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Let G = é(K) where G is a simple and simply-connected
algebraic group that is defined and quasi-split over a field
K. We investigate properties of intersections of Bruhat cells
BwB of G with conjugacy classes C of G, in particular, we
consider the question, when is BwB N C # (.

1. Introduction.

Let (G, B, N, S) be a Tits system. Some aspects of intersections of conjugacy
classes of G with Bruhat cells Bw B have been investigated by several authors
(see e.g., [St1], [K], [V] and [VS]). Here w ¢ W = N/(BN N) and w € N
is a preimage of w with respect to the natural surjection N — W. In
particular, it is desirable to learn how a conjugacy class C of G is related to
those conjugacy classes Cy, of W for which BwB N C # (), where w € C,,.

Here we deal with the case where G is a Chevalley group, i.e., G is the
group of points G(K) of a simple algebraic group G that is defined and
quasi-split over a field K, thus G is a proper or a twisted Chevalley group
(see [St2]). Therefore, one can define a Tits system (G, B, N, S), where
S = {wq, | a; € II} for a simple root system II corresponding to G' ([St2]
and [C1]).

A crucial step to investigate intersections BwBNC was done by R. Stein-
berg [St1] who constructed the cross-section of regular conjugacy classes in
BwgB, where wg is a Coxeter element of W with respect to the fixed set
of generators S of W, i.e., wg is a product of elements in S in any order,
where each s € S occurs exactly once. The next natural step is to consider
intersections of regular classes with cells of the form Bunigw ™' B. Here we
prove the following:

Theorem 1.1. Let G be a simple and simply-connected algebraic group that
is defined and quasi-split over a field K and let G = G(K). Further, let
C C G be a conjugacy class of G such that

(*) BwsgBNC 7é @,

where wg is a Cozxeter element of W with respect to S. Then C' intersects
all cells of the form Bunbsiw ™' B, where w € W.
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Note that the condition BuwgB N C # () implies that every element of C
is regular in G except the case when G is not split and has the type Ay
([St1, Remark 8.8]). Condition () holds, for instance, for regular conjugacy
classes of G in the following cases (as shown in Section 4):

(a) G= SLn<K)§

(b) K = K (where K is the algebraic closure of K).
In the cases (c) to (f) below, the field K is supposed to be perfect:

(c) G is split over K and C = C NG for a conjugacy class C of G;

(d) dim K <1 and C is a semisimple class (here dim K is the homological
dimension of K);

(e) G is split over K, C N B # (), and C is a semisimple class;

(f) C'is a unipotent class, char K is not a bad prime for G, and if G is

not split, then G is not of type Aoy;.

Theorem 1.1 implies:

Corollary 1.2. Let G be a simple and simply-connected algebraic group
that is defined and quasi-split over o field K and let G = CNJ(K) Further,
let C C G be a regular conjugacy class of G. If one of Conditions (a) to (f)
holds, then C intersects all Bruhat cells of the form Bunigu ™' B.

Remark. The statement of the Corollary in Case (a) follows from the ex-
istence of a normal rational form. Case (b) follows from a much more gen-
eral fact: Every regular conjugacy class of a simple algebraic group (i.e.,
G = G(K)) intersects all Bruhat cells (see Appendix). Also, in Case (f), if
K is a finite field, then a theorem of Kawanaka [K] shows that any regular
unipotent conjugacy class intersects all Bruhat cells.

Now let X C S, Wx = (X). By wx we denote a product (in any order) of
elements of X, where each x € X occurs exactly once, i.e., wx is a Coxeter
element of Wx with respect to X. It is natural to consider intersections
Buinixw BN C next. In [GS] it has been shown that BuwxB N C # () for
some X C S if C is a semisimple class and K is a finite field. Here we prove:

Theorem 1.3. Let G be a simple and simply-connected algebraic group that
is defined and quasi-split over a perfect field K such that dim K <1, and let
G = G(K). Further, let C C G be a noncentral semisimple conjugacy class
of G. Then C intersects all Bruhat cells of the form Bunbxw ™ 'B for some
XcS, X#0.

Remark. This theorem generalizes Proposition 6 from [GS].

We thank the referee for drawing our attention to a result of Geck and
Pfeiffer (see Proposition 3.3) which allows us to extend our results to all
Chevalley groups.
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2. S-Coxeter elements in Coxeter groups.

Let W be a finite group of orthogonal transformations of a Euclidean space
V generated by reflections. Then W is a Coxeter group. Let S = {s1,..., s}
be a Coxeter system of generators of W, i.e., s2 = 1 for every i = 1,...,r
and (s;s;)™9 = 1 is the system of basic relations for the group W (see [Bou,
IV, 1]). Then every element of the form s.(1)Sx(2) - - Sx(r), Where m € S;., is
called a Coxeter element of W. All Coxeter elements of W constructed for
all possible Coxeter systems of generators are conjugate in W (see [Bou, V,
6, Proposition 1]), and if V" = {0}, each Coxeter element acts on V \ {0}
without fixed points ([Bou, V, 6, 2]).

Definition 2.1. Let X C S and let Wx be the subgroup of W generated
by X. Every element of W that is conjugate to a Coxeter element in Wy
will be called a generalized Coxeter element of W.

Definition 2.2. For a fixed system S of generators the elements of the
form s(1)Sr(2) - - - Sx(r), Where [S| =7, will be called S-Coxeter elements. If
X C S, then X-Coxeter elements in Wx will be called generalized S-Coxeter
elements of W.

Let lg(w) be the S-length of w, i.e., the length of w with respect to S.
Obviously, a Coxeter element w € W is S-Coxeter if and only if lg(w) = 7.
Below, we shall work with a fixed system S and we shall write I(w) instead
of ls(w). We shall use the well-known fact that [x(w) = lg(w) for any
w € Wx.

Example 2.3. Let W = S, and S = {(12),(23),(34)}. Then we have six
Coxeter elements (4-cycles) in W. Among them there are four S-Coxeter
elements:

(12)(23)(34), (34)(23)(12), (23)(12)(34), (12)(34)(23),
and two elements that are not S-Coxeter elements:
(23)(12)(23)(34)(23), (23)(34)(23)(12)(23).

Lemma 2.4. Let wi, wy be two S-Cozeter elements of W. Then there exists
a sequence 01,02,...,0, € S (possibly o; = o fori # j) such that

Wy =0p0p—-1...01W10102...0p
and l(0;0i—1 ...01w10109 . ..0,_10;) =1 for everyi=1,...,n.
Proof. See [C2, Section 10.3]. O

3. A condition for the intersection of a conjugacy class with
Bruhat cells and Gauss cells.

We are going to use the concepts of S-ascent and S-descent and derive some
of their properties. The notion of descent was introduced and considered in
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[GP] (without the name “descent”) as a binary relation between elements
of conjugacy classes of Coxeter groups. The notion of ascent is dual to that
of descent.

Definition 3.1. Let wi,we, € W. We say that there exists an S-ascent

(resp. S-descent) from w; to wy if there is a sequence o1, ...,0, € S such
that
Wy = 0p0p—-1...01W10102...0p
and
l(oioi—1...01w1010% . ..0;)
> (resp. <) l(oj—1...00w1010%...0,_1)
for everyi=1,...,n.

Remark. As before, we fix a set S of generators for W. In [GP] an S-descent
from an element w € W to an element w’ € W is denoted by w — w’. It is
logical to denote an S-ascent from w’ € W to w € W by w «— w'.

Definition 3.2. Let C' C W be a conjugacy class. We define
I(C) =min {l{(w) | weC}.
The following proposition is due to M. Geck and G. Pfeifer ((GP, Theorem
3.2.9.(a)]):

Proposition 3.3. Let C ¢ W = W(R) be a conjugacy class. Then for
every w € C there exists an S-descent to an element w' € C such that

I(w') = 1(C).

Let G be a Chevalley group (proper or twisted) corresponding to a root
system R in the sense of [St2]. We fix a simple root system Il = {a,...,a,}
and a corresponding Borel subgroup B = HU. Let W = W(R) be the Weyl
group of G and S = {wq,,...,ws,} the corresponding Coxeter system of
generators. By X, we denote below a root subgroup of G (see [St2]).

The meaning of Definition 3.1 becomes clear from the following:

Proposition 3.4. Let g € BwB (resp. g € B~ wB) and let w' € W be an
element that is conjugate to w. If there exists an S-ascent (resp. S-descent)
from w to w', then there exists an element ¢’ € Buw'B (resp. B~w'B) that
18 conjugate to g.

Proof. We shall use the following lemma:
Lemma 3.5. Let w € W. Suppose
w(e;) < 0, and w (o) < 0

for some a; € II. Then either w = wqy,w'wy,, where l(w') = l(w) — 2, or
W = Wa, W = wwey,, where l(w'") = l(w) — 1.
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Proof. The assumption w™!(a;) < 0 implies
W = Weq,; W1,

where [(wy) = l(w) —1 ([C2, Section 2.2]). Suppose wi(e;) = 3 > 0. Since
w(a;) = wq, (B) < 0, we have f = «; and we have the second possibility.
Now let w1 (a;) < 0. Then wy = w'w,, where I(w') = I(w1) — 1 and we have
the first possibility. O

First, let g € BwB, then g = bywby. We may assume by = 1 and by = u €
U. Also, it is sufficient to prove the assertion for an S-ascent of one step,
ie., w = waww, for some o € II. We can write u = u,v, where u,, is a root
subgroup element corresponding to a and where v € U is an element that
has no a-factors in any decomposition into positive root subgroup elements.

If ug = 1, then v’ = wyui,! € U and

g = agiy! = (e, ) (euib, ') = '’ € Bu'B.

Let uq # 1. Suppose 8 = w(a) > 0. We may assume [ # « (otherwise
w' = wawwy! = w). We have g = tunt~ v = ugov. Now we can consider
the element ugl gug instead of g which satisfies the previous condition u, =
1.

Suppose g = wla) < 0 and v = wl(a) > 0. We have g = wuav =
Wl Vg, Lug. Note that o/ = uavugl has no factors corresponding to «.
Consider now the element § = u,gu,' instead of g. We have § = ugin’ =
W™ Mg’ = u,v’, an element which also satisfies the condition u, = 1.

Now let 8 = w(a) < 0, v = w!(a) < 0. Then, by Lemma 3.5, either
wewws = w and, therefore, there is nothing to prove, or l(wawwe) < l(w)
which contradicts our assumption.

Second, let ¢ € B~wB. We may assume g = vv,Wusu, where v € U™,
Vo € X_qo, Ug € Xo, v € U and the elements v, u have no factors from
the group Xi,. Note, wavwgl e U™, wauu')ojl € U (because « is a sim-
ple root). Thus, if va = us = 1, then 1aguw,! € B w'B. Now put
B =wla),y=wla).If 3<0,v<0, we have g = vvatuw ™ tiu =
VVLUWU = vvavgv(;lvawu = v(vavgvojl)wuvu, where vg = T = X3,
Uy, = W tvgw € X_,. We may assume 3,7 # —a (otherwise we have
waww, = w). Thus the elements v(vavgv,t), usu have no factors from
X+, and we are in the preceding case.

Let 8> 0, v < 0. Then g = vvauguu = vav ", where the element v e
U~ has no factor from X_,. Put ua = wava L Then wagi,! = uav"i'y’
for some v € U™, v/ € U. Thus uy, Yiggioy ua € B~u'B.

The case 3 < 0, v > 0 is similar to the preceding one.

Let 8 > 0, v > 0. Again, as above, we may assume 3,7 # a. Thus by
Lemma 3.5, we have [(w') = l(wqww,) = l(w) + 2 which contradicts our
assumption. O
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Example 3.6. Let G = SL3(K) and let

0 01 01 O
w=[0 -1 0|, @w'=|10 0
1 00 00 -1

Let g be a semisimple element of G that has no eigenvalues in K. Then g
is a regular element and therefore its conjugacy class C, intersects the big
Bruhat cell BwB (see [EGH, Lemma 4]). But C; N Buw'B = () because
every element of the form byw'bs is conjugate to an element of the form

01 0 a1 a2 ai3 0 a9 a3
’Lb/b = -1 0 O 0 ao22 a93 = —a11 —ai12 —ais
0 0 1 0 0 ass 0 0 ass

which has an eigenvalue a3 € K. Note that here S = {wi2, w23} (where w;;
is the matrix in which the ith and jth elements of the standard basis are
interchanged) and I(w) = 3, [(w') = l(w12) = 1.

Example 3.7. Let G = SLy(K) and let

0100 0 001
i — 10 0 0 i — 0010
0001 0100
0010 1 0 00

Here S = {wig, wo3, w34} and w = wigwsy is a generalized S-Coxeter ele-
ment. Thus every noncentral conjugacy class of G intersects B~ wB ([EG]).
In particular, one can find a transvection ¢ € B~wB. But there are no
transvections in BB because B~w'B = w'Buw' /B = W' B, and every
matrix x € ' B satisfies the condition rank (z — 1) > 2.

The examples above show that if there is no S-ascent (resp. S-descent)

from w € W to its conjugate w’ € W, the condition C' N BwB # ) (resp. C'N
B~wB # () for a conjugacy class C' € G does not necessarily imply C' N
Buw'B # (0 (resp. C N B~ uw'B #0).
Proposition 3.8. Let g € BwB (resp. g € B~wDB). Suppose l(wawwy) =
l(w) — 2 (resp. l(wawwe) = l(w) + 2). Then the conjugacy class Cy of g
intersects either Biigii ' B (resp. B~ atini, ' B) or BiawB and Biini, B
(resp. B~ wawB and B~ wwB).

Proof. Let g € BwB. We may assume, as in the proof of Proposition 3.4,

that ¢ = wueu and w = wywiw,, where l[(wy) = I(w) — 2. Moreover,
B = w(a) >0,y = w;(a) > 0, and wy(a),w; () # a Ifua—l,
then wagw 1 € BuinB. Suppose u, # 1. Put u_ = tauatw, . There

exists u), € X, (here X, 1s the corresponding root subgroup) uch that

/ /
U Uq = wau for some u € X,. Further, g1 = wqguw, ~1 = Wu_yu

for some u' € U. Put ug = wruli;’ (recall 3 = wi(a) > 0). Then
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g2 = qulugl = wlu’aw;lwlu_au'ugl = wlwau”u’uﬁ € BunweB. Since
l(wiwa) = l(wqwn ), we also can find an element in CyN Bwwi B (by Propo-
sition 3.4).

Now let ¢ € B~wB. As in the proof of Proposition 3.4 we may assume
g = Vatugu, a # wa) > 0, a # w(a) > 0. If v, = uy = 1, then
Wagthy! € B g, ' B. Let vy = 1, uy # 1. Then

. .1 . c AN e e =1 U .1
g1 = Wa g, = (Wavi, ") (Wewiy, ") (WataWy, ) (Wauthy, ™)
= v’wawwglu,au’,
where v e U=, v/ € U, u_, € X_,. Moreover, the element ' has no factors

in X,. Further, u_og1u") = u_qv/ i, 'u_qu'u"). Since u,au’u:(lx e U,

(0% (0%
we have u_aglu:i € B uwawuy, L B. Similar considerations work in the case

Vo # 1, uqg = 1.

Let vy # 1, ug # 1. Put u), = wavat, !, v, = tauay !, v = wavi, !
PR
u' = weuw, . Then
. . 3 T Ly ) 2 R Ly R NN
g1 = Wagiy " = v'ubiainiy Wi = vuLbating,  (vhu'v, vl
Put v’ = viu'v, v" = v\v'. Then go = vhgiv,! = v"ubiiainiy .

Further, u/ 1w, = x_q24 for some z_, € X_,, 24 € X,4. Hence
-1,/ " coe =1y e e —1 e —1N, N
g2 = V" x_qzatini, v’ = 0"z g (e mari,  )u”.

Since w1 (a) > 0 and w™ () # «, we get 1ot~ twatini, b € U and therefore
g2 € B~ e B. From Proposition 3.4 we get Cy N B-w,wB # 0. O

4. Proofs of the Theorems.

Here G is a simple algebraic group defined and quasi-split over a field K, B=
TU is a Borel subgroup « defined over K, N = N~ (T T),W = N/T and G =
G(K),B = B(K),T = T(K),U = U(K),N = N(K),W = N/T. Further,
let II = {71,...,7s} be a simple root system of G and II = {oa,...,ar} be

a simple root system (in the sense of [C2]) for G (which is obtained from IT
by gluing of some roots).

Proof of Theorem 1.1. Assume that Condition (*) of Theorem 1.1 holds.
Further let C. C W be the conjugacy class of Coxeter elements and let
w € C.. By Proposition 3.3 there exists an S-descent from w to an element
W' € C, such that I(w') = I(C.) = r. Since among the factors of w’ there
are all reflections w,, «; € II, the element o’ is an S-Coxeter element. By
Lemma 2.4 we have an S-ascent from wg (recall that wg is the Coxeter
element from Condition (*)) to w’ and, therefore, we have an S-ascent from
wg to w. Now our statement follows from Proposition 3.4. U

Condition (x). Below, K is a perfect field.
We need the following simple (and known) facts:
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Lemma 4.1. Let C be a conjugacy class of G such that C = CNG £ .
Further, let g € C. If H(K, Cz(g9)) = 1 then C is a conjugacy class of G

(here Cz(g) is the centralizer of g in G).

Proof. The argument here is the same as in ([C2, Proposition 3.7.3]). In-
deed, if ¢’ € C, then there exists an element v € G such that g = vgy L.

Thus, for every element o € Gal(K/K) of the Galois group we have

o(Nge(y™h) =977
and therefore z, = v 1o(7) € Cx(g). Since z, is a 1-cocycle, we have z, =
yo(y ') for some y € Cg and therefore o(yy) = vy for every o € Gal(K/K).
Thus, vy € G and ¢’ = yygy 1y~ L. (]

Lemma 4.2. Let C be a semisimple conjugacy class of G and let C =
CNG#0. Ifdim K <1, then C is a conjugacy class of G.

Proof. Since G is simply-connected, C'é(s) is a connected reductive group

for s € C NG ([C2, Theorem 3.5.6]) and therefore H! (K, Cx(s)) =1 ([St1,
11.2]). Now the assertion follows from Lemma 4.1. O

Lemma 4.3. Let C be the same as in the preceding lemma. Suppose that
G is split and Cisa regular semisimple class such that cnT # (. Then C
is a conjugacy class of G.

Proof. If s € C N T, then Cx(s) = T is a K-split torus and therefore
HY(K, Ca(s)) =1 ([Sp, 12.3.5.(3)]). Now the assertion follows from Lem-
ma 4.1. O

Lemma 4.4. Let uy,uz € G be two regular unipotent elements of G. As-
sume that char K is not a bad prime for G. Then there exist elementst € T
and v € G such that uy = tyugy 't~}

Proof. Let G = G/Z(G), T = T/Z(G). Then G is defined and quasi-split
over K and Z(G) = 1. Further, let u € G be a regular unipotent element
and let 7 be its image in G. The char K is not a bad prime for G, thus
V = Cx(u) is a connected unipotent subgroup of G ([C2, Proposition 5.1.6])
which is defined and split over K ([Sp, 14.3.8]) and therefore H!(K,V) =
1 ([Sp, 12.3.5.(3)]). Hence any two regular unipotent elements of G(K)
are conjugate (Lemma 4.1). If G1(K) < G(K) is a subgroup generated
by unipotent elements of G, then it is a normal subgroup and G(K) =
G1(K)T(K) (this follows from the Bruhat decomposition). Now let 1, @iy €
G(K) be images of regular unipotent elements uy,us € G. Then there exist
elements ¥ € G1(K), t € T(K) such that 4 = Fuy Y Ity € G(K) =
G, t € T are preimages of 7,1, then u; = tyugy 't~ (mod Z(G)). Since
u1,us are both unipotent elements, we have u; = tyuz'yfltfl. O
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Now we check Condition (x) for (a) to (f):

(a) If G = SL,(K), Condition (*) is an immediate consequence of the
representation of elements of GL,,(K) in rational canonical form.

(b) Consider the case where K is an algebraically closed field. According
to Steinberg’s theorem ([St1, 1.4]), the set

M= 1y Xy Wy Xy - Wy, Xy,

is a cross-section of all regular conjugacy classes of the group é, where
Wy, - - -, Wy, is any fixed system of preimages of the basic reflections w., , ...,
w~, in any fixed order (here X, is the corresponding root subgroup). More-
over, we can rewrite 91 in the form

N = tirn Uiy . . . tir, X, Xo, - - - Xo,,

where 0; = w,, ... wy,_ , Wy, () > 0. Since K is an algebraically closed
field, {a1,..., .} = {71,...,7s} and any element in the intersection C' N
N(K) lies in the S-Coxeter cell By, Wa, - - - Wa, B. This proves (x).

(c) If G is split over K, the closed subset M (defined above) of G is defined
over K and MNC € G ([St1, Section 9]).

(d) There exists a closed subset 9 of M which is defined over K and such
that every regular semisimple conjugacy class C of G intersects 9 in just
one point (and this point belongs to G if C NG # §) ([St1, 9.11]). Since
N C BwgB for some S-Coxeter element wg, the assertion follows from
Lemma 4.2.

(e) We may use the same argument as in (d), and Lemma 4.3.

(f) If G is split or G is not of type Asgy, the cross-section of regular classes 9
is defined over K and for the conjugacy class of regular unipotent elements
C we haveu =C NN € BwgB, where wg € N for some S-Coxeter element
wg in W ([St1, Section 9]). Now let «/ € C N G. By Lemma 4.4 we have
t’yu*y =1 =y = u1w5b1 for some t € T,'y € G and uy € U, bl € B. Hence

= yu'y~! = (t Lurt) (tYaigt) (t71bet). Thus u” € BwSB But v’ € G
and therefore, v’ € BwB for some w € N. Since BB C BwB we have
w = wg. This implies that the conjugacy class C' of 4’ in G has a nontrivial
intersection with BwgB, where wg € N.

Proof of Theorem 1.3.

Below, [ is a connected reductive algebraic group defined over a perfect
field K such that dim K < 1.

Lemma 4.5. Let P = ER (P) be a parabolic subgroup ofF defined over K.
Let L be a fized Levi factor (defined over K) and let R, (P ) be the unipotent
radical of P. Further, let s € P(K), s = lu, where | € L and u € Ry(P).
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If s € T(K), then | € L(K) and u € Ru(lg)(lg) If, in addition, s is a

semisimple element, then s is conjugate to | in P.

Proof. The first assertion follows from the uniqueness of the decomposition
lu.

Further, if s is semisimple, it is contained in a maximal torus in P which
is contained in a Levi subgroup L'. ([Sp, 8.4.4]). Since all Levi subgroups
are conjugate in P ([Sp, 16.1. 1]) by elements of P, one can find an ele-
ment p = lju; € P Where l1 € L u1 € R, ( ) such that psp~! € L. Then
I tpsp™y = wysuyt = 1(1” 1u1l)uu11 € L. Hence (I"'ul)uuy = 1 (be-
cause (I"tugl)uu;t € Ry(P)) and therefore I psp~ty = 1. O

Lemma 4.6. Let s € I(K) be a semisimple element of I' such that Cx(s)"

is not a torus. Then there exists a parabolic subgroup P of r defined over
K such that s € P.

Proof. The group Cg(s)? is defined over K ([Sp, 12.1.4]). Further, the
condition dim K < 1 implies that there exists a Borel subgroup B, of Cx a(s )0
which is also defined over K ([St1, 10.2]). Since Cx(s ) is not a torus, the

unipotent radical R, (Bs) is not trivial. The group U, = Ry(Bs) is also
defined over K ([Sp, 14.4.5(v)]). Further, let

(1) Ni = Nz(Uh), Uz = Uy - Ry(N1), No = Ng(Ua), ...,
Ui =Ui_1 - Ru(Ni_1), N; = N@(ﬁ% cee

Then all members of (1) are closed subgroups of T and ﬁk = ﬁk_}rl, Nk =
Ny41 for some positive integer & ([Hu, 30.3]). Further, all groups in (1) are
defined over K; indeed, the field K is perfect and all groups are defined as
normalizers of K-defined groups, their unipotent radicals, and the images of
K-defined groups with respect to maps Ui_1 X Ry(Ni—1) — Ui_1-Ry(N;_1),

induced by multiplication in G. Since U 1 is connected, the last member Nk of
this sequence is a parabolic subgroup of I ([Hu, 30.3]). From the definitions
we have s € ]vl < Nk O

Now we can prove Theorem 1.3. Let s € G be a noncentral semisimple
element. We may assume that s is not a regular element of G (otherwise the
statement follows from Theorem 1.1 and Property (d)). By Lemma 4.6 we
have s € P for some parabolic subgroup defined over K. Since ng 1= p
for some standard parabolic subgroup Pr and g € G ([Sp, 15.4.6]), we may
assume s € Py, where I C IL is a Gal (K /K )-invariant subset (note that the
group Gal (K/K) acts on II by permutation and the orbits of this action
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correspond to II; see [St1, Section 9]). Let L; = TGy, where G; = (X, |
o € (I)). Then Ly is a K-defined Levi factor of Py.

By Lemmas 4.5 and 4.2 we may assume s € L. (Indeed, by Lemma 4.5
we have en element [ € EI(K) which is conjugate to s in P By Lemma 4.2

the elements s, are conjugate by an element of the group G. Hence we may
take the element [ € C instead of s.)

Again by Lemma 4.6 we may assume that C7 (s)? = T', where T' is a

maximal torus of L; defined over K (otherwise, we can take a smaller set [
using the same procedure as above). Note that the derived subgroup Ljis
equal to G and therefore is a simply-connected semisimple group (because
G is simply-connected). Hence C’zl(s)o = Cz (s) ([C2, Theorem 3.5.6])
and thus

(2) C; (5) =T

Further, if I = () we have P = B and 7" = T. Hence s € T(K) = T.
Since s is a noncentral element of GG, there exists a root a € II such that
s is not in the center of the group TG4 (K) (here, Gy = (Xp | Be{a))
where I, C II is the Gal (K/K)-orbit of o). Since the Borel subgroup B,
of TGy (K) (with respect to T) is not a normal subgroup, one can find
an element v € Téa(K) such that vsy~! = w,b, where w, € W is the
corresponding reflection and b € B,. Hence C' N Bw,B # 0. Further, let
w € W. Then wwaw™ = wg, where 8 = w(a). Let w,13 be preimages
of w,wg in the group N. Then WTGo(K)o™t = TGB(K). The element
s’ = wsw™! is not a central element in Tég(K). Now, as above, we have
v's'y'~1 € BivgB for some v € Tég(K). Thus, if I = (), the assertion of
the theorem holds for X = {a}.

Now we may assume that I # () and Condition (2) holds.

We have s = tg, t € TN CZI(éI)7 and g € G; ([Hu, 27.5]). Note
that the elements ¢ and g do not necessarily belong to G but ¢,g € L 1(K')
for some extension K’/K. The element s € G is Gal (K /K)-invariant and
t € Z(Ly). Hence g = higy, where hy € T(K'), g1 € Gr(K) (this follows
from the Bruhat decomposition of g). Further, (2) implies that g is a regular
element of Gy. If 9 is a cross-section (defined over K) of regular semisimple
conjugacy classes of Gy ([St1, Section 9]) then hi9 is also a cross-section
(defined over K') of regular semisimple conjugacy classes of G;. Hence the
conjugacy class Cy of g in G intersects 9 in just one point. Thus the
conjugacy class Cs = tCy of s in E[ intersects th19" also in one point x
(recall, t € Z(ZI)) Since the conjugacy class Cs is defined over K and the
closed subset th;M' is also defined over K (because th; = sg; ' € Li(K)),
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the point z is Gal (K /K )-invariant and therefore it belongs to L;(K). Since
s,x € Lj(K) < G are conjugate in L; (and therefore in GG), we have = =
oso~! for some o € G (Lemma 4.2). Further,

(3) thi ' C < 11 wa> U,

acX
where X C II is the set of Gal (K /K )-orbits of I C II and wq in (3) is the
product of basic reflections w. , where ~ runs through the orbit corresponding
to a or wo = W, 4, if such orbit consists of two roots 71, 2 such that v 42
is a root (see [St1, Section 9]). From (3) we obtain

(4) r=o0s0" ' €B H e B.
acX

Since x € GG, we have

(5) x=o0s0" ' € BiB
for some w € W. But

(6) BwB C BuiB.
From (4), (5), (6) we get

(7) w=T] we.

aceX

i.e., w is a generalized S-Coxeter element of W. Now (5) and (7) imply that
the conjugacy class of s in G intersects BwB for some generalized S-Coxeter
element w of W.

Suppose that v’ = www™! is also an S-Coxeter element of W for some
w € W. Then w' = [[ ey wa for some Y CIL, |Y] = | X|. Let X' = {w(a) |

a € X}. Then
w' = H Wo = H wg.
acY peX’

The element w’ is a Coxeter element of the root systems generated by Y and
X', Tt acts without fixed points on the vector space (over R) generated by
Y and on the vector space generated by X’. Moreover, I(w') = |Y| = | X|.
Hence the vector spaces (over R) generated by Y and X’ coincide (it is the
(w')-complement to the vector space of w'-invariant vectors). Since X is
a simple root system for the root system (X), the set X’ is a simple root
system for (X’). On the other hand, the set Y is a simple root system for the
root system (Y). Now X’ C w(II), Y C II and the linear spaces generated
by X’ and Y coincide. Moreover, the root subsystems (X’), (Y) have the
same Coxeter element w’. Hence (X’) = (V). Now let I’ be a subset of II
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that is Gal (K /K)-invariant and such that the set of Gal (K /K )-orbits of I’
coincides with Y. Since w((X)) = (X’) = (Y'), we have

(8) Gp={(Xs | Be(l'))=wGuw
From (8) we get
(9) z[/ = Té[/ = djz[d)_l.

Since w € W, we can choose the preimage w € G. From (9)
s = wsw! S ZI’ NG.

Now we have a semisimple regular element s’ € L 1/(K). The same arguments
as above show that there exists an element 7 € G such that s/ = 75’771 €

Buw" B, where
w// — H wg

BeEY
(the order of the roots 3 in this product can be different from the order of
the roots « in the product corresponding to w’). By Lemma 2.4 there exists
an S-ascent from w” to w’ (both elements are Y-Coxeter elements for the
Weyl group of the system (Y')). Proposition 3.4 implies

(10) 55671 € Bu'B

for some § € G.

The inclusions (5) and (10) show that the conjugacy class C of s in G
intersects all Bruhat cells Bw"” B, where w” runs through all generalized
S-Coxeter elements that are conjugate to w. Now let w € W be an element
from the conjugacy class of w. Proposition 3.3 implies that there exists
an S-ascent from some generalized S-Coxeter element w” to w. Now the
assertion of the theorem follows from Proposition 3.4. (|

Theorem 1.3 has been proved.

Remarks to Theorem 1.3.

1. Intersection with a parabolic subgroup. In the proof of Theorem 1.3
we showed that

() CNPx#0

for every noncentral semisimple conjugacy class C' that is not regular, where
X G II and Py = BWxB is the corresponding parabolic subgroup (if K
is a perfect field and dim K < 1). More generally, Equation (*x) holds for
every noncentral conjugacy class C that is not a regular semisimple class
(if K is a perfect field and dim K < 1). Indeed, we consider the Jordan
decomposition g = su of an element g € C. Applying the same construction
as in Lemma 4.6, we get a parabolic subgroup P which is defined over K
and contains s,u. Then by an appropriate conjugation we can embed ¢ in
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a standard parabolic subgroup. (Note, if K is a finite field, then Condition
(*) is a consequence of the properties of the Steinberg representation [CZ2,
Proposition 6.4.5].)

2. The condition: dimK < 1. The example below shows that if this
condition does not hold, the conclusion of Theorem 1.3 may be false.

Let n = 4k and let V be a linear space over the real number field R such
that dim V' = 4k. Further, let {e1,...,eq} be a fixed basis of V and let

V*t={(e,...,ean), V7 ={eagi1,--.,e4x). Further, let (xq,...,xy4;) be the
coordinates of an element in V' with respect to the basis {e;} and let ® =
a4+l —ad  — - — % Let Q= Q(V,®) = [SO(V, @), SO(V, ®)].

Then Q is a Chevalley group in the sense of [St2], corresponding to the
root system Doi. Let g € GL(V') be the linear operator such that gl + =
—1,9/y~ = 1. One can easily check that g € Q and gug™' # u*! for
every nontrivial unipotent element u € Q (the latter follows from the fact
that v £ g(v) is not an isotropic vector if v # 0 is isotropic). Hence the
element g cannot normalize any nontrivial unipotent subgroup of €2 and
therefore g cannot belong to any proper parabolic subgroup of 2. This
implies that a preimage g of g in G = Spiny, (R) (with respect to the natural
homomorphism G — Q) also cannot belong to a proper parabolic subgroup
of G. Hence C N BwxB = () for every X C II, where C is the conjugacy
class of g in G, B is a Borel subgroup of G, and 1II is a simple root system
corresponding to G = Spiny;, (note, BWx B = Py is a standard parabolic
subgroup).

3. The ordered set of Xc. Recall, for any set X C II we define wx =
[Iocx Wa, where the product can be taken in any fixed order. For the set

Xe={XCII | CNBuxB # 0}

one can consider the natural order with respect to inclusion.

Let G = SL,(C) and C' a noncentral semisimple conjugacy class. Let
AC) = (A1,...,Ar) be the partition of n, i.e., Ay > -+ > A\, where \;+-- -+
Ar = n, which corresponds to the multiplicities of eigenvalues of elements
of C (i.e., A1 is the biggest multiplicity, then Ag, etc.) and let A*(C) be the
dual partition (i.e., the rows and columns of A are interchanged). Further,
to every partition g = (p1,...,us) of n we assign a subset X (u) C II =
{ai,...,ap_1}, namely,

X('u) déf 1 \ {O‘uuauﬁuzv s vaH1+'~'+Ms—1}'
It is easy to see that X (A*(C)) is a maximal element of Xc. Moreover, every
maximal element Y € X is W-conjugate to X (A\*(C')). Thus we have just
one conjugacy class {wwxw™1} in W for each maximal X € X¢.

For other types of groups we can have several conjugacy classes in W of
elements of the form wyx, where X € X is a maximal element. Say, consider
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the root system R = By = (a1, as), where o = €1 — €3 and ag = €2 (in
the notation of [Bou]), and let G be the corresponding simple and simply
connected group over C. Let g = he, (t)he,(t71) € G be a semisimple ele-
ment, where he, (t), he,(t71) are the corresponding root semisimple elements
(in the notation of [St2]) and t # +1. Let C be the conjugacy class of g.
Then {a;} and {a2} both are maximal elements of X¢. Thus here we have
two different conjugacy classes in W of elements wx for maximal X in X¢.

5. Appendix.

The following result as well as the line of proof was pointed out to the second
author by T.A. Springer in the discussion of relevant questions:

Proposition 5.1. Let G be a simple_algebraic group defined over an alge-
braically closed field K and let G = G(K). Further, let C be the conjugacy
class of a reqular element of G. Then C N BwB # () for every w € W.

Proof. For b € B we put
Op(b) = {zbz™' | z € B}.
Lemma 5.2. There exists a nonempty finite set {by,...,b,} C CN B such
that
cnB= |J 95
1<i<n

Proof. Let x = syu1,y = squs € B be two regular elements, where s1, 0 € T
and ui,us € U. We show

(11) Op(x) =9Op(y) if and only if 51 = sa.
Indeed, “only if” is obvious. Now let
(12) b1 = suq, bo = suy, s€T, u,us € U.

Since we can consider the Jordan decompositions of z,y as elements of B,
we may assume that (12) gives the Jordan decompositions of b; and by. Put
I'=[Cq(s),Ca(s)], Br = BNT. Then (12) implies uj,ups € Br. Moreover,
the elements u;,us are regular unipotent elements of I' ([St1, 3.7]) and
therefore the elements uj,uy are conjugate in Br (see [C2, the proof of
Proposition 5.1.3]). Hence we have (11).

Now let b =su € B, s €T, u € U, g € G, gbhg' € B. Further, let
g € BwB. Then gbg~! = w(s)u’ for some v’ € U. Together with (11), this
implies our assertion. O

Lemma 5.3. Letb€ CN B be a fized element and let w € W. Then every
irreducible component €, of C' N BwB such that Op(b) C €, satisfies the
following condition:

dim ¢, = dim C + dim BwB — dim G.
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Proof. Since b is a regular element, dim Cp(b) = rank G ([St1, 3.11]). If
¢; is an irreducible component of C'N B containing O p(b), then Lemma 5.2

implies €; = O p(b) and, therefore,

(13) dim ¢; = dim B —rank G = dim C + dim B — dim G.

Let Op(b) C €, for some irreducible component €,, of C N BwB. Suppose
(14) dim ¢, > dim C + dim BwB — dim G.

Since B is a closed subset of BwB ([Sp, 8.15]) and €; is an irreducible
component of €, N B, we have

(15) dim ¢; > dim €, + dim B — dim BwB.

Now (14) and (15) contradict (13). Thus we have our statement. O

Now we return to the proof of Proposition 5.1.
Take €, as in Lemma 5.3. Assume C N BwB = (. Then
(16) ¢ C | J Bi'B= | Bi'B
w!' <w w!' <w
([Sp, 8.15]). From (16) we have €,, C Buw'B for some w’ < w and we may

consider €, as an irreducible component of C'N B/ B that contains O g(b).
Then, by Lemma 5.3, we have

(17) dim ¢, = dim C + dim Buw'B — dim G.

But (17) contradicts Lemma 5.3 because dim Bw'B < dim BwB. This

proves Proposition 5.1. O
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