Pacific Journal of Mathematics

INTERSECTION OF CONJUGACY CLASSES WITH BRUHAT CELLS IN CHEVALLEY GROUPS

ERICH W. ELLERS AND NIKOLAI GORDEEV

Volume 214 No. 2

April 2004

INTERSECTION OF CONJUGACY CLASSES WITH BRUHAT CELLS IN CHEVALLEY GROUPS

ERICH W. ELLERS AND NIKOLAI GORDEEV

Let $G = \tilde{G}(K)$ where \tilde{G} is a simple and simply-connected algebraic group that is defined and quasi-split over a field K. We investigate properties of intersections of Bruhat cells $B\dot{w}B$ of G with conjugacy classes C of G, in particular, we consider the question, when is $B\dot{w}B \cap C \neq \emptyset$.

1. Introduction.

Let (G, B, N, S) be a Tits system. Some aspects of intersections of conjugacy classes of G with Bruhat cells $B\dot{w}B$ have been investigated by several authors (see e.g., **[St1]**, **[K]**, **[V]** and **[VS]**). Here $w \in W = N/(B \cap N)$ and $\dot{w} \in N$ is a preimage of w with respect to the natural surjection $N \to W$. In particular, it is desirable to learn how a conjugacy class C of G is related to those conjugacy classes C_w of W for which $B\dot{w}B \cap C \neq \emptyset$, where $w \in C_w$.

Here we deal with the case where G is a Chevalley group, i.e., G is the group of points $\widetilde{G}(K)$ of a simple algebraic group \widetilde{G} that is defined and quasi-split over a field K, thus G is a proper or a twisted Chevalley group (see [**St2**]). Therefore, one can define a Tits system (G, B, N, S), where $S = \{w_{\alpha_i} \mid \alpha_i \in \Pi\}$ for a simple root system Π corresponding to G ([**St2**] and [**C1**]).

A crucial step to investigate intersections $B\dot{w}B\cap C$ was done by R. Steinberg [St1] who constructed the cross-section of regular conjugacy classes in $B\dot{w}_S B$, where w_S is a Coxeter element of W with respect to the fixed set of generators S of W, i.e., w_S is a product of elements in S in any order, where each $s \in S$ occurs exactly once. The next natural step is to consider intersections of regular classes with cells of the form $B\dot{w}\dot{w}_S\dot{w}^{-1}B$. Here we prove the following:

Theorem 1.1. Let \tilde{G} be a simple and simply-connected algebraic group that is defined and quasi-split over a field K and let $G = \tilde{G}(K)$. Further, let $C \subset G$ be a conjugacy class of G such that

$$(*) B\dot{w}_S B \cap C \neq \emptyset,$$

where w_S is a Coxeter element of W with respect to S. Then C intersects all cells of the form $B\dot{w}\dot{w}_S\dot{w}^{-1}B$, where $w \in W$. Note that the condition $B\dot{w}_S B \cap C \neq \emptyset$ implies that every element of C is regular in \tilde{G} , except the case when \tilde{G} is not split and has the type A_{2l} ([**St1**, Remark 8.8]). Condition (*) holds, for instance, for regular conjugacy classes of G in the following cases (as shown in Section 4):

- (a) $G = \underline{SL}_n(K);$
- (b) $K = \overline{K}$ (where \overline{K} is the algebraic closure of K).

In the cases (c) to (f) below, the field K is supposed to be perfect:

- (c) \widetilde{G} is split over K and $C = \widetilde{C} \cap G$ for a conjugacy class \widetilde{C} of \widetilde{G} ;
- (d) dim $K \leq 1$ and C is a semisimple class (here dim K is the homological dimension of K);
- (e) G is split over K, $C \cap B \neq \emptyset$, and C is a semisimple class;
- (f) C is a unipotent class, char K is not a bad prime for \widetilde{G} , and if \widetilde{G} is not split, then \widetilde{G} is not of type A_{2l} .

Theorem 1.1 implies:

Corollary 1.2. Let \widetilde{G} be a simple and simply-connected algebraic group that is defined and quasi-split over a field K and let $G = \widetilde{G}(K)$. Further, let $C \subset G$ be a regular conjugacy class of G. If one of Conditions (a) to (f) holds, then C intersects all Bruhat cells of the form $B\dot{w}\dot{w}s\dot{w}^{-1}B$.

Remark. The statement of the Corollary in Case (a) follows from the existence of a normal rational form. Case (b) follows from a much more general fact: Every regular conjugacy class of a simple algebraic group (i.e., $G = \widetilde{G}(\overline{K})$) intersects all Bruhat cells (see Appendix). Also, in Case (f), if K is a finite field, then a theorem of Kawanaka [K] shows that any regular unipotent conjugacy class intersects all Bruhat cells.

Now let $X \subset S$, $W_X = \langle X \rangle$. By w_X we denote a product (in any order) of elements of X, where each $x \in X$ occurs exactly once, i.e., w_X is a Coxeter element of W_X with respect to X. It is natural to consider intersections $B\dot{w}\dot{w}_X\dot{w}^{-1}B \cap C$ next. In [**GS**] it has been shown that $B\dot{w}_XB \cap C \neq \emptyset$ for some $X \subset S$ if C is a semisimple class and K is a finite field. Here we prove:

Theorem 1.3. Let \widetilde{G} be a simple and simply-connected algebraic group that is defined and quasi-split over a perfect field K such that dim $K \leq 1$, and let $G = \widetilde{G}(K)$. Further, let $C \subset G$ be a noncentral semisimple conjugacy class of G. Then C intersects all Bruhat cells of the form $B\dot{w}\dot{w}_X\dot{w}^{-1}B$ for some $X \subset S, X \neq \emptyset$.

Remark. This theorem generalizes Proposition 6 from [GS].

We thank the referee for drawing our attention to a result of Geck and Pfeiffer (see Proposition 3.3) which allows us to extend our results to all Chevalley groups.

2. S-Coxeter elements in Coxeter groups.

Let W be a finite group of orthogonal transformations of a Euclidean space V generated by reflections. Then W is a Coxeter group. Let $S = \{s_1, \ldots, s_r\}$ be a Coxeter system of generators of W, i.e., $s_i^2 = 1$ for every $i = 1, \ldots, r$ and $(s_i s_j)^{m_{ij}} = 1$ is the system of basic relations for the group W (see [**Bou**, IV, 1]). Then every element of the form $s_{\pi(1)}s_{\pi(2)}\ldots s_{\pi(r)}$, where $\pi \in S_r$, is called a Coxeter element of W. All Coxeter elements of W constructed for all possible Coxeter systems of generators are conjugate in W (see [**Bou**, V, 6, Proposition 1]), and if $V^W = \{0\}$, each Coxeter element acts on $V \setminus \{0\}$ without fixed points ([**Bou**, V, 6, 2]).

Definition 2.1. Let $X \subset S$ and let W_X be the subgroup of W generated by X. Every element of W that is conjugate to a Coxeter element in W_X will be called a generalized Coxeter element of W.

Definition 2.2. For a fixed system S of generators the elements of the form $s_{\pi(1)}s_{\pi(2)}\ldots s_{\pi(r)}$, where |S| = r, will be called S-Coxeter elements. If $X \subset S$, then X-Coxeter elements in W_X will be called generalized S-Coxeter elements of W.

Let $l_S(w)$ be the S-length of w, i.e., the length of w with respect to S. Obviously, a Coxeter element $w \in W$ is S-Coxeter if and only if $l_S(w) = r$. Below, we shall work with a fixed system S and we shall write l(w) instead of $l_S(w)$. We shall use the well-known fact that $l_X(w) = l_S(w)$ for any $w \in W_X$.

Example 2.3. Let $W = S_4$ and $S = \{(12), (23), (34)\}$. Then we have six Coxeter elements (4-cycles) in W. Among them there are four S-Coxeter elements:

$$(12)(23)(34), (34)(23)(12), (23)(12)(34), (12)(34)(23),$$

and two elements that are not S-Coxeter elements:

(23)(12)(23)(34)(23), (23)(34)(23)(12)(23).

Lemma 2.4. Let w_1, w_2 be two S-Coxeter elements of W. Then there exists a sequence $\sigma_1, \sigma_2, \ldots, \sigma_n \in S$ (possibly $\sigma_i = \sigma_j$ for $i \neq j$) such that

$$w_2 = \sigma_n \sigma_{n-1} \dots \sigma_1 w_1 \sigma_1 \sigma_2 \dots \sigma_n$$

and $l(\sigma_i \sigma_{i-1} \dots \sigma_1 w_1 \sigma_1 \sigma_2 \dots \sigma_{i-1} \sigma_i) = r$ for every $i = 1, \dots, n$.

Proof. See [C2, Section 10.3].

3. A condition for the intersection of a conjugacy class with Bruhat cells and Gauss cells.

We are going to use the concepts of S-ascent and S-descent and derive some of their properties. The notion of descent was introduced and considered in

[GP] (without the name "descent") as a binary relation between elements of conjugacy classes of Coxeter groups. The notion of ascent is dual to that of descent.

Definition 3.1. Let $w_1, w_2 \in W$. We say that there exists an S-ascent (resp. S-descent) from w_1 to w_2 if there is a sequence $\sigma_1, \ldots, \sigma_n \in S$ such that

$$w_2 = \sigma_n \sigma_{n-1} \dots \sigma_1 w_1 \sigma_1 \sigma_2 \dots \sigma_n$$

and

$$l(\sigma_i \sigma_{i-1} \dots \sigma_1 w_1 \sigma_1 \sigma_2 \dots \sigma_i) \\ \geq \text{ (resp. } \leq) l(\sigma_{i-1} \dots \sigma_1 w_1 \sigma_1 \sigma_2 \dots \sigma_{i-1})$$

for every $i = 1, \ldots, n$.

Remark. As before, we fix a set S of generators for W. In **[GP]** an S-descent from an element $w \in W$ to an element $w' \in W$ is denoted by $w \longrightarrow w'$. It is logical to denote an S-ascent from $w' \in W$ to $w \in W$ by $w \longleftarrow w'$.

Definition 3.2. Let $C \subset W$ be a conjugacy class. We define

$$l(C) = \min \{ l(w) \mid w \in C \}.$$

The following proposition is due to M. Geck and G. Pfeifer ([**GP**, Theorem 3.2.9.(a)]):

Proposition 3.3. Let $C \subset W = W(R)$ be a conjugacy class. Then for every $w \in C$ there exists an S-descent to an element $w' \in C$ such that l(w') = l(C).

Let G be a Chevalley group (proper or twisted) corresponding to a root system R in the sense of [**St2**]. We fix a simple root system $\Pi = \{\alpha_1, \ldots, \alpha_r\}$ and a corresponding Borel subgroup B = HU. Let W = W(R) be the Weyl group of G and $S = \{w_{\alpha_1}, \ldots, w_{\alpha_r}\}$ the corresponding Coxeter system of generators. By X_{α} we denote below a root subgroup of G (see [**St2**]).

The meaning of Definition 3.1 becomes clear from the following:

Proposition 3.4. Let $g \in B\dot{w}B$ (resp. $g \in B^-\dot{w}B$) and let $w' \in W$ be an element that is conjugate to w. If there exists an S-ascent (resp. S-descent) from w to w', then there exists an element $g' \in B\dot{w}'B$ (resp. $B^-\dot{w}'B$) that is conjugate to g.

Proof. We shall use the following lemma:

Lemma 3.5. Let $w \in W$. Suppose

 $w(\alpha_i) < 0, \text{ and } w^{-1}(\alpha_i) < 0$

for some $\alpha_i \in \Pi$. Then either $w = w_{\alpha_i} w' w_{\alpha_i}$, where l(w') = l(w) - 2, or $w = w_{\alpha_i} w' = w' w_{\alpha_i}$, where l(w') = l(w) - 1.

Proof. The assumption $w^{-1}(\alpha_i) < 0$ implies

$$w = w_{\alpha_i} w_1,$$

where $l(w_1) = l(w) - 1$ ([**C2**, Section 2.2]). Suppose $w_1(\alpha_i) = \beta > 0$. Since $w(\alpha_i) = w_{\alpha_i}(\beta) < 0$, we have $\beta = \alpha_i$ and we have the second possibility. Now let $w_1(\alpha_i) < 0$. Then $w_1 = w'w_{\alpha_i}$ where $l(w') = l(w_1) - 1$ and we have the first possibility.

First, let $g \in B\dot{w}B$, then $g = b_1\dot{w}b_2$. We may assume $b_1 = 1$ and $b_2 = u \in U$. Also, it is sufficient to prove the assertion for an S-ascent of one step, i.e., $w' = w_\alpha w w_\alpha$ for some $\alpha \in \Pi$. We can write $u = u_\alpha v$, where u_α is a root subgroup element corresponding to α and where $v \in U$ is an element that has no α -factors in any decomposition into positive root subgroup elements.

If $u_{\alpha} = 1$, then $u' = \dot{w}_{\alpha} u \dot{w}_{\alpha}^{-1} \in U$ and

$$g' = \dot{w}_{\alpha}g\dot{w}_{\alpha}^{-1} = (\dot{w}_{\alpha}\dot{w}\dot{w}_{\alpha}^{-1})(\dot{w}_{\alpha}u\dot{w}_{\alpha}^{-1}) = \dot{w}'u' \in B\dot{w}'B.$$

Let $u_{\alpha} \neq 1$. Suppose $\beta = w(\alpha) > 0$. We may assume $\beta \neq \alpha$ (otherwise $w' = w_{\alpha}ww_{\alpha}^{-1} = w$). We have $g = \dot{w}u_{\alpha}\dot{w}^{-1}\dot{w}v = u_{\beta}\dot{w}v$. Now we can consider the element $u_{\beta}^{-1}gu_{\beta}$ instead of g which satisfies the previous condition $u_{\alpha} = 1$.

Suppose $\beta = w(\alpha) < 0$ and $\gamma = w^{-1}(\alpha) > 0$. We have $g = \dot{w}u_{\alpha}v = \dot{w}u_{\alpha}vu_{\alpha}^{-1}u_{\alpha}$. Note that $v' = u_{\alpha}vu_{\alpha}^{-1}$ has no factors corresponding to α . Consider now the element $\tilde{g} = u_{\alpha}gu_{\alpha}^{-1}$ instead of g. We have $\tilde{g} = u_{\alpha}\dot{w}v' = \dot{w}\dot{w}^{-1}u_{\alpha}\dot{w}v' = \dot{w}u_{\gamma}v'$, an element which also satisfies the condition $u_{\alpha} = 1$.

Now let $\beta = w(\alpha) < 0$, $\gamma = w^{-1}(\alpha) < 0$. Then, by Lemma 3.5, either $w_{\alpha}ww_{\alpha} = w$ and, therefore, there is nothing to prove, or $l(w_{\alpha}ww_{\alpha}) < l(w)$ which contradicts our assumption.

Second, let $g \in B^-\dot{w}B$. We may assume $g = vv_\alpha \dot{w}u_\alpha u$, where $v \in U^-$, $v_\alpha \in X_{-\alpha}, u_\alpha \in X_\alpha, u \in U$ and the elements v, u have no factors from the group $X_{\pm\alpha}$. Note, $\dot{w}_\alpha v \dot{w}_\alpha^{-1} \in U^-$, $\dot{w}_\alpha u \dot{w}_\alpha^{-1} \in U$ (because α is a simple root). Thus, if $v_\alpha = u_\alpha = 1$, then $\dot{w}_\alpha g \dot{w}_\alpha^{-1} \in B^- \dot{w}'B$. Now put $\beta = w(\alpha), \gamma = w^{-1}(\alpha)$. If $\beta < 0, \gamma < 0$, we have $g = vv_\alpha \dot{w}u_\alpha \dot{w}^{-1} \dot{w}u =$ $vv_\alpha v_\beta \dot{w}u = vv_\alpha v_\beta v_\alpha^{-1} v_\alpha \dot{w}u = v(v_\alpha v_\beta v_\alpha^{-1}) \dot{w}u_\gamma u$, where $v_\beta = \dot{w}u_\alpha \dot{w}^{-1} \in X_\beta$, $u_\gamma = \dot{w}^{-1} v_\alpha \dot{w} \in X_{-\gamma}$. We may assume $\beta, \gamma \neq -\alpha$ (otherwise we have $w_\alpha w w_\alpha = w$). Thus the elements $v(v_\alpha v_\beta v_\alpha^{-1}), u_\gamma u$ have no factors from $X_{\pm \alpha}$ and we are in the preceding case.

Let $\beta > 0, \gamma < 0$. Then $g = vv_{\alpha}u_{\beta}\dot{w}u = v_{\alpha}v'\dot{w}u$, where the element $v' \in U^-$ has no factor from $X_{-\alpha}$. Put $u_{\alpha} = \dot{w}_{\alpha}v_{\alpha}\dot{w}_{\alpha}^{-1}$. Then $\dot{w}_{\alpha}g\dot{w}_{\alpha}^{-1} = u_{\alpha}v''\dot{w}'u'$ for some $v'' \in U^-$, $u' \in U$. Thus $u_{\alpha}^{-1}\dot{w}_{\alpha}g\dot{w}_{\alpha}^{-1}u_{\alpha} \in B^-\dot{w}'B$.

The case $\beta < 0, \gamma > 0$ is similar to the preceding one.

Let $\beta > 0$, $\gamma > 0$. Again, as above, we may assume $\beta, \gamma \neq \alpha$. Thus by Lemma 3.5, we have $l(w') = l(w_{\alpha}ww_{\alpha}) = l(w) + 2$ which contradicts our assumption.

Example 3.6. Let $G = SL_3(K)$ and let

$$\dot{w} = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{array}\right), \quad \dot{w}' = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{array}\right).$$

Let g be a semisimple element of G that has no eigenvalues in K. Then g is a regular element and therefore its conjugacy class C_g intersects the big Bruhat cell $B\dot{w}B$ (see [EGH, Lemma 4]). But $C_g \cap B\dot{w}'B = \emptyset$ because every element of the form $b_1\dot{w}'b_2$ is conjugate to an element of the form

$$\dot{w}'b = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} = \begin{pmatrix} 0 & a_{22} & a_{23} \\ -a_{11} & -a_{12} & -a_{13} \\ 0 & 0 & a_{33} \end{pmatrix}$$

which has an eigenvalue $a_{33} \in K$. Note that here $S = \{w_{12}, w_{23}\}$ (where w_{ij} is the matrix in which the *i*th and *j*th elements of the standard basis are interchanged) and l(w) = 3, $l(w') = l(w_{12}) = 1$.

Example 3.7. Let $G = SL_4(K)$ and let

$$\dot{w} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad \dot{w}' = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Here $S = \{w_{12}, w_{23}, w_{34}\}$ and $\dot{w} = \dot{w}_{12}\dot{w}_{34}$ is a generalized S-Coxeter element. Thus every noncentral conjugacy class of G intersects $B^-\dot{w}B$ ([EG]). In particular, one can find a transvection $g \in B^-\dot{w}B$. But there are no transvections in $B^-\dot{w}'B$ because $B^-\dot{w}'B = \dot{w}'B\dot{w'}^{-1}\dot{w}'B = \dot{w}'B$, and every matrix $x \in \dot{w}'B$ satisfies the condition rank $(x-1) \ge 2$.

The examples above show that if there is no S-ascent (resp. S-descent) from $w \in W$ to its conjugate $w' \in W$, the condition $C \cap B\dot{w}B \neq \emptyset$ (resp. $C \cap B^-\dot{w}B \neq \emptyset$) for a conjugacy class $C \in G$ does not necessarily imply $C \cap B\dot{w}'B \neq \emptyset$ (resp. $C \cap B^-\dot{w}'B \neq \emptyset$).

Proposition 3.8. Let $g \in B\dot{w}B$ (resp. $g \in B^-\dot{w}B$). Suppose $l(w_{\alpha}ww_{\alpha}) = l(w) - 2$ (resp. $l(w_{\alpha}ww_{\alpha}) = l(w) + 2$). Then the conjugacy class C_g of g intersects either $B\dot{w}_{\alpha}\dot{w}\dot{w}_{\alpha}^{-1}B$ (resp. $B^-\dot{w}_{\alpha}\dot{w}\dot{w}_{\alpha}^{-1}B$) or $B\dot{w}_{\alpha}\dot{w}B$ and $B\dot{w}\dot{w}_{\alpha}B$ (resp. $B^-\dot{w}_{\alpha}\dot{w}B$ and $B^-\dot{w}\dot{w}_{\alpha}B$).

Proof. Let $g \in B\dot{w}B$. We may assume, as in the proof of Proposition 3.4, that $g = \dot{w}u_{\alpha}u$ and $w = w_{\alpha}w_{1}w_{\alpha}$, where $l(w_{1}) = l(w) - 2$. Moreover, $\beta = w_{1}(\alpha) > 0, \ \gamma = w_{1}^{-1}(\alpha) > 0$, and $w_{1}(\alpha), w_{1}^{-1}(\alpha) \neq \alpha$. If $u_{\alpha} = 1$, then $\dot{w}_{\alpha}g\dot{w}_{\alpha}^{-1} \in B\dot{w}_{1}B$. Suppose $u_{\alpha} \neq 1$. Put $u_{-\alpha} = \dot{w}_{\alpha}u_{\alpha}\dot{w}_{\alpha}^{-1}$. There exists $u'_{\alpha} \in X_{\alpha}$ (here X_{α} is the corresponding root subgroup) such that $u'_{\alpha}u_{-\alpha} = \dot{w}_{\alpha}u''_{\alpha}$ for some $u''_{\alpha} \in X_{\alpha}$. Further, $g_{1} = \dot{w}_{\alpha}g\dot{w}_{\alpha}^{-1} = \dot{w}_{1}u_{-\alpha}u'$ for some $u' \in U$. Put $u_{\beta} = \dot{w}_{1}u'_{\alpha}\dot{w}_{1}^{-1}$ (recall $\beta = w_{1}(\alpha) > 0$). Then

 $g_2 = u_\beta g_1 u_\beta^{-1} = \dot{w}_1 u_\alpha' \dot{w}_1^{-1} \dot{w}_1 u_{-\alpha} u' u_\beta^{-1} = \dot{w}_1 \dot{w}_\alpha u_\alpha' u' u_\beta^{-1} \in B \dot{w}_1 \dot{w}_\alpha B.$ Since $l(w_1 w_\alpha) = l(w_\alpha w_1)$, we also can find an element in $C_g \cap B \dot{w}_\alpha \dot{w}_1 B$ (by Proposition 3.4).

Now let $g \in B^- \dot{w}B$. As in the proof of Proposition 3.4 we may assume $g = vv_{\alpha}\dot{w}u_{\alpha}u, \ \alpha \neq w(\alpha) > 0, \ \alpha \neq w^{-1}(\alpha) > 0$. If $v_{\alpha} = u_{\alpha} = 1$, then $\dot{w}_{\alpha}g\dot{w}_{\alpha}^{-1} \in B^-\dot{w}_{\alpha}\dot{w}\dot{w}_{\alpha}^{-1}B$. Let $v_{\alpha} = 1, \ u_{\alpha} \neq 1$. Then

$$g_1 = \dot{w}_{\alpha} g \dot{w}_{\alpha}^{-1} = (\dot{w}_{\alpha} v \dot{w}_{\alpha}^{-1}) (\dot{w}_{\alpha} \dot{w} \dot{w}_{\alpha}^{-1}) (\dot{w}_{\alpha} u_{\alpha} \dot{w}_{\alpha}^{-1}) (\dot{w}_{\alpha} u \dot{w}_{\alpha}^{-1})$$
$$= v' \dot{w}_{\alpha} \dot{w} \dot{w}_{\alpha}^{-1} u_{-\alpha} u',$$

where $v' \in U^-$, $u' \in U$, $u_{-\alpha} \in X_{-\alpha}$. Moreover, the element u' has no factors in X_{α} . Further, $u_{-\alpha}g_1u_{-\alpha}^{-1} = u_{-\alpha}v'\dot{w}_{\alpha}\dot{w}\dot{w}_{\alpha}^{-1}u_{-\alpha}u'u_{-\alpha}^{-1}$. Since $u_{-\alpha}u'u_{-\alpha}^{-1} \in U$, we have $u_{-\alpha}g_1u_{-\alpha}^{-1} \in B^-\dot{w}_{\alpha}\dot{w}\dot{w}_{\alpha}^{-1}B$. Similar considerations work in the case $v_{\alpha} \neq 1, u_{\alpha} = 1$.

Let $v_{\alpha} \neq 1$, $u_{\alpha} \neq 1$. Put $u'_{\alpha} = \dot{w}_{\alpha} v_{\alpha} \dot{w}_{\alpha}^{-1}$, $v'_{\alpha} = \dot{w}_{\alpha} u_{\alpha} \dot{w}_{\alpha}^{-1}$, $v' = \dot{w}_{\alpha} v \dot{w}_{\alpha}^{-1}$, $u' = \dot{w}_{\alpha} u \dot{w}_{\alpha}^{-1}$. Then

$$g_1 = \dot{w}_{\alpha} g \dot{w}_{\alpha}^{-1} = v' u'_{\alpha} \dot{w}_{\alpha} \dot{w} \dot{w}_{\alpha}^{-1} v'_{\alpha} u' = v' u'_{\alpha} \dot{w}_{\alpha} \dot{w} \dot{w}_{\alpha}^{-1} (v'_{\alpha} u' v_{\alpha'}^{-1}) v'_{\alpha}.$$

Put $u'' = v'_{\alpha} u' v_{\alpha'}^{-1}, v'' = v'_{\alpha} v'$. Then $g_2 = v'_{\alpha} g_1 v_{\alpha'}^{-1} = v'' u'_{\alpha} \dot{w}_{\alpha} \dot{w} \dot{w}_{\alpha}^{-1} u''.$
Further, $u'_{\alpha} \dot{w}_{\alpha} = x_{-\alpha} x_{\alpha}$ for some $x_{-\alpha} \in X_{-\alpha}, x_{\alpha} \in X_{\alpha}$. Hence

$$g_2 = v'' x_{-\alpha} x_{\alpha} \dot{w} \dot{w}_{\alpha}^{-1} u'' = v'' x_{-\alpha} \dot{w} \dot{w}_{\alpha}^{-1} (\dot{w}_{\alpha} \dot{w}^{-1} x_{\alpha} \dot{w} \dot{w}_{\alpha}^{-1}) u''.$$

Since $w^{-1}(\alpha) > 0$ and $w^{-1}(\alpha) \neq \alpha$, we get $\dot{w}_{\alpha} \dot{w}^{-1} x_{\alpha} \dot{w} \dot{w}_{\alpha}^{-1} \in U$ and therefore $g_2 \in B^- \dot{w} \dot{w}_{\alpha} B$. From Proposition 3.4 we get $C_g \cap B^- \dot{w}_{\alpha} \dot{w} B \neq \emptyset$.

4. Proofs of the Theorems.

Here \widetilde{G} is a simple algebraic group defined and quasi-split over a field $K, \widetilde{B} = \widetilde{T}\widetilde{U}$ is a Borel subgroup defined over $K, \widetilde{N} = N_{\widetilde{G}}(\widetilde{T}), \widetilde{W} = \widetilde{N}/\widetilde{T}$ and $G = \widetilde{G}(K), B = \widetilde{B}(K), T = \widetilde{T}(K), U = \widetilde{U}(K), N = \widetilde{N}(K), W = N/T$. Further, let $\widetilde{\Pi} = \{\gamma_1, \ldots, \gamma_s\}$ be a simple root system of \widetilde{G} and $\Pi = \{\alpha_1, \ldots, \alpha_r\}$ be a simple root system (in the sense of [C2]) for G (which is obtained from $\widetilde{\Pi}$ by gluing of some roots).

Proof of Theorem 1.1. Assume that Condition (*) of Theorem 1.1 holds. Further let $C_c \subset W$ be the conjugacy class of Coxeter elements and let $\omega \in C_c$. By Proposition 3.3 there exists an S-descent from ω to an element $\omega' \in C_c$ such that $l(\omega') = l(C_c) = r$. Since among the factors of ω' there are all reflections $w_{\alpha_i}, \alpha_i \in \Pi$, the element ω' is an S-Coxeter element. By Lemma 2.4 we have an S-ascent from w_S (recall that w_S is the Coxeter element from Condition (*)) to ω' and, therefore, we have an S-ascent from w_S to ω . Now our statement follows from Proposition 3.4.

Condition (*). Below, K is a perfect field.

We need the following simple (and known) facts:

Lemma 4.1. Let \widetilde{C} be a conjugacy class of \widetilde{G} such that $C = \widetilde{C} \cap G \neq \emptyset$. Further, let $g \in C$. If $H^1(K, C_{\widetilde{G}}(g)) = 1$ then C is a conjugacy class of G (here $C_{\widetilde{G}}(g)$ is the centralizer of g in \widetilde{G}).

Proof. The argument here is the same as in ([C2, Proposition 3.7.3]). Indeed, if $g' \in C$, then there exists an element $\gamma \in \widetilde{G}$ such that $g' = \gamma g \gamma^{-1}$. Thus, for every element $\sigma \in \operatorname{Gal}(\overline{K}/K)$ of the Galois group we have

$$\sigma(\gamma)g\sigma(\gamma^{-1}) = \gamma g\gamma^{-1}$$

and therefore $x_{\sigma} = \gamma^{-1}\sigma(\gamma) \in C_{\widetilde{G}}(g)$. Since x_{σ} is a 1-cocycle, we have $x_{\sigma} = y\sigma(y^{-1})$ for some $y \in C_{\widetilde{G}}$ and therefore $\sigma(\gamma y) = \gamma y$ for every $\sigma \in \operatorname{Gal}(\overline{K}/K)$. Thus, $\gamma y \in G$ and $g' = \gamma y g y^{-1} \gamma^{-1}$.

Lemma 4.2. Let \widetilde{C} be a semisimple conjugacy class of \widetilde{G} and let $C = \widetilde{C} \cap G \neq \emptyset$. If dim $K \leq 1$, then C is a conjugacy class of G.

Proof. Since \widetilde{G} is simply-connected, $C_{\widetilde{G}}(s)$ is a connected reductive group for $s \in \widetilde{C} \cap G$ ([**C2**, Theorem 3.5.6]) and therefore $H^1(K, C_{\widetilde{G}}(s)) = 1$ ([**St1**, 11.2]). Now the assertion follows from Lemma 4.1.

Lemma 4.3. Let C be the same as in the preceding lemma. Suppose that \widetilde{G} is split and \widetilde{C} is a regular semisimple class such that $\widetilde{C} \cap T \neq \emptyset$. Then C is a conjugacy class of G.

Proof. If $s \in \widetilde{C} \cap T$, then $C_{\widetilde{G}}(s) = \widetilde{T}$ is a K-split torus and therefore $H^1(K, C_{\widetilde{G}}(s)) = 1$ ([**Sp**, 12.3.5.(3)]). Now the assertion follows from Lemma 4.1.

Lemma 4.4. Let $u_1, u_2 \in G$ be two regular unipotent elements of \widetilde{G} . Assume that char K is not a bad prime for \widetilde{G} . Then there exist elements $t \in \widetilde{T}$ and $\gamma \in G$ such that $u_1 = t\gamma u_2 \gamma^{-1} t^{-1}$.

Proof. Let $\overline{G} = \widetilde{G}/Z(\widetilde{G})$, $\overline{T} = \widetilde{T}/Z(\widetilde{G})$. Then \overline{G} is defined and quasi-split over K and $Z(\overline{G}) = 1$. Further, let $u \in \widetilde{G}$ be a regular unipotent element and let \overline{u} be its image in \overline{G} . The char K is not a bad prime for \overline{G} , thus $V = C_{\overline{G}}(\overline{u})$ is a connected unipotent subgroup of \overline{G} ([C2, Proposition 5.1.6]) which is defined and split over K ([Sp, 14.3.8]) and therefore $H^1(K, V) =$ 1 ([Sp, 12.3.5.(3)]). Hence any two regular unipotent elements of $\overline{G}(K)$ are conjugate (Lemma 4.1). If $\overline{G}_1(K) \leq \overline{G}(K)$ is a subgroup generated by unipotent elements of \overline{G} , then it is a normal subgroup and $\overline{G}(K) =$ $\overline{G}_1(K)\overline{T}(K)$ (this follows from the Bruhat decomposition). Now let $\overline{u}_1, \overline{u}_2 \in$ $\overline{G}(K)$ be images of regular unipotent elements $u_1, u_2 \in G$. Then there exist elements $\overline{\gamma} \in \overline{G}_1(K), \ t \in \overline{T}(K)$ such that $\overline{u}_1 = t\overline{\gamma}\overline{u}_2\overline{\gamma}^{-1}t^{-1}$. If $\gamma \in \widetilde{G}(K) =$ $G, t \in \widetilde{T}$ are preimages of $\overline{\gamma}, \ t$, then $u_1 \equiv t\gamma u_2\gamma^{-1}t^{-1}$. \Box Now we check Condition (*) for (a) to (f):

(a) If $G = SL_n(K)$, Condition (*) is an immediate consequence of the representation of elements of $GL_n(K)$ in rational canonical form.

(b) Consider the case where K is an algebraically closed field. According to Steinberg's theorem ([St1, 1.4]), the set

$$\mathfrak{N} = \dot{w}_{\gamma_1} X_{\gamma_1} \dot{w}_{\gamma_2} X_{\gamma_2} \dots \dot{w}_{\gamma_s} X_{\gamma_s}$$

is a cross-section of all regular conjugacy classes of the group \widetilde{G} , where $\dot{w}_{\gamma_1}, \ldots, \dot{w}_{\gamma_s}$ is any fixed system of preimages of the basic reflections $w_{\gamma_1}, \ldots, w_{\gamma_s}$ in any fixed order (here X_{γ_i} is the corresponding root subgroup). Moreover, we can rewrite \mathfrak{N} in the form

$$\mathfrak{N} = \dot{w}_{\gamma_1} \dot{w}_{\gamma_2} \dots \dot{w}_{\gamma_s} X_{\theta_1} X_{\theta_2} \dots X_{\theta_s},$$

where $\theta_i = w_{\gamma_s} \dots w_{\gamma_{i+2}} w_{\gamma_{i+1}}(\gamma_i) > 0$. Since K is an algebraically closed field, $\{\alpha_1, \dots, \alpha_r\} = \{\gamma_1, \dots, \gamma_s\}$ and any element in the intersection $C \cap \widetilde{N}(K)$ lies in the S-Coxeter cell $B\dot{w}_{\alpha_1}\dot{w}_{\alpha_2}\dots\dot{w}_{\alpha_r}B$. This proves (*).

(c) If \widetilde{G} is split over K, the closed subset \mathfrak{N} (defined above) of \widetilde{G} is defined over K and $\mathfrak{N} \cap \widetilde{C} \in G$ ([St1, Section 9]).

(d) There exists a closed subset \mathfrak{N}' of \mathfrak{N} which is defined over K and such that every regular semisimple conjugacy class \tilde{C} of \tilde{G} intersects \mathfrak{N}' in just one point (and this point belongs to G if $\tilde{C} \cap G \neq \emptyset$) ([St1, 9.11]). Since $\mathfrak{N} \subset B\dot{w}_S B$ for some S-Coxeter element w_S , the assertion follows from Lemma 4.2.

(e) We may use the same argument as in (d), and Lemma 4.3.

(f) If \widetilde{G} is split or \widetilde{G} is not of type A_{2l} , the cross-section of regular classes \mathfrak{N} is defined over K and for the conjugacy class of regular unipotent elements \widetilde{C} we have $u = \widetilde{C} \cap \mathfrak{N} \in B\dot{w}_S B$, where $\dot{w}_S \in N$ for some S-Coxeter element w_S in W ([St1, Section 9]). Now let $u' \in \widetilde{C} \cap G$. By Lemma 4.4 we have $t\gamma u'\gamma^{-1}t^{-1} = u = u_1\dot{w}_S b_1$ for some $t \in \widetilde{T}, \gamma \in G$ and $u_1 \in U, b_1 \in B$. Hence $u'' = \gamma u'\gamma^{-1} = (t^{-1}u_1t)(t^{-1}\dot{w}_S t)(t^{-1}b_1t)$. Thus $u'' \in \widetilde{B}\dot{w}_S \widetilde{B}$. But $u'' \in G$ and, therefore, $u'' \in B\dot{w}B$ for some $\dot{w} \in N$. Since $B\dot{w}B \subset \widetilde{B}\dot{w}\widetilde{B}$, we have $w = w_S$. This implies that the conjugacy class C of u' in G has a nontrivial intersection with $B\dot{w}_S B$, where $\dot{w}_S \in N$.

Proof of Theorem 1.3.

Below, $\tilde{\Gamma}$ is a connected reductive algebraic group defined over a perfect field K such that dim $K \leq 1$.

Lemma 4.5. Let $\widetilde{P} = \widetilde{L}R_u(\widetilde{P})$ be a parabolic subgroup of $\widetilde{\Gamma}$ defined over K. Let \widetilde{L} be a fixed Levi factor (defined over K) and let $R_u(\widetilde{P})$ be the unipotent radical of \widetilde{P} . Further, let $s \in \widetilde{P}(K)$, s = lu, where $l \in \widetilde{L}$ and $u \in R_u(\widetilde{P})$. If $s \in \widetilde{\Gamma}(K)$, then $l \in \widetilde{L}(K)$ and $u \in R_u(\widetilde{P})(K)$. If, in addition, s is a semisimple element, then s is conjugate to l in \widetilde{P} .

Proof. The first assertion follows from the uniqueness of the decomposition lu.

Further, if s is semisimple, it is contained in a maximal torus in \widetilde{P} which is contained in a Levi subgroup L'. ([**Sp**, 8.4.4]). Since all Levi subgroups are conjugate in \widetilde{P} ([**Sp**, 16.1.1]) by elements of \widetilde{P} , one can find an element $p = l_1 u_1 \in \widetilde{P}$ where $l_1 \in \widetilde{L}$, $u_1 \in R_u(\widetilde{P})$ such that $psp^{-1} \in \widetilde{L}$. Then $l_1^{-1}psp^{-1}l_1 = u_1su_1^{-1} = l(l^{-1}u_1l)uu_1^{-1} \in \widetilde{L}$. Hence $(l^{-1}u_1l)uu_1^{-1} = 1$ (because $(l^{-1}u_1l)uu_1^{-1} \in R_u(\widetilde{P})$) and therefore $l_1^{-1}psp^{-1}l_1 = l$. \Box

Lemma 4.6. Let $s \in \widetilde{\Gamma}(K)$ be a semisimple element of $\widetilde{\Gamma}$ such that $C_{\widetilde{\Gamma}}(s)^0$ is not a torus. Then there exists a parabolic subgroup \widetilde{P} of $\widetilde{\Gamma}$ defined over K such that $s \in \widetilde{P}$.

Proof. The group $C_{\widetilde{\Gamma}}(s)^0$ is defined over K ([**Sp**, 12.1.4]). Further, the condition dim $K \leq 1$ implies that there exists a Borel subgroup \widetilde{B}_s of $C_{\widetilde{G}}(s)^0$ which is also defined over K ([**St1**, 10.2]). Since $C_{\widetilde{\Gamma}}(s)^0$ is not a torus, the unipotent radical $R_u(\widetilde{B}_s)$ is not trivial. The group $\widetilde{U}_1 = R_u(\widetilde{B}_s)$ is also defined over K ([**Sp**, 14.4.5(v)]). Further, let

(1)
$$\widetilde{N}_1 = N_{\widetilde{G}}(\widetilde{U}_1), \ \widetilde{U}_2 = \widetilde{U}_1 \cdot R_u(\widetilde{N}_1), \ \widetilde{N}_2 = N_{\widetilde{G}}(\widetilde{U}_2), \dots, \\ \widetilde{U}_i = \widetilde{U}_{i-1} \cdot R_u(\widetilde{N}_{i-1}), \ \widetilde{N}_i = N_{\widetilde{G}}(\widetilde{U}_i), \dots.$$

Then all members of (1) are closed subgroups of $\widetilde{\Gamma}$ and $\widetilde{U}_k = \widetilde{U}_{k+1}$, $\widetilde{N}_k = \widetilde{N}_{k+1}$ for some positive integer k ([**Hu**, 30.3]). Further, all groups in (1) are defined over K; indeed, the field K is perfect and all groups are defined as normalizers of K-defined groups, their unipotent radicals, and the images of K-defined groups with respect to maps $\widetilde{U}_{i-1} \times R_u(\widetilde{N}_{i-1}) \longrightarrow \widetilde{U}_{i-1} \cdot R_u(\widetilde{N}_{i-1})$, induced by multiplication in \widetilde{G} . Since \widetilde{U}_1 is connected, the last member \widetilde{N}_k of this sequence is a parabolic subgroup of $\widetilde{\Gamma}$ ([**Hu**, 30.3]). From the definitions we have $s \in \widetilde{N}_1 \leq \widetilde{N}_k$.

Now we can prove Theorem 1.3. Let $s \in G$ be a noncentral semisimple element. We may assume that s is not a regular element of \widetilde{G} (otherwise the statement follows from Theorem 1.1 and Property (d)). By Lemma 4.6 we have $s \in \widetilde{P}$ for some parabolic subgroup defined over K. Since $g\widetilde{P}g^{-1} = \widetilde{P}_I$ for some standard parabolic subgroup \widetilde{P}_I and $g \in G$ ([**Sp**, 15.4.6]), we may assume $s \in \widetilde{P}_I$, where $I \subset \widetilde{\Pi}$ is a Gal (\overline{K}/K)-invariant subset (note that the group Gal (\overline{K}/K) acts on $\widetilde{\Pi}$ by permutation and the orbits of this action correspond to Π ; see [**St1**, Section 9]). Let $\widetilde{L}_I = \widetilde{T}\widetilde{G}_I$, where $\widetilde{G}_I = \langle X_\alpha \mid \alpha \in \langle I \rangle \rangle$. Then \widetilde{L}_I is a K-defined Levi factor of \widetilde{P}_I .

By Lemmas 4.5 and 4.2 we may assume $s \in \tilde{L}_I$. (Indeed, by Lemma 4.5 we have en element $l \in \tilde{L}_I(K)$ which is conjugate to s in \tilde{P}_I . By Lemma 4.2 the elements s, l are conjugate by an element of the group G. Hence we may take the element $l \in C$ instead of s.)

Again by Lemma 4.6 we may assume that $C_{\tilde{L}_I}(s)^0 = \tilde{T}'$, where \tilde{T}' is a maximal torus of \tilde{L}_I defined over K (otherwise, we can take a smaller set I using the same procedure as above). Note that the derived subgroup \tilde{L}_I is equal to \tilde{G}_I and therefore is a simply-connected semisimple group (because \tilde{G} is simply-connected). Hence $C_{\tilde{L}_I}(s)^0 = C_{\tilde{L}_I}(s)$ ([**C2**, Theorem 3.5.6]) and thus

(2)
$$C_{\widetilde{L}_{I}}(s) = \widetilde{T}'.$$

Further, if $I = \emptyset$ we have $\widetilde{P}_I = \widetilde{B}$ and $\widetilde{T}' = \widetilde{T}$. Hence $s \in \widetilde{T}(K) = T$. Since s is a noncentral element of G, there exists a root $\alpha \in \Pi$ such that s is not in the center of the group $T\widetilde{G}_{\alpha}(K)$ (here, $\widetilde{G}_{\alpha} = \langle X_{\beta} \mid \beta \in \langle I_{\alpha} \rangle \rangle$ where $I_{\alpha} \subset \widetilde{\Pi}$ is the Gal (\overline{K}/K) -orbit of α). Since the Borel subgroup B_{α} of $T\widetilde{G}_{\alpha}(K)$ (with respect to T) is not a normal subgroup, one can find an element $\gamma \in T\widetilde{G}_{\alpha}(K)$ such that $\gamma s \gamma^{-1} = \dot{w}_{\alpha} b$, where $w_{\alpha} \in W$ is the corresponding reflection and $b \in B_{\alpha}$. Hence $C \cap B\dot{w}_{\alpha}B \neq \emptyset$. Further, let $\omega \in W$. Then $\omega w_{\alpha} \omega^{-1} = w_{\beta}$, where $\beta = \omega(\alpha)$. Let $\dot{\omega}, \dot{w}_{\beta}$ be preimages of ω, w_{β} in the group N. Then $\dot{\omega} T\widetilde{G}_{\alpha}(K)\dot{\omega}^{-1} = T\widetilde{G}_{\beta}(K)$. The element $s' = \dot{\omega}s\dot{\omega}^{-1}$ is not a central element in $T\widetilde{G}_{\beta}(K)$. Now, as above, we have $\gamma' s' \gamma'^{-1} \in B\dot{w}_{\beta}B$ for some $\gamma' \in T\widetilde{G}_{\beta}(K)$. Thus, if $I = \emptyset$, the assertion of the theorem holds for $X = \{\alpha\}$.

Now we may assume that $I \neq \emptyset$ and Condition (2) holds.

We have s = tg, $t \in \widetilde{T} \cap C_{\widetilde{L}_{I}}(\widetilde{G}_{I})$, and $g \in \widetilde{G}_{I}$ ([**Hu**, 27.5]). Note that the elements t and g do not necessarily belong to G but $t, g \in \widetilde{L}_{I}(K')$ for some extension K'/K. The element $s \in G$ is $\operatorname{Gal}(\overline{K}/K)$ -invariant and $t \in Z(\widetilde{L}_{I})$. Hence $g = h_{1}g_{1}$, where $h_{1} \in \widetilde{T}(K')$, $g_{1} \in \widetilde{G}_{I}(K)$ (this follows from the Bruhat decomposition of g). Further, (2) implies that g is a regular element of \widetilde{G}_{I} . If \mathfrak{N}' is a cross-section (defined over K) of regular semisimple conjugacy classes of \widetilde{G}_{I} ([St1, Section 9]) then $h_{1}\mathfrak{N}'$ is also a cross-section (defined over K') of regular semisimple conjugacy classes of \widetilde{G}_{I} . Hence the conjugacy class C_{g} of g in \widetilde{G}_{I} intersects $h_{1}\mathfrak{N}'$ in just one point. Thus the conjugacy class $C_{s} = tC_{g}$ of s in \widetilde{L}_{I} intersects $th_{1}\mathfrak{N}'$ also in one point x(recall, $t \in Z(\widetilde{L}_{I})$). Since the conjugacy class C_{s} is defined over K and the closed subset $th_{1}\mathfrak{N}'$ is also defined over K (because $th_{1} = sg_{1}^{-1} \in \widetilde{L}_{I}(K)$), the point x is Gal (\overline{K}/K) -invariant and therefore it belongs to $L_I(K)$. Since $s, x \in L_I(K) \leq G$ are conjugate in L_I (and therefore in \widetilde{G}), we have $x = \sigma s \sigma^{-1}$ for some $\sigma \in G$ (Lemma 4.2). Further,

(3)
$$th_1\mathfrak{N}' \subset \left(\prod_{\alpha \in X} \dot{w}_\alpha\right) \widetilde{U},$$

where $X \subset \Pi$ is the set of Gal (\overline{K}/K) -orbits of $I \subset \widetilde{\Pi}$ and w_{α} in (3) is the product of basic reflections w_{γ} , where γ runs through the orbit corresponding to α or $w_{\alpha} = w_{\gamma_1+\gamma_2}$ if such orbit consists of two roots γ_1, γ_2 such that $\gamma_1+\gamma_2$ is a root (see [St1, Section 9]). From (3) we obtain

(4)
$$x = \sigma s \sigma^{-1} \in \widetilde{B} \prod_{\alpha \in X} \dot{w}_{\alpha} \widetilde{B}$$

Since $x \in G$, we have

(5)
$$x = \sigma s \sigma^{-1} \in B \dot{w} B$$

for some $w \in W$. But

$$B\dot{w}B \subset B\dot{w}B$$

From (4), (5), (6) we get

(7)
$$w = \prod_{\alpha \in X} w_{\alpha},$$

i.e., w is a generalized S-Coxeter element of W. Now (5) and (7) imply that the conjugacy class of s in G intersects $B\dot{w}B$ for some generalized S-Coxeter element w of W.

Suppose that $w' = \omega w \omega^{-1}$ is also an S-Coxeter element of W for some $\omega \in W$. Then $w' = \prod_{\alpha \in Y} w_{\alpha}$ for some $Y \subset \Pi$, |Y| = |X|. Let $X' = \{\omega(\alpha) \mid \alpha \in X\}$. Then

$$w' = \prod_{\alpha \in Y} w_{\alpha} = \prod_{\beta \in X'} w_{\beta}.$$

The element w' is a Coxeter element of the root systems generated by Y and X'. It acts without fixed points on the vector space (over \mathbb{R}) generated by Y and on the vector space generated by X'. Moreover, l(w') = |Y| = |X'|. Hence the vector spaces (over \mathbb{R}) generated by Y and X' coincide (it is the $\langle w' \rangle$ -complement to the vector space of w'-invariant vectors). Since X is a simple root system for the root system $\langle X \rangle$, the set X' is a simple root system for the root system $\langle X \rangle$. On the other hand, the set Y is a simple root system for the root system $\langle X' \rangle$. Now $X' \subset \omega(\Pi), Y \subset \Pi$ and the linear spaces generated by X' and Y coincide. Moreover, the root subsystems $\langle X' \rangle, \langle Y \rangle$ have the same Coxeter element w'. Hence $\langle X' \rangle = \langle Y \rangle$. Now let I' be a subset of Π that is $\operatorname{Gal}(\overline{K}/K)$ -invariant and such that the set of $\operatorname{Gal}(\overline{K}/K)$ -orbits of I' coincides with Y. Since $\omega(\langle X \rangle) = \langle X' \rangle = \langle Y \rangle$, we have

(8)
$$\widetilde{G}_{I'} = \langle X_{\beta} \mid \beta \in \langle I' \rangle \rangle = \dot{\omega} \widetilde{G}_{I} \dot{\omega}^{-1}.$$

From (8) we get

(9)
$$\widetilde{L}_{I'} = \widetilde{T}\widetilde{G}_{I'} = \dot{\omega}\widetilde{L}_I\dot{\omega}^{-1}.$$

Since $\omega \in W$, we can choose the preimage $\dot{\omega} \in G$. From (9)

$$s' = \dot{\omega} s \dot{\omega}^{-1} \in \widetilde{L}_{I'} \cap G.$$

Now we have a semisimple regular element $s' \in \widetilde{L}_{I'}(K)$. The same arguments as above show that there exists an element $\tau \in G$ such that $s'' = \tau s' \tau^{-1} \in B\dot{w}''B$, where

$$w'' = \prod_{\beta \in Y} w_{\beta}$$

(the order of the roots β in this product can be different from the order of the roots α in the product corresponding to w'). By Lemma 2.4 there exists an S-ascent from w'' to w' (both elements are Y-Coxeter elements for the Weyl group of the system $\langle Y \rangle$). Proposition 3.4 implies

(10) $\delta s'' \delta^{-1} \in B \dot{w}' B$

for some $\delta \in G$.

The inclusions (5) and (10) show that the conjugacy class C of s in G intersects all Bruhat cells $B\dot{w}'''B$, where w''' runs through all generalized S-Coxeter elements that are conjugate to w. Now let $\tilde{w} \in W$ be an element from the conjugacy class of w. Proposition 3.3 implies that there exists an S-ascent from some generalized S-Coxeter element w''' to \tilde{w} . Now the assertion of the theorem follows from Proposition 3.4.

Theorem 1.3 has been proved.

Remarks to Theorem 1.3.

1. Intersection with a parabolic subgroup. In the proof of Theorem 1.3 we showed that

$$(**) C \cap P_X \neq \emptyset$$

for every noncentral semisimple conjugacy class C that is not regular, where $X \subsetneq \Pi$ and $P_X = BW_X B$ is the corresponding parabolic subgroup (if K is a perfect field and dim $K \leq 1$). More generally, Equation (**) holds for every noncentral conjugacy class C that is not a regular semisimple class (if K is a perfect field and dim $K \leq 1$). Indeed, we consider the Jordan decomposition g = su of an element $g \in C$. Applying the same construction as in Lemma 4.6, we get a parabolic subgroup P which is defined over K and contains s, u. Then by an appropriate conjugation we can embed g in

a standard parabolic subgroup. (Note, if K is a finite field, then Condition (**) is a consequence of the properties of the Steinberg representation [C2, Proposition 6.4.5].)

2. The condition: $\dim K \leq 1$. The example below shows that if this condition does not hold, the conclusion of Theorem 1.3 may be false.

Let n = 4k and let V be a linear space over the real number field \mathbb{R} such that dim V = 4k. Further, let $\{e_1, \ldots, e_{4k}\}$ be a fixed basis of V and let $V^+ = \langle e_1, \dots, e_{2k} \rangle, V^- = \langle e_{2k+1}, \dots, e_{4k} \rangle$. Further, let (x_1, \dots, x_{4k}) be the coordinates of an element in V with respect to the basis $\{e_i\}$ and let $\Phi =$ $x_1^2 + \dots + x_{2k}^2 - x_{2k+1}^2 - \dots - x_{4k}^2$. Let $\Omega = \Omega(V, \Phi) = [SO(V, \Phi), SO(V, \Phi)].$ Then Ω is a Chevalley group in the sense of [St2], corresponding to the root system D_{2k} . Let $g \in GL(V)$ be the linear operator such that $g|_{V^+} =$ $-1, q|_{V^-} = 1$. One can easily check that $q \in \Omega$ and $quq^{-1} \neq u^{\pm 1}$ for every nontrivial unipotent element $u \in \Omega$ (the latter follows from the fact that $v \pm g(v)$ is not an isotropic vector if $v \neq 0$ is isotropic). Hence the element g cannot normalize any nontrivial unipotent subgroup of Ω and therefore q cannot belong to any proper parabolic subgroup of Ω . This implies that a preimage \hat{q} of q in $G = \text{Spin}_{4k}(\mathbb{R})$ (with respect to the natural homomorphism $G \longrightarrow \Omega$) also cannot belong to a proper parabolic subgroup of G. Hence $C \cap Bw_X B = \emptyset$ for every $X \subset \Pi$, where C is the conjugacy class of \hat{g} in G, B is a Borel subgroup of G, and Π is a simple root system corresponding to $\widetilde{G} = \mathbf{Spin}_{4k}$ (note, $BW_X B = P_X$ is a standard parabolic subgroup).

3. The ordered set of $\mathfrak{X}_{\mathbf{C}}$. Recall, for any set $X \subset \Pi$ we define $w_X = \prod_{\alpha \in X} w_{\alpha}$, where the product can be taken in any fixed order. For the set

$$\mathfrak{X}_C = \{ X \subset \Pi \mid C \cap B\dot{w}_X B \neq \emptyset \}$$

one can consider the natural order with respect to inclusion.

Let $G = SL_n(\mathbb{C})$ and C a noncentral semisimple conjugacy class. Let $\lambda(C) = (\lambda_1, \ldots, \lambda_r)$ be the partition of n, i.e., $\lambda_1 \geq \cdots \geq \lambda_r$, where $\lambda_1 + \cdots + \lambda_r = n$, which corresponds to the multiplicities of eigenvalues of elements of C (i.e., λ_1 is the biggest multiplicity, then λ_2 , etc.) and let $\lambda^*(C)$ be the dual partition (i.e., the rows and columns of λ are interchanged). Further, to every partition $\mu = (\mu_1, \ldots, \mu_s)$ of n we assign a subset $X(\mu) \subset \Pi = \{\alpha_1, \ldots, \alpha_{n-1}\}$, namely,

$$X(\mu) \stackrel{\text{def}}{=} \Pi \setminus \{ \alpha_{\mu_1}, \alpha_{\mu_1 + \mu_2}, \dots, \alpha_{\mu_1 + \dots + \mu_{s-1}} \}.$$

It is easy to see that $X(\lambda^*(C))$ is a maximal element of \mathfrak{X}_C . Moreover, every maximal element $Y \in \mathfrak{X}_C$ is *W*-conjugate to $X(\lambda^*(C))$. Thus we have just one conjugacy class $\{ww_Xw^{-1}\}$ in *W* for each maximal $X \in \mathfrak{X}_C$.

For other types of groups we can have several conjugacy classes in W of elements of the form w_X , where $X \in \mathfrak{X}_C$ is a maximal element. Say, consider

the root system $R = B_2 = \langle \alpha_1, \alpha_2 \rangle$, where $\alpha_1 = \varepsilon_1 - \varepsilon_2$ and $\alpha_2 = \varepsilon_2$ (in the notation of [**Bou**]), and let G be the corresponding simple and simply connected group over \mathbb{C} . Let $g = h_{\varepsilon_1}(t)h_{\varepsilon_2}(t^{-1}) \in G$ be a semisimple element, where $h_{\varepsilon_1}(t), h_{\varepsilon_2}(t^{-1})$ are the corresponding root semisimple elements (in the notation of [**St2**]) and $t \neq \pm 1$. Let C be the conjugacy class of g. Then $\{\alpha_1\}$ and $\{\alpha_2\}$ both are maximal elements of \mathfrak{X}_C . Thus here we have two different conjugacy classes in W of elements w_X for maximal X in \mathfrak{X}_C .

5. Appendix.

The following result as well as the line of proof was pointed out to the second author by T.A. Springer in the discussion of relevant questions:

Proposition 5.1. Let \widetilde{G} be a simple algebraic group defined over an algebraically closed field \overline{K} and let $G = \widetilde{G}(\overline{K})$. Further, let C be the conjugacy class of a regular element of G. Then $C \cap B\dot{w}B \neq \emptyset$ for every $w \in W$.

Proof. For $b \in B$ we put

$$\mathfrak{O}_B(b) = \{ xbx^{-1} \mid x \in B \}.$$

Lemma 5.2. There exists a nonempty finite set $\{b_1, \ldots, b_n\} \subset C \cap B$ such that

$$C \cap B = \bigcup_{1 \le i \le n} \mathfrak{O}_B(b_i).$$

Proof. Let $x = s_1u_1, y = s_2u_2 \in B$ be two regular elements, where $s_1, s_2 \in T$ and $u_1, u_2 \in U$. We show

(11)
$$\mathfrak{O}_B(x) = \mathfrak{O}_B(y)$$
 if and only if $s_1 = s_2$.

Indeed, "only if" is obvious. Now let

(12)
$$b_1 = su_1, b_2 = su_2, s \in T, u_1, u_2 \in U.$$

Since we can consider the Jordan decompositions of x, y as elements of B, we may assume that (12) gives the Jordan decompositions of b_1 and b_2 . Put $\Gamma = [C_G(s), C_G(s)], B_{\Gamma} = B \cap \Gamma$. Then (12) implies $u_1, u_2 \in B_{\Gamma}$. Moreover, the elements u_1, u_2 are regular unipotent elements of Γ ([St1, 3.7]) and therefore the elements u_1, u_2 are conjugate in B_{Γ} (see [C2, the proof of Proposition 5.1.3]). Hence we have (11).

Now let $b = su \in B$, $s \in T$, $u \in U$, $g \in G$, $gbg^{-1} \in B$. Further, let $g \in B\dot{w}B$. Then $gbg^{-1} = w(s)u'$ for some $u' \in U$. Together with (11), this implies our assertion.

Lemma 5.3. Let $b \in C \cap B$ be a fixed element and let $w \in W$. Then every irreducible component \mathfrak{C}_w of $\overline{C} \cap \overline{BwB}$ such that $\mathfrak{O}_B(b) \subset \mathfrak{C}_w$ satisfies the following condition:

$$\dim \mathfrak{C}_w = \dim \overline{C} + \dim \overline{B\dot{w}B} - \dim G.$$

Proof. Since b is a regular element, dim $C_B(b) = \operatorname{rank} G$ ([St1, 3.11]). If \mathfrak{C}_1 is an irreducible component of $\overline{C} \cap B$ containing $\mathfrak{O}_B(b)$, then Lemma 5.2 implies $\mathfrak{C}_1 = \overline{\mathfrak{O}_B(b)}$ and, therefore,

(13) $\dim \mathfrak{C}_1 = \dim B - \operatorname{rank} G = \dim \overline{C} + \dim B - \dim G.$

Let $\mathfrak{O}_B(b) \subset \mathfrak{C}_w$ for some irreducible component \mathfrak{C}_w of $\overline{C} \cap \overline{BwB}$. Suppose

(14)
$$\dim \mathfrak{C}_w > \dim C + \dim B\dot{w}B - \dim G.$$

Since B is a closed subset of \overline{BwB} ([**Sp**, 8.15]) and \mathfrak{C}_1 is an irreducible component of $\mathfrak{C}_w \cap B$, we have

(15)
$$\dim \mathfrak{C}_1 \ge \dim \mathfrak{C}_w + \dim B - \dim \overline{BwB}.$$

Now (14) and (15) contradict (13). Thus we have our statement.

Now we return to the proof of Proposition 5.1.

Take \mathfrak{C}_w as in Lemma 5.3. Assume $C \cap B\dot{w}B = \emptyset$. Then

(16)
$$\mathfrak{C}_w \subset \bigcup_{w' < w} B\dot{w}'B = \bigcup_{w' < w} \overline{B\dot{w}'B}$$

([**Sp**, 8.15]). From (16) we have $\mathfrak{C}_w \subset \overline{B\dot{w}'B}$ for some w' < w and we may consider \mathfrak{C}_w as an irreducible component of $\overline{C} \cap \overline{B\dot{w}'B}$ that contains $\mathfrak{O}_B(b)$. Then, by Lemma 5.3, we have

(17)
$$\dim \mathfrak{C}_w = \dim \overline{C} + \dim \overline{Bw'B} - \dim G.$$

But (17) contradicts Lemma 5.3 because dim $\overline{B\dot{w}'B} < \dim \overline{B\dot{w}B}$. This proves Proposition 5.1.

References

- [Bo] A. Borel, Linear Algebraic Groups, 2nd ed., Graduate Texts in Mathematics, 126, Springer-Verlag, New York, 1991, MR 1102012, Zbl 0726.20030.
- [Bou] N. Bourbaki, Éléments de Mathématique. Groupes et Algèbre de Lie, Chap. IV, V, VI, 2ème édition, Masson, Paris, 1981, MR 1890629, Zbl 0483.22001.
- [C1] R.W. Carter, Simple Groups of Lie Type, Reprint of the 1972 original, Wiley Classics Library, John Wiley and Sons, New York, 1989, MR 1013112, Zbl 0723.20006.
- [C2] _____, Finite Groups of Lie Type. Conjugacy Classes and Complex Characters, Reprint of the 1985 original, Wiley Classics Library, John Wiley and Sons, Chichester, 1993, MR 1266626, Zbl 0567.20023.
- [EG] E.W. Ellers and N. Gordeev, Intersection of conjugacy classes of Chevalley groups with Gauss cells, J. Algebra, 220 (1999), 591-611, MR 1717361, Zbl 942.20030.
- [EGH] E.W. Ellers, N. Gordeev and M. Herzog, Covering numbers for Chevalley groups, Israel J. Math., 111 (1999), 339-372, MR 1710745, Zbl 941.20050.

- [GP] M. Geck and G. Pfeiffer, Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, London Mathematical Society Monographs, New Series, 21, The Clarendon Press, Oxford University Press, New York, 2000, MR 1778802, Zbl 0996.20004.
- [GS] N. Gordeev and J. Saxl, Products of conjugacy classes in Chevalley groups I. Extended covering numbers, Israel J. Math., 130 (2002), 207-248, MR 1919378, Zbl 1007.20041.
- [Hu] J.E. Humphreys, *Linear Algebraic Groups*, Graduate Texts in Mathematics, 21, Springer-Verlag, New York-Heidelberg-Berlin, 1975, MR 0396773, Zbl 0325.20039.
- [K] N. Kawanaka, Unipotent elements and characters of finite Chevalley groups, Osaka J. Math., 12(2) (1975), 523-554, MR 0384914, Zbl 0314.20031.
- [Sp] T.A. Springer, *Linear Algebraic Groups*, 2nd edition, Progress in Mathematics, 9, Birkhäuser Boston, Boston MA, 1998, MR 1642713, Zbl 0927.20024.
- [St1] R. Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math., 25 (1965), 49-80, MR 0180554, Zbl 0136.30002.
- [St2] _____, Lectures on Chevalley Groups, Notes prepared by John Faulkner and Robert Wilson, Yale Univ., New Haven CT, 1968, MR 0466335, Zbl 0307.22001.
- [V] N.A. Vavilov, Bruhat decomposition of two-dimensional transformations (Russian), Vestnik Leningrad. Univ. Mat. Mekh. Astronom., 3 (1989), 3-7; translation in Vestnik Leningrad Univ. Math., 22(3) (1989), 1-6, MR 1055331, Zbl 0716.20024.
- [VS] N.A. Vavilov and A.A. Semenov, Bruhat decomposition for long root tori in Chevalley groups (Russian), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), **175**, 1989, Koltsa i Moduli, **3**, 12–23, 162; translation in J. Soviet Math., **57(6)** (1991), 3453-3458, MR 1047233, Zbl 0746.20024.

Received August 12, 2002 and revised June 16, 2003. Research was supported by NSERC Canada Grant A7251 and by INTAS-99-00817.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF TORONTO 100 ST.GEORGE STREET, TORONTO ONTARIO M5S 3G3 CANADA *E-mail address*: ellers@math.toronto.edu

RUSSIAN STATE PEDAGOGICAL UNIVERSITY MOIJKA 48 ST.PETERSBURG 191-186 RUSSIA *E-mail address*: nickgordeev@mail.ru