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Let G = G̃(K) where G̃ is a simple and simply-connected
algebraic group that is defined and quasi-split over a field
K. We investigate properties of intersections of Bruhat cells
BẇB of G with conjugacy classes C of G, in particular, we
consider the question, when is BẇB ∩ C 6= ∅.

1. Introduction.

Let (G, B, N, S) be a Tits system. Some aspects of intersections of conjugacy
classes of G with Bruhat cells BẇB have been investigated by several authors
(see e.g., [St1], [K], [V] and [VS]). Here w ∈ W = N/(B ∩N) and ẇ ∈ N
is a preimage of w with respect to the natural surjection N → W . In
particular, it is desirable to learn how a conjugacy class C of G is related to
those conjugacy classes Cw of W for which BẇB ∩ C 6= ∅, where w ∈ Cw.

Here we deal with the case where G is a Chevalley group, i.e., G is the
group of points G̃(K) of a simple algebraic group G̃ that is defined and
quasi-split over a field K, thus G is a proper or a twisted Chevalley group
(see [St2]). Therefore, one can define a Tits system (G, B, N, S), where
S = {wαi | αi ∈ Π} for a simple root system Π corresponding to G ([St2]
and [C1]).

A crucial step to investigate intersections BẇB∩C was done by R. Stein-
berg [St1] who constructed the cross-section of regular conjugacy classes in
BẇSB, where wS is a Coxeter element of W with respect to the fixed set
of generators S of W, i.e., wS is a product of elements in S in any order,
where each s ∈ S occurs exactly once. The next natural step is to consider
intersections of regular classes with cells of the form BẇẇSẇ−1B. Here we
prove the following:

Theorem 1.1. Let G̃ be a simple and simply-connected algebraic group that
is defined and quasi-split over a field K and let G = G̃(K). Further, let
C ⊂ G be a conjugacy class of G such that

(∗) BẇSB ∩ C 6= ∅,
where wS is a Coxeter element of W with respect to S. Then C intersects
all cells of the form BẇẇSẇ−1B, where w ∈W.
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Note that the condition BẇSB ∩ C 6= ∅ implies that every element of C

is regular in G̃, except the case when G̃ is not split and has the type A2l

([St1, Remark 8.8]). Condition (∗) holds, for instance, for regular conjugacy
classes of G in the following cases (as shown in Section 4):

(a) G = SLn(K);
(b) K = K (where K is the algebraic closure of K).

In the cases (c) to (f) below, the field K is supposed to be perfect:

(c) G̃ is split over K and C = C̃ ∩G for a conjugacy class C̃ of G̃;
(d) dim K ≤ 1 and C is a semisimple class (here dim K is the homological

dimension of K);
(e) G̃ is split over K, C ∩B 6= ∅, and C is a semisimple class;
(f) C is a unipotent class, charK is not a bad prime for G̃, and if G̃ is

not split, then G̃ is not of type A2l.

Theorem 1.1 implies:

Corollary 1.2. Let G̃ be a simple and simply-connected algebraic group
that is defined and quasi-split over a field K and let G = G̃(K). Further,
let C ⊂ G be a regular conjugacy class of G. If one of Conditions (a) to (f)
holds, then C intersects all Bruhat cells of the form BẇẇSẇ−1B.

Remark. The statement of the Corollary in Case (a) follows from the ex-
istence of a normal rational form. Case (b) follows from a much more gen-
eral fact: Every regular conjugacy class of a simple algebraic group (i.e.,
G = G̃(K)) intersects all Bruhat cells (see Appendix). Also, in Case (f), if
K is a finite field, then a theorem of Kawanaka [K] shows that any regular
unipotent conjugacy class intersects all Bruhat cells.

Now let X ⊂ S, WX = 〈X〉. By wX we denote a product (in any order) of
elements of X, where each x ∈ X occurs exactly once, i.e., wX is a Coxeter
element of WX with respect to X. It is natural to consider intersections
BẇẇXẇ−1B ∩ C next. In [GS] it has been shown that BẇXB ∩ C 6= ∅ for
some X ⊂ S if C is a semisimple class and K is a finite field. Here we prove:

Theorem 1.3. Let G̃ be a simple and simply-connected algebraic group that
is defined and quasi-split over a perfect field K such that dim K ≤ 1, and let
G = G̃(K). Further, let C ⊂ G be a noncentral semisimple conjugacy class
of G. Then C intersects all Bruhat cells of the form BẇẇXẇ−1B for some
X ⊂ S, X 6= ∅.

Remark. This theorem generalizes Proposition 6 from [GS].

We thank the referee for drawing our attention to a result of Geck and
Pfeiffer (see Proposition 3.3) which allows us to extend our results to all
Chevalley groups.
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2. S-Coxeter elements in Coxeter groups.

Let W be a finite group of orthogonal transformations of a Euclidean space
V generated by reflections. Then W is a Coxeter group. Let S = {s1, . . . , sr}
be a Coxeter system of generators of W, i.e., s2

i = 1 for every i = 1, . . . , r
and (sisj)mij = 1 is the system of basic relations for the group W (see [Bou,
IV, 1]). Then every element of the form sπ(1)sπ(2) . . . sπ(r), where π ∈ Sr, is
called a Coxeter element of W. All Coxeter elements of W constructed for
all possible Coxeter systems of generators are conjugate in W (see [Bou, V,
6, Proposition 1]), and if V W = {0}, each Coxeter element acts on V \ {0}
without fixed points ([Bou, V, 6, 2]).

Definition 2.1. Let X ⊂ S and let WX be the subgroup of W generated
by X. Every element of W that is conjugate to a Coxeter element in WX

will be called a generalized Coxeter element of W.

Definition 2.2. For a fixed system S of generators the elements of the
form sπ(1)sπ(2) . . . sπ(r), where |S| = r, will be called S-Coxeter elements. If
X ⊂ S, then X-Coxeter elements in WX will be called generalized S-Coxeter
elements of W.

Let lS(w) be the S-length of w, i.e., the length of w with respect to S.
Obviously, a Coxeter element w ∈ W is S-Coxeter if and only if lS(w) = r.
Below, we shall work with a fixed system S and we shall write l(w) instead
of lS(w). We shall use the well-known fact that lX(w) = lS(w) for any
w ∈WX .

Example 2.3. Let W = S4 and S = {(12), (23), (34)}. Then we have six
Coxeter elements (4-cycles) in W. Among them there are four S-Coxeter
elements:

(12)(23)(34), (34)(23)(12), (23)(12)(34), (12)(34)(23),

and two elements that are not S-Coxeter elements:

(23)(12)(23)(34)(23), (23)(34)(23)(12)(23).

Lemma 2.4. Let w1, w2 be two S-Coxeter elements of W. Then there exists
a sequence σ1, σ2, . . . , σn ∈ S (possibly σi = σj for i 6= j) such that

w2 = σnσn−1 . . . σ1w1σ1σ2 . . . σn

and l(σiσi−1 . . . σ1w1σ1σ2 . . . σi−1σi) = r for every i = 1, . . . , n.

Proof. See [C2, Section 10.3]. �

3. A condition for the intersection of a conjugacy class with
Bruhat cells and Gauss cells.

We are going to use the concepts of S-ascent and S-descent and derive some
of their properties. The notion of descent was introduced and considered in
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[GP] (without the name “descent”) as a binary relation between elements
of conjugacy classes of Coxeter groups. The notion of ascent is dual to that
of descent.

Definition 3.1. Let w1, w2 ∈ W. We say that there exists an S-ascent
(resp. S-descent) from w1 to w2 if there is a sequence σ1, . . . , σn ∈ S such
that

w2 = σnσn−1 . . . σ1w1σ1σ2 . . . σn

and

l(σiσi−1 . . . σ1w1σ1σ2 . . . σi)

≥ (resp. ≤) l(σi−1 . . . σ1w1σ1σ2 . . . σi−1)

for every i = 1, . . . , n.

Remark. As before, we fix a set S of generators for W. In [GP] an S-descent
from an element w ∈W to an element w′ ∈W is denoted by w −→ w′. It is
logical to denote an S-ascent from w′ ∈W to w ∈W by w ←− w′.

Definition 3.2. Let C ⊂W be a conjugacy class. We define

l(C) = min {l(w) | w ∈ C}.

The following proposition is due to M. Geck and G. Pfeifer ([GP, Theorem
3.2.9.(a)]):

Proposition 3.3. Let C ⊂ W = W (R) be a conjugacy class. Then for
every w ∈ C there exists an S-descent to an element w′ ∈ C such that
l(w′) = l(C).

Let G be a Chevalley group (proper or twisted) corresponding to a root
system R in the sense of [St2]. We fix a simple root system Π = {α1, . . . , αr}
and a corresponding Borel subgroup B = HU. Let W = W (R) be the Weyl
group of G and S = {wα1 , . . . , wαr} the corresponding Coxeter system of
generators. By Xα we denote below a root subgroup of G (see [St2]).

The meaning of Definition 3.1 becomes clear from the following:

Proposition 3.4. Let g ∈ BẇB (resp. g ∈ B−ẇB) and let w′ ∈ W be an
element that is conjugate to w. If there exists an S-ascent (resp. S-descent)
from w to w′, then there exists an element g′ ∈ Bẇ′B (resp. B−ẇ′B) that
is conjugate to g.

Proof. We shall use the following lemma:

Lemma 3.5. Let w ∈W . Suppose

w(αi) < 0, and w−1(αi) < 0

for some αi ∈ Π. Then either w = wαiw
′wαi , where l(w′) = l(w) − 2, or

w = wαiw
′ = w′wαi , where l(w′) = l(w)− 1.
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Proof. The assumption w−1(αi) < 0 implies

w = wαiw1,

where l(w1) = l(w)−1 ([C2, Section 2.2]). Suppose w1(αi) = β > 0. Since
w(αi) = wαi(β) < 0, we have β = αi and we have the second possibility.
Now let w1(αi) < 0. Then w1 = w′wαi where l(w′) = l(w1)− 1 and we have
the first possibility. �

First, let g ∈ BẇB, then g = b1ẇb2. We may assume b1 = 1 and b2 = u ∈
U. Also, it is sufficient to prove the assertion for an S-ascent of one step,
i.e., w′ = wαwwα for some α ∈ Π. We can write u = uαv, where uα is a root
subgroup element corresponding to α and where v ∈ U is an element that
has no α-factors in any decomposition into positive root subgroup elements.

If uα = 1, then u′ = ẇαuẇ−1
α ∈ U and

g′ = ẇαgẇ−1
α = (ẇαẇẇ−1

α )(ẇαuẇ−1
α ) = ẇ′u′ ∈ Bẇ′B.

Let uα 6= 1. Suppose β = w(α) > 0. We may assume β 6= α (otherwise
w′ = wαww−1

α = w). We have g = ẇuαẇ−1ẇv = uβẇv. Now we can consider
the element u−1

β guβ instead of g which satisfies the previous condition uα =
1.

Suppose β = w(α) < 0 and γ = w−1(α) > 0. We have g = ẇuαv =
ẇuαvu−1

α uα. Note that v′ = uαvu−1
α has no factors corresponding to α.

Consider now the element g̃ = uαgu−1
α instead of g. We have g̃ = uαẇv′ =

ẇẇ−1uαẇv′ = ẇuγv′, an element which also satisfies the condition uα = 1.
Now let β = w(α) < 0, γ = w−1(α) < 0. Then, by Lemma 3.5, either

wαwwα = w and, therefore, there is nothing to prove, or l(wαwwα) < l(w)
which contradicts our assumption.

Second, let g ∈ B−ẇB. We may assume g = vvαẇuαu, where v ∈ U−,
vα ∈ X−α, uα ∈ Xα, u ∈ U and the elements v, u have no factors from
the group X±α. Note, ẇαvẇ−1

α ∈ U−, ẇαuẇ−1
α ∈ U (because α is a sim-

ple root). Thus, if vα = uα = 1, then ẇαgẇ−1
α ∈ B−ẇ′B. Now put

β = w(α), γ = w−1(α). If β < 0, γ < 0, we have g = vvαẇuαẇ−1ẇu =
vvαvβẇu = vvαvβv−1

α vαẇu = v(vαvβv−1
α )ẇuγu, where vβ = ẇuαẇ−1 ∈ Xβ,

uγ = ẇ−1vαẇ ∈ X−γ . We may assume β, γ 6= −α (otherwise we have
wαwwα = w). Thus the elements v(vαvβv−1

α ), uγu have no factors from
X±α and we are in the preceding case.

Let β > 0, γ < 0. Then g = vvαuβẇu = vαv′ẇu, where the element v′ ∈
U− has no factor from X−α. Put uα = ẇαvαẇ−1

α . Then ẇαgẇ−1
α = uαv′′ẇ′u′

for some v′′ ∈ U−, u′ ∈ U. Thus u−1
α ẇαgẇ−1

α uα ∈ B−ẇ′B.
The case β < 0, γ > 0 is similar to the preceding one.
Let β > 0, γ > 0. Again, as above, we may assume β, γ 6= α. Thus by

Lemma 3.5, we have l(w′) = l(wαwwα) = l(w) + 2 which contradicts our
assumption. �
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Example 3.6. Let G = SL3(K) and let

ẇ =

 0 0 1
0 −1 0
1 0 0

 , ẇ′ =

 0 1 0
1 0 0
0 0 −1

 .

Let g be a semisimple element of G that has no eigenvalues in K. Then g
is a regular element and therefore its conjugacy class Cg intersects the big
Bruhat cell BẇB (see [EGH, Lemma 4]). But Cg ∩ Bẇ′B = ∅ because
every element of the form b1ẇ

′b2 is conjugate to an element of the form

ẇ′b =

 0 1 0
−1 0 0

0 0 1

 a11 a12 a13

0 a22 a23

0 0 a33

 =

 0 a22 a23

−a11 −a12 −a13

0 0 a33


which has an eigenvalue a33 ∈ K. Note that here S = {w12, w23} (where wij

is the matrix in which the ith and jth elements of the standard basis are
interchanged) and l(w) = 3, l(w′) = l(w12) = 1.

Example 3.7. Let G = SL4(K) and let

ẇ =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , ẇ′ =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .

Here S = {w12, w23, w34} and ẇ = ẇ12ẇ34 is a generalized S-Coxeter ele-
ment. Thus every noncentral conjugacy class of G intersects B−ẇB ([EG]).
In particular, one can find a transvection g ∈ B−ẇB. But there are no
transvections in B−ẇ′B because B−ẇ′B = ẇ′Bẇ′−1

ẇ′B = ẇ′B, and every
matrix x ∈ ẇ′B satisfies the condition rank (x− 1) ≥ 2.

The examples above show that if there is no S-ascent (resp. S-descent)
from w ∈W to its conjugate w′ ∈W, the condition C∩BẇB 6= ∅ (resp. C∩
B−ẇB 6= ∅) for a conjugacy class C ∈ G does not necessarily imply C ∩
Bẇ′B 6= ∅ (resp. C ∩B−ẇ′B 6= ∅).

Proposition 3.8. Let g ∈ BẇB (resp. g ∈ B−ẇB). Suppose l(wαwwα) =
l(w) − 2 (resp. l(wαwwα) = l(w) + 2). Then the conjugacy class Cg of g
intersects either Bẇαẇẇ−1

α B (resp. B−ẇαẇẇ−1
α B) or BẇαẇB and BẇẇαB

(resp. B−ẇαẇB and B−ẇẇαB).

Proof. Let g ∈ BẇB. We may assume, as in the proof of Proposition 3.4,
that g = ẇuαu and w = wαw1wα, where l(w1) = l(w) − 2. Moreover,
β = w1(α) > 0, γ = w−1

1 (α) > 0, and w1(α), w−1
1 (α) 6= α. If uα = 1,

then ẇαgẇ−1
α ∈ Bẇ1B. Suppose uα 6= 1. Put u−α = ẇαuαẇ−1

α . There
exists u′α ∈ Xα (here Xα is the corresponding root subgroup) such that
u′αu−α = ẇαu′′α for some u′′α ∈ Xα. Further, g1 = ẇαgẇ−1

α = ẇ1u−αu′

for some u′ ∈ U. Put uβ = ẇ1u
′
αẇ−1

1 (recall β = w1(α) > 0). Then
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g2 = uβg1u
−1
β = ẇ1u

′
αẇ−1

1 ẇ1u−αu′u−1
β = ẇ1ẇαu′′αu′u−1

β ∈ Bẇ1ẇαB. Since
l(w1wα) = l(wαw1), we also can find an element in Cg∩Bẇαẇ1B (by Propo-
sition 3.4).

Now let g ∈ B−ẇB. As in the proof of Proposition 3.4 we may assume
g = vvαẇuαu, α 6= w(α) > 0, α 6= w−1(α) > 0. If vα = uα = 1, then
ẇαgẇ−1

α ∈ B−ẇαẇẇ−1
α B. Let vα = 1, uα 6= 1. Then

g1 = ẇαgẇ−1
α = (ẇαvẇ−1

α )(ẇαẇẇ−1
α )(ẇαuαẇ−1

α )(ẇαuẇ−1
α )

= v′ẇαẇẇ−1
α u−αu′,

where v′ ∈ U−, u′ ∈ U, u−α ∈ X−α. Moreover, the element u′ has no factors
in Xα. Further, u−αg1u

−1
−α = u−αv′ẇαẇẇ−1

α u−αu′u−1
−α. Since u−αu′u−1

−α ∈ U,

we have u−αg1u
−1
−α ∈ B−ẇαẇẇ−1

α B. Similar considerations work in the case
vα 6= 1, uα = 1.

Let vα 6= 1, uα 6= 1. Put u′α = ẇαvαẇ−1
α , v′α = ẇαuαẇ−1

α , v′ = ẇαvẇ−1
α ,

u′ = ẇαuẇ−1
α . Then

g1 = ẇαgẇ−1
α = v′u′αẇαẇẇ−1

α v′αu′ = v′u′αẇαẇẇ−1
α (v′αu′v−1

α′ )v′α.

Put u′′ = v′αu′v−1
α′ , v′′ = v′αv′. Then g2 = v′αg1v

−1
α′ = v′′u′αẇαẇẇ−1

α u′′.
Further, u′αẇα = x−αxα for some x−α ∈ X−α, xα ∈ Xα. Hence

g2 = v′′x−αxαẇẇ−1
α u′′ = v′′x−αẇẇ−1

α (ẇαẇ−1xαẇẇ−1
α )u′′.

Since w−1(α) > 0 and w−1(α) 6= α, we get ẇαẇ−1xαẇẇ−1
α ∈ U and therefore

g2 ∈ B−ẇẇαB. From Proposition 3.4 we get Cg ∩B−ẇαẇB 6= ∅. �

4. Proofs of the Theorems.

Here G̃ is a simple algebraic group defined and quasi-split over a field K, B̃ =
T̃ Ũ is a Borel subgroup defined over K, Ñ = N eG(T̃ ), W̃ = Ñ/T̃ and G =
G̃(K), B = B̃(K), T = T̃ (K), U = Ũ(K), N = Ñ(K),W = N/T . Further,
let Π̃ = {γ1, . . . , γs} be a simple root system of G̃ and Π = {α1, . . . , αr} be
a simple root system (in the sense of [C2]) for G (which is obtained from Π̃
by gluing of some roots).

Proof of Theorem 1.1. Assume that Condition (∗) of Theorem 1.1 holds.
Further let Cc ⊂ W be the conjugacy class of Coxeter elements and let
ω ∈ Cc. By Proposition 3.3 there exists an S-descent from ω to an element
ω′ ∈ Cc such that l(ω′) = l(Cc) = r. Since among the factors of ω′ there
are all reflections wαi , αi ∈ Π, the element ω′ is an S-Coxeter element. By
Lemma 2.4 we have an S-ascent from wS (recall that wS is the Coxeter
element from Condition (∗)) to ω′ and, therefore, we have an S-ascent from
wS to ω. Now our statement follows from Proposition 3.4. �

Condition (∗). Below, K is a perfect field.
We need the following simple (and known) facts:
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Lemma 4.1. Let C̃ be a conjugacy class of G̃ such that C = C̃ ∩ G 6= ∅.
Further, let g ∈ C. If H1(K, C eG(g)) = 1 then C is a conjugacy class of G

(here C eG(g) is the centralizer of g in G̃).

Proof. The argument here is the same as in ([C2, Proposition 3.7.3]). In-
deed, if g′ ∈ C, then there exists an element γ ∈ G̃ such that g′ = γgγ−1.
Thus, for every element σ ∈ Gal(K/K) of the Galois group we have

σ(γ)gσ(γ−1) = γgγ−1

and therefore xσ = γ−1σ(γ) ∈ C eG(g). Since xσ is a 1-cocycle, we have xσ =
yσ(y−1) for some y ∈ C eG and therefore σ(γy) = γy for every σ ∈ Gal(K/K).
Thus, γy ∈ G and g′ = γygy−1γ−1. �

Lemma 4.2. Let C̃ be a semisimple conjugacy class of G̃ and let C =
C̃ ∩G 6= ∅. If dim K ≤ 1, then C is a conjugacy class of G.

Proof. Since G̃ is simply-connected, C eG(s) is a connected reductive group
for s ∈ C̃ ∩G ([C2, Theorem 3.5.6]) and therefore H1(K, C eG(s)) = 1 ([St1,
11.2]). Now the assertion follows from Lemma 4.1. �

Lemma 4.3. Let C be the same as in the preceding lemma. Suppose that
G̃ is split and C̃ is a regular semisimple class such that C̃ ∩ T 6= ∅. Then C
is a conjugacy class of G.

Proof. If s ∈ C̃ ∩ T, then C eG(s) = T̃ is a K-split torus and therefore
H1(K, C eG(s)) = 1 ([Sp, 12.3.5.(3)]). Now the assertion follows from Lem-
ma 4.1. �

Lemma 4.4. Let u1, u2 ∈ G be two regular unipotent elements of G̃. As-
sume that char K is not a bad prime for G̃. Then there exist elements t ∈ T̃
and γ ∈ G such that u1 = tγu2γ

−1t−1.

Proof. Let G = G̃/Z(G̃), T = T̃ /Z(G̃). Then G is defined and quasi-split
over K and Z(G) = 1. Further, let u ∈ G̃ be a regular unipotent element
and let u be its image in G. The char K is not a bad prime for G, thus
V = CG(u) is a connected unipotent subgroup of G ([C2, Proposition 5.1.6])
which is defined and split over K ([Sp, 14.3.8]) and therefore H1(K, V ) =
1 ([Sp, 12.3.5.(3)]). Hence any two regular unipotent elements of G(K)
are conjugate (Lemma 4.1). If G1(K) ≤ G(K) is a subgroup generated
by unipotent elements of G, then it is a normal subgroup and G(K) =
G1(K)T (K) (this follows from the Bruhat decomposition). Now let u1, u2 ∈
G(K) be images of regular unipotent elements u1, u2 ∈ G. Then there exist
elements γ ∈ G1(K), t ∈ T (K) such that u1 = tγu2γ

−1t
−1. If γ ∈ G̃(K) =

G, t ∈ T̃ are preimages of γ, t, then u1 ≡ tγu2γ
−1t−1(mod Z(G̃)). Since

u1, u2 are both unipotent elements, we have u1 = tγu2γ
−1t−1. �
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Now we check Condition (∗) for (a) to (f):
(a) If G = SLn(K), Condition (∗) is an immediate consequence of the
representation of elements of GLn(K) in rational canonical form.
(b) Consider the case where K is an algebraically closed field. According
to Steinberg’s theorem ([St1, 1.4]), the set

N = ẇγ1Xγ1ẇγ2Xγ2 . . . ẇγsXγs

is a cross-section of all regular conjugacy classes of the group G̃, where
ẇγ1 , . . . , ẇγs is any fixed system of preimages of the basic reflections wγ1 , . . . ,
wγs in any fixed order (here Xγi is the corresponding root subgroup). More-
over, we can rewrite N in the form

N = ẇγ1ẇγ2 . . . ẇγsXθ1Xθ2 . . . Xθs ,

where θi = wγs . . . wγi+2wγi+1(γi) > 0. Since K is an algebraically closed
field, {α1, . . . , αr} = {γ1, . . . , γs} and any element in the intersection C ∩
Ñ(K) lies in the S-Coxeter cell Bẇα1ẇα2 . . . ẇαrB. This proves (∗).
(c) If G̃ is split over K, the closed subset N (defined above) of G̃ is defined
over K and N ∩ C̃ ∈ G ([St1, Section 9]).
(d) There exists a closed subset N′ of N which is defined over K and such
that every regular semisimple conjugacy class C̃ of G̃ intersects N′ in just
one point (and this point belongs to G if C̃ ∩ G 6= ∅) ([St1, 9.11]). Since
N ⊂ BẇSB for some S-Coxeter element wS , the assertion follows from
Lemma 4.2.
(e) We may use the same argument as in (d), and Lemma 4.3.

(f) If G̃ is split or G̃ is not of type A2l, the cross-section of regular classes N
is defined over K and for the conjugacy class of regular unipotent elements
C̃ we have u = C̃ ∩N ∈ BẇSB, where ẇS ∈ N for some S-Coxeter element
wS in W ([St1, Section 9]). Now let u′ ∈ C̃ ∩ G. By Lemma 4.4 we have
tγu′γ−1t−1 = u = u1ẇSb1 for some t ∈ T̃ , γ ∈ G and u1 ∈ U, b1 ∈ B. Hence
u′′ = γu′γ−1 = (t−1u1t)(t−1ẇSt)(t−1b1t). Thus u′′ ∈ B̃ẇSB̃. But u′′ ∈ G

and, therefore, u′′ ∈ BẇB for some ẇ ∈ N . Since BẇB ⊂ B̃ẇB̃, we have
w = wS . This implies that the conjugacy class C of u′ in G has a nontrivial
intersection with BẇSB, where ẇS ∈ N .

Proof of Theorem 1.3.

Below, Γ̃ is a connected reductive algebraic group defined over a perfect
field K such that dim K ≤ 1.

Lemma 4.5. Let P̃ = L̃Ru(P̃ ) be a parabolic subgroup of Γ̃ defined over K.
Let L̃ be a fixed Levi factor (defined over K) and let Ru(P̃ ) be the unipotent
radical of P̃ . Further, let s ∈ P̃ (K), s = lu, where l ∈ L̃ and u ∈ Ru(P̃ ).
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If s ∈ Γ̃(K), then l ∈ L̃(K) and u ∈ Ru(P̃ )(K). If, in addition, s is a
semisimple element, then s is conjugate to l in P̃ .

Proof. The first assertion follows from the uniqueness of the decomposition
lu.

Further, if s is semisimple, it is contained in a maximal torus in P̃ which
is contained in a Levi subgroup L′. ([Sp, 8.4.4]). Since all Levi subgroups
are conjugate in P̃ ([Sp, 16.1.1]) by elements of P̃ , one can find an ele-
ment p = l1u1 ∈ P̃ where l1 ∈ L̃, u1 ∈ Ru(P̃ ) such that psp−1 ∈ L̃. Then
l−1
1 psp−1l1 = u1su

−1
1 = l(l−1u1l)uu−1

1 ∈ L̃. Hence (l−1u1l)uu−1
1 = 1 (be-

cause (l−1u1l)uu−1
1 ∈ Ru(P̃ )) and therefore l−1

1 psp−1l1 = l. �

Lemma 4.6. Let s ∈ Γ̃(K) be a semisimple element of Γ̃ such that CeΓ(s)0

is not a torus. Then there exists a parabolic subgroup P̃ of Γ̃ defined over
K such that s ∈ P̃ .

Proof. The group CeΓ(s)0 is defined over K ([Sp, 12.1.4]). Further, the
condition dim K ≤ 1 implies that there exists a Borel subgroup B̃s of C eG(s)0

which is also defined over K ([St1, 10.2]). Since CeΓ(s)0 is not a torus, the
unipotent radical Ru(B̃s) is not trivial. The group Ũ1 = Ru(B̃s) is also
defined over K ([Sp, 14.4.5(v)]). Further, let

Ñ1 = N eG(Ũ1), Ũ2 = Ũ1 ·Ru(Ñ1), Ñ2 = N eG(Ũ2), . . . ,(1)

Ũi = Ũi−1 ·Ru(Ñi−1), Ñi = N eG(Ũi), . . . .

Then all members of (1) are closed subgroups of Γ̃ and Ũk = Ũk+1, Ñk =
Ñk+1 for some positive integer k ([Hu, 30.3]). Further, all groups in (1) are
defined over K; indeed, the field K is perfect and all groups are defined as
normalizers of K-defined groups, their unipotent radicals, and the images of
K-defined groups with respect to maps Ũi−1×Ru(Ñi−1) −→ Ũi−1 ·Ru(Ñi−1),
induced by multiplication in G̃. Since Ũ1 is connected, the last member Ñk of
this sequence is a parabolic subgroup of Γ̃ ([Hu, 30.3]). From the definitions
we have s ∈ Ñ1 ≤ Ñk. �

Now we can prove Theorem 1.3. Let s ∈ G be a noncentral semisimple
element. We may assume that s is not a regular element of G̃ (otherwise the
statement follows from Theorem 1.1 and Property (d)). By Lemma 4.6 we
have s ∈ P̃ for some parabolic subgroup defined over K. Since gP̃ g−1 = P̃I

for some standard parabolic subgroup P̃I and g ∈ G ([Sp, 15.4.6]), we may
assume s ∈ P̃I , where I ⊂ Π̃ is a Gal (K/K)-invariant subset (note that the
group Gal (K/K) acts on Π̃ by permutation and the orbits of this action
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correspond to Π; see [St1, Section 9]). Let L̃I = T̃ G̃I , where G̃I = 〈Xα |
α ∈ 〈I〉〉. Then L̃I is a K-defined Levi factor of P̃I .

By Lemmas 4.5 and 4.2 we may assume s ∈ L̃I . (Indeed, by Lemma 4.5
we have en element l ∈ L̃I(K) which is conjugate to s in P̃I . By Lemma 4.2
the elements s, l are conjugate by an element of the group G. Hence we may
take the element l ∈ C instead of s.)

Again by Lemma 4.6 we may assume that CeLI
(s)0 = T̃ ′, where T̃ ′ is a

maximal torus of L̃I defined over K (otherwise, we can take a smaller set I

using the same procedure as above). Note that the derived subgroup L̃I is
equal to G̃I and therefore is a simply-connected semisimple group (because
G̃ is simply-connected). Hence CeLI

(s)0 = CeLI
(s) ([C2, Theorem 3.5.6])

and thus

CeLI
(s) = T̃ ′.(2)

Further, if I = ∅ we have P̃I = B̃ and T̃ ′ = T̃ . Hence s ∈ T̃ (K) = T .
Since s is a noncentral element of G, there exists a root α ∈ Π such that
s is not in the center of the group TG̃α(K) (here, G̃α = 〈Xβ | β ∈ 〈Iα〉〉
where Iα ⊂ Π̃ is the Gal (K/K)-orbit of α). Since the Borel subgroup Bα

of TG̃α(K) (with respect to T ) is not a normal subgroup, one can find
an element γ ∈ TG̃α(K) such that γsγ−1 = ẇαb, where wα ∈ W is the
corresponding reflection and b ∈ Bα. Hence C ∩ BẇαB 6= ∅. Further, let
ω ∈ W . Then ωwαω−1 = wβ, where β = ω(α). Let ω̇, ẇβ be preimages
of ω, wβ in the group N . Then ω̇T G̃α(K)ω̇−1 = TG̃β(K). The element
s′ = ω̇sω̇−1 is not a central element in TG̃β(K). Now, as above, we have
γ′s′γ′−1 ∈ BẇβB for some γ′ ∈ TG̃β(K). Thus, if I = ∅, the assertion of
the theorem holds for X = {α}.

Now we may assume that I 6= ∅ and Condition (2) holds.
We have s = tg, t ∈ T̃ ∩ CeLI

(G̃I), and g ∈ G̃I ([Hu, 27.5]). Note

that the elements t and g do not necessarily belong to G but t, g ∈ L̃I(K ′)
for some extension K ′/K. The element s ∈ G is Gal (K/K)-invariant and
t ∈ Z(L̃I). Hence g = h1g1, where h1 ∈ T̃ (K ′), g1 ∈ G̃I(K) (this follows
from the Bruhat decomposition of g). Further, (2) implies that g is a regular
element of G̃I . If N′ is a cross-section (defined over K) of regular semisimple
conjugacy classes of G̃I ([St1, Section 9]) then h1N

′ is also a cross-section
(defined over K ′) of regular semisimple conjugacy classes of G̃I . Hence the
conjugacy class Cg of g in G̃I intersects h1N

′ in just one point. Thus the
conjugacy class Cs = tCg of s in L̃I intersects th1N

′ also in one point x

(recall, t ∈ Z(L̃I)). Since the conjugacy class Cs is defined over K and the
closed subset th1N

′ is also defined over K (because th1 = sg−1
1 ∈ L̃I(K)),
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the point x is Gal (K/K)-invariant and therefore it belongs to LI(K). Since
s, x ∈ LI(K) ≤ G are conjugate in LI (and therefore in G̃), we have x =
σsσ−1 for some σ ∈ G (Lemma 4.2). Further,

th1N
′ ⊂

(∏
α∈X

ẇα

)
Ũ ,(3)

where X ⊂ Π is the set of Gal (K/K)-orbits of I ⊂ Π̃ and wα in (3) is the
product of basic reflections wγ , where γ runs through the orbit corresponding
to α or wα = wγ1+γ2 if such orbit consists of two roots γ1, γ2 such that γ1+γ2

is a root (see [St1, Section 9]). From (3) we obtain

x = σsσ−1 ∈ B̃
∏
α∈X

ẇαB̃.(4)

Since x ∈ G, we have

x = σsσ−1 ∈ BẇB(5)

for some w ∈W . But

BẇB ⊂ B̃ẇB̃.(6)

From (4), (5), (6) we get

w =
∏
α∈X

wα,(7)

i.e., w is a generalized S-Coxeter element of W . Now (5) and (7) imply that
the conjugacy class of s in G intersects BẇB for some generalized S-Coxeter
element w of W .

Suppose that w′ = ωwω−1 is also an S-Coxeter element of W for some
ω ∈W . Then w′ =

∏
α∈Y wα for some Y ⊂ Π, |Y | = |X|. Let X ′ = {ω(α) |

α ∈ X}. Then

w′ =
∏
α∈Y

wα =
∏

β∈X′

wβ.

The element w′ is a Coxeter element of the root systems generated by Y and
X ′. It acts without fixed points on the vector space (over R) generated by
Y and on the vector space generated by X ′. Moreover, l(w′) = |Y | = |X ′|.
Hence the vector spaces (over R) generated by Y and X ′ coincide (it is the
〈w′〉-complement to the vector space of w′-invariant vectors). Since X is
a simple root system for the root system 〈X〉, the set X ′ is a simple root
system for 〈X ′〉. On the other hand, the set Y is a simple root system for the
root system 〈Y 〉. Now X ′ ⊂ ω(Π), Y ⊂ Π and the linear spaces generated
by X ′ and Y coincide. Moreover, the root subsystems 〈X ′〉, 〈Y 〉 have the
same Coxeter element w′. Hence 〈X ′〉 = 〈Y 〉. Now let I ′ be a subset of Π̃
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that is Gal (K/K)-invariant and such that the set of Gal (K/K)-orbits of I ′

coincides with Y . Since ω(〈X〉) = 〈X ′〉 = 〈Y 〉, we have

G̃I′ = 〈Xβ | β ∈ 〈I ′〉〉 = ω̇G̃I ω̇
−1.(8)

From (8) we get

L̃I′ = T̃ G̃I′ = ω̇L̃I ω̇
−1.(9)

Since ω ∈W, we can choose the preimage ω̇ ∈ G. From (9)

s′ = ω̇sω̇−1 ∈ L̃I′ ∩G.

Now we have a semisimple regular element s′ ∈ L̃I′(K). The same arguments
as above show that there exists an element τ ∈ G such that s′′ = τs′τ−1 ∈
Bẇ′′B, where

w′′ =
∏
β∈Y

wβ

(the order of the roots β in this product can be different from the order of
the roots α in the product corresponding to w′). By Lemma 2.4 there exists
an S-ascent from w′′ to w′ (both elements are Y -Coxeter elements for the
Weyl group of the system 〈Y 〉). Proposition 3.4 implies

δs′′δ−1 ∈ Bẇ′B(10)

for some δ ∈ G.
The inclusions (5) and (10) show that the conjugacy class C of s in G

intersects all Bruhat cells Bẇ′′′B, where w′′′ runs through all generalized
S-Coxeter elements that are conjugate to w. Now let w̃ ∈W be an element
from the conjugacy class of w. Proposition 3.3 implies that there exists
an S-ascent from some generalized S-Coxeter element w′′′ to w̃. Now the
assertion of the theorem follows from Proposition 3.4. �

Theorem 1.3 has been proved.

Remarks to Theorem 1.3.
1. Intersection with a parabolic subgroup. In the proof of Theorem 1.3
we showed that

(∗∗) C ∩ PX 6= ∅
for every noncentral semisimple conjugacy class C that is not regular, where
X $ Π and PX = BWXB is the corresponding parabolic subgroup (if K
is a perfect field and dim K ≤ 1). More generally, Equation (∗∗) holds for
every noncentral conjugacy class C that is not a regular semisimple class
(if K is a perfect field and dim K ≤ 1). Indeed, we consider the Jordan
decomposition g = su of an element g ∈ C. Applying the same construction
as in Lemma 4.6, we get a parabolic subgroup P which is defined over K
and contains s, u. Then by an appropriate conjugation we can embed g in
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a standard parabolic subgroup. (Note, if K is a finite field, then Condition
(∗∗) is a consequence of the properties of the Steinberg representation [C2,
Proposition 6.4.5].)

2. The condition: dimK ≤ 1. The example below shows that if this
condition does not hold, the conclusion of Theorem 1.3 may be false.

Let n = 4k and let V be a linear space over the real number field R such
that dim V = 4k. Further, let {e1, . . . , e4k} be a fixed basis of V and let
V + = 〈e1, . . . , e2k〉, V − = 〈e2k+1, . . . , e4k〉. Further, let (x1, . . . , x4k) be the
coordinates of an element in V with respect to the basis {ei} and let Φ =
x2

1 + · · ·+ x2
2k − x2

2k+1− · · · − x2
4k. Let Ω = Ω(V,Φ) = [SO(V,Φ), SO(V,Φ)].

Then Ω is a Chevalley group in the sense of [St2], corresponding to the
root system D2k. Let g ∈ GL(V ) be the linear operator such that g|V + =
−1, g|V − = 1. One can easily check that g ∈ Ω and gug−1 6= u±1 for
every nontrivial unipotent element u ∈ Ω (the latter follows from the fact
that v ± g(v) is not an isotropic vector if v 6= 0 is isotropic). Hence the
element g cannot normalize any nontrivial unipotent subgroup of Ω and
therefore g cannot belong to any proper parabolic subgroup of Ω. This
implies that a preimage ĝ of g in G = Spin4k(R) (with respect to the natural
homomorphism G −→ Ω) also cannot belong to a proper parabolic subgroup
of G. Hence C ∩ BwXB = ∅ for every X ⊂ Π, where C is the conjugacy
class of ĝ in G, B is a Borel subgroup of G, and Π is a simple root system
corresponding to G̃ = Spin4k (note, BWXB = PX is a standard parabolic
subgroup).

3. The ordered set of XC. Recall, for any set X ⊂ Π we define wX =∏
α∈X wα, where the product can be taken in any fixed order. For the set

XC = {X ⊂ Π | C ∩BẇXB 6= ∅}
one can consider the natural order with respect to inclusion.

Let G = SLn(C) and C a noncentral semisimple conjugacy class. Let
λ(C) = (λ1, . . . , λr) be the partition of n, i.e., λ1 ≥ · · · ≥ λr, where λ1+· · ·+
λr = n, which corresponds to the multiplicities of eigenvalues of elements
of C (i.e., λ1 is the biggest multiplicity, then λ2, etc.) and let λ∗(C) be the
dual partition (i.e., the rows and columns of λ are interchanged). Further,
to every partition µ = (µ1, . . . , µs) of n we assign a subset X(µ) ⊂ Π =
{α1, . . . , αn−1}, namely,

X(µ) def= Π \ {αµ1 , αµ1+µ2 , . . . , αµ1+···+µs−1}.
It is easy to see that X(λ∗(C)) is a maximal element of XC . Moreover, every
maximal element Y ∈ XC is W -conjugate to X(λ∗(C)). Thus we have just
one conjugacy class {wwXw−1} in W for each maximal X ∈ XC .

For other types of groups we can have several conjugacy classes in W of
elements of the form wX , where X ∈ XC is a maximal element. Say, consider
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the root system R = B2 = 〈α1, α2〉, where α1 = ε1 − ε2 and α2 = ε2 (in
the notation of [Bou]), and let G be the corresponding simple and simply
connected group over C. Let g = hε1(t)hε2(t

−1) ∈ G be a semisimple ele-
ment, where hε1(t), hε2(t

−1) are the corresponding root semisimple elements
(in the notation of [St2]) and t 6= ±1. Let C be the conjugacy class of g.
Then {α1} and {α2} both are maximal elements of XC . Thus here we have
two different conjugacy classes in W of elements wX for maximal X in XC .

5. Appendix.

The following result as well as the line of proof was pointed out to the second
author by T.A. Springer in the discussion of relevant questions:

Proposition 5.1. Let G̃ be a simple algebraic group defined over an alge-
braically closed field K and let G = G̃(K). Further, let C be the conjugacy
class of a regular element of G. Then C ∩BẇB 6= ∅ for every w ∈W .

Proof. For b ∈ B we put

OB(b) = {xbx−1 | x ∈ B}.

Lemma 5.2. There exists a nonempty finite set {b1, . . . , bn} ⊂ C ∩B such
that

C ∩B =
⋃

1≤i≤n

OB(bi).

Proof. Let x = s1u1, y = s2u2 ∈ B be two regular elements, where s1, s2 ∈ T
and u1, u2 ∈ U . We show

OB(x) = OB(y) if and only if s1 = s2.(11)

Indeed, “only if” is obvious. Now let

b1 = su1, b2 = su2, s ∈ T, u1, u2 ∈ U.(12)

Since we can consider the Jordan decompositions of x, y as elements of B,
we may assume that (12) gives the Jordan decompositions of b1 and b2. Put
Γ = [CG(s), CG(s)], BΓ = B ∩ Γ. Then (12) implies u1, u2 ∈ BΓ. Moreover,
the elements u1, u2 are regular unipotent elements of Γ ([St1, 3.7]) and
therefore the elements u1, u2 are conjugate in BΓ (see [C2, the proof of
Proposition 5.1.3]). Hence we have (11).

Now let b = su ∈ B, s ∈ T, u ∈ U, g ∈ G, gbg−1 ∈ B. Further, let
g ∈ BẇB. Then gbg−1 = w(s)u′ for some u′ ∈ U . Together with (11), this
implies our assertion. �

Lemma 5.3. Let b ∈ C ∩B be a fixed element and let w ∈W . Then every
irreducible component Cw of C ∩ BẇB such that OB(b) ⊂ Cw satisfies the
following condition:

dim Cw = dim C + dim BẇB − dim G.
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Proof. Since b is a regular element, dim CB(b) = rank G ([St1, 3.11]). If
C1 is an irreducible component of C ∩B containing OB(b), then Lemma 5.2
implies C1 = OB(b) and, therefore,

dim C1 = dim B − rank G = dim C + dim B − dim G.(13)

Let OB(b) ⊂ Cw for some irreducible component Cw of C ∩BẇB. Suppose

dim Cw > dim C + dim BẇB − dim G.(14)

Since B is a closed subset of BẇB ([Sp, 8.15]) and C1 is an irreducible
component of Cw ∩B, we have

dim C1 ≥ dim Cw + dim B − dim BẇB.(15)

Now (14) and (15) contradict (13). Thus we have our statement. �

Now we return to the proof of Proposition 5.1.
Take Cw as in Lemma 5.3. Assume C ∩BẇB = ∅. Then

Cw ⊂
⋃

w′<w

Bẇ′B =
⋃

w′<w

Bẇ′B(16)

([Sp, 8.15]). From (16) we have Cw ⊂ Bẇ′B for some w′ < w and we may
consider Cw as an irreducible component of C ∩Bẇ′B that contains OB(b).
Then, by Lemma 5.3, we have

dim Cw = dim C + dim Bẇ′B − dim G.(17)

But (17) contradicts Lemma 5.3 because dim Bẇ′B < dim BẇB. This
proves Proposition 5.1. �
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