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KOSZUL EQUIVALENCES AND DUALITIES
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For every positively graded algebra A, we show that its
categories of linear complexes of projectives and almost in-
jectives (see definition below) are both naturally equivalent
to the category of graded modules over the quadratic dual
algebra A'. In case A = A is a graded factor of a path alge-
bra with Yoneda algebra I', we show that the category Lcr of
linear complexes of finitely generated right projectives over
T is dual to the category of locally finite graded left mod-
ules over the quadratic algebra A associated to A. When A
is Koszul and T is graded right coherent, we also prove that
the suspended category g7, has a (triangulated) stabilization
S(gT,) which is triangle-equivalent to the bounded derived
category of the ‘category of tails’ fpgrr/Lr.

1. Introduction and terminology.

The interest on Koszul equivalences and dualities arises mainly in the con-
text of derived categories and, specially, dealing with Koszul algebras (see
definitions below). In case A is a graded Koszul algebra with Yoneda al-
gebra I', Beilinson, Ginzburg and Soergel ([1]) showed the existence of an
equivalence between certain full triangulated subcategories of the derived
categories D(pAGr) and D(rGr). When composing with the canonical du-
ality defined by Homy,(—,Ag), one gets a duality between suitable sub-
categories of D(pAGr) and D(rGr). The aim of this paper is to show that
Koszul equivalences and dualities also appear naturally between some nice
abelian categories associated to positively graded algebras. In this context,
no restriction is needed a priori on the graded algebras, although quadratic
algebras will play a predominant role as in the context of derived categories.
On one side, our results generalize those of Yoshino ([18]) for symmetric and
exterior algebras and, on the other, they show that the above mentioned tri-
angulated equivalences of [1] already live in an abelian context.
Throughout the paper, K will be a field and, for every K-algebra R, we
shall denote by Modp (resp. modpg) the category of all right (resp. finitely
generated right) R-modules and by gpMod (resp. gpmod) its left-right sym-
metric version. The term positively graded algebra will stand for a
graded K-algebra A = ©,>04,, such that Aj is a K-algebra isomorphic to a
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finite direct product of copies of K and dimg A1 <. We shall say that such
an algebra is locally finite when dimg A, <, for all n € Z. A particular
case comes as follows: Let () be a finite oriented graph or quiver and give
KQ a grading by assigning positive degrees to the arrows. Then, for every
ideal I of K@, homogeneous with respect to that grading and contained in
the ideal generated by the paths of length 2, the algebra A = KQ/I is pos-
itively graded and locally finite. Every graded algebra isomorphic to one of
this form will be called a generalized graded factor of a path algebra,
reserving the term graded factor of a path algebra, for the case when
the grading on K@ is the classical one, i.e., obtained by assigning degree 1
to all arrows. We shall distinguish this latter case by putting A =2 KQ/I,
reserving letters A, B for general positively graded algebras.

When @ is a finite quiver, we shall identify Qo = {1,...,n} with the set
of vertices and will denote by @,, the set of paths in @) of length n while
K@, will be the vector subspace of K@ generated by Q),,. When p is a path
i — .. — jin @, we shall put i = o(p) and j = t(p) for the origin and
terminus of p. We write paths «;...a;, convening that t(«;) = o(aj+1), for
alli=1,...,n—1. The idempotent of K@) given by i € )y will be denoted
by e;. The opposite quiver Q°P of @ has Q" = Qo and is obtained from @
by reversing the orientation of the arrows. Whenever p = a3...a, € @, We
shall put p° = a2...a and then, clearly, Q" = {p°: p € Qn}.

Notice that if A is a positively graded algebra, then the subalgebra A of
A generated by the subspace Ay & A; is a graded factor of a path algebra.
Indeed, there is a uniquely determined (up to isomorphism) finite quiver
Q@ such that KQo = Ag, as K-algebras, and KQ1 = A;, as KQy — KQo-
bimodules. Then @ will be called the quiver of A, although A may not be
a graded factor algebra of K Q. The isomorphism KQy & KQ1 = Ag ® Ax
extends to a homomorphism of graded algebras w4 : K — A with image
A, where the grading on K@ is the classical one. If I = Ker(ms) and
I, = {x € I : x is homogeneous of degree 2}, then we denote by (l2)
the homogeneous ideal of KQ generated by I and A = KQ/(I3) will be
called the quadratic algebra associated to A. We identify KQg = Ag
all through the paper and unspecified tensors are tensors over Ag. The
canonical duality D = Homy,(—, Ag) = Homgg,(—, KQo) : 4,mod —
A,mod = mody, is ‘inverse to itself’. If Q°P denotes the opposite quiver of
Q, then we have canonical isomorphisms of K Qg — K Qo-bimodules K QP =
D(KQy), for all n > 0. When W is a KQy — KQop-subbimodule of either
KQ, or KQy?, we shall denote by W+ its orthogonal with respect to the
usual duality KQ»¥ @ KQ,, & D(KQ,) ® KQ, — KQo. Notice that there
are actually two dualities, namely, one for the case when K@), is considered
as a left KQp-module and one for the case when it is considered as a right

K Qo-modules. They map p°®q onto dpqe;(q) and dpqey(q), respectively, where
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0pq is the Kronecker symbol. Nonetheless, W is the same for both dualities.
In the above situation, the algebra A' = KQ°P /(I5") is called the quadratic
dual algebra of A. We shall put 'A = (A")°P for the opposite algebra, which
is then a graded factor of K@Q). Up to graded isomorphism, A and A' do not
depend on the presentation of A, i.e., do not depend on the choice of the
graded homomorphism 74 : KQ — A. If A and B are positively graded
algebras, we shall say that they are orthogonal when A' = B and that
they are quadratically equivalent when A = B (isomorphisms as graded
algebras in both cases).

We will be concerned with the category Gr 4 of Z-graded right A-module
and its full subcategories [frga, gra and fpgra consisting of locally finite
(i.e., dimg M; <, for all i € Z), finitely generated and finitely presented
graded right A-modules, respectively. Of course, AGr, alfgr, agr and 4 fpgr
will stand for the left-right symmetric versions. To some of these categories,
and also to some categories of cochain complexes that will eventually appear
in the paper, we will add a superindex + or — meaning that we consider
the corresponding full subcategory of lower or upper bounded objects (e.g.,
lfgrj will be the full subcategory of [ fgra with objects M = ®,,czM,, such
that M, = 0, for all n < 0).

An object M = @pezM, of Gra will be called generated in degree
J when M; generates M as a graded A-module. Dually, M will be called
cogenerated in degree j when M; cogenerates M as a graded module,
i.e., when M = M<; = ®,<; M, and N N M; # 0, for every nonzero graded
submodule N of M. For every k € Z, the k-shifting M|[k] of M coincides with
M as an ungraded A-module, but its grading is given by M|kl], = M1,
for all n € Z. In general, given any cocomplete abelian category A and
X € Ob(A), we shall denote by Add (X) the full subcategory of A with
objects the direct summands of direct sums of copies of X. For instance,
when A = Grg and X = ®pezA[k], Add (X) is just the class of projective
objects in Gr4.

The canonical duality D extends to a contraviant functor D : 4Gr —
Gra (resp. Grg — AGr), for if M = @®,ecz M, is an object of 4Gr then
D(M) =: ®pezD(M),,, where D(M),, = D(M_,,) for all n € Z, is a graded
right A-module with multiplication f-a: 2z — f(ax), for all a € A,, and
f € D(M),. Clearly, D restricts to a duality D : 4lfgr — lfgra ‘inverse
to itself’. The objects of Add (®rezD(A)[k]) (full subcategory of Gry) will
be called almost injective graded A-modules. They need not be injective
objects of Gr 4, but they are so when A is right Noetherian. We shall denote
by Projk = Add (A[k]) and Inj% = Add (D(A)[k]) the full subcategories of
G'r 4 consisting of projective graded A-modules generated in degree —k and
almost injective graded A-modules cogenerated in degree —k, respectively.
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In our situation, every M € Gra has a projective cover in Gry (cf. [5,
Prop. 2.6]), exs : P(M) — M. We define inductively Q"M = M, Q'M =
QM = Kerey, and, then, Q"M = Q(Q"'M), for all n > 0. The cate-
gory Mody, (resp. mody,) can be identified with the category of (finitely
generated) semisimple graded right A-modules. When X € Mody, and
M € Gra, we have an isomorphism Ext’i (M, X)) =2 Hom4(Q"M, X) (exten-
sions and homomorphisms as ungraded right A-modules!), for all n > 0. In
the particular case when M = X = Ay, we can consider the Yoneda alge-
bra of A, I' = &p,>0 Ext’} (Ao, Ap). It is a graded algebra with the Yoneda
product as multiplication. It is positively graded in our sense only in case
Extk(Ao,Ao) is finite dimensional, something which always happens when
A is a generalized graded factor of a path algebra. More restrictively, when
A = A = A is a graded factor of a path algebra, the quiver of I' is Q°P.
Indeed, I'g = Enda,(Ao) = Ao = KQp and, from the projective presentation
of Ag as a left A-module, 0 — A>; — A — Ag — 0, one immediately gets
that I'; = EXt}X(AO,AQ) = HOmA(A21,A0) = HOmAO(Al,Ao) = D(KQl)
Then I'g @ I'y can be identified with KQp® & KQ7’.

A positively graded algebra A is a Koszul algebra in case Q"(A4y) is
locally finite and generated in degree n, for all n > 0. In that case, A = A
is a graded factor of a path algebra and I = A'.

The organization of the paper goes as follows: Let A = @®,>04, be a
positively graded algebra with quiver ). In Section 2 we show that the
graded versions of — ® A and Homy, (A, —) embed goGr in two different
ways as a full subcategory of the category Gr41x] of Z x Z-graded modules
over A[X]. That induces by restriction equivalences of categories between
1 4G = Gry and the categories LC 4 and LC% of linear complexes of projec-
tive and almost injective graded A-modules, respectively (Theorems 2.4 and
2.10). In Section 3 we show that in the case when A = A is a graded factor
of a path algebra, A is orthogonal to its Yoneda algebra I' and then there
is an induced duality between 3lfgr and the category Lcr of linear com-
plexes of finitely generated projective graded modules over I' (Theorem 3.3).
Among the consequences of these results, we characterize quadratic alge-
bras in categorical terms (Corollary 3.4) and show that the categories of
linear complexes of projective (resp. almost injective) graded modules are
equivalent for quadratically equivalent algebras. In case the algebras are
quadratically equivalent graded factors of path algebras, the categories of
linear complexes of finitely generated projective graded modules over their
Yoneda algebras are also equivalent (Corollary 3.5). In the final Section 4,
somewhat independent from the rest, we extend some equivalences of de-
rived categories obtained by Bernstein, Gelfand and Gelfand (cf. [4] and [9])
in the classification of algebraic vector bundles over the projective space.
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2. Koszul equivalences.

All throughout this section A = @,>¢A4,, will be a positively graded algebra
with quiver (). We fix a homomorphism 74 : KQ — A of graded K-
algebras and put p = m(p), for every path p in @. One-sided modules over
Ag = KQq will be considered indistinctly as left or right modules, with the
same action of Ay on both sides. It is convenient now to make some com-
ments concerning the canonical duality D. Suppose 4,54, is a bimodule and
B is a K-basis of S satisfying the following property: For every b € B there
exist (necessarily unique) i,j € Qo such that u = e;ue;. We put i = o(b)
and j = t(b). For each b € B, we denote by b* the homomorphism of right
Ap-modules defined by the rule b*(c) = dbci(c), where Opc is the Kronecker
symbol. It is clear that B* = {b* : b € B} is a K-linearly independent
subset of D(S), which is a basis when S is finite dimensional. A symmetric
argument works when we consider homomorphisms of left Ag-module, but
then b*(c) = dpceo(e). We shall call B* the dual basis of B, the side of the
Ap-homomorphisms being clear from the context. The following remark and
the next two lemmas will be very useful in the sequel.

Remark 2.1. Let S be finite dimensional in the above situation and let
Xa, (resp. 4,X) be an Ag-module. For each b € B and each v € Xe,)
(resp * € e,y X), we consider the Ap-homomorphisms zb*(—) : § — X
(resp. b*(—)x : S — X)), mapping s — xb*(s) (resp. s — b*(s)x). Then
the set {xb*(—) : b € B, © € Xeyy)} (vesp. {b*(—)x : b € B, v € e,y X })
generates Hom 4, (S, X) as a K-vector space

~

Proof. Straightforward consequence of the isomorphism X ® D (S) =
Homy, (S, X) (resp. D(S) ® X = Homy, (S, X)), which maps z ® b* onto
xb*(—) (resp. b* ® z onto b*(—)x), for all x € X, b € B. O

Lemma 2.2. The assignment X — X ® A extends to a fully faithful co-
variant exact functor T' : Mod s, — Gra with essential image Proj%. In
particular, it induces an equivalence of categories Mod 4, = Proj 81.

Proof. 1t is clear that the assignment extends to a covariant functor T =
—®A : Modas, — Gra with essential image contained in Proj ?4. Moreover,
since 4,4 is projective, the functor is clearly exact. We also have that
Mod s, = Add ((4¢)4,), Proj% = Add (A4), T preserves direct sums and
T(Ap) = A. From that it follows that Proj% C Im (T'), and hence equality.
It also follows that the fully faithful condition reduces to check that the
functorial map Homy,(Ap, Ag) — Homgy, (A4, A), A — T'(A) is bijective.
That is straightforward. O

The isomorphisms of next lemma and Lemma 2.9 can be derived from
apropriate adjunction settings, but we give their explicit definition for they
are used in the proofs or our theorems.
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Lemma 2.3. Let X, Y be Ag-modules. The map ¢ : Hompg,(KQ1 ®
X,Y) — Homy, (X, Y ®A1) taking p onto o(p) : 0 — 3 e, Ma®z)@@
is an isomorphism of K-vector spaces. Moreover, if p € Hompgg,(KQ1 ®
X,Y), ¢ € Homgg,(KQ1 @ X',Y') and f : X — X', g: Y — Y’ are
Ag-homomorphisms, then one of the following diagrams commutes iff the
other does:

KQioX —“ v x AW, yga
N
KQioX —— Y x 2y A,

Proof. Since {@ : a € 1} is a basis of Aj, every element of Y ® A; can be
written as a sum Eate Yo @&, where yo € Ye, (o), for all a € 1. In partic-
ular, if f € Homy,(X,Y ® A;) then it maps = onto a sum o, fo(?) @@,
with fa(7) € Yey(q) for all a € Q1. Moreover, if z € Xe; then the fact that
f is a morphism in Mody, implies that we can take f,(z) = 0 whenever
i # t(a). Hence, we get a uniquely determined family of K-linear maps
{fa : Xewa) — Yeoa) + @ € Q1} such that f(z) = > o, falz) @ @
We now define ¢ : Homy,(X,Y ® A1) — Hompgq,(KQ1 ® X,Y) by the
rule £(f)(a ® ) = fo(z). The choice of the f, guarantees that £(f) is a
morphism in 4,Mod. We leave as an easy exercise to check that ¢ and { are
mutually inverse. The rest of the proof is then routinary. (]

Let (Ag)rez be a family of categories. We shall denote by [], .z Ax the
corresponding product category. Its objects are the families (Uy)rez such
that Uy € Ag, for every k € Z. Its morphisms are families of morphisms (fy :
Ur — Vi)kez, with fi a morphism in Ay, for all k£ € Z. The composition
of morphisms is defined pointwise. In particular, we shall denote by A% the
category [].cz Ak, where Ay, = A, for all k € Z. If U € A% and n € Z then
the object U{n} of AZ is defined by the rule U{n}; = U, for all k € Z.
If f: U — V{n} is a morphism in A%, we shall write f : U — V and
shall say that f is a morphism of degree n from U to V.

We are mainly interested in the cases when A =gg, Mod = Mod,, and
A = Gr4 in the above situation. For technical reasons, we shall still keep
subindices for the first case, while we shall use superindices for the second
case (e.g., an object of Gr% will be denoted by P~ = (P¥)kcz, where P* €
Gry for all k). We introduce now a new (Grothendieck) category Gr (x| as

follows: Its objects are pairs (P, d’), where P € Gr% and d : P 5 Pris
a morphism in Gr% of degree +1. A morphism f : (P',d) — (Q,§) in
Grajx) s just a morphism f: P* — Q" in Gr% such that frod =d o f.
The notation Gr4(x] makes sense. Indeed, we can provide the polynomial
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algebra A[X] with a Z x Z-grading by putting A[X], n) = A X", whenever
m,n > 0, and A[X]4, ) = 0 otherwise. If M = ©My,, is a Z x Z-
graded right A[X]-module, then M" = ®,ez My, ) is an object of Gra
and multiplication by X yields morphisms in Gra, d® : M™» — M"*! for
all n € Z. In that way, we get an object of Grux) and the category of
Z x Z-graded right A[X]-modules is identified with G741x). We shall pay
attention to the full subcategory £G4 of Gry(x] consisting of those pairs
(P,d’) such that P € [], .4 Proj k, i.e., such that P* is a projective object
of Gr 4 generated in degree —k, for all k € Z. Inside LG 4 we consider the full
subcategory L£C4 consisting of those (P, d’) which are cochain complexes,
i.e., such that d od = 0. The objects of LC 4 are called linear complexes
of projectives. The full subcategory of £C 4 with objects (P, d") such that
Pk is finitely generated, for all k € Z, will be denoted Lcy.

Our main results in the section concern the category xqoGr. We point
out that an object of that category can be identified with a pair (M, u),
where M = (M) is an object of gg,Mod? and p = (u : KQ1 ® My, —
Mj41) is a family of morphisms in gg,Mod. In that vein, a morphism
[ (M,p) — (N, p) in ggoGr is identified with a morphism f = (fi)kez
in go,Mod? = Mod%, such that fi1 0, = ), 0 (1kg, ® fi), for all k € Z.
We shall indistinctly use this and the classical interpretation of the category
kQGT.

When A = KQ/I is a graded factor of a path algebra (e.g., A =' A in our
case), the category AGr can be identified with the full subcategory of xoGr
consisting of graded left K Q-modules annihilated by I. That is the sense of
the word ‘restriction’ in our next theorem.

Theorem 2.4. Let A = @®,>04, be a positively graded algebra with quiver
Q. There is a fully faithful exact functor =4 1 kQGr — Gry[x] which

induces by restriction equivalences of categories  JGr = Gr 4 — LC 4 and

alfgr =1fgry =, Lcy.

Proof. By Lemma 2.2, the composition Mod 4, z, Gra ﬂ Gra, X ~

X ® Alk], is a fully faithful covariant exact functor, which we denote by
T} and induces an equivalence of categories Mody, =, Proj*, for every
k € Z. As a consequence the product T = [z T Modﬁ0 — Grﬁ is a
fully faithful exact functor inducing an equivalence of categories

(%) T': Mod%, = ] Proj*.

keZ

With the above interpretation of the objects in goGr and Gry(x), we are
ready to define a functor ¢ : goGr — Gryx) verifying the require-
ments. Using Lemma 2.3, to every (M,u) €xg Gr we can assign a fam-
ily (o(pr) @ My — Mgi1 ® Ai)gez of morphisms in Moda,. But we
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have a K-linear isomorphism Homy, (M, My ® A1) = Homg,, (M) ®
Alk], Mg+1 ® Ak + 1)), for every k € Z. Hence, the family u = (ug) induces
a uniquely determined family (1) = (¢(ug) : T(M)* = My, @ A[k] —
M1 ® Alk+ 1] = T(M)kﬂ)kez of morphisms in Gr4. That is, we get a

morphism ¢(p) : T(M) RaN T(M) in Gr% of degree +1. We then define

Y1 kQGr — Gr4(x] on objects by taking the pair (M, i) onto (T(M), d),
with d° = ¢(u). Suppose now that (M, ) and (N, i') are objects of xoGr
and let g : T(M) — T(N) be a morphism in Gr%. Since T(M) and T(N)
belong to [];cz Plroj”j17 the above equivalence () gives a uniquely deter-
mined morphism f : M — N in Modﬁ0 such that T(f) = g. Then ¢* =
Je ® Lapy, for all k € Z. We claim that f is a morphism (M, ) — (N, u')

in goGr iff g is a morphism (¢Y(M),o(p)) — (Y(N), p(i')) in Grax)- If
that is proved it will follow that, defining 1 (f) = T'(f) for every morphism
J in kQGr, one obtains a fully faithful exact functor ¢ : kQGr — Gryx
with essential image £G 4. Let us prove our claim. We know that f is a
morphism in gQGr iff fr1i0p, = pf0(1® f), for all k € Z. By Lemma 2.3,
that is equivalent to say that (fr+1®1a,)®@@(ur) = @(uy,)o fi, for all k € Z.
This is in turn equivalent to say that ¢g¥*1od* = d* o ¢*, for all k € Z, where
d = ¢(p). That occurs iff g is a morphism in Gr4[x), thus proving our
claim.

In the final part of the proof, we come back to the classical interpretation
of objects in xoGr = Grrger, which will be looked at as graded right
KQ°P-modules. With the equality LG4 = Imvy at hand, the rest of the
proof reduces to check that ¢(M) is a cochain complex iff My, - I3~ = 0 for
every k € Z, where I = Ker(m4). From that the equivalences of the last
part of the theorem will follow. On one hand, ¥(M) is a cochain complex iff

the composition My ® A[k] &, M1 @ Alk+1] ] Mj1o® A[k +2] is zero,
for each k € Z. But, since My ® A[k] is generated by M) ® Ay = My, that
is equivalent to say that d**! o d* vanish on Mj,. Direct calculation shows
that (d**1 o d¥)(z) = Do PTRD =3 0,20’ @ P, for all x € My. In
particular, (d**1od*)(My) C My o ® A2, where A? = A; - A;. On the other
hand, the obvious sequences 0 — Iy — KQy — A2 — 0 and 0 — I —
KQY* — D(I3) — 0 (in 4,Mod and Mod 4,, respectively) are dual to each
other. Hence, we have an isomorphism A3 = D(IQL) which maps p onto the
restriction of p°* to Iy, where {p°* : p € Q2} is the dual basis in D(KQ5")
of Q7. Taking now the composition of d*lodF © My — Mo ® A2
followed by the canonical isomorphism My o ® A3 & Mo ® D(IQL) =
HomAO(IQL,MkJrg), we get a map 0F : M, — HomAO(If,MkJrg). In a
routinary way, one checks that 6*(z) : I~ — M}, 2 is the restriction to
I3 of the map f, = > ope0, (@p)p” (=) + KQ3® — Mjyo (with notation
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as in Remark 2.1). The latter maps ¢° onto xq°, for every ¢ € @2, so that
6k (x)(a) = za for all a € Iy. Therefore d*+1od" vanish on My, iff Mj,-I5- = 0
as desired. O

Remark 2.5. The equivalences of the above theorem restrict to the cor-
responding full subcategories of upper or lower bounded objects. For in-

stance, the equivalence 14l fgr = [fgr 5 =, Le 4 restricts to an equivalence
alfgr= =1fgry =, Lc,.

In case A = KQ/I is a graded factor of a path algebra, the category GrA
can be seen in a canonical way as a subcategory of Gry. In particular, for
every positively graded algebra A which is orthogonal to A, swapping the
roles of () and Q°P, Theorem 2.4 yields a fully faithful exact embedding v 4 :
Gry — Grypx) such that 94(M) is a cochain complex, for all M € Grj.
We then have the following consequence:

Corollary 2.6. Let A = KQ/I be a graded factor of a path algebra. For
every M € Gry and every j € Z, the following assertions are equivalent:

1) M s cogenerated in degree j.

2) For every positively graded algebra A = ®,>0Ay orthogonal to A, the
cohomology graded A-module H*(1pa(M)) is generated in degrees >
—k, for all k # j.

3) There is a positively graded algebra A orthogonal to A satisfying 2).

Proof. Suppose M = @p<p, My, with My, # 0. Then M is cogenerated
in degree j implies kg = j. On the other hand, H*(y4(M)) = 0, for all
k > ko and Hko(l/JA(M))_kO & Mg, ® Ay = My, # 0. Hence, j = ko
in 1), 2) or 3). Now M is cogenerated in degree j iff for every k < j
and for every 0 # x € My, vA;_; # 0. But, in our case, A, = A} =

Ay -7+ Ay for all n > 0. We then get that M is cogenerated in degree j
iff for every k < j and for every 0 # =z € My, A1 # 0. On the other
hand, given any positively graded algebra A orthogonal to A, the graded
A-module H*(+4(M)) has support contained in {n € Z : n > —k}, for all
k € Z. Moreover, the homogeneous component of degree —k of H*(4(M)),
denoted H*(¢p4(M))_p, is the kernel of the map dy : My = M, ® Ay —
Mj+1®A;. This map, after the suitable adaptation from Theorem 2.2 due to
the swapping of roles of () and Q°P, takes the form z — Zate za®a’. We
now compose this latter map with the canonical isomorphism My ® A; =
My 41®@D(KQ1) = Homa, (KQ1, Myy1) = Homy, (A1, Mj+1). The resulting
map My — Homa, (A1, Myy1) takes z onto Y, (za)a*(=) : f — x03
(with the notation of Remark 2.1). Then H¥(ya(M)) 1 = {x € M, :
xA; = 0} and the desired equivalence of 1), 2) and 3) follows. O

We leave as an exercise the proof of the following lemma, which will be
useful in the proof of our next theorem:
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Lemma 2.7. Let f,g : M — N be two morphisms in Gra and assume
that N is cogenerated in degree j. Then f = g if, and only if, f; = g;.

Given a Apg-module X and viewing each A; as a right Ap-module, the vec-
tor space Homa, (A, X) = ®rez Homy,(A_g, X) gets a canonical structure
of graded right A-module by defining Hom a,(A, X)r = Homa,(A_g, X) and
(fa)(x) = f(ax) whenever a € Aj, f € Homa,(A, X), and v € A_j ). In
the particular case when X = Ay, we get Homa, (A4, Ag) = D(A). We have
now:

Lemma 2.8. Assume that A is locally finite. The assignment X —
Homa, (A, X) extends to a fully faithful covariant exact functor H : Mod 4,
— Gr4 with essential image Inj ?4. In particular, it induces an equivalence
of categories Mod 4, = Inj ?4.

Proof. We define H(f) = f. : u — f ou, for every composable morphisms
f and v in Mod4,. Then we clearly get a covariant functor H : Mod 4, —
Gra such that H(X) = Homa, (A, X), for every X € Mody,. The functor
is exact because Ay, is projective. Since each Ay is a finitely generated
Ag-module, H preserves direct sums. Notice that Mods, = Add(Agga,)
and Add (H(Ap)) = Add (D(A)4) = InjY. Then, using the preservation of
direct sums, we conclude that our task reduces to check that H induces a
bijection

(*) Homu, (Ao, Ag) — Home,, (H(A), H(Ag)) = Homgy, (D(A), D(A)).

Let us prove this. By the canonical duality D : alfgr — [fgra, every
morphism g : D(A) — D(A) in Gry is of the form D(p,), where pq :
A — A is right multiplication by a, for a uniquely determined a € Ag. We
take the left multiplication by a, A, : Ag — Ap, which is a morphism in
Mody,. Then, for every x € Ay and v € Homa,(Ag, Ao) = H(Ao)—_k, we
have [H(Ay)(uw)](z) = (Agou)(z) = au(x). Then commutativity of Ag yields
au(z) = u(x)a = u(za) = [D(pa)(uw)|(z) = (g(u))(z), from which we get
g = H()\,), for a uniquely determined a € Ay. This proves that the map (x)
is bijective, thus ending the proof. ([

Lemma 2.9. Let X,Y be Ag-modules. The map n : Hompgqg,(KQ1 ®
Xa Y) I Hoon(Hoon(AhX)aY) deﬁned by 77(#)(“) = ZaEQl M(Ch ®
w(@)), for all uw € Homu,(A1,X) and all 4 € Homgg,(KQ1 ® X,Y), is an
isomorphism of K -vector spaces. Moreover, if pn € Homgq,(KQ1 ® X,Y),
€ Homgg (KQ1 @ X' Y') and f : X — X', g : Y — Y’ are Ao-
homomorphisms, then one of the following diagrams commutes iff the other
does:
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K1 oX Y Homy, (41, X) W,y
1®fl lg f*l lg
KQioX —— v Homa, (A1, X/) 20, v,

Proof. We define p : Hom g, (Homy, (A1, X),Y) — Hompgq,(KQ1 ® X,Y)
by the rule p(h)(a ® ) = h(xa*(—)), where za*(—) : A1 — X is as in
Remark 2.1, using {& = m4(a) : o« € Q1} as basis of Ay. The fact that n and
p are mutually inverse follows easily using that u = 3o, uw(@)@*(—) (with
the same terminology of Remark 2.1), for every morphism v : A} — X in
Mod 4,. The rest is routine. g

In the sequel we shall denote by LG’ the full subcategory of Grh(x)
consisting of those pairs (I',d’) such that I' € [],c5 Injk, i.e., such that
I* is an almost injective graded right A-module cogenerated in degree —k,
for every k € Z. Also, we denote by LC% the full subcategory of L£G%
consisting of those (I°,d’) which are cochain complexes. The objects of LC%
are called linear complexes of almost injectives. Within £C% we shall
also consider the full subcategory Lc consisting of those (I',d") € LC% such
that I* is finitely cogenerated, for every k € Z.

Theorem 2.10. Let A = ®,>0A4, a locally finite positively graded algebra
with quiver Q. There is a fully faithful covariant exact functor v = vy :
kKQGr — Grax) which induces, by restriction, equivalences of categories

1AGr = Gry = LCY and ylfgr =1fgry =, L.

Proof. The first part of the proof is parallel to the corresponding one in
the proof of Theorem 2.4, using the functor H of Lemma 2.8 instead of
the functor 7" and Lemma 2.9 instead of Lemma 2.3. Indeed, the functor
H induces a fully faithful exact functor H : KOy Mod? = Mod%0 — GrZ
with essential image ][,z Inj fﬁl. Notice that, due to Lemma 2.7, we have
K-linear isomorphisms

(x)  Homgr, (H(N)*, H(N)*)

= Homg, , (Hom(A, Ni)[k], Hom(A, Ni+1)[k + 1])

= Hom, (Homa, (A1, Ni), Ni41),
for all k € Z. We now define the desired functor v. On objects, it will take
an object (N,u) €xg, Gr onto the object (I',d"), where I' = H(N) and

d : H(N) RN H(N) is the morphism of degree +1 in Gr% induced by the
family of maps (n(ux) : Homa, (A1, Ni) — Nit1)kez (see Lemma 2.9) and
the above isomorphisms (x). On the other hand, if (N, u) and (N', ) are
objects of xQGr and g : H(N) — H(N') is a morphism in GrZ, then there
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is a uniquely determined morphism f : N — N’ in KQOModZ = ModfxO
such that H (f) = g. Using the last part of Lemma 2.9, one sees that f is a

morphism (N, u) — (N, /') in goGr iff g is a morphism (H(N),n(u)) —

A~

(H(N'"),n(u)) in Grjx). That proves that the assignment f — v(f) =:

H(f) defines a fully faithful exact functor v : kQGr — Gr41x) With essen-
tial image £G%.

For the final part, as in the proof of Theorem 2.4, we view the ob-
jects of goGr as graded right KQ°P-modules. We want to prove that
v(N) is a cochain complex iff Ny - I+ = 0 for all & € Z, where I =
Ker(m4). From that it will follow that v induces an equivalence of cat-

egories 1 ,Gr = Gry = LC%. We have that v(IN) is a cochain com-

k k+1
plex iff the composition Hom 4, (A, Ni)[k] &, Homa, (A, Ni41)[k + 1] gl
Hom g, (A, Ni12)[k + 2] is zero, for all k € Z. According to Lemma 2.7,

k
that is equivalent to say that its —(k + 2)-component Hom 4, (Asg, Ni) 4,

Hom 4, (A1, Ng+1) A Hom g, (Ao, Ngt2) = Ni2 is zero, for all k € Z. Us-
ing the explicit definition of d', one sees that (d**1od*)(f) = > pe, f (PP,
for all f € Homg,(Ag, Ni). Since A2 = Aj - A; is a direct summand
of Ay in Moda, and p € A%, for all p € Qa, we get that v(N) is a
cochain complex iff (@¥+1 o d*)(f) = 0, for all f € Homa, (A2, N},). Now
we argue as in the corresponding part of the proof of Theorem 2.4. We
have A? = D(I3) and the composition of the canonical isomorphism Nj ®
I3 = N, ® DD(Iy) = Homa,(D(I5), Np) = Homa, (A2, N;,) followed by
ditl o gk . Homa, (A%, N) — Niio is just the canonical multiplication
map N ® IQJ- — Niio coming from the right K@Q-module structure of N.
Therefore d**! o d* vanishes iff N}, - I+ = 0 as desired.

It only remains to see that v also induces an equivalence 1 4l fgr = [fgr 4

= Lc*. That reduces to prove that if X € Mod,, then X is finite di-
mensional iff H(X) = Homa,(A, X) is a finitely cogenerated graded right
A-module. By Lemma 2.8, that follows immediately from the fact that an
object of Inj% is finitely cogenerated in Gr4 iff it is a direct summand of a
finite direct sum of copies of D(A). O

The following is dual to Corollary 2.6 and we leave the proof as an exercise:

Corollary 2.11. Let A = KQ/I be a graded factor of a path algebra. For
M e G’I“X and j € Z, the following assertions are equivalent:
1) M is generated in degree j.
2) For every locally finite positively graded algebra A = &p>0A, orthogo-
nal to A, the cohomology graded A-module H*(vs(M)) is cogenerated
in degrees < —k, for all k # j.
3) There is a positively graded algebra A orthogonal to A satisfying 2).
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3. Koszul dualities and the Yoneda algebra.

All throughout this section, A = KQ/I will be a graded factor of a path
algebra and I' will be its Yoneda algebra. The main goal of this section is
to see that A and I' are orthogonal. A first ingredient for that is the next
straightforward consequence of Theorem 2.4, which is valid for an arbitrary
positively graded algebra.

Corollary 3.1. Let A = ®,>0A, be a positively graded algebra with quiver
Q, let D :lfgrkg — kqQlfgr be the canonical duality and v : gglfgr —

kQGr be the inclusion functor. The composition ¢ = ¢4 : lfgrikq 2,
kQlfgr < kQGr Ya, Grapxy is a fully faithful contravariant exact functor

which induces by restriction a duality of categories gylfgr =1fgr 4 =, Lcy.

Remark 3.2. When restricted to the full subcategories of lower or upper
bounded graded modules, the above duality ‘changes signs’. For instance,
it induces a duality of categories 4l fgr™ = Lc;.

The following is the main result of this section:

Theorem 3.3. Let A = KQ/I be a graded factor of a path algebra and let
I' = @n>0l'y be its Yoneda algebra. Then A and I' are orthogonal graded
algebras. In particular, ¢ = ¢r : kQlfgr = lfgriger — Grrix) induces a

duality of categories 31 fgr =, Ler.

Proof. Let mp : KQ — A and 7p : KQ° — I the canonical homomor-
phisms, with kernels I and J. We want to prove that IQJ- = Jy. Notice that

7r(a®) = @ can be identified, via the isomorphism T'y = Ext} (Ag, Ag) —
Homp (A>1, Ap), with the unique A-homomorphism & : A>; — A¢ mapping
an arrow 7y onto day€(a), Where dqay is the Kronecker symbol. Our goal is to
interpret the Yoneda product o - B as a A-homomorphism Q?(Ag) — Ao,
bearing in mind that T'y = Ext3 (Ag, Ag) = Homy (Q2(Ag), Ag). First, for
the convenience of the reader, we shall adapt to our terminology a known
explicit description of Q%(Ag). Recall that Q*(Ag) = Q'(A>1) is the ker-
nel of the canonical multiplication map p: A ® Ay — A>q. Suppose p is
a homogeneous generating set of the ideal I of relations. We write every
r € p as a linear combination Zyte 747, where 7y € KQey() is uniquely
determined for every v € Q. We claim that Q?(Ag) is the A-submodule of
A ® Ay generated by the set {Zvte T4 ®7 : 1 € p}, where the bar on top of
an element of K@ always means its image by ma. Indeed, let {a, : v € Q1}
be a family of elements of K() such that a, € KQe,(,) for all v € Q1 and

“(Zvech ay®7) = ZWEQl a7y = 0in A. Then Zwte a7y € I. This means
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that we have an equality

() Z ayy = Z frrgr + Z hyr

YEQ1 rep rep

in KQ, where f., h, € KQ are all zero but finitely many and where g, €
KQ@>1, for all 7 € p. We write g, = > o, 9ryy and r = 3 o 797,
with g,y € KQey() for every v € Q1. By substituting in the equality
(%), we get that >° o ayy = > co,(Xve, frrgry + 2o, ery)y in KQ.
From that it follows thimt ay = ZTEp frrGry + Zrep hyry in KQ, which
implies that @y =}, ., h,7y in A. We then get an equality > o @y ®7 =
> orep HT(Z%QI 7y ® ) in A ® A1 which proves the claim.

Once we have an explicit description of Q?(Ag), we are ready for an iden-
tification of a - 3. We consider the morphism v : A ® Ay — A in xMod
mapping )., @y ® 7 onto Gaey(q). Clearly, v(Q2%(Ao)) € As1, so that we
get by restriction a A-homomorphism u : Q*(Ag) — A>; making commute
the following diagram:

0 —— QQ(AO) — AQ®A] —— A21 — 0

[ I Js

0 —— A>y —— A — Ag —— 0

where the rows are the obvious exact sequences. Then the Yoneda product

a - B is represented by the composition Q%(Ag) —— Asq A, Ag. Take a
generator , = ZVGQI 7y @~y of Q2(Ag). When the path o does not appear

in r, that element is mapped onto zero by a - 3 = 5 ou. When Sa does
appear in r, it is mapped onto e,g). That implies that « - 3 vanishes on
{z, : 7 € p and length(r) > 2}. That is, the action of & - 3 on Q2(Ag) is
completely identified by its action on the K-subspace generated by {z, :
r € p and length(r) = 2}, which is a Ag-submodule of 5,0?(Ag) isomorphic
to Io. We then have a restriction map ¢ : Ty = Homy(Q?(Ag), Ag) —
Homy, (12, Ag) and our argument says that the kernel Jy of the canonical
map 7 : KQ5° — T'y coincides with the kernel of ¢ o . But the action

of (pom)(a®B°) = a- [ on Iy is the restriction to Iz of the action of the
morphism (Ba)* : KQz — KQo in 5,Mod, which maps Ba onto e,g),
and the remaining paths of length 2 to zero. Hence, via the isomorphism
KQY = D(KQ2), we have that Jy is identified with the kernel of the
restriction map D(KQ2) — Homy,(I2,Ao), f — fj1,- Therefore Jp = Iy
as desired.

The last assertion of the theorem follows now directly from Corollary 3.1.
O
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We now get the following categorical characterization of quadratic alge-
bras:

Corollary 3.4. Let A = KQ/I be a graded factor of a path algebra and T
be its Yoneda algebra. The following assertions are equivalent:

1) A is quadratic;

2) Ya 1 Grrq = Kkqer Gr — Grypx) induces by restriction an equiva-
lence of categories Gry = LCy (resp. lfgran = Lcga), for every (or
some) positively graded algebra A which is orthogonal to A;

3) Yr: Grgg = kQwGr — Grrx) induces by restriction an equivalence
of categories Gry = LCp (resp. Ifgra = Ler);

4) ¢r : kolfgr = lfgrkger — Grrix) induces by restriction a duality of
categories plfgr =2 Lcr;

5) va: Grrq = koo Gr — G 4(x) induces by restriction an equivalence
of categories Gry = LC% (resp. lfgra = Lc¥), for every (or some)
locally finite positively graded algebra A which is orthogonal to A.

Proof. A is quadratic iff A = A and this is equivalent to say that one (or
all) of the categories Gry, [fgra or Alfgr coincides with the corresponding
category of graded modules over K, viewed as full subcategories of Grxq
or goGr according to the case. Since A A', for every positively graded

algebra A which is orthogonal to A, the result follows directly from Theo-
rems 2.4, 2.10 and 3.3. ([

We end this section with an interesting consequence of our theorems.

Corollary 3.5. Let A and B be two quadratically equivalent positively
graded algebras. The following assertions hold:
1) There is an equivalence of categories LC o = LCp (resp. Lca = Lep).
2) When A and B are locally finite, there is an equivalence of categories
LC = LCg (resp. L = Lcg).
3) When A, B are graded factors of path algebras, there is an equivalence
of categories Lcp = Lerr, where T' and T are the Yoneda algebras of
A and B, respectively.

Proof. Since A~ Band A' ~ B', the result is a direct consequence of
Theorems 2.4, 2.10 and 3.3. [l

4. Some equivalences of derived categories.

Throughout this section, for every abelian category A, D°(A) will be the
full subcategory of its derived category D(.A) with objects those isomorphic
(in D(A)) to bounded complexes of objects in A. We follow [17] for the
terminology concerning derived categories. In the sequel, A will be a Koszul
algebra with Yoneda algebra T' 22 A'. Recall from [1] that we have mutually
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inverse equivalences of triangulated categories F' : DY(A) «— DI(T) : G,
where we adopt the same terminology of [1], but working with right instead
of left graded modules. With that in mind, if M" is an object in D(A) then
F (M) is a complex of graded I'-modules with F/(M")P = EBH-j:pM; @T'[j] =
it jmpt(M?)I | where ¢ = ¢r. Conversely if N is an object in D(I), then
one has G(N')P = @;4,;—,v(N*), with v = vj. Moreover, in the particular
case when A is finite dimensional and I' is Noetherian, those equivalences
induce mutually inverse equivalences D°(gr — A) = D’(gr — T') ([1, Theor.
2.12.6]). Our next result is a slight extension of this. Recall that a positively
graded algebra A = @®,>0A, is graded right coherent in case every finitely
generated graded right ideal is finitely presented. In that case, fpgra is an
abelian category with exact inclusion functor fpgra — Gr4.

Proposition 4.1. Let A be a Koszul finite dimensional algebra with graded
right coherent Yoneda algebra. The equivalences of categories

F:DYA) —DIT): G

induce by restriction mutually inverse equivalences of triangulated categories
F :Db(gry) — Db(fpgrr) : G.

Proof. The restriction of I to Gr, , viewed as the full subcategory of DL(A)
consisting of stalk complexes at the 0-position, is just ¢r. Then F takes the
simple objects of Gr, onto indecomposable projective objects of Grp. But
then F' and G induce by restriction mutually inverse equivalences between
the triangulated subcategories of D'(A) and D'(T") generated by the simple
objects of Gry and the indecomposable projective objects of Grr, respec-
tively. Those subcategories are D?(gra) and D°(fpgrr). The latter is due
to the fact that I' has finite graded global dimension, because its Yoneda
algebra A, is finite-dimensional (cf. [15, Cor., p. 424]). O

We shall consider the full subcategory Zn of D?(gry) whose objects are
the complexes isomorphic (in D'(A)) to bounded complexes of injective
graded A-modules. On the other hand, when T is right coherent, every
finite-dimensional graded I'-module is finitely presented, because so are the
simples. We denote by Fr the full subcategory of D( fpgrr) consisisting (up
to isomorphism in D®(fpgrr)) of bounded complexes of finite dimensional
graded I'-modules.

Corollary 4.2. Let A be a finite dimensional Koszul algebra such that its
Yoneda algebra T is graded right coherent. The equivalences F' : D?(gry) —
Db(fpgrr) : G induce mutually inverse equivalences of triangulated cate-
gories Ty = Fr and D(gra)/Ia = Db(fpgrr)/Fr.

Proof. The restriction of G to Grl'f is vp, so that G(I'g) is the stalk complex
D(A) at the O-position. Then F and G induce mutually inverse equivalences
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between the triangulated subcategories of D°(gra) and D°(fpgrr) generated
by D(A) and Ty, respectively, and their corresponding Verdier quotients.
Those subcategories are precisely Zp and Fr. O

Let A be an abelian category. Recall that a Serre subcategory T of A is a
full subcategory satisfying the property that in every short exact sequence of
A, say 0 - A — B — C — 0, the central object B belongs to T iff so do
A, C. By [7], we have a quotient abelian category A/ T and an exact quotient
functor m : A — A/T. In case of existence of the respective derived
categories, we have an induced exact functor Dr : D(A) — D(A)/T. The
following is well-known (cf. [13, Theorem 3.2)):

Lemma 4.3. The kernel K of D is the full subcategory with objects the
complexes having cohomology in T and D7 induces an equivalence of trian-
gulated categories D*(A)/K 2 D*(A/T), for x =+, —,b.

For every positively graded algebra A = @,>0A4,, we shall denote by
L4 the full subcategory of Gr, consisting of finite dimensional graded A-
modules. Within the derived category D(Gr,4) we shall consider the full
subcategory F4 consisting of bounded complexes of objects of L4. We close
F 4 under isomorphism in any full subcategory of D(Gr4) containing it that
we use in the sequel.

Theorem 4.4. Let A = @,>0A, be a positively graded right coherent alge-
bra such that each ideal A>s = ®p>sA, is finitely generated on the right,
for every s > 0 (e.g., when A = KQ/I is a right coherent generalized
graded factor of a path algebra). Then all graded right A-modules of fi-
nite length are finitely presented and the canonical quotient functor mw :
fpgra — fpgra/La induces an exact functor of triangulated categories
Dr : Db(fpgra) — D°(fpgra/La) with kernel Fa. In particular, it also
induces an equivalence of triangulated categories

D°(fpgra)/Fa = D°(fpgra/La).

Proof. If S = @©pezS, is a simple object of Gry, then it is generated
by a homogeneous element, so that § = S>,,, with S, # 0, for some
m € Z. But the chain §-A>; C S>pq1 C S>, = S of inclusions in
Gry and the simplicity of S imply that S - A>1 = S>p41 = 0. Then
S = S, is a necessarily simple Ag-module. This argument also proves
that A>; is the graded Jacobson radical of A. In particular, S is a di-
rect summand of A/A>; = Ap in Gry. Since A/A>; is a finitely presented
graded right A-module by hypothesis, we conclude that every simple ob-
ject of Gra, and hence every object of finite length, belongs to fpgra.
Clearly, L4 is then a Serre subcategory of fpgrs and the quotient func-
tor 7 : fpgra — fpgra/La makes sense. Let K be the full subcategory of
D’(fpgra) with objects the complexes X" having cohomology in L4. Bear-
ing in mind the previous lemma, in order to prove the assertions concerning
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derived categories, we only need to prove the equality K = F4. Since we
clearly have F4 C K, we just need to check the converse inclusion. Let
X € K, then H*(X') = @®;ezH(X") is a (finitely presented) graded A-
module of finite length. Then it is finitely graded, i.e., H*(X"),, = 0 for
all but finitely many n € Z. We pick up an interval of integers [k, m] such
that H*(X"), =0, for all n ¢ [k, m]. Then the complexes X<, and X /X
having in their ¢-th position Xém = Bp>m X! and Xi/Xék, respectively, are
acyclic. Notice that our hypothesis on each A>, guarantees that all these
complexes are complexes of finitely presented graded modules. Now, from
the exact sequences of complexes 0 — X, — X' — X'/X_  — 0 and
0 — X, /XL, — X/X,,, — X/X., — 0, we immediately deduce
that X is isomorphic in D®(fpgrg) to X<, /X<, But the fact that A is
finitely generated as a right ideal, for every s > 0, easily implies that each
As has finite length as an Ag-module. From that it follows that, for every
finitely presented graded right A-module M, its homogeneous components
M are all Ag-modules of finite length. In particular, X2, /X is a complex
in F4. Hence K C F4, and the converse inclusion is clear.

Finally, we clarify the assertion between brackets. If A = KQ/I is a right
coherent generalized graded factor of a path algebra, take d = max{deg(«) :
a € Q1}. If pis a path in @ such that p=p+1I € A, with n > s+ d, then
the decompostion p = ga, with o € Q1, yields that deg(q) > s. By iteration
of this argument, we conclude that A>g is generated by As @ --- ® Asiq,
which is finite dimensional over K. Therefore A>, is a finitely generated
graded right ideal of A, for every s > 0. O

If A is a positively graded finite dimensional algebra, we shall denote by
gr 4 the stable category (module injectives) of grs. Its objects are those
of gra and Homgz, (M, N) = Homg,, (M, N)/I(M,N), for all M,N € gra,
where I(M, N) is the vector subspace of Homg, , (M, N) given by the mor-
phisms which factor through an injective object of gr 4. The stable category
(modulo projectives) of gr4, denoted gr 1 1s defined dually. It is well-known
that gr 4 has a structure of suspended category (in the terminology of [12])
or right triangulated category (in the terminology of [3]) whose stabilization
S(gr4) is the triangulated category D’(gra)/Za (cf. [2][dual of Theorem
3.8]). We now have:

Corollary 4.5. Let A = KQ/I be a finite dimensional Koszul algebra with
graded right coherent Yoneda algebra I'. There is an equivalence of trian-
gulated categories S(gry) = D°(fpgrr/Lr). In particular, when A is self-
injective, there is an equivalence of triangulated categories gr A= 0mA =

D*(fpgrr/Lr).
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Proof. Just apply Corollary 4.2 and Theorem 4.4 and the fact that, when A
is selfinjective, gr A = 9T is already a triangulated category coincident with
S(gra)- U

Remark 4.6. When V C P” is a projective irreducible variety with coor-
dinate algebra K[V], Serre’s theorem (see [16], Chap. III) says that the
category coh (V') of coherent sheaves on V is equivalent to the category
gri(v)/ Ly Hence, last corollary extends and reproves in a different way
the well-known result of Bernstein, Gelfand and Gelfand (see, e.g., [4] or [9,
Ch. IV, Section 3]) stating that D(coh (P™)) is equivalent to gr,, where A
is the exterior algebra of a (n + 1)-dimensional vector space.
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