2 \in W$. We say that there exists an S-ascent (resp. S-descent) from w_1 to w_2 if there is a sequence $\sigma_1, \ldots, \sigma_n \in S$ such that
\[w_2 = \sigma_n \sigma_{n-1} \cdots \sigma_1 w_1 \sigma_1 \sigma_2 \cdots \sigma_n \]
and
\[l(\sigma_i \sigma_{i-1} \cdots \sigma_1 w_1 \sigma_1 \sigma_2 \cdots \sigma_i) \geq (\text{resp. } \leq) l(\sigma_{i-1} \cdots \sigma_1 w_1 \sigma_1 \sigma_2 \cdots \sigma_{i-1}) \]
for every $i = 1, \ldots, n$.

Remark. As before, we fix a set S of generators for W. In [GP] an S-descent from an element $w \in W$ to an element $w' \in W$ is denoted by $w \rightarrow w'$. It is logical to denote an S-ascent from $w' \in W$ to $w \in W$ by $w' \leftarrow w$.

Definition 3.2. Let $C \subset W$ be a conjugacy class. We define
\[l(C) = \min \{ l(w) \mid w \in C \}. \]

The following proposition is due to M. Geck and G. Pfeifer ([GP, Theorem 3.2.9.(a)]):

Proposition 3.3. Let $C \subset W = W(R)$ be a conjugacy class. Then for every $w \in C$ there exists an S-descent to an element $w' \in C$ such that $l(w') = l(C)$.

Let G be a Chevalley group (proper or twisted) corresponding to a root system R in the sense of [St2]. We fix a simple root system $\Pi = \{ \alpha_1, \ldots, \alpha_r \}$ and a corresponding Borel subgroup $B = HU$. Let $W = W(R)$ be the Weyl group of G and $S = \{ w_{\alpha_1}, \ldots, w_{\alpha_r} \}$ the corresponding Coxeter system of generators. By X_α we denote below a root subgroup of G (see [St2]).

The meaning of Definition 3.1 becomes clear from the following:

Proposition 3.4. Let $g \in B\dot{w}B$ (resp. $g \in B^-\dot{w}B$) and let $w' \in W$ be an element that is conjugate to w. If there exists an S-ascent (resp. S-descent) from w to w', then there exists an element $g' \in B\dot{w}'B$ (resp. $B^-\dot{w}'B$) that is conjugate to g.

Proof. We shall use the following lemma:

Lemma 3.5. Let $w \in W$. Suppose
\[w(\alpha_i) < 0, \text{ and } w^{-1}(\alpha_i) < 0 \]
for some $\alpha_i \in \Pi$. Then either $w = w_{\alpha_i} w' w_{\alpha_i}$, where $l(w') = l(w) - 2$, or $w = w_{\alpha_i} w' = w' w_{\alpha_i}$, where $l(w') = l(w) - 1$.

Proof. The assumption \(w^{-1}(\alpha_i) < 0 \) implies
\[
w = w_{\alpha_i}w_1,
\]
where \(l(w_1) = l(w) - 1 \) ([C2, Section 2.2]). Suppose \(w_1(\alpha_i) = \beta > 0 \). Since \(w(\alpha_i) = w_{\alpha_i}(\beta) < 0 \), we have \(\beta = \alpha_i \) and we have the second possibility. Now let \(w_1(\alpha_i) < 0 \). Then \(w_1 = w'w_{\alpha_i} \), where \(l(w') = l(w_1) - 1 \) and we have the first possibility.

First, let \(g \in B\dot{w}B \), then \(g = b_1\dot{w}b_2 \). We may assume \(b_1 = 1 \) and \(b_2 = u \in U \). Also, it is sufficient to prove the assertion for an \(S \)-ascent of one step, i.e., \(w' = w_{\alpha_i}ww_{\alpha_i} \) for some \(\alpha_i \in \Pi \). We can write \(u = u_\alpha v \), where \(u_\alpha \) is a root subgroup element corresponding to \(\alpha \) and where \(v \in U \) is an element that has no \(\alpha \)-factors in any decomposition into positive root subgroup elements.

If \(u_\alpha = 1 \), then \(w' = w_{\alpha_i}w_{\alpha_i}^{-1} \in U \) and
\[
g' = w_{\alpha_i}gw_{\alpha_i}^{-1} = (w_{\alpha_i}\dot{w}w_{\alpha_i}^{-1})(w_{\alpha_i}\dot{w}w_{\alpha_i}^{-1}) = \dot{w}'u' \in B\dot{w}B.
\]

Let \(u_\alpha \neq 1 \). Suppose \(\beta = w(\alpha) > 0 \). We may assume \(\beta \neq \alpha \) (otherwise \(w' = w_{\alpha_i}ww_{\alpha_i}^{-1} = w \)). We have \(g = \dot{w}u_{\alpha_i}w_{\alpha_i}^{-1} \in U \). Now we can consider the element \(u_{\beta}^{-1}g_{\alpha_\beta} \) instead of \(g \) which satisfies the previous condition \(u_\alpha = 1 \).

Suppose \(\beta = w(\alpha) < 0 \) and \(\gamma = w^{-1}(\alpha) > 0 \). We have \(g = \dot{w}u_{\alpha_i}v = \dot{w}u_{\alpha_i}v_{\alpha_i}^{-1}u_{\alpha_i} \). Note that \(v' = u_{\alpha_i}v_{\alpha_i}^{-1} \) has no factors corresponding to \(\alpha \). Consider now the element \(\tilde{g} = u_{\alpha_i}g_{u_{\alpha_i}}^{-1} \) instead of \(g \). We have \(\tilde{g} = u_{\alpha_i}w_{\alpha_i} = \dot{w}^{-1}u_{\alpha_i}w_{\alpha_i} = \dot{w}_{\alpha_i}v' \), an element which also satisfies the condition \(u_\alpha = 1 \).

Now let \(\beta = w(\alpha) < 0 \), \(\gamma = w^{-1}(\alpha) < 0 \). Then, by Lemma 3.5, either \(u_{\alpha_i}ww_{\alpha_i} = w \) and, therefore, there is nothing to prove, or \(l(w_{\alpha_i}ww_{\alpha_i}) < l(w) \) which contradicts our assumption.

Second, let \(g \in B^{-}\dot{u}B \). We may assume \(g = vv_{\alpha_i}v_{\alpha_i}u \), where \(v \in U^- \), \(v_{\alpha_i} \in X_{-\alpha} \), \(u_{\alpha_i} \in X_{\alpha} \), \(u \in U \) and the elements \(v, u \) have no factors from the group \(X_{\pm \alpha} \). Note, \(\dot{w}_{\alpha_i}v_{\alpha_i}^{-1} \in U^- \), \(\dot{w}_{\alpha_i}w_{\alpha_i}^{-1} \in U \) (because \(\alpha \) is a simple root). Thus, if \(v_{\alpha_i} = u_{\alpha_i} = 1 \), then \(\dot{w}_{\alpha_i}v_{\alpha_i}^{-1} \in B^{-}\dot{u}B \). Now put \(\beta = w(\alpha), \gamma = w^{-1}(\alpha) \). If \(\beta < 0, \gamma < 0 \), we have \(g = vv_{\alpha_i}u_{\alpha_i}\dot{w}^{-1}u_{\alpha_i} = vv_{\alpha_i}v_{\beta}v_{\alpha_i}^{-1}v_{\alpha_i}u_{\alpha_i} = v(v_{\alpha_i}v_{\beta}v_{\alpha_i}^{-1})u_{\alpha_i}u_{\alpha_i} \in X_{\beta} \), \(u_{\alpha_i} = \dot{w}_{\alpha_i}^{-1}u_{\alpha_i} \). We may assume \(\beta, \gamma \neq -\alpha \) (otherwise we have \(v_{\alpha_i}ww_{\alpha_i} = w \)). Thus the elements \(v(v_{\alpha_i}v_{\beta}v_{\alpha_i}^{-1}) \), \(u_{\gamma}u \) have no factors from \(X_{\pm \alpha} \) and we are in the preceding case.

Let \(\beta > 0, \gamma < 0 \). Then \(g = vv_{\alpha_i}u_{\beta}v_{\gamma} = v_{\alpha_i}v_{\beta}v_{\alpha_i}^{-1}v_{\alpha_i}u_{\gamma} \), where the element \(v' \in U^- \) has no factor from \(X_{-\alpha} \). Put \(u_{\alpha_i} = \dot{w}_{\alpha_i}v_{\alpha_i}^{-1} \). Then \(\dot{w}_{\alpha_i}v_{\alpha_i}^{-1} = u_{\alpha_i}v_{\alpha_i}^{-1}u_{\alpha_i} \) for some \(v'' \in U^- \), \(u' \in U \). Thus \(u_{\alpha_i}^{-1}\dot{w}_{\alpha_i}v_{\alpha_i}^{-1}u_{\alpha_i} \in B^{-}\dot{w}B \).

The case \(\beta < 0, \gamma > 0 \) is similar to the preceding one.

Let \(\beta > 0, \gamma > 0 \). Again, as above, we may assume \(\beta, \gamma \neq \alpha \). Thus by Lemma 3.5, we have \(l(w') = l(w_{\alpha_i}ww_{\alpha_i}) = l(w) + 2 \) which contradicts our assumption.

\[\square\]
Example 3.6. Let \(G = SL_3(K) \) and let
\[
\hat{w} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \hat{w}' = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.
\]
Let \(g \) be a semisimple element of \(G \) that has no eigenvalues in \(K \). Then \(g \) is a regular element and therefore its conjugacy class \(C_g \) intersects the big Bruhat cell \(B\hat{w}B \) (see [EGH, Lemma 4]). But \(C_g \cap B\hat{w}'B = \emptyset \) because every element of the form \(b_1\hat{w}'b_2 \) is conjugate to an element of the form
\[
\hat{w}'b = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} = \begin{pmatrix} 0 & a_{22} & a_{23} \\ -a_{11} & -a_{12} & -a_{13} \\ 0 & 0 & a_{33} \end{pmatrix}
\]
which has an eigenvalue \(a_{33} \in K \). Note that here \(S = \{ w_{12}, w_{23} \} \) (where \(w_{ij} \) is the matrix in which the \(i \)th and \(j \)th elements of the standard basis are interchanged) and \(l(w) = 3, l(w') = l(w_{12}) = 1 \).

Example 3.7. Let \(G = SL_4(K) \) and let
\[
\hat{w} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad \hat{w}' = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.
\]
Here \(S = \{ w_{12}, w_{23}, w_{34} \} \) and \(\hat{w} = \hat{w}_{12}\hat{w}_{34} \) is a generalized \(S \)-Coxeter element. Thus every noncentral conjugacy class of \(G \) intersects \(B^-\hat{w}B \) ([EG]). In particular, one can find a transvection \(g \in B^-\hat{w}B \). But there are no transvections in \(B^-\hat{w}'B \) because \(B^-\hat{w}'B = \hat{w}'B\hat{w}'^{-1} \hat{w}'B = \hat{w}'B \), and every matrix \(x \in \hat{w}'B \) satisfies the condition \(\text{rank}(x) \geq 2 \).

The examples above show that if there is no \(S \)-ascent (resp. \(S \)-descent) from \(w \in W \) to its conjugate \(w' \in W \), the condition \(C \cap B\hat{w}B \neq \emptyset \) (resp. \(C \cap B^-\hat{w}B \neq \emptyset \)) for a conjugacy class \(C \subseteq G \) does not necessarily imply \(C \cap B\hat{w}B \neq \emptyset \) (resp. \(C \cap B^-\hat{w}B \neq \emptyset \)).

Proposition 3.8. Let \(g \in B\hat{w}B \) (resp. \(g \in B^-\hat{w}B \)). Suppose \(l(w_\alpha w_\alpha) = l(w) - 2 \) (resp. \(l(w_\alpha w_\alpha) = l(w) + 2 \)). Then the conjugacy class \(C_g \) of \(g \) intersects either \(B\hat{w}_\alpha \hat{w}_\alpha^{-1}B \) (resp. \(B^-\hat{w}_\alpha \hat{w}_\alpha^{-1}B \)) or \(B\hat{w}_\alpha \hat{w}_\alpha B \) (resp. \(B^-\hat{w}_\alpha \hat{w}_\alpha B \)).

Proof. Let \(g \in B\hat{w}B \). We may assume, as in the proof of Proposition 3.4, that \(g = \hat{w}_\alpha u \) and \(w = w_\alpha w_1 w_\alpha \), where \(l(w_1) = l(w) - 2 \). Moreover, \(\beta = w_1(\alpha) > 0 \), \(\gamma = w_1^{-1}(\alpha) > 0 \), and \(w_1(\alpha), w_1(\alpha) \neq \alpha \). If \(u_\alpha = 1 \), then \(\hat{w}_\alpha \hat{w}_\alpha^{-1} \in B\hat{w}B \). Suppose \(u_\alpha \neq 1 \). Put \(u_{-\alpha} = \hat{w}_\alpha u_\alpha \hat{w}_\alpha^{-1} \). There exists \(u_{-\alpha} \in X_\alpha \) (here \(X_\alpha \) is the corresponding root subgroup) such that \(u_{-\alpha} u_{-\alpha} = \hat{w}_\alpha u_\alpha \) for some \(u'' \in X_\alpha \). Further, \(g_1 = \hat{w}_\alpha \hat{w}_\alpha^{-1} = \hat{w}_1 u_{-\alpha} u' \) for some \(u' \in U \). Put \(u_\beta = \hat{w}_1 u''_\alpha \hat{w}_1^{-1} \) (recall \(\beta = w_1(\alpha) > 0 \)). Then
\[g_2 = u_\beta g_1 u_\beta^{-1} = \tilde{w}_1 u_\alpha' \tilde{w}_1^{-1} \tilde{w}_1 u_\alpha' u_\beta' \tilde{w}_1 u_\beta' = \tilde{w}_1 \tilde{u}_\alpha u_\alpha'' u_\beta' \tilde{w}_1 \tilde{u}_\beta' B. \]
Since \(l(w_\alpha) = l(w_\alpha w_1) \), we also can find an element in \(C_g \cap B \tilde{w}_\alpha \tilde{w}_1 B \) (by Proposition 3.4).

Now let \(g \in B^{-} \tilde{w} B \). As in the proof of Proposition 3.4 we may assume \(g = v v_\alpha \tilde{w}_\alpha u , \alpha \neq (\omega(\alpha) > 0 , \alpha \neq \omega^{-1}(\alpha) > 0 \). If \(u_\alpha = u_\alpha = 1 \), then \(\tilde{w}_\alpha g \tilde{w}_\alpha^{-1} B = B^{-} \tilde{w}_\alpha \tilde{w}_\alpha^{-1} B \). Let \(v_\alpha = 1 \) and \(u_\alpha \neq 1 \). Then
\[
\begin{align*}
g_1 &= \tilde{w}_\alpha g \tilde{w}_\alpha^{-1} = (\tilde{w}_\alpha v v_\alpha) (\tilde{w}_\alpha \tilde{w}_\alpha^{-1}) (\tilde{w}_\alpha u_\alpha \tilde{w}_\alpha^{-1}) (\tilde{w}_\alpha u_\alpha \tilde{w}_\alpha^{-1}) \\
&= v' \tilde{w}_\alpha \tilde{w}_\alpha^{-1} u' \tilde{w}_\alpha \tilde{w}_\alpha^{-1} \end{align*}
\]
where \(v' \in U^{-} \), \(u' \in U \), \(u_\alpha \in X_\alpha \). Moreover, the element \(u' \) has no factors in \(X_\alpha \). Further, \(u_\alpha' g_1 \tilde{w}_\alpha^{-1} = u_\alpha' \tilde{w}_\alpha \tilde{w}_\alpha^{-1} u_\alpha' \tilde{w}_\alpha^{-1} \). Since \(u_\alpha' \tilde{w}_\alpha^{-1} \in U \), we have \(u_\alpha' g_1 \tilde{w}_\alpha^{-1} \in B^{-} \tilde{w}_\alpha \tilde{w}_\alpha^{-1} B \). Similar considerations work in the case \(v_\alpha \neq 1 \), \(u_\alpha = 1 \).

Let \(v_\alpha \neq 1 \), \(u_\alpha \neq 1 \). Put \(u_\alpha' = \tilde{w}_\alpha v_\alpha \tilde{w}_\alpha^{-1} \), \(v_\alpha' = \tilde{w}_\alpha u_\alpha \tilde{w}_\alpha^{-1} \), \(v' = \tilde{w}_\alpha v v_\alpha \tilde{w}_\alpha^{-1} \), \(u' = \tilde{w}_\alpha \tilde{w}_\alpha^{-1} \). Then
\[
\begin{align*}
g_1 &= \tilde{w}_\alpha g \tilde{w}_\alpha^{-1} = v' u_\alpha' \tilde{w}_\alpha \tilde{w}_\alpha^{-1} v_\alpha' u' = v' u_\alpha' \tilde{w}_\alpha \tilde{w}_\alpha^{-1} \tilde{u}_\alpha' (v_\alpha' u_\alpha' v_\alpha') v_\alpha' \end{align*}
\]
Put \(u'' = v_\alpha' u_\alpha' \), \(v'' = v_\alpha' v_\alpha' \). Then \(g_2 = v_\alpha' g_1 \tilde{w}_\alpha^{-1} = v'' u_\alpha' \tilde{w}_\alpha \tilde{w}_\alpha^{-1} u'' \).
Further, \(u_\alpha' \tilde{w}_\alpha = x_\alpha x_\alpha \) for some \(x_\alpha \in X_\alpha \), \(x_\alpha \in X_\alpha \). Hence
\[
\begin{align*}
g_2 &= v'' x_\alpha x_\alpha \tilde{w}_\alpha^{-1} u'' = v'' x_\alpha \tilde{w}_\alpha^{-1} (x_\alpha x_\alpha \tilde{w}_\alpha^{-1}) u'' \\
\end{align*}
\]
Since \(w^{-1}(\alpha) > 0 \) and \(w^{-1}(\alpha) \neq \alpha \), we get \(\tilde{w}_\alpha \tilde{w}_\alpha^{-1} x_\alpha \tilde{w}_\alpha^{-1} \in U \) and therefore \(g_2 \in B^{-} \tilde{w} \tilde{w}_\alpha B \). From Proposition 3.4 we get \(C_g \cap B^{-} \tilde{w}_\alpha \tilde{w} B \neq \emptyset \).

4. Proofs of the Theorems.

Here \(\tilde{G} \) is a simple algebraic group defined and quasi-split over a field \(K \), \(\tilde{B} = \tilde{T} \tilde{U} \) is a Borel subgroup defined over \(K \), \(\tilde{N} = N_{\tilde{G}}(\tilde{T}), \tilde{W} = \tilde{N}/\tilde{T} \) and \(G = \tilde{G}(K), B = \tilde{B}(K), T = \tilde{T}(K), U = \tilde{U}(K), N = \tilde{N}(K), W = N/T \). Further, let \(\Pi = \{ \gamma_1, \ldots, \gamma_s \} \) be a simple root system of \(\tilde{G} \) and \(\Pi = \{ \alpha_1, \ldots, \alpha_r \} \) be a simple root system (in the sense of \([C2] \)) for \(G \) (which is obtained from \(\Pi \) by gluing of some roots).

Proof of Theorem 1.1. Assume that Condition (*) of Theorem 1.1 holds. Further let \(C_c \subset W \) be the conjugacy class of Coxeter elements and let \(\omega \in C_c \). By Proposition 3.3 there exists an \(S \)-descent from \(\omega \) to an element \(\omega' \in C_c \) such that \(l(\omega') = l(C_c) = r \). Since among the factors of \(\omega' \) there are all reflections \(w_{\alpha_i}, \alpha_i \in \Pi \), the element \(\omega' \) is an \(S \)-Coxeter element. By Lemma 2.4 we have an \(S \)-ascent from \(w_S \) (recall that \(w_S \) is the Coxeter element from Condition (*)) to \(\omega' \) and, therefore, we have an \(S \)-ascent from \(w_S \) to \(\omega \). Now our statement follows from Proposition 3.4.

Condition (*). Below, \(K \) is a perfect field.

We need the following simple (and known) facts:
Lemma 4.1. Let \tilde{C} be a conjugacy class of \tilde{G} such that $C = \tilde{C} \cap G \neq \emptyset$. Further, let $g \in C$. If $H^1(K, C_{\tilde{G}}(g)) = 1$ then C is a conjugacy class of G (here $C_{\tilde{G}}(g)$ is the centralizer of g in \tilde{G}).

Proof. The argument here is the same as in ([C2, Proposition 3.7.3]). Indeed, if $g' \in C$, then there exists an element $\gamma \in \tilde{G}$ such that $g' = \gamma g \gamma^{-1}$. Thus, for every element $\sigma \in \text{Gal}(K/K)$ of the Galois group we have

$$\sigma(\gamma) g \sigma(\gamma^{-1}) = \gamma g \gamma^{-1}$$

and therefore $x_\sigma = \gamma^{-1} \sigma(\gamma) \in C_{\tilde{G}}(g)$. Since x_σ is a 1-cocycle, we have $x_\sigma = y \sigma(y^{-1})$ for some $y \in C_{\tilde{G}}$ and therefore $\sigma(\gamma y) = \gamma y$ for every $\sigma \in \text{Gal}(K/K)$. Thus, $\gamma y \in G$ and $g' = \gamma yy^{-1} \gamma^{-1}$.

Lemma 4.2. Let \tilde{C} be a semisimple conjugacy class of \tilde{G} and let $C = \tilde{C} \cap G \neq \emptyset$. If $\dim K \leq 1$, then C is a conjugacy class of G.

Proof. Since \tilde{G} is simply-connected, $C_{\tilde{G}}(s)$ is a connected reductive group for $s \in \tilde{C} \cap \tilde{T}$ ([C2, Theorem 3.5.6]) and therefore $H^1(K, C_{\tilde{G}}(s)) = 1$ ([St1, 11.2]). Now the assertion follows from Lemma 4.1.

Lemma 4.3. Let C be the same as in the preceding lemma. Suppose that G is split and C is a regular semisimple class such that $\tilde{C} \cap \tilde{T} \neq \emptyset$. Then C is a conjugacy class of G.

Proof. If $s \in \tilde{C} \cap \tilde{T}$, then $C_{\tilde{G}}(s) = \tilde{T}$ is a K-split torus and therefore $H^1(K, C_{\tilde{G}}(s)) = 1$ ([Sp, 12.3.5.(3)]). Now the assertion follows from Lemma 4.1.

Lemma 4.4. Let $u_1, u_2 \in G$ be two regular unipotent elements of \tilde{G}. Assume that $\text{char } K$ is not a bad prime for \tilde{G}. Then there exists elements $t \in \tilde{T}$ and $\gamma \in G$ such that $u_1 = t \gamma u_2 \gamma^{-1} t^{-1}$.

Proof. Let $\tilde{G} = \tilde{G}/Z(\tilde{G}), \tilde{T} = \tilde{T}/Z(\tilde{G})$. Then \tilde{G} is defined and quasi-split over K and $Z(\tilde{G}) = 1$. Further, let $u \in G$ be a regular unipotent element and let \bar{u} be its image in \tilde{G}. The char K is not a bad prime for \tilde{G}, thus $V = C_{\tilde{G}}(u)$ is a connected unipotent subgroup of \tilde{G} ([C2, Proposition 5.1.6]) which is defined and split over K ([Sp, 14.3.8]) and therefore $H^1(K, V) = 1$ ([Sp, 12.3.5.(3)]). Hence any two regular unipotent elements of $\tilde{G}(K)$ are conjugate (Lemma 4.1). If $\tilde{G}_1(K) \leq \tilde{G}(K)$ is a subgroup generated by unipotent elements of \tilde{G}, then it is a normal subgroup and $\tilde{G}_1(K) = \tilde{G}_1(K)\tilde{T}(K)$ (this follows from the Bruhat decomposition). Now let $\bar{u}_1, \bar{u}_2 \in \tilde{G}(K)$ be images of regular unipotent elements $u_1, u_2 \in G$. Then there exist elements $\gamma \in \tilde{G}_1(K), t \in \tilde{T}(K)$ such that $\bar{u}_1 = t \gamma \bar{u}_2 \gamma^{-1} t^{-1}$. If $\gamma \in \tilde{G}(K) = G, t \in \tilde{T}$ are preimages of γ, t, then $u_1 \equiv t \gamma u_2 \gamma^{-1} t^{-1} (\text{mod } Z(\tilde{G}))$. Since u_1, u_2 are both unipotent elements, we have $u_1 = t \gamma u_2 \gamma^{-1} t^{-1}$.
Now we check Condition (*) for (a) to (f):

(a) If $G = SL_n(K)$, Condition (*) is an immediate consequence of the representation of elements of $GL_n(K)$ in rational canonical form.

(b) Consider the case where K is an algebraically closed field. According to Steinberg’s theorem ([St1, 1.4]), the set

$$\mathfrak{N} = \bar{w}_{\gamma_1}X_{\gamma_1}\bar{w}_{\gamma_2}X_{\gamma_2}\ldots\bar{w}_{\gamma_s}X_{\gamma_s}$$

is a cross-section of all regular conjugacy classes of the group \bar{G}, where $\bar{w}_{\gamma_1}, \ldots, \bar{w}_{\gamma_s}$ is any fixed system of preimages of the basic reflections $w_{\gamma_1}, \ldots, w_{\gamma_s}$ in any fixed order (here X_{γ_i} is the corresponding root subgroup). Moreover, we can rewrite \mathfrak{N} in the form

$$\mathfrak{N} = \bar{w}_{\gamma_1}\bar{w}_{\gamma_2}\ldots\bar{w}_{\gamma_s}X_{\theta_1}X_{\theta_2}\ldots X_{\theta_s},$$

where $\theta_i = w_{\gamma_i}\ldots w_{\gamma_{i+1}}w_{\gamma_i-1}(\gamma_i) > 0$. Since K is an algebraically closed field, $\{\alpha_1, \ldots, \alpha_s\} = \{\gamma_1, \ldots, \gamma_s\}$ and any element in the intersection $\mathfrak{N} \cap N(K)$ lies in the S-Coxeter cell $BW_{\alpha_1}W_{\alpha_2}\ldots W_{\alpha_s}B$. This proves (*).

(c) If \bar{G} is split over K, the closed subset \mathfrak{N} (defined above) of \bar{G} is defined over K and $\mathfrak{N} \cap \bar{C} \in G$ ([St1, Section 9]).

(d) There exists a closed subset \mathfrak{N}' of \mathfrak{N} which is defined over K and such that every regular semisimple conjugacy class \bar{C} of \bar{G} intersects \mathfrak{N}' in just one point (and this point belongs to G if $\bar{C} \cap G \neq \emptyset$) ([St1, 9.11]). Since $\mathfrak{N} \subset BW_{\gamma}B$ for some S-Coxeter element w_S, the assertion follows from Lemma 4.2.

(e) We may use the same argument as in (d), and Lemma 4.3.

(f) If \bar{G} is split or \bar{G} is not of type A_2, the cross-section of regular classes \mathfrak{N} is defined over K and for the conjugacy class of regular unipotent elements \bar{C} we have $u = \bar{C} \cap \mathfrak{N} \in BW_{\gamma}B$, where $w_{\gamma} \in N$ for some S-Coxeter element w_{γ} in W ([St1, Section 9]). Now let $u' \in \bar{C} \cap G$. By Lemma 4.4 we have

$$t\gamma u' \gamma^{-1} t^{-1} = u = u_1 \bar{w}_{\gamma} b_1$$

for some $t \in T, \gamma \in G$ and $u_1 \in U, b_1 \in B$. Hence

$$u'' = \gamma u' \gamma^{-1} = (t^{-1} u t)(t^{-1} \bar{w}_{\gamma} t)(t^{-1} b_1 t).$$

Thus $u'' \in BW_{\gamma}B$. But $u'' \in G$ and, therefore, $u'' \in BW_B$ for some $\bar{w} \in N$. Since $BW_B \subset BW_B$, we have $w = w_{\gamma}$. This implies that the conjugacy class C of u' in G has a nontrivial intersection with $BW_{\gamma}B$, where $w_{\gamma} \in N$.

Proof of Theorem 1.3.

Below, $\bar{\Gamma}$ is a connected reductive algebraic group defined over a perfect field K such that $\dim K \leq 1$.

Lemma 4.5. Let $\bar{P} = \bar{L}R_u(\bar{P})$ be a parabolic subgroup of \bar{G} defined over K. Let \bar{L} be a fixed Levi factor (defined over K) and let $R_u(\bar{P})$ be the unipotent radical of \bar{P}. Further, let $s \in \bar{P}(K)$, $s = lu$, where $l \in \bar{L}$ and $u \in R_u(\bar{P})$.
If \(s \in \tilde{\Gamma}(K) \), then \(l \in \tilde{L}(K) \) and \(u \in R_u(\tilde{P})(K) \). If, in addition, \(s \) is a semisimple element, then \(s \) is conjugate to \(l \) in \(\tilde{P} \).

Proof. The first assertion follows from the uniqueness of the decomposition \(ku \).

Further, if \(s \) is semisimple, it is contained in a maximal torus in \(\tilde{P} \) which is contained in a Levi subgroup \(L' \) (\([\text{Sp}, 8.4.4]\)). Since all Levi subgroups are conjugate in \(\tilde{P} \) (\([\text{Sp}, 16.1.1]\)) by elements of \(\tilde{P} \), one can find an element \(p = l_1u_1 \in \tilde{P} \) where \(l_1 \in \tilde{L} \), \(u_1 \in R_u(\tilde{P}) \) such that \(psp^{-1} \in \tilde{L} \). Then \(l_1^{-1}psp^{-1}l_1 = u_1su_1^{-1} = l(l^{-1}u_1lu_1^{-1}) \in \tilde{L} \). Hence \((l^{-1}u_1lu_1^{-1}) = 1 \) (because \((l^{-1}u_1lu_1^{-1}) \in R_u(\tilde{P}) \)) and therefore \(l_1^{-1}psp^{-1}l_1 = l \). \(\Box \)

Lemma 4.6. Let \(s \in \tilde{\Gamma}(K) \) be a semisimple element of \(\tilde{\Gamma} \) such that \(C_{\tilde{\Gamma}}(s)^0 \) is not a torus. Then there exists a parabolic subgroup \(\tilde{P} \) of \(\tilde{\Gamma} \) defined over \(K \) such that \(s \in \tilde{P} \).

Proof. The group \(C_{\tilde{\Gamma}}(s)^0 \) is defined over \(K \) (\([\text{Sp}, 12.1.4]\)). Further, the condition \(\dim K \leq 1 \) implies that there exists a Borel subgroup \(\tilde{B}_s \) of \(C_{\tilde{\Gamma}}(s)^0 \) which is also defined over \(K \) (\([\text{St1}, 10.2]\)). Since \(C_{\tilde{\Gamma}}(s)^0 \) is not a torus, the unipotent radical \(R_u(\tilde{B}_s) \) is not trivial. The group \(\tilde{U}_1 = R_u(\tilde{B}_s) \) is also defined over \(K \) (\([\text{Sp}, 14.4.5(v)]\)). Further, let

\[
\tilde{N}_1 = N_{\tilde{G}}(\tilde{U}_1), \quad \tilde{U}_2 = \tilde{U}_1 \cdot R_u(\tilde{N}_1), \quad \tilde{N}_2 = N_{\tilde{G}}(\tilde{U}_2), \ldots,
\]

\[
\tilde{U}_i = \tilde{U}_{i-1} \cdot R_u(\tilde{N}_{i-1}), \quad \tilde{N}_i = N_{\tilde{G}}(\tilde{U}_i), \ldots.
\]

Then all members of \((1) \) are closed subgroups of \(\tilde{\Gamma} \) and \(\tilde{U}_k = \tilde{N}_{k+1} \), \(\tilde{N}_k = \tilde{N}_{k+1} \) for some positive integer \(k \) (\([\text{Hu}, 30.3]\)). Further, all groups in \((1) \) are defined over \(K \); indeed, the field \(K \) is perfect and all groups are defined as normalizers of \(K \)-defined groups, their unipotent radicals, and the images of \(K \)-defined groups with respect to maps \(\tilde{U}_{i-1} \times R_u(\tilde{N}_{i-1}) \rightarrow \tilde{U}_{i-1} \cdot R_u(\tilde{N}_{i-1}) \), induced by multiplication in \(\tilde{G} \). Since \(\tilde{U}_1 \) is connected, the last member \(\tilde{N}_k \) of this sequence is a parabolic subgroup of \(\tilde{\Gamma} \) (\([\text{Hu}, 30.3]\)). From the definitions we have \(s \in \tilde{N}_1 \leq \tilde{N}_k \). \(\Box \)

Now we can prove Theorem 1.3. Let \(s \in G \) be a noncentral semisimple element. We may assume that \(s \) is not a regular element of \(\tilde{G} \) (otherwise the statement follows from Theorem 1.1 and Property (d)). By Lemma 4.6 we have \(s \in \tilde{P} \) for some parabolic subgroup defined over \(K \). Since \(g\tilde{P}g^{-1} = \tilde{P}_l \) for some standard parabolic subgroup \(\tilde{P}_l \) and \(g \in G \) (\([\text{Sp}, 15.4.6]\)), we may assume \(s \in \tilde{P}_l \), where \(I \subset \tilde{\Pi} \) is a Gal (\(\overline{K}/K \))-invariant subset (note that the group \(\text{Gal}(\overline{K}/K) \) acts on \(\tilde{\Pi} \) by permutation and the orbits of this action
correspond to \(\Pi \); see [St1, Section 9]). Let \(\widetilde{L}_I = \widetilde{T}\widetilde{G}_I \), where \(\widetilde{G}_I = \langle X_\alpha \mid \alpha \in \langle I \rangle \rangle \). Then \(\widetilde{L}_I \) is a \(K \)-defined Levi factor of \(\widetilde{P}_I \).

By Lemmas 4.5 and 4.2 we may assume \(s \in \widetilde{L}_I \). (Indeed, by Lemma 4.5 we have an element \(l \in \widetilde{L}_I(K) \) which is conjugate to \(s \) in \(\widetilde{P}_I \). By Lemma 4.2 the elements \(s, l \) are conjugate by an element of the group \(G \). Hence we may take the element \(l \in C \) instead of \(s \).

Again by Lemma 4.6 we may assume that \(C_{\widetilde{L}_I}(s)^0 = \widetilde{T}' \), where \(\widetilde{T}' \) is a maximal torus of \(\widetilde{L}_I \) defined over \(K \) (otherwise, we can take a smaller set \(I \) using the same procedure as above). Note that the derived subgroup \(\widetilde{L}_I \) is equal to \(\widetilde{G}_I \) and therefore is simply-connected semisimple group (because \(\widetilde{G} \) is simply-connected). Hence \(C_{\widetilde{L}_I}(s)^0 = C_{\widetilde{L}_I}(s) \) ([C2, Theorem 3.5.6]) and thus

\[
(2) \quad C_{\widetilde{L}_I}(s) = \widetilde{T}'.
\]

Further, if \(I = \emptyset \) we have \(\widetilde{P}_I = \widetilde{B} \) and \(\widetilde{T}' = \widetilde{T} \). Hence \(s \in \widetilde{T}(K) = T \).

Since \(s \) is a noncentral element of \(G \), there exists a root \(\alpha \in \Pi \) such that \(s \) is not in the center of the group \(T\widetilde{G}_\alpha(K) \) (here, \(\widetilde{G}_\alpha = \langle X_\beta \mid \beta \in \langle I_\alpha \rangle \rangle \) where \(I_\alpha \subset \Pi \) is the Gal \((K/K)-orbit of \(\alpha \)). Since the Borel subgroup \(B_\alpha \) of \(T\widetilde{G}_\alpha(K) \) (with respect to \(T \)) is not a normal subgroup, one can find an element \(\gamma \in T\widetilde{G}_\alpha(K) \) such that \(\gamma s \gamma^{-1} = \check{w}_\alpha b \), where \(w_\alpha \in W \) is the corresponding reflection and \(b \in B_\alpha \). Hence \(C \cap B\check{w}_\alpha B \neq \emptyset \). Further, let \(\omega \in W \). Then \(\omega w_\alpha \omega^{-1} = \check{w}_\beta \), where \(\beta = \omega(\alpha) \). Let \(\check{\omega}, \check{\beta} \), be preimages of \(\omega, w_\beta \), in the group \(N \). Then \(\check{\omega}T\widetilde{G}_\alpha(K)\check{\omega}^{-1} = T\widetilde{G}_\beta(K) \). The element \(s' = \check{\omega}s\check{\omega}^{-1} \) is not a central element in \(T\widetilde{G}_\beta(K) \). Now, as above, we have \(\gamma' s' \gamma'^{-1} \in B\check{w}_\beta B \) for some \(\gamma' \in T\widetilde{G}_\beta(K) \). Thus, if \(I = \emptyset \), the assertion of the theorem holds for \(X = \{\alpha\} \).

Now we may assume that \(I \neq \emptyset \) and Condition \((2) \) holds.

We have \(s = tg, t \in \check{T} \cap C_{\widetilde{L}_I}(\widetilde{G}_I) \), and \(g \in \widetilde{G}_I \) ([Hu, 27.5]). Note that the elements \(t \) and \(g \) do not necessarily belong to \(G \) but \(t, g \in \widetilde{L}_I(K') \) for some extension \(K'/K \). The element \(s \in G \) is Gal \((K/K)-invariant and \(t \in Z(\widetilde{L}_I) \). Hence \(g = h_1 g_1 \), where \(h_1 \in \check{T}(K') \), \(g_1 \in \widetilde{G}_I(K) \) (this follows from the Bruhat decomposition of \(g \)). Further, \((2) \) implies that \(g \) is a regular element of \(\widetilde{G}_I \). If \(\mathfrak{N}' \) is a cross-section (defined over \(K \)) of regular semisimple conjugacy classes of \(\widetilde{G}_I \) ([St1, Section 9]) then \(h_1 \mathfrak{N}' \) is also a cross-section (defined over \(K' \)) of regular semisimple conjugacy classes of \(\widetilde{G}_I \). Hence the conjugacy class \(C_g \) of \(g \) in \(\widetilde{G}_I \) intersects \(h_1 \mathfrak{N}' \) in just one point. Thus the conjugacy class \(C_s = tC_g \) of \(s \) in \(\widetilde{L}_I \) intersects \(th_1 \mathfrak{N}' \) also in one point \(x \) (recall, \(t \in Z(\widetilde{L}_I) \)). Since the conjugacy class \(C_s \) is defined over \(K \) and the closed subset \(th_1 \mathfrak{N}' \) is also defined over \(K \) (because \(th_1 = sg_1^{-1} \in \widetilde{L}_I(K) \)),
the point x is Gal(\overline{K}/K)-invariant and therefore it belongs to $L_I(K)$. Since $s, x \in L_I(K) \leq G$ are conjugate in L_I (and therefore in \overline{G}), we have $x = \sigma s \sigma^{-1}$ for some $\sigma \in G$ (Lemma 4.2). Further,

$$th_1 \mathfrak{g}' \subset \left(\prod_{\alpha \in X} \hat{w}_\alpha \right) \tilde{U},$$

where $X \subset \Pi$ is the set of Gal(\overline{K}/K)-orbits of $I \subset \tilde{\Pi}$ and w_α in (3) is the product of basic reflections w_γ, where γ runs through the orbit corresponding to α or $w_\alpha = w_{\gamma_1 + \gamma_2}$ if such orbit consists of two roots γ_1, γ_2 such that $\gamma_1 + \gamma_2$ is a root (see [St1, Section 9]). From (3) we obtain

$$x = \sigma s \sigma^{-1} \in \tilde{B} \prod_{\alpha \in X} \hat{w}_\alpha \tilde{B}. \quad (4)$$

Since $x \in G$, we have

$$x = \sigma s \sigma^{-1} \in B \hat{w} B \quad (5)$$

for some $w \in W$. But

$$B \hat{w} B \subset \tilde{B} \hat{w} \tilde{B}. \quad (6)$$

From (4), (5), (6) we get

$$w = \prod_{\alpha \in X} w_\alpha, \quad (7)$$

i.e., w is a generalized S-Coxeter element of W. Now (5) and (7) imply that the conjugacy class of s in G intersects $B \hat{w} B$ for some generalized S-Coxeter element w of W.

Suppose that $w' = \omega w \omega^{-1}$ is also an S-Coxeter element of W for some $\omega \in W$. Then $w' = \prod_{\alpha \in Y} w_\alpha$ for some $Y \subset \Pi$, $|Y| = |X|$. Let $X' = \{\omega(\alpha) \mid \alpha \in X\}$. Then

$$w' = \prod_{\alpha \in Y} w_\alpha = \prod_{\beta \in X'} w_\beta. \quad (8)$$

The element w' is a Coxeter element of the root systems generated by Y and X'. It acts without fixed points on the vector space (over \mathbb{R}) generated by Y and on the vector space generated by X'. Moreover, $l(w') = |Y| = |X'|$. Hence the vector spaces (over \mathbb{R}) generated by Y and X' coincide (it is the $\langle w' \rangle$-complement to the vector space of w'-invariant vectors). Since X is a simple root system for the root system $\langle X \rangle$, the set X' is a simple root system for $\langle X' \rangle$. On the other hand, the set Y is a simple root system for the root system $\langle Y \rangle$. Now $X' \subset \omega(\Pi)$, $Y \subset \Pi$ and the linear spaces generated by X' and Y coincide. Moreover, the root subsystems $\langle X' \rangle$, $\langle Y \rangle$ have the same Coxeter element w'. Hence $\langle X' \rangle = \langle Y \rangle$. Now let I' be a subset of Π
that is $\text{Gal} \left(\overline{K}/K \right)$-invariant and such that the set of $\text{Gal} \left(\overline{K}/K \right)$-orbits of I' coincides with Y. Since $\omega(\langle X \rangle) = \langle Y' \rangle = \langle Y \rangle$, we have

\begin{align}
\tilde{G}' &= \langle X_\beta \mid \beta \in \langle I' \rangle \rangle = \omega \tilde{G} \omega^{-1}.
\end{align}

From (8) we get

\begin{align}
\tilde{L}' &= \tilde{T} \tilde{G}' = \omega \tilde{L} \omega^{-1}.
\end{align}

Since $\omega \in W$, we can choose the preimage $\hat{\omega} \in G$. From (9)

\begin{align}
s' = \hat{\omega}s\hat{\omega}^{-1} \in \tilde{L}' \cap G.
\end{align}

Now we have a semisimple regular element $s' \in \tilde{L}'(K)$. The same arguments as above show that there exists an element $\tau \in G$ such that $s'' = \tau s' \tau^{-1} \in B \hat{w}' B$, where

\begin{align}
\hat{w}' = \prod_{\beta \in Y} w_\beta
\end{align}

(the order of the roots β in this product can be different from the order of the roots α in the product corresponding to w'). By Lemma 2.4 there exists an S-ascent from \hat{w}' to $\tilde{w}' \in W$. Proposition 3.4 implies

\begin{align}
\delta s'' \delta^{-1} \in B \tilde{w}' B
\end{align}

for some $\delta \in G$.

The inclusions (5) and (10) show that the conjugacy class C of s in G intersects all Bruhat cells $B \hat{w}'' B$, where w'' runs through all generalized S-Coxeter elements that are conjugate to w. Now let $\tilde{w} \in W$ be an element from the conjugacy class of w. Proposition 3.3 implies that there exists an S-ascent from some generalized S-Coxeter element w'' to \tilde{w}. Now the assertion of the theorem follows from Proposition 3.4. \(\Box\)

Theorem 1.3 has been proved.

Remarks to Theorem 1.3.

1. Intersection with a parabolic subgroup. In the proof of Theorem 1.3 we showed that

\begin{align}
C \cap P_X \neq \emptyset
\end{align}

for every noncentral semisimple conjugacy class C that is not regular, where $X \not\subseteq \Pi$ and $P_X = BW_X B$ is the corresponding parabolic subgroup (if K is a perfect field and $\dim K \leq 1$). More generally, Equation (**) holds for every noncentral conjugacy class C that is not a regular semisimple class (if K is a perfect field and $\dim K \leq 1$). Indeed, we consider the Jordan decomposition $g = su$ of an element $g \in C$. Applying the same construction as in Lemma 4.6, we get a parabolic subgroup P which is defined over K and contains s, u. Then by an appropriate conjugation we can embed g in
2. The condition: \(\dim K \leq 1 \). The example below shows that if this condition does not hold, the conclusion of Theorem 1.3 may be false.

Let \(n = 4k \) and let \(V \) be a linear space over the real number field \(\mathbb{R} \) such that \(\dim V = 4k \). Further, let \(\{e_1, \ldots, e_{4k}\} \) be a fixed basis of \(V \) and let \(V^+ = \langle e_1, \ldots, e_{2k} \rangle \), \(V^- = \langle e_{2k+1}, \ldots, e_{4k} \rangle \). Further, let \((x_1, \ldots, x_{4k}) \) be the coordinates of an element in \(V \) with respect to the basis \(\{e_i\} \) and let \(\Phi = x_1^2 + \cdots + x_{2k}^2 - x_{2k+1}^2 - \cdots - x_{4k}^2 \). Let \(\Omega = \Omega(V, \Phi) = [SO(V, \Phi), SO(V, \Phi)] \).

Then \(\Omega \) is a Chevalley group in the sense of [St2], corresponding to the root system \(D_{2k} \).

Let \(g \in GL(V) \) be the linear operator such that \(g|_{V^+} = -1, g|_{V^-} = 1 \). One can easily check that \(g \in \Omega \) and \(gug^{-1} \neq u^{-1} \) for every nontrivial unipotent element \(u \in \Omega \) (the latter follows from the fact that \(v \pm g(v) \) is not an isotropic vector if \(v \neq 0 \) is isotropic).

Hence the element \(g \) cannot normalize any nontrivial unipotent subgroup of \(\Omega \) and therefore \(g \) cannot belong to any proper parabolic subgroup of \(\Omega \). This implies that a preimage \(\hat{g} \) of \(g \in G = \text{Spin}_{4k}(\mathbb{R}) \) (with respect to the natural homomorphism \(G \longrightarrow \Omega \)) also cannot belong to a proper parabolic subgroup of \(G \). Hence \(C \cap Bw_XB = \emptyset \) for every \(X \subset \Pi \), where \(C \) is the conjugacy class of \(\hat{g} \) in \(G \), \(B \) is a Borel subgroup of \(G \), and \(\Pi \) is a simple root system corresponding to \(\hat{G} = \text{Spin}_{4k} \) (note, \(BW_XB = P_X \) is a standard parabolic subgroup).

3. The ordered set of \(\mathcal{X}_C \). Recall, for any set \(X \subset \Pi \) we define \(w_X = \prod_{\alpha \in X} w_\alpha \), where the product can be taken in any fixed order. For the set

\[
\mathcal{X}_C = \{X \subset \Pi \mid C \cap Bw_XB \neq \emptyset\}
\]

one can consider the natural order with respect to inclusion.

Let \(G = SL_n(\mathbb{C}) \) and \(C \) a noncentral semisimple conjugacy class. Let \(\lambda(C) = (\lambda_1, \ldots, \lambda_r) \) be the partition of \(n \), i.e., \(\lambda_1 \geq \cdots \geq \lambda_r \), where \(\lambda_1 + \cdots + \lambda_r = n \), which corresponds to the multiplicities of eigenvalues of elements of \(C \) (i.e., \(\lambda_1 \) is the biggest multiplicity, then \(\lambda_2 \), etc.) and let \(\lambda^*(C) \) be the dual partition (i.e., the rows and columns of \(\lambda \) are interchanged). Further, to every partition \(\mu = (\mu_1, \ldots, \mu_s) \) of \(n \) we assign a subset \(X(\mu) \subset \Pi = \{\alpha_1, \ldots, \alpha_{n-1}\} \), namely,

\[
X(\mu) \overset{\text{def}}{=} \Pi \setminus \{\alpha_{\mu_1}, \alpha_{\mu_1+\mu_2}, \ldots, \alpha_{\mu_1+\cdots+\mu_{s-1}}\}.
\]

It is easy to see that \(X(\lambda^*(C)) \) is a maximal element of \(\mathcal{X}_C \). Moreover, every maximal element \(Y \in \mathcal{X}_C \) is \(W \)-conjugate to \(X(\lambda^*(C)) \). Thus we have just one conjugacy class \(\{ww_Xw^{-1}\} \) in \(W \) for each maximal \(X \in \mathcal{X}_C \).

For other types of groups we can have several conjugacy classes in \(W \) of elements of the form \(w_X \), where \(X \in \mathcal{X}_C \) is a maximal element. Say, consider
the root system $R = B_2 = \langle \alpha_1, \alpha_2 \rangle$, where $\alpha_1 = \varepsilon_1 - \varepsilon_2$ and $\alpha_2 = \varepsilon_2$ (in the notation of [Bou]), and let G be the corresponding simple and simply connected group over \mathbb{C}. Let $g = h_{\varepsilon_1}(t)h_{\varepsilon_2}(t^{-1}) \in G$ be a semisimple element, where $h_{\varepsilon_1}(t), h_{\varepsilon_2}(t^{-1})$ are the corresponding root semisimple elements (in the notation of [St2]) and $t \neq \pm 1$. Let C be the conjugacy class of g. Then $\{\alpha_1\}$ and $\{\alpha_2\}$ both are maximal elements of X_C. Thus here we have two different conjugacy classes in W of elements w_X for maximal X in X_C.

5. Appendix.

The following result as well as the line of proof was pointed out to the second author by T.A. Springer in the discussion of relevant questions:

Proposition 5.1. Let \tilde{G} be a simple algebraic group defined over an algebraically closed field K and let $G = \tilde{G}(K)$. Further, let C be the conjugacy class of a regular element of G. Then $C \cap B \tilde{w}B \neq \emptyset$ for every $w \in W$.

Proof. For $b \in B$ we put $O_B(b) = \{xbx^{-1} \mid x \in B\}$.

Lemma 5.2. There exists a nonempty finite set $\{b_1, \ldots, b_n\} \subset C \cap B$ such that $C \cap B = \bigcup_{1 \leq i \leq n} O_B(b_i)$.

Proof. Let $x = s_1u_1, y = s_2u_2 \in B$ be two regular elements, where $s_1, s_2 \in T$ and $u_1, u_2 \in U$. We show

(11) $O_B(x) = O_B(y)$ if and only if $s_1 = s_2$.

Indeed, “only if” is obvious. Now let

(12) $b_1 = su_1, b_2 = su_2, s \in T, u_1, u_2 \in U$.

Since we can consider the Jordan decompositions of x, y as elements of B, we may assume that (12) gives the Jordan decompositions of b_1 and b_2. Put $\Gamma = [C_G(s), C_G(s)], B_\Gamma = B \cap \Gamma$. Then (12) implies $u_1, u_2 \in B_\Gamma$. Moreover, the elements u_1, u_2 are regular unipotent elements of Γ ([St1, 3.7]) and therefore the elements u_1, u_2 are conjugate in B_Γ (see [C2, the proof of Proposition 5.1.3]). Hence we have (11).

Now let $b = su \in B, s \in T, u \in U, g \in G, gb^{-1} \in B$. Further, let $g \in B \tilde{w}B$. Then $gb^{-1} = w(s)u'$ for some $u' \in U$. Together with (11), this implies our assertion. □

Lemma 5.3. Let $b \in C \cap B$ be a fixed element and let $w \in W$. Then every irreducible component C_w of $\overline{C} \cap \overline{B \tilde{w}B}$ such that $O_B(b) \subset C_w$ satisfies the following condition:

$\dim C_w = \dim \overline{C} + \dim \overline{B \tilde{w}B} - \dim G$.

Proof. Since b is a regular element, $\dim C_B(b) = \operatorname{rank} G$ ([St1, 3.11]). If C_1 is an irreducible component of $C \cap B$ containing $O_B(b)$, then Lemma 5.2 implies $C_1 = O_B(b)$ and, therefore,

(13) $\dim C_1 = \dim B - \operatorname{rank} G = \dim C + \dim B - \dim G.$

Let $O_B(b) \subset C_w$ for some irreducible component C_w of $C \cap B\w' B$. Suppose $\dim C_w > \dim C + \dim B\w' B - \dim G.$

(14)

Since B is a closed subset of $B\w' B$ ([Sp, 8.15]) and C_1 is an irreducible component of $C_w \cap B$, we have

(15) $\dim C_1 \geq \dim C_w + \dim B - \dim B\w' B.$

Now (14) and (15) contradict (13). Thus we have our statement. □

Now we return to the proof of Proposition 5.1.

Take C_w as in Lemma 5.3. Assume $C \cap B\w' B = \emptyset$. Then

(16) $C_w \subset \bigcup_{w' < w} Bw'B = \bigcup_{w' < w} Bw'B$ ([Sp, 8.15]). From (16) we have $C_w \subset Bw' B$ for some $w' < w$ and we may consider C_w as an irreducible component of $C \cap Bw' B$ that contains $O_B(b)$. Then, by Lemma 5.3, we have

(17) $\dim C_w = \dim C + \dim Bw' B - \dim G.$

But (17) contradicts Lemma 5.3 because $\dim Bw' B < \dim B\w' B$. This proves Proposition 5.1. □

References

Received August 12, 2002 and revised June 16, 2003. Research was supported by NSERC Canada Grant A7251 and by INTAS-99-00817.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF TORONTO
100 ST. GEORGE STREET, TORONTO
ONTARIO M5S 3G3
CANADA
E-mail address: ellers@math.toronto.edu

RUSSIAN STATE PEDAGOGICAL UNIVERSITY
MOLKA 48
ST. PETERSBURG 191-186
RUSSIA
E-mail address: nickgordeev@mail.ru