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The Axiom of Blackwell Determinacy is a set-theoretic ax-
iom motivated by games used in statistics. It is known that
the Axiom of Determinacy implies the Axiom of Blackwell De-
terminacy. Tony Martin has conjectured that the two axioms
are equivalent.

We develop the “simulation technique” which allows us to
simulate boundedness proofs under the assumption of Black-
well Determinacy and deduce strong combinatorial consequ-
ences that can be seen as an important step towards proving
Tony Martin’s conjecture.

1. Introduction.

Set-theoretic game theory is an important part of Higher Set Theory. The
research of the Cabal seminar and its successors unearthed deep connections
between two-person perfect information games, inner models of set theory,
and large cardinals.

The core concept of set-theoretic game theory is the notion of a strategy.
Since set theorists usually worked with perfect information games, a strategy
is a tree of moves in the set-theoretic setting. The strategy is a winning
strategy for one of the two players if all its branches lie in the set designating
a win for that player. Using the notion of a winning strategy, we can define
when we call a set determined, viz. if one of the two players has a winning
strategy.

For imperfect information games, this concept is too coarse. If one or
both of the players are not completely informed about the current state of
the game, we cannot expect winning strategies in the above sense to exist.

If we now look only at special classes of imperfect information (in this
paper, this will be Blackwell games, or — as Blackwell calls them in [Bl97]
— “Games with Slightly Imperfect Information”), we can define the notions
of a mixed strategy and of strong optimality and use them to define the
notion of Blackwell determinacy. Based on the notion of Blackwell de-
terminacy, we can reformulate the questions of set-theoretic game theory for
games of this type.
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The notion of Blackwell determinacy was introduced for finite games by
von Neumann, and generalized to infinite games by David Blackwell [Bl69]
who also proved the first theorems about Blackwell determinacy. At the
MSRI Workshop in 1994 on Combinatorial Games, it was still open whether
the Blackwell determinacy of all Gδσ sets is a theorem of ZFC as Blackwell’s
extended abstract [Bl97] witnesses. Soon thereafter, Marco Vervoort proved
the Blackwell determinacy of all Gδσ sets in his Master’s thesis [Ve95], and
then Tony Martin developed a coding technique to derive Blackwell determi-
nacy from perfect information determinacy in [Ma98]. In his Master’s the-
sis, Vervoort also introduced the “Axiom of Blackwell Determinacy” which
will be the protagonist of this paper.

In this paper, we shall discuss consequences of axioms of Blackwell De-
terminacy in the field of Infinitary Combinatorics. We shall define several
axioms of Blackwell Determinacy in Section 2 and discuss Martin’s conjec-
ture on Blackwell Determinacy, Conjecture 2.6, which is the motivation for
the rest of the paper. Section 2 is mostly expository and almost all results
are either folklore or from the published literature.

In Section 3 we shall develop the simulation technique which will be
used throughout this paper.

Section 4 is the main part of this paper, and its contents can be seen
as an important step towards proving Conjecture 2.6. After introducing
the basics of Infinitary Combinatorics under AD (Section 4.1), we transfer
these results to Blackwell Determinacy using the simulation technique in
Sections 4.2 and 4.3. We prove that ℵ1 has the strong partition property
and that the odd projective ordinals are measurable cardinals. Some of the
results of this paper have been announced together with additional results on
a Blackwell Lipschitz hierarchy (without proof) in the survey paper [Lö02b].

The paper closes with a discussion of open problems in Section 5.

2. Definitions and notation.

2.1. Set-theoretic standard notation. The notation used in this paper
is standard. The reader is assumed to have a firm grasp of descriptive set
theory and large cardinal theory as contained in [Mo80] and [Ka94]. All
theorems and definitions that are not found in this paper can be found in one
or both of the mentioned textbooks. Of course, we shall say reals or real
numbers when we talk about elements of Baire space ωω as is customary
in set theory.

Since Blackwell determinacy contradicts the full Axiom of Choice AC, we
shall work throughout this paper in the theory

ZF + DC.
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We shall need DC in the context of Infinitary Combinatorics, yet for most of
this paper, ACω(R) will be enough. Note that its an open problem whether
ACω(R) follows from Blackwell determinacy (as it does from AD).

We now fix some notation. In the following, let X ⊆ ω be the set of
possible moves.

Let us writeXeven := {s ∈ X<ω ; lh(s) is even}, Xodd := {s ∈ X<ω ; lh(s)
is odd}, and Prob(X) for the set of probability measures on X.

Fix a recursive bijection p·, ·q : ω×ω → ω. If x ∈ Xω, we define (x)i(n) :=
x(pi, nq). Using this notation we can easily code countable sequences of
elements of Xω into one element of Xω.

We shall be using the standard notation for infinite games: If x ∈ Xω is
the sequence of moves for player I and y ∈ Xω is the sequence of moves for
player II, we let x ∗ y be the sequence constructed by playing x against y,
i.e.,

(x ∗ y)(n) :=
{
x(k) if n = 2k,
y(k) if n = 2k + 1.

Conversely, if x ∈ Xω is a run of a game, then we let xI be the part played
by player I and xII be the part played by player II, i.e., xI(n) = x(2n) and
xII(n) = x(2n + 1). We shall extend this notation to sets A ⊆ Xω in the
obvious way: AI := {xI ; x ∈ A} and AII := {xII ; x ∈ A}. If Y ⊆ Xω, we
write AI

Y for the set {x ∈ A ; xII ∈ Y } and AII
Y for the set {x ∈ A ; xI ∈ Y }.

(In most situations, Y will be of the form {y}.) We denote by WO the
Π1

1-complete set of all codes of wellorderings relative to the bijection p·, ·q.
A standard result that we shall be using a lot is the Boundedness Lemma

in the following abstract form:

Theorem 2.1. Let Γ ⊆ ℘(Xω) be a pointclass with the following properties:
• Γ is boldface (i.e., closed under continuous preimages),
• Γ has the prewellordering property, and
• Γ is closed under ∀R and finite unions.

Suppose that X is a Γ-complete set, ϕ is a Γ prewellordering on X, and
A ⊆ X is Γ̆.

Then A is bounded in the following sense: There is an α < lh(ϕ) such
that for all a ∈ A, ϕ(a) < α.

Proof. First of all, note that the assumptions on Γ imply that Γ is nonself-
dual (no selfdual pointclass can have the prewellordering property, [Ka94,
Exercise 29.2, Proposition 29.3 & Proposition 29.7]). The closure properties
of Γ give that Γ̆ is boldface, closed under ∃R and finite intersections.

Now we assume that boundedness fails and derive a contradiction: Let
A ∈ Γ̆ be such that for all α < lh(ϕ) there is a ∈ A with ϕ(a) > α. Then
(as in the standard proof of boundedness), we can show that every set in Γ
is in Γ̆ thereby showing that Γ is selfdual, which is a contradiction. �
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2.2. Blackwell games. As mentioned in the Introduction, we shall not be
dealing with imperfect information games in full generality, but with the
very special subclass that Blackwell called “Games with Slightly Imperfect
Information”, and we shall call Blackwell games. We imagine a perfect
information game in which both players have to move simultaneously in each
step. Consequently, player II has only partial information: He is aware of all
the game information up to the current step, but doesn’t know what player
I plays in the current round. This situation is modelled by the notion of a
Blackwell strategy (see below).

We call a function σ : XEven → Prob(X) a mixed strategy for player
I and a function σ : XOdd → Prob(X) a mixed strategy for player II.

Let us describe two particularly interesting types of mixed strategies:
• A mixed strategy is called Blackwell strategy if it doesn’t depend

on the moves in the same turn, i.e., if s and t have the same longest
even subsequence, then we have σ(s) = σ(t).

• A mixed strategy σ is called pure if for all s ∈ dom(σ) the measure
σ(s) is a Dirac measure, i.e., there is a natural number n such that
σ(s)({n}) = 1. (This is of course equivalent to being a strategy in the
perfect information sense.)

Let

ν(σ, τ)(s) :=
{
σ(s) if lh(s) is even, and
τ(s) if lh(s) is odd.

Then for any s ∈ ω<ω, we can define

µσ,τ ([s]) :=
lh(s)−1∏

i=0

ν(σ, τ)(s�i)({si}).

This generates a Borel probability measure on ωω which can be seen as an
indicator of how well the strategies σ and τ perform against each other. If
B is a Borel set, µσ,τ (B) is interpreted as the probability that the result of
the game ends up in the set B when player I randomizes according to σ and
player II according to τ . Note that if σ and τ are both pure, then µσ,τ is a
Dirac measure concentrated on the unique real that is the outcome of this
game, denoted by σ ∗ τ .

If σ and τ are Blackwell strategies, the game modelled by σ and τ corre-
sponds to the “Games with Slightly Imperfect Information” of [Bl97]: Both
players can be understood as moving simultaneously, so player II may not
use any information about the move of player I in the same round of the
game.

• We call a pure strategy σ for player I (τ for player II) a winning
strategy if for all pure counterstrategies τ (σ), we have that σ ∗τ ∈ A
(σ ∗ τ /∈ A).
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• We define a measure of quality (the mixed value of the strategy)
for mixed strategies σ (for player I) or τ (for player II) by

mvalAI (σ) := inf{µ−σ,τ (A) ; τ is a mixed strategy for player II}, and

mvalAII(τ) := sup{µ+
σ,τ (A) ; σ is a mixed strategy for player I}.1

• Also for Blackwell strategies σ (for player I) or τ (for player II), we
define a measure of quality (the Blackwell value of the strategy)
by

BvalAI (σ) := inf{µ−σ,τ (A) ; τ is a Blackwell strategy for player II}, and

BvalAII(τ) := sup{µ+
σ,τ (A) ; σ is a Blackwell strategy for player I}.

We call a set A determined if either player I or player II has a winning
strategy, and we call a pointclass Γ determined if all sets in Γ are determined
(in symbols: Det(Γ)).

We define the mixed and Blackwell value sets for player I and player
II by

V mix
I (A) := {mvalAI (σ) ; σ is a mixed strategy for player I}, and

V mix
II (A) := {mvalAII(τ) ; τ is a mixed strategy for player II},

V Bl
I (A) := {BvalAI (σ) ; σ is a Blackwell strategy for player I}, and
V Bl

II (A) := {BvalAII(τ) ; τ is a Blackwell strategy for player II}.
Then V mix

II (A) lies entirely above V mix
I (A) in the sense that for all v ∈

V mix
II (A) and v∗ ∈ V mix

I (A) we have v ≥ v∗ (and the same for V Bl
I (A) and

V Bl
II (A)).

If now inf V Bl
II (A) = supV Bl

I (A) =: p, then the outcome of the game
is stochastically determined as follows: Both players can approximate the
outcome that player I wins with probability p. In this case, we call the
payoff set (imperfect information) Blackwell determined. Similarly,
if inf V mix

II (A) = supV mix
I (A), we call the payoff set A perfect information

Blackwell determined.
It is well-known that for infinite sets X it’s easy to construct clopen payoff

sets A ⊆ Xω such that A is not imperfect information Blackwell determined.
Thus, in order to talk about this property, we have to restrict ourselves
to looking at A ⊆ Xω where X is finite. For a pointclass Γ, we say it’s
(imperfect information) Blackwell determined (in symbols: Bl-Det(Γ)) if all
sets A ∈ Γ with A ⊆ Xω are (imperfect information) Blackwell determined
(where X is a finite set), and we say that it is perfect information Blackwell
determined (in symbols: pBl-Det(Γ)) if for all A ∈ Γ, the set A is perfect
information Blackwell determined.

1Here, µ+ denotes outer measure and µ− denotes inner measure with respect to µ in
the usual sense of measure theory. If A is Borel, then µ+(A) = µ−(A) = µ(A) for Borel
measures µ.
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In 2000, Martin and Vervoort proved a crucial result about games with
mixed strategies [MaNeVe03, Lemma 3.7]:

Theorem 2.2 (Martin-Vervoort Zero-One Law, 2000). If A ⊆ Xω is per-
fect information Blackwell determined. Then inf V mix

II (A) = supV mix
I (A) is

either 0 or 1.

A mixed strategy for player I is now called strongly optimal for A if
mvalAI (σ) = 1, and and a mixed strategy τ for player II is called strongly
optimal for A if mvalAII(τ) = 0.

Vervoort was able to use the Martin-Vervoort Zero-One-Law to prove the
existence of strongly optimal strategies [MaNeVe03, Lemma 3.10] (cf. also
[Lö02a] for a transfer of a finite branching version of Theorem 2.3 to an
infinite branching version):

Theorem 2.3. Let Γ be a boldface pointclass. Suppose that pBl-Det(Γ)
holds and A ∈ Γ where A is a subset of ωω. Then there is either a strongly
optimal strategy for player I or a strongly optimal strategy for player II in
the game with payoff A.

Corollary 2.4. Let Γ be a boldface pointclass. Then pBl-Det(Γ) is equiva-
lent to “for each A ∈ Γ, either player I or player II has a strongly optimal
strategy.”

We now defined three notions of determinacy allowing us to look at three
different axioms of determinacy AD, Bl-AD, and pBl-AD (and their restric-
tions to the projective sets PD, Bl-PD and pBl-PD):

• The Axiom of Determinacy AD: All subsets of ωω are determined.
• The Axiom of (imperfect information) Blackwell Determinacy Bl-AD:

All subsets of 2ω are (imperfect information) Blackwell determined.
• The Axiom of perfect information Blackwell Determinacy pBl-AD: All

subsets of ωω are perfect information Blackwell determined.
To these three axioms, we shall add another one: The Axiom of blind-

folded Blackwell Determinacy. Instead of defining optimality by looking
at all mixed counterstrategies, we can look at smaller classes of counter-
strategies. One class that will happen to play a rôle is the class of all trivial
strategies:

We call a mixed strategy σ trivial, if it is a pure strategy and it’s values
don’t depend on the input, i.e., whenever s and t are sequences of the same
length, then σ(s) = σ(t). A trivial strategy corresponds to a real that is
fixed in advance before a single move of the game is played and which the
player following the strategy is using as his predetermined moves. Playing
according to a trivial strategy is like playing blindfoldedly: You have no idea
what is going on in the game and just follow a previously fixed sequence of
moves no matter what happens.
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Now we call a mixed strategy σ for player I (player II) weakly optimal
if for all trivial counterstrategies τ , we have µ−σ,τ (A) = 1 (µ+

τ,σ(A) = 0). The
existence of weakly optimal strategies is a very weak property. It is possible
that both players have weakly optimal strategies, and it’s even possible that
player I has a weakly optimal strategy, but player II has a winning strategy.

We say a set A is blindfoldedly Blackwell determined if one of the
two players has a weakly optimal strategy. A pointclass Γ is called blind-
foldedly Blackwell determined if all sets A ∈ Γ are blindfoldedly Blackwell
determined (in symbols: blBl-Det(Γ)). Finally, the Axiom of blindfolded
Blackwell determinacy blBl-AD says that all sets are blindfoldedly Blackwell
determined. To make this axiom sound less bizarre, let us note that for a
pure strategy σ, being winning and being winning against all trivial coun-
terstrategies are equivalent, so that a notion of “blindfolded determinacy”
would be equivalent to determinacy in the usual perfect information setting
in a very strong sense.

We now have four determinacy axioms—what are the relations between
them?

Theorem 2.5.
(a) AD implies Bl-AD,
(b) Bl-AD is equivalent to pBl-AD, and
(c) pBl-AD implies blBl-AD.

Proof. (a) is an instance of the main theorem of [Ma98] and (c) is obvious.
For the “⇒”-direction of (b), we model a game with mixed strategies

by a game with Blackwell strategies in which the players pass every second
move. The “⇐”-direction follows from the remarks on [Ma98, p. 1579] and
[MaNeVe03, p. 618sq.]: The main theorem of [Ma98] can be proved using
mixed strategies. �

The main open question in this area which is also the motivation for
the work in this paper is Tony Martin’s conjecture that the converse of
Theorem 2.5 (a) also holds:

Conjecture 2.6. Bl-AD implies AD.

Tony Martin, Itay Neeman and Marco Vervoort proved (cf. [MaNeVe03,
Theorems 5.1 & 5.7]) the following result, thereby determining the consis-
tency strength of pBl-AD:

Theorem 2.7 (Martin-Neeman-Vervoort 1999/2000). pBl-PD implies PD
and (pBl-AD)L(R) implies (AD)L(R).

However, while their result yields the equiconsistency of pBl-AD and AD,
it doesn’t give an equivalence. So far, Conjecture 2.6 is open. In this paper
we shall get a rich structure theory of the ordinals up to ℵω+1 that is usually
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seen as being very characteristic of AD and thus can serve as an indication
that Martin’s Conjecture 2.6 is true.

Let us close by mentioning that the usual proof of Lebesgue measurabil-
ity from determinacy doesn’t work with Blackwell determinacy. Vervoort
proved (using a new proof, cf. [Ve95, Theorem 6.11]) that Bl-Det(Γ) im-
plies that every set in Γ is Lebesgue measurable. Thus we have (by standard
arguments):

Theorem 2.8. Assume Bl-AD and let µ be a σ-finite measure (in particular,
all of our measures µσ,τ derived from mixed strategies σ and τ will do). Let
〈Bξ ; ξ < λ〉 be a wellordered sequence of sets with µ(Bξ) = 1. Then
µ(

⋂
ξ<λBξ) = 1.

Let us sum up the implications between our axioms of determinacy and
some other set-theoretic statements as they were known before this paper
in Figure 1. Dotted lines indicate results proved in this paper; Mstrong

abbreviates “there is an inner model with a strong cardinal”.

AD

��

��

Bl-AD

��

��

Theorem 4.15

##

pBl-AD

��

vvlllllllllllll

(AD)L(R)

��

ℵ1 → (ℵ1)ℵ1

����
��

��
��

��
��

��
��

�

blBl-AD

Corollary 4.9
uu

Corollary 3.11

((
Mstrong ¬AC

Figure 1. Diagram of axioms of determinacy and consequences.

3. The simulation technique.

In this section we shall introduce a technique called the simulation tech-
nique. This technique will be our main tool in getting consequences from
Blackwell determinacy.
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Many proofs of some statement AD → Ψ involve some game G and split
up into two cases: Either player I has a winning strategy in the game G (we
denote this situation by ΦI) or player II has a winning strategy in the game
G (we denote this situation by ΦII). The proof then proceeds by showing
ΦI → ΨI and ΦII → ΨII, where ΨI ∨ ΨII implies Ψ (very often, ΨI ≡ 0=1
and ΨII ≡ Ψ).

Now, if we want to simulate these proofs to get a proof of pBl-AD → Ψ,
we weaken the two cases to Φ∗

I (“Player I has a strongly optimal strategy”)
and Φ∗

II (“Player II has a strongly optimal strategy”), and need to show that
Φ∗

I → ΨI and Φ∗
II → ΨII are still provable.

The simulation technique allows to do this in special cases. In particular,
the simulation technique does not generate essentially new proofs but proves
that in some situations, the classical AD proofs can be simulated in the
Blackwell context.

3.1. Kechris-Tanaka pointclasses & pseudoimages.

Definition 3.1. Let Γ be a boldface pointclass. We shall call it a Kechris-
Tanaka pointclass if:
(KT1) Γ is closed under existential real quantification,
(KT2) for all A ⊆ (ωω)2 with A ∈ Γ, and all reals ε the sets

{〈x, σ, τ〉 ; µ−σ,τ (Ax) > ε} and

{〈x, σ, τ〉 ; µ+
σ,τ (Ax) > ε}

are in Γ, and
(KT3) Γ is closed under countable intersections.

We say that a boldface pointclass Γ has the weak scale property if every
set in Γ admits a ∀RΓ̆-scale (this should not be confused with the weak scale
property of [MaNeVe03]). Under PD, every universal projective class has
the weak scale property, and that the class of Borel sets has the weak scale
property (without any assumptions).

Theorem 3.2 (Kechris-Tanaka). Suppose Γ is a boldface pointclass closed
under countable intersections. Suppose that there is a pointclass Γ∗ with the
following properties:

1) ∃RΓ∗ = Γ,
2) Γ∗ has the weak scale property, and
3) every set in Γ∗ is Lebesgue measurable.
Then Γ is a Kechris-Tanaka pointclass.

A proof can be found in [Ke73, Theorem 2.2.3 & Corollary 2.2.2]. Theo-
rem 3.2 yields that (under the assumption of PD for n > 1) Σ1

n is a Kechris-
Tanaka pointclass.
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Let A ⊆ ωω be a set of reals and ≤ any prewellordering of ωω. Also fix a
mixed strategy σ for player I and a mixed strategy τ for player II.

Let U≤,I
x := {u ; xI ≤ uI} and U≤,II

x := {u ; xII ≤ uII}. Using this
notation, we define the ≤-pseudoimage of A under σ (under τ):

Ψσ,I
≤ (A) :=

{
xI ; ∃z ∈ A

(
µ−σ,z(U

≤,I
x ) > 0

)}
, and

Ψτ,II
≤ (A) :=

{
xII ; ∃z ∈ A

(
µ+

z,τ (U
≤,II
x ) > 0

)}
.

Proposition 3.3. If Γ is a Kechris-Tanaka pointclass, and ≤ and A are in
Γ, then for all strategies σ for player I and τ for player II, both Ψσ,I

≤ (A) and
Ψτ,II
≤ (A) are in Γ.

Proof. The sets U≤,I
x and U≤,II

x are in Γ, so (KT1) and (KT2) give us that
the pseudoimage is in ∃RΓ = Γ. �

Proposition 3.4. Let ≤ be a prewellordering of ωω, and Y an arbitrary
nonempty set of reals. If σ is a strongly optimal strategy for player I (τ a
strongly optimal strategy for player II) for the set A, then

Ψσ,I
≤ (Y ) ∩ (AI

Y )I 6= ∅
(
Ψτ,II
≤ (Y ) ∩ (AII

Y )II 6= ∅
)
.

Proof. Let y ∈ Y . Since σ is strongly optimal, we know that µ−σ,y(A) =
µ−σ,y(A

I
Y ) = 1. Let now x ∈ AI

Y such that the ≤-rank of xI is minimal.
Clearly, µ−σ,y(U

≤,I
x ) = 1, and so xI ∈ Ψσ,I

≤ (Y ). �

With the notion of pseudoimage at hand, we can prove a rather abstract
version of the boundedness lemma for the following type of games:

Definition 3.5. Let A ⊆ ωω. Then A is called of boundedness type
if there is a boldface Kechris-Tanaka pointclass Γ such that Γ̆ has the
prewellordering property and a set X ∈ Γ̆ \ Γ with Γ̆-norm ϕ : X → α
such that:

(B1) xI /∈ X implies x /∈ A, and
(B2) there is a cofinal function % : ωω → α with the property that

%(xII) ≥ ϕ(xI) implies x /∈ A.

Theorem 3.6 (Boundedness Lemma). Assume pBl-AD. Let A be of bound-
edness type. Then there is a strongly optimal strategy for player II.

Proof. Let Γ, X ∈ Γ̆ \ Γ, a Γ̆-norm ϕ : X → α, and a cofinal func-
tion % : ωω → α witness that A is of boundedness type. Let ≤ϕ be the
prewellordering associated to ϕ.

By pBl-AD, we know that there is either a strongly optimal strategy for
player I or for player II. Towards a contradiction, suppose that there is a
strongly optimal strategy σ for player I.
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Since ϕ is a Γ̆-norm, the sets U≤ϕ,I
x are in Γ for all x ∈ ωω. Thus B :=

{〈x, z〉 ; µ−σ,z(U
≤ϕ,I
x ) > 0} is in Γ by (KT2). By (KT1), Ψσ,I

≤ϕ
(ωω) = ∃RB ∈ Γ.

Now the Boundedness Lemma 2.1 gives us an ordinal β < α such that for
all y ∈ Ψσ,I

≤ϕ
(ωω) we have ϕ(y) < β. Since % was cofinal, let z be any real

such that %(z) > β.

If x ∈ Ψσ,I
≤ϕ

({z}) ⊆ B, then ϕ(xI) < %(xII) = %(z) by choice of z, so
x /∈ A. But this contradicts Proposition 3.4, so σ can’t be strongly optimal
for player I. �

Note that the proof of the Boundedness Lemma 3.6 showed that player
I can’t have a weakly optimal strategy, since we only needed information
about the measures µσ,z (as opposed to all measures µσ,τ ). This yields the
the following corollary:

Corollary 3.7. Assume blBl-AD. Let A be of boundedness type. Then there
is a weakly optimal strategy for player II.

3.2. Analytic Blackwell determinacy: An application. Tony Martin
announced in [Ma98] a proof of sharps from Bl-Det(Π1

1). The proof is
unpublished, therefore we include it in this paper with Martin’s permission.
The proof given here is essentially Martin’s original proof, but uses the
language of the simulation technique developed by the present author for
the applications in Section 4. Our analysis of Martin’s proof shows that
instead of Bl-Det(Π1

1) we only need blBl-Det(Π1
1).

Theorem 3.8 (Martin). Suppose that blBl-Det(Π1
1) holds. Then for all re-

als x the sharp x# exists.

Proof. As usual, we show the theorem for x = 0 since it relativizes easily.
We shall prove the theorem with Harrington’s original proof (cf. [Ha78]) in
mind.

We consider the following game: Player I must play a code for a countable
ordinal α; if player I succeeds then player II’s play must code a model
with domain ω that is an end extension of Lα. Denote by A the set of
winning plays for player I. This set is Π1

1 and of boundedness type, hence by
assumption blindfoldedly Blackwell determined, and by Corollary 3.7, player
II has a weakly optimal strategy τ . By Harrington’s proof, it is enough to
show that τ has the following property:

Let γ < α < ω1 and β < ω1 be ordinals. If b ∈ Lβ with b ⊆ γ,
and b codes a wellordering of γ of order type α, then for every
z ∈ WO with ‖z‖ = β, we have b ∈ Lγ+ω·2[z, τ ].
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Set B := (2ω \ A)II{z}. For every formula ϕ and every natural number m,
we define

Bϕ,m := {x ; x ∈ B & ∀δ < γ (δ ∈ b↔ Lγ+ω[xII] |= ϕ[xII,m, δ])} .

By the usual argument, we get
⋃

ϕ,mBϕ,m = B, and thus know that at least
one of the sets Bϕ,m must have positive measure. Fix this set B∗ := Bϕ∗,m∗

.
By the continuity property of Borel measures we know that we find an

s ∈ 2<ω such that the basic open set [s] has positive measure and we have

µz,τ (B∗ ∩ [s]) >
1
2
· µz,τ ([s]).

We now finish the proof by defining b in Lγ+ω·2[z, τ ] as follows:

δ ∈ b ⇐⇒ µz,τ ({x ; Lγ+ω[xII] |= ϕ∗[δ,m∗, xII]} ∩ [s]) >
1
2
· µz,τ ([s]).

“⇒” If δ ∈ b, then B∗ ⊆ {x ; Lγ+ω[xII] |= ϕ∗[δ,m∗, xII]}, so the claim
follows from the choice of s.

“⇐” If δ /∈ b, then we again invoke the choice of s to see that more than
half of the measure of [s] is taken by reals x that are in B∗, thus they can’t
satisfy Lγ+ω[xII] |= ϕ∗[δ,m∗, xII]. �

Consequently, at the Π1
1 level, all mentioned forms of determinacy are

equivalent:

Corollary 3.9. The following are equivalent:
1) Det(Π1

1),
2) Bl-Det(Π1

1),
3) pBl-Det(Π1

1),
4) blBl-Det(Π1

1), and
5) for all x ∈ ωω, x# exists.

This result suggests looking for other pointclasses with this property. It
is unknown whether similar theorems can be proved for other pointclasses.2

3.3. Another application. We show that under Blackwell determinacy
no wellordered sequence of pairwise different Borel sets can have length ω2.
This has been proved under the assumption of AD by Leo Harrington [Ha78,
Theorem 4.5]. Our proof follows Harrington’s proof closely, so we shall only
mention the changes necessary for the Blackwell situation.

2In [MaNeVe03, Theorem 5.1, Corollary 5.3, Theorem 5.4, Theorem 5.6], the authors
show equivalence of perfect information Blackwell determinacy and standard determinacy
for the pointclasses ∆1

n, Π1
2n, and a(n)(< ω2-Π1

1); cf. Theorem 2.7.
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Lemma 3.10. Assume blBl-AD. Then for every sequence of sets of reals
〈Bξ ; ξ < ω1〉 with Bξ ∈ Σ0

β for some fixed β < ω1 there are γ0 and γ1 such
that Bγ0 = Bγ1.

Corollary 3.11. blBl-AD implies ¬AC.

From Lemma 3.10 we can easily deduce the theorem modulo an assump-
tion which will be proved later.

Theorem 3.12. Assume either blBl-AD+ “ℵ2 is regular” or Bl-AD. (Corol-
lary 4.17 will show that Bl-AD implies that ℵ2 is a regular cardinal.) Then
no wellordered sequence of pairwise different Borel sets has length ω2.

Proof of Lemma 3.10. The proof is essentially Harrington’s AD-proof with
modifications where necessary. In this proof we shall use notation rather
loosely and identify the reals played in the game with the objects coded by
them. For example, when player I plays a code v for a pair 〈η, T 〉 against
the strategy τ , we denote the product measure derived from this by µ〈η,T 〉,τ
instead of µv,τ .

Fix a universal Σ0
β set C with Borel code c and play the game with the

following winning conditions:

Player I plays 〈η, T 〉 where T is a tree on ω and η ∈ T with defined height
hT (η) ∈ ω1; player II plays 〈b, w〉 where b = 〈bi ; i ∈ ω〉 is a countable
sequence of reals and w ∈ WO. Player II wins if

‖w‖ > hT (η) & {Cbi
; i ∈ ω} = {Bξ ; ξ < ‖w‖}.

This game is clearly of boundedness type, so by Corollary 3.7, there is a
weakly optimal strategy τ for player II.

We fix some γ > β with ω · γ = γ. We define a prewellordering

x ≤ y : ⇐⇒ x codes 〈b, w〉, y codes 〈b∗, w∗〉, and ‖w‖ ≤ ‖w∗‖.

Consider the set Xγ := {x ; x codes 〈η, T 〉 with hT (η) < γ} which is
a Borel set. Then {w ; ∃b∃y ∈ Ψτ,II

≤ (Xγ)(y = 〈b, w〉)} is a Σ1
1 subset of

WO (Σ1
1 is a Kechris-Tanaka pointclass), and thus it is bounded by some

countable ordinal. Call that ordinal % and assume without loss of generality
that % > γ.

We shall now show that there is a ξ < % such that Bξ = B%.

Suppose that the claim is false. Fix an enumeration of % = {ξi ; i ∈ ω}.
Then for all natural numbers i, the symmetric difference Di := Bξi

4B% is
nonempty, say di ∈ Di. Define a function f ∈ 2ω by

f(i) = 1 : ⇐⇒ di /∈ B%,
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and take a tree T to be L%+ω[τ, d, f, c]-generic in the sense of [Ha78, Def-
inition 2.8]. There must be an η ∈ T such that hT (η) = % by definition of
genericity. Then

µ〈η,T 〉,τ ({〈η, T 〉 ∗ 〈b, w〉; ∃i∀j(dj ∈ Cbi
⇐⇒ f(j) = 0)}) = 1,(ψη,T )

since the condition is true for all winning plays 〈b, w〉 for player II against
〈η, T 〉.

Using Steel forcing as in Harrington’s original proof, we get T ′ with η ∈ T ′,
hT ′(η) < γ and ψη,T ′ . This means that

Y := {〈η, T ′〉 ∗ 〈b, w〉; ∃i∀j(dj ∈ Cbi
⇐⇒ f(j) = 0)}

is a µ〈η,T ′〉,τ -measure 1 set. Since hT ′(η) < γ, we know that 〈η, T ′〉 ∈ Xγ , so
we can get some 〈b, w〉 ∈ Ψτ,II

≤ ({〈η, T ′〉}) ∩ (AII
{〈η,T ′〉} ∩ Y )II. In particular,

‖w‖ < %. This is enough to derive a contradiction. �

4. Infinitary combinatorics under the assumption of Blackwell
determinacy.

4.1. Infinitary combinatorics under AD. We shall give a brief overview
of the basic structure theory below Θ under AD. For a historical account of
infinitary combinatorics under AD, we refer the reader to [Ka94, Chapter
28] and [Lö02b, §3.1]. The reader can also find proofs or pointers to proofs
there.

Definition 4.1. Let κ be a cardinal. We say that κ has the strong parti-
tion property if κ→ (κ)κ holds.

The strong partition property of any infinite cardinal severely violates the
Axiom of Choice. Of the rich structure theory of ω1 under AD, the following
two results will be of most interest to us:

Theorem 4.2 (Solovay’s Lemma). Assume AD. Then for every A ⊆ ω1

there is a real x ∈ ωω such that A ∈ L[x].

Theorem 4.3 (Martin). Assume AD. Then ℵ1 has the strong partition
property.

We shall use the following convention: If U is a normal σ-complete ultra-
filter on an ordinal α and β is another ordinal, then βα/U is a well-ordered
structure (using DC). We shall identify this structure with its ordertype.

Definition 4.4. Let κ be a cardinal with the strong partition property
and µ a normal measure on κ. We then define a sequence of well-ordered
structures 〈κµ

n ; n ≤ ω〉 as follows:
• κµ

1 := κ,
• κµ

n+1 := (κµ
n)κ

/µ, and
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• κµ
ω := sup{κµ

n ; n ∈ ω}.
This sequence is called the Kleinberg sequence derived from µ.

Theorem 4.5 (Kleinberg). Let κ be a cardinal with the strong partition
property, µ be a normal ultrafilter on κ, and 〈κµ

i ; i ≤ ω〉 the derived Klein-
berg sequence. Then:

1) For all natural numbers n ∈ ω, κµ
n < κµ

n+1,
2) κµ

1 and κµ
2 are measurable,

3) for all n ≥ 2, cf(κµ
n) = κµ

2 ,
4) for all n ≥ 3, κµ

n is a Jónsson cardinal, and
5) sup{κµ

n ; n ∈ ω} is a Rowbottom cardinal.
Moreover, if κκ/U = κ+, then κµ

n+1 = (κµ
n)+ for all n ∈ ω.

Corollary 4.6. Assume AD. Then ℵ1 and ℵ2 are measurable,3 ℵn for
3 ≤ n < ω is Jónsson, and ℵω is Rowbottom.

Let λ < κ be regular cardinals. Let us denote by Cκ the closed unbounded
filter on κ. Then we define

Cλ
κ := {X ⊆ κ ; ∃C ∈ Cκ (C ∩ {ξ < κ ; cf(ξ) = λ} ⊆ X)} .

We furthermore define the projective ordinals by

δ1
n := sup{ξ ; ξ is the length of a prewellordering of ωω in ∆1

n}.
Fact 4.7. Let n be a natural number. Assume AD. Then:

1) (Kunen, Martin 1971) δ1
2n+2 = (δ1

2n+1)
+,

2) (Kechris 1974) δ1
2n+1 is the cardinal successor of a cardinal of cofinality

ω,
3) (Martin, Kunen 1971) all δ1

n are measurable,
4) (Martin, Kunen 1971) δ1

1 = ℵ1, δ1
2 = ℵ2, δ1

3 = ℵω+1, and δ1
4 = ℵω+2,

5) (Martin, Paris 1971) δ1
1 → (δ1

1)
δ1

1 , and for all α < δ1
2, the relation

δ1
2 → (δ1

2)
α holds,

6) (Martin 1971) for all α < ω1 the partition relation δ1
2n+1 → (δ1

2n+1)
α

holds,
7) (Kunen 1971) the ω-cofinal measure Cω

δ1
2n+1

is a normal measure on

δ1
2n+1 with δ1

2n+1
δ1

2n+1/Cω
δ1

2n+1
= δ1

2n+2, and

8) (Martin 1980) δ1
3
δ1

3/Cω1

δ1
3

= ℵω·2+1 and δ1
3
δ1

3/Cω2

δ1
3

= ℵωω+1, and these
two cardinals are measurable.

9) (Jackson 1983) Let E be the function recursively defined by E(1) = 0
and E(n+ 1) = ωE(n). Then for every n ∈ ω,

δ1
2n+1 = ℵE(2n+1)+1,

3The measurability of ℵ2 had been proved by Solovay long before that using ideas of
Tony Martin [Ka94, Theorem 28.6].
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and all odd projective ordinals have the strong partition property.
4.2. The combinatorial theory of ℵ1 under the assumption of Black-
well determinacy. In this section we shall prove that the combinatorial
theory of ℵ1 behaves under Blackwell determinacy axioms as it does under
AD in many respects. We start with the Blackwell analogue of Solovay’s
Lemma 4.2.

Theorem 4.8. Assume blBl-AD. Then for every Y ⊆ ω1 there is an a ∈ ωω

and a formula ϑ such that

ξ ∈ Y ⇐⇒ L[a] |= ϑ[ξ, a].

Proof. The proof follows Solovay’s original proof idea closely; cf. [Ka94,
Theorem 28.5].

We look at the following game: Given Y ⊆ ω1, player I plays an ordinal
α and player II tries to play Y ∩ β for some β > α. Obviously, A is of
boundedness type. Thus by Corollary 3.7, we have a weakly optimal strategy
τ for player II.

For each z ∈ WO, we let Bz := {y ; yI = z & there is an i ∈ ω such that
〈ω,EyI〉 and 〈ω,E(yII)i

〉 are isomorphic}.
Since the sets Bz are Σ1

1, and Σ1
1 is a Kechris-Tanaka pointclass by The-

orem 3.2, we have that

ϕ(v0, v1) : ⇐⇒ v0 ∈ WO & v1 is a strategy for player II & µv0,v1(Bv0) > ε

is 2-Π1
1 (in the Hausdorff difference hierarchy). By Shoenfield’s absoluteness

lemma, 2-Π1
1 relations are absolute.

We let Pξ denote the forcing partial order adding a bijection from ω to
ξ, and żξ be a name for this bijection (defined uniformly in ξ). Then the
formula ϑ(v0, v1) saying “v0 is an ordinal, v1 is a strategy for player II, and

Pv0

ϕ( ˙zv0 , v̌1)” proves the theorem as in Solovay’s original proof. �

Corollary 4.9. Assume blBl-AD. Then:
1) For every Y ⊆ ω1 there is a real a ∈ ωω such that Y ∈ L[a], and
2) δ1

2 = ℵ2, and
3) there is an inner model with a strong cardinal.

Proof. The first two claims are standard (note that the second claim uses
the existence of sharps which we get from Corollary 3.9). As to the third,
sharps plus “δ1

2 = ℵ2” give an inner model with a strong cardinal by a
theorem of Steel and Welch [StWe98, Theorem 3.9]. �

Actually, the methods of Steel and Welch allow to go a bit beyond a
strong cardinal. Even beyond that, if we allow a measurable cardinal in our
metatheoretical assumptions, Hjorth claims that the validity of Solovay’s
Lemma alone implies the existence of an inner model with a Woodin cardinal
(personal communication, 2001).
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4.3. A general technique to prove infinite partition relations. We
shall now develop the analogue of a general technique of proving infinitary
partition relations. The technique is in essence due to Martin. Terminology
and notation are due to Kechris [Ke78]:

Definition 4.10. Let λ ≤ κ be ordinals. We call a family of objects

C := 〈Cξ, Cξ,ϑ, f
ξ; ξ < ω · λ, ϑ < κ〉

a 〈λ, κ〉-Martin system if it satisfies the following conditions:
(M1) For every ξ < ω · λ and every ϑ < κ, Cξ and Cξ,ϑ are sets of reals.
(M2) For every ξ < ω · λ, f ξ : Cξ → κ is a function.
(M3) For every ξ < ω ·λ and every ϑ < κ, we have that Cξ,ϑ ⊆

⋂
η≤ξ Cη.

For any given Martin system C, we shall use the following notation:
The set core(C) :=

⋂
ξ∈ω·λCξ will be called the core of C. For each

element x of the core, we can define the function fx ∈ [κ]ω·λ by fx(ξ) :=
f ξ(x).4 For any continuous function σ : ωω → ωω, we define

iσC(ξ, ϑ) := sup{f ξ(x) + 1 ; x ∈ σ ”Cξ,ϑ}.

Definition 4.11. Let C be any 〈κ, λ〉-Martin system. We call C perfectly
good if the following conditions hold:

(P1) For any f ∈ [κ]ω·λ there is an x ∈ core(C) ∩
⋂

ξ<ω·λCξ,f(ξ) such
that fx = f .

(P2) For any continuous function σ : ωω → ωω with the property

σ ”
⋂
η≤ξ

Cη ⊆ Cξ,

we have iσC(ξ, ϑ) < κ.

The existence of a perfectly good Martin system gives rise to an abstract
proof of Martin’s Theorem 4.3:

Theorem 4.12 (Martin). Let λ ≤ κ be ordinals, κ a regular cardinal, and
suppose that there is a perfectly good 〈λ, κ〉-Martin system. Then AD implies
that κ→ (κ)λ holds. (Cf. [Ke78, Lemma 11.1].)

Using the simulation technique, we define the Blackwell analogue of this
notion:

4We extend the functions fξ to ωω by

fξ(x) :=


fξ(x) if x ∈ Cξ

∞ otherwise.

In the following we shall not distinguish between the functions fξ : Cξ → κ and fξ : ωω →
κ ∪ {∞}.
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Fixing any Martin system C we define the prewellordering

x ≤ξ y : ⇐⇒ f ξ(x) ≤ f ξ(y) ∨ y /∈ Cξ, and the functions

ψσ
C (ξ, ϑ) := sup{f ξ(x) + 1; x ∈ Ψσ,I

≤ξ
(Cξ,ϑ)}, and

ψτ
C(ξ, ϑ) := sup{f ξ(x) + 1; x ∈ Ψτ,II

≤ξ
(Cξ,ϑ)}.

We shall call a mixed strategy σ for player I C-adequate if for all ξ < ω·λ,
the following holds:

Ψσ,I
≤ξ

⋂
η≤ξ

Cη

 ⊆ Cξ.

Similarly, we call a mixed strategy τ for player II C-adequate if for all
ξ < ω · λ, we have:

Ψτ,II
≤ξ

⋂
η≤ξ

Cη

 ⊆ Cξ.

Now we can extend Definition 4.11 naturally to the Blackwell context:

Definition 4.13. Let C be any 〈κ, λ〉-Martin system. We call C imper-
fectly good if it satisfies (P1) and:

(I2) For any adequate strategy σ and any ξ < ω ·λ and ϑ < κ, we have
ψσ
C (ξ, ϑ) < κ.

Note that by (P1), if C is an imperfectly good Martin system, then for all
ξ, f ξ ” Cξ ⊇ {ν ; ξ ≤ ν} holds.

Theorem 4.14 (Abstract Martin Theorem). Let λ ≤ κ be ordinals, κ a
regular cardinal in L(R) and suppose that there is an imperfectly good 〈λ, κ〉-
Martin system in L(R). Then Bl-AD implies that κ → (κ)λ holds. (If
λ < ω1, we only need blBl-AD.)

Proof. In this proof we shall mostly be using only blBl-AD. There is only
a single point in the proof where we have to use Theorem 2.8 if λ is un-
countable. The proof follows Martin’s proof closely: We fix an imperfectly
good Martin system C = 〈Cξ, Cξ,ϑ, f

ξ ; ξ < ω · λ, ϑ < κ〉 and a partition
a : [κ]λ → 2. We want to show that there is an a-homogeneous set. As in
the usual proof, we look at the following game:

Given a real x such that xI, xII ∈ core(C), define px : λ→ κ by

px(ϑ) := max(sup{fxI(ω · ϑ+ n);n ∈ ω}, sup{fxII(ω · ϑ+ n);n ∈ ω}).
Now set

x ∈ A : ⇐⇒ ∃ξ < ω · λ (xII /∈ Cξ & ∀ζ ≤ ξ (xI ∈ Cζ))
∨ (∀ξ < ω · λ(xI ∈ Cξ & xII ∈ Cξ) &

px ∈ [κ]λ & a(px) = 0).
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We shall show that a weakly optimal strategy σ for player I in the game
with payoff A gives an a-homogeneous set for the value 0 (and similarly a
weakly optimal strategy for player II gives an a-homogeneous set for the
value 1).

Claim 1. σ is C-adequate.

Proof. Take any x ∈ Ψσ,I
≤ξ

(
⋂

η≤ξ Cη) and z witnessing this, i.e., µ−σ,z(U
≤ξ,I
x ) >

0. By definition, z ∈
⋂

η≤ξ Cη. Towards a contradiction, suppose that xI /∈
Cξ. Then U := (U≤ξ,I

x )I{z} is disjoint from A: Every element of U represents
a run of the game where player II plays into every Cη for η ≤ ξ, but player
I doesn’t play into Cξ, hence player I loses. But µ−σ,z(U) = µ−σ,z(U

≤ξ,I
x ) > 0,

contradicting the weak optimality of σ. �

With Claim 1 we know by (I2) that ψσ
C (ξ, ϑ) < κ for all ξ < ω · λ and

ϑ < κ.

Claim 2. Let ξ < ω · λ and ϑ < κ. Then for every x ∈ Cξ,ϑ the set
{u ; f ξ(uI) < ψσ

C (ξ, ϑ)} has µσ,x-measure 1.

Proof. Suppose not. Then there is an x such that {u ; f ξ(uI) ≥ ψσ
C (ξ, ϑ)}

has positive µσ,x-measure. Let r be such that f ξ(r) = ψσ
C (ξ, ϑ). Then

r ∈ Ψσ,I
≤ξ

(Cξ,ϑ). But then f ξ(r) < ψσ
C (ξ, ϑ) by the definition of ψσ

C . �

The set

D := {%; ∀ξ < ω · λ∀ϑ < κ (ξ < % & ϑ < %→ ψσ
C (ξ, ϑ) < %)}

is a closed unbounded set in κ (using the assumptions that κ is regular in
L(R) and that the Martin system C was in L(R)). As in the classical proof,
let

[D]λu :=
{
g ∈ [D]λ;∃f ∈ [κ]ω·λ∀ϑ < λ

(
g(ϑ) = sup

n∈ω
f(ω · ϑ+ n)

)}
.

It is enough to show a ” [D]λu = {0} to complete the proof.
Pick any g ∈ [D]λu. This fact is witnessed by some f ∈ [κ]ω·λ such

that g(ϑ) = supn f(ω · ϑ + n). By Property (P1), we find an element
z ∈

⋂
ξ<ω·λCξ,f(ξ) with fz = f . We let player II play this z and set

A∗ := AI
{z}. If Uξ := {u ; f ξ(uI) < ψσ

C (ξ, f(ξ))}, then Claim 2 tells us
that µ−σ,z(Uξ) = 1. By Theorem 2.8,5 we get

µ−σ,z

A∗ ∩
⋂

ξ<ω·λ
Uξ

 = 1,

5If λ < ω1, σ-completeness of the measure suffices, and we don’t need to invoke Bl-AD
here.
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in particular, this set is nonempty. We pick any w ∈ A∗ ∩
⋂

ξ<ω·λ Uξ, set
x := w ∗ z and finish the proof as in the classical proof by proving g = px,
and thus a(g) = 0 because x ∈ A. �

With the Abstract Martin Theorem 4.14 at hand, we can reproduce part
of the structure theory under AD under the assumption of Bl-AD.

Theorem 4.15. Bl-AD implies that ω1 → (ω1)ω1 holds.

Proof. By Theorem 4.14, we just have to show that there is an imperfectly
good 〈ω1, ω1〉-Martin system in L(R). The system is defined exactly as in
the perfect information case (cf. [Ke78]).6

For ξ, ϑ < ω1, we define:

Cξ :=
{
x; EMB(x+) & ξ, t

M(x+,ξ+ω)
x(0) [ξ] ∈ wfp(M(x+, ξ + ω))

}
,

f ξ(x) := t
M(x+,ξ+ω)
x(0) [ξ], and

Cξ,ϑ :=
{
x ; ∀ξ∗ ≤ ξ∃ϑ∗ ≤ ϑ

(
x ∈ Cξ∗ & t

M(x+,ξ∗+ω)
x(0) [ξ∗] ≤ ϑ∗

)}
.

That C is a Martin system is immediate from the definitions. It is also clear
that it is in L(R). (P1) is the same as in the classical case, so we only have
to show (I2) (we only show it for strategies for player I):

First of all, notice that Cξ,ϑ is Borel. Since ≤ξ is a Π1
1 norm, U≤ξ,I

x is Σ1
1.

We can combine Theorem 3.2 and Proposition 3.3 to get that Ψσ,I
≤ξ

(Cξ,ϑ) is
Σ1

1.
We define a function eξ : Cξ → WO as follows:
For x ∈ Cξ, let Ex,ξ be the binary relation of the model M(x+, ξ+ω) and

Sx,ξ :=
{
n ∈ ω ; ∃N

(
M(x+, ξ + ω) |= N = tx(0)[ξ] & n Ex,ξ N

)}
.

Let sx,ξ : ω → Sx,ξ be the increasing enumeration of Sx,ξ. Then we set

eξ(x)(pk, `q) = 1 : ⇐⇒ sx,ξ(k) Ex,ξ sx,ξ(`).

Obviously, eξ(x) is a code for the ordinal representing tM(x+,ξ+ω)
x(0) [ξ]. Thus

‖eξ(x)‖ = f ξ(x).

6We shall be using Kanamori’s notation for Ehrenfeucht-Mostowski blueprints and
related objects from [Ka94, §9 & p. 393]: We have formulae EMB(v0) and WF(v0) such that
the following are equivalent:

1) x is a remarkable, wellfounded Ehrenfeucht-Mostowski blueprint, and
2) EMB(x) and WF(x).

The formula WF(v0) says that if the modelsM(α, v0) (defined in [Ka94, Lemma 9.4]) exist,
then they are wellfounded for all α. Most importantly, the formula EMB is an arithmetic
formula. 〈tn ; n ∈ ω〉 is a list of all terms with one free variable denoting ordinals, so if
M is a model and ξ ∈ M is an ordinal, then tM

n [ξ] is an M -ordinal. For a (not necessarily
wellfounded) model M , wfp(M) denotes the wellfounded part of M . We shall also be
using the notation x+(n) := x(n + 1).
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If σ is adequate, we can apply eξ to the inequality

Ψσ,I
≤ξ

(Cξ,ϑ) ⊆ Cξ,

and receive
eξ ”

(
Ψσ,I
≤ξ

(Cξ,ϑ)
)
⊆ WO.

The left-hand side is a Σ1
1 set, thus by boundedness, it is bounded in

WO, say, by ζ < ω1. But this means that f ξ ”
(
Ψσ,I
≤ξ

(Cξ,ϑ)
)

is bounded by
ζ which was to be shown. �

Kleinberg’s Theorem 4.5 now gives us a Kleinberg sequence starting from
ℵ1. We can determine their exact values with the the “moreover” part of
Theorem 4.5 holds which follows from the following theorem (for a proof,
cf. [Kl77]):

Theorem 4.16 (Solovay). Suppose that:
1) For every real there is a sharp,
2) for every subset X ⊆ ω1 there is a formula ϑ and a real a such that

ξ ∈ X ⇐⇒ L[a] |= ϑ[ξ, a], and

3) the closed unbounded filter on ℵ1 is a normal ultrafilter.
Then ωω1

1 /Cω
ω1

= ω2. Moreover, Cω
ω1

is a canonical measure.

Corollary 4.17. Assume Bl-AD. Then ℵ1 and ℵ2 are measurable, ℵn is
Jónsson (for 3 ≤ n < ω) and ℵω is Rowbottom.

We now move to look at the odd partition ordinals δ1
2n+1:

Proposition 4.18. Assume pBl-AD. Then δ1
2n+1 → (δ1

2n+1)
λ for all λ <

ω1.

Proof. Since λ < ω1, we can fix a coding of sequences of reals of length ω ·λ.
Let (·)ξ : ωω → ωω be the ξth component map of this coding. Let W be a
complete Π1

2n+1 set with Π1
2n+1 norm ϕ onto δ1

2n+1.
Following [Ke78, Theorem 11.2], we define for ξ < ω · λ and ϑ < δ1

2n+1

Cξ := {x ; ϕ(x) ∈W},

f ξ(x) := ϕ((x)ξ), and
Cξ,ϑ := {x; ∀ξ∗ ≤ ξ∃ϑ∗ ≤ ϑ ((x)ϑ∗ ∈W & ϕ((x)ξ∗) ≤ ϑ∗)} .

With Theorem 4.14, we only have to show that

C := 〈Cξ, Cξ,ϑ, f
ξ ; ξ < ω · λ, ϑ < δ1

2n+1〉
is an imperfectly good Martin system. Note that since λ < ω1, we can apply
Theorem 4.14 without Bl-AD.

Again, it is obvious that C is a Martin system in L(R). We use pBl-AD
to employ the Martin-Neeman-Vervoort Equivalence Theorem 2.7 and get
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(AD)L(R). The projective ordinals are absolute between V and L(R), so we
get that δ1

n = (δ1
n)L(R) is regular in L(R) from (AD)L(R) and Fact 4.7 (3).

Again, (P1) doesn’t have to be shown, leaving only (I2) to be checked:
Without loss of generality we show (I2) just for strategies of player I.

Because ϕ was a Π1
2n+1-norm, the sets Cξ,ϑ and U

≤ξ,I
x are ∆1

2n+1. Since
Σ1

2n+1 is a Kechris-Tanaka pointclass, the sets Ψσ,I
≤ξ

(Cξ,ϑ) are Σ1
2n+1. If σ is

adequate, we have
{

(x)ξ ; x ∈ Ψσ,I
≤ξ

(Cξ,ϑ)
}

is a Σ1
2n+1 subset of W , hence

bounded by Theorem 2.1, and thus ψσ(ξ, ϑ) < δ1
2n+1. �

Corollary 4.19. Assume pBl-AD. Then all odd projective ordinals δ1
2n+1

are measurable.

Corollary 4.20. Assume Bl-AD. Then δ1
3 = ℵω+1.

Proof. By the Martin-Neeman-Vervoort Equivalence Theorem 2.7 we know
that PD holds whence (by a result of Kechris and Moschovakis [Ke78, The-
orem 9.1 (5)]) the projective ordinals are strictly increasing and in particular
δ1

3 > δ1
2 = ℵ2 (using Corollary 4.9).

By Corollary 4.19, δ1
3 is regular. Using Theorem 4.5, we know the cofi-

nalities below ℵω+1, since 〈ℵn ; n ≥ 1〉 is a Kleinberg sequence: cf(ℵn) = ℵ2

(for n ≥ 3) and cf(ℵω) = ℵ0. So, δ1
3 ≥ ℵω+1. Since by Theorem 3.8 sharps

for reals exist, we can employ the Martin-Solovay analysis of Σ1
3 sets under

the existence of sharps (cf. [Ke78, Theorem 6.3]) and get δ1
3 ≤ ℵω+1. This

proves the claim. �

5. Open problems.

At the moment, we cannot say much on combinatorics on projective ordinals
beyond δ1

3. Even of the following consequences of AD for δ1
3 it is unknown

whether they hold under any sort of Axiom of Blackwell determinacy [listed
from harder to easier]:

1) δ1
3 → (δ1

3)
δ1

3 ,
2) δ1

3 → (δ1
3)

λ for all λ < δ1
3,

3) Cδ1
2

δ1
3

is a normal ultrafilter on δ1
3,

4) Cδ1
1

δ1
3

is a normal ultrafilter on δ1
3.

Even less is know about the δ1
n for n > 3. It is not even known that

δ1
4 ≥ ℵω+2. For all we know, it could be an ordinal between ℵω+1 and ℵω+2.

The reason for that is the lack of an analogue of the Moschovakis Coding
Lemma.

In the following, we shall abbreviate with CL the statement of the Moscho-
vakis Coding Lemma (cf. [Mo80, 7D.5]).
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Given the Martin-Neeman-Vervoort Equivalence Theorem 2.7, a proof
of CL from Blackwell determinacy would immediately settle many of the
questions on projective ordinals under Blackwell determinacy. For example,
PD + CL is enough to show that δ1

n is a cardinal, that δ1
2n+2 = (δ1

2n+1)
+,

and that δ1
2n+1 is the successor of a cardinal of cofinality ω.

But so far, we do not know how to prove CL from Blackwell Determinacy.
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