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For every positively graded algebra A, we show that its
categories of linear complexes of projectives and almost in-
jectives (see definition below) are both naturally equivalent
to the category of graded modules over the quadratic dual
algebra A!. In case A = Λ is a graded factor of a path alge-
bra with Yoneda algebra Γ, we show that the category LcΓ of
linear complexes of finitely generated right projectives over
Γ is dual to the category of locally finite graded left mod-
ules over the quadratic algebra Λ̃ associated to Λ. When Λ
is Koszul and Γ is graded right coherent, we also prove that
the suspended category grΛ has a (triangulated) stabilization
S(grΛ) which is triangle-equivalent to the bounded derived
category of the ‘category of tails’ fpgrΓ/LΓ.

1. Introduction and terminology.

The interest on Koszul equivalences and dualities arises mainly in the con-
text of derived categories and, specially, dealing with Koszul algebras (see
definitions below). In case Λ is a graded Koszul algebra with Yoneda al-
gebra Γ, Beilinson, Ginzburg and Soergel ([1]) showed the existence of an
equivalence between certain full triangulated subcategories of the derived
categories D(ΛGr) and D(ΓGr). When composing with the canonical du-
ality defined by HomΛ0(−,Λ0), one gets a duality between suitable sub-
categories of D(ΛGr) and D(ΓGr). The aim of this paper is to show that
Koszul equivalences and dualities also appear naturally between some nice
abelian categories associated to positively graded algebras. In this context,
no restriction is needed a priori on the graded algebras, although quadratic
algebras will play a predominant role as in the context of derived categories.
On one side, our results generalize those of Yoshino ([18]) for symmetric and
exterior algebras and, on the other, they show that the above mentioned tri-
angulated equivalences of [1] already live in an abelian context.

Throughout the paper, K will be a field and, for every K-algebra R, we
shall denote by ModR (resp. modR) the category of all right (resp. finitely
generated right) R-modules and by RMod (resp. Rmod) its left-right sym-
metric version. The term positively graded algebra will stand for a
graded K-algebra A = ⊕n≥0An such that A0 is a K-algebra isomorphic to a
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finite direct product of copies of K and dimK A1 <∝. We shall say that such
an algebra is locally finite when dimK An <∝, for all n ∈ Z. A particular
case comes as follows: Let Q be a finite oriented graph or quiver and give
KQ a grading by assigning positive degrees to the arrows. Then, for every
ideal I of KQ, homogeneous with respect to that grading and contained in
the ideal generated by the paths of length 2, the algebra A = KQ/I is pos-
itively graded and locally finite. Every graded algebra isomorphic to one of
this form will be called a generalized graded factor of a path algebra,
reserving the term graded factor of a path algebra, for the case when
the grading on KQ is the classical one, i.e., obtained by assigning degree 1
to all arrows. We shall distinguish this latter case by putting Λ ∼= KQ/I,
reserving letters A, B for general positively graded algebras.

When Q is a finite quiver, we shall identify Q0 = {1, . . . , n} with the set
of vertices and will denote by Qn the set of paths in Q of length n while
KQn will be the vector subspace of KQ generated by Qn. When p is a path
i → ... → j in Q, we shall put i = o(p) and j = t(p) for the origin and
terminus of p. We write paths α1...αn convening that t(αi) = o(αi+1), for
all i = 1, . . . , n− 1. The idempotent of KQ given by i ∈ Q0 will be denoted
by ei. The opposite quiver Qop of Q has Qop

0 = Q0 and is obtained from Q
by reversing the orientation of the arrows. Whenever p = α1...αn ∈ Qn, we
shall put po = αon...α

o
1 and then, clearly, Qop

n = {po : p ∈ Qn}.
Notice that if A is a positively graded algebra, then the subalgebra A of

A generated by the subspace A0 ⊕ A1 is a graded factor of a path algebra.
Indeed, there is a uniquely determined (up to isomorphism) finite quiver
Q such that KQ0

∼= A0, as K-algebras, and KQ1
∼= A1, as KQ0 − KQ0-

bimodules. Then Q will be called the quiver of A, although A may not be
a graded factor algebra of KQ. The isomorphism KQ0 ⊕KQ1

∼= A0 ⊕ A1

extends to a homomorphism of graded algebras πA : KQ −→ A with image
A, where the grading on KQ is the classical one. If I = Ker(πA) and
I2 = {x ∈ I : x is homogeneous of degree 2}, then we denote by 〈I2〉
the homogeneous ideal of KQ generated by I2 and Ã = KQ/〈I2〉 will be
called the quadratic algebra associated to A. We identify KQ0 = A0

all through the paper and unspecified tensors are tensors over A0. The
canonical duality D = HomA0(−, A0) = HomKQ0(−,KQ0) : A0mod −→
A0mod = modA0 is ‘inverse to itself’. If Qop denotes the opposite quiver of
Q, then we have canonical isomorphisms of KQ0−KQ0-bimodules KQop

n
∼=

D(KQn), for all n ≥ 0. When W is a KQ0 −KQ0-subbimodule of either
KQn or KQop

n , we shall denote by W⊥ its orthogonal with respect to the
usual duality KQop

n ⊗KQn ∼= D(KQn)⊗KQn −→ KQ0. Notice that there
are actually two dualities, namely, one for the case when KQn is considered
as a left KQ0-module and one for the case when it is considered as a right
KQ0-modules. They map po⊗q onto δpqet(q) and δpqeo(q), respectively, where
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δpq is the Kronecker symbol. Nonetheless, W⊥ is the same for both dualities.
In the above situation, the algebra A! = KQop /〈I⊥2 〉 is called the quadratic
dual algebra of A. We shall put !A = (A!)op for the opposite algebra, which
is then a graded factor of KQ. Up to graded isomorphism, Ã and A! do not
depend on the presentation of A, i.e., do not depend on the choice of the
graded homomorphism πA : KQ −→ A. If A and B are positively graded
algebras, we shall say that they are orthogonal when A! ∼= B̃ and that
they are quadratically equivalent when Ã ∼= B̃ (isomorphisms as graded
algebras in both cases).

We will be concerned with the category GrA of Z-graded right A-module
and its full subcategories lfrgA, grA and fpgrA consisting of locally finite
(i.e., dimKMi <∝, for all i ∈ Z), finitely generated and finitely presented
graded right A-modules, respectively. Of course, AGr, Alfgr, Agr and Afpgr
will stand for the left-right symmetric versions. To some of these categories,
and also to some categories of cochain complexes that will eventually appear
in the paper, we will add a superindex + or − meaning that we consider
the corresponding full subcategory of lower or upper bounded objects (e.g.,
lfgr+A will be the full subcategory of lfgrA with objects M = ⊕n∈ZMn such
that Mn = 0, for all n� 0).

An object M = ⊕n∈ZMn of GrA will be called generated in degree
j when Mj generates M as a graded A-module. Dually, M will be called
cogenerated in degree j when Mj cogenerates M as a graded module,
i.e., when M = M≤j = ⊕n≤jMn and N ∩Mj 6= 0, for every nonzero graded
submoduleN ofM . For every k ∈ Z, the k-shiftingM [k] ofM coincides with
M as an ungraded A-module, but its grading is given by M [k]n = Mk+n,
for all n ∈ Z. In general, given any cocomplete abelian category A and
X ∈ Ob(A), we shall denote by Add (X) the full subcategory of A with
objects the direct summands of direct sums of copies of X. For instance,
when A = GrA and X = ⊕k∈ZA[k], Add (X) is just the class of projective
objects in GrA.

The canonical duality D extends to a contraviant functor D : AGr −→
GrA (resp. GrA −→ AGr), for if M = ⊕n∈ZMn is an object of AGr then
D(M) =: ⊕n∈ZD(M)n, where D(M)n = D(M−n) for all n ∈ Z, is a graded
right A-module with multiplication f · a : x −→ f(ax), for all a ∈ Am and
f ∈ D(M)n. Clearly, D restricts to a duality D : Alfgr −→ lfgrA ‘inverse
to itself’. The objects of Add (⊕k∈ZD(A)[k]) (full subcategory of GrA) will
be called almost injective graded A-modules. They need not be injective
objects of GrA, but they are so when A is right Noetherian. We shall denote
by Proj kA = Add (A[k]) and Inj kA = Add (D(A)[k]) the full subcategories of
GrA consisting of projective graded A-modules generated in degree −k and
almost injective graded A-modules cogenerated in degree −k, respectively.
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In our situation, every M ∈ GrA has a projective cover in GrA (cf. [5,
Prop. 2.6]), εM : P (M) −→ M . We define inductively Ω0M = M , Ω1M =
ΩM = Ker εM and, then, ΩnM = Ω(Ωn−1M), for all n > 0. The cate-
gory ModA0 (resp. modA0) can be identified with the category of (finitely
generated) semisimple graded right A-modules. When X ∈ ModA0 and
M ∈ GrA, we have an isomorphism ExtnA(M,X) ∼= HomA(ΩnM,X) (exten-
sions and homomorphisms as ungraded right A-modules!), for all n ≥ 0. In
the particular case when M = X = Λ0, we can consider the Yoneda alge-
bra of A, Γ = ⊕n≥0 ExtnA(A0, A0). It is a graded algebra with the Yoneda
product as multiplication. It is positively graded in our sense only in case
Ext1A(A0, A0) is finite dimensional, something which always happens when
A is a generalized graded factor of a path algebra. More restrictively, when
A = A = Λ is a graded factor of a path algebra, the quiver of Γ is Qop .
Indeed, Γ0 = EndΛ0(Λ0) ∼= Λ0

∼= KQ0 and, from the projective presentation
of Λ0 as a left Λ-module, 0→ Λ≥1 −→ Λ −→ Λ0 → 0, one immediately gets
that Γ1 = Ext1Λ(Λ0,Λ0) ∼= HomΛ(Λ≥1,Λ0) ∼= HomΛ0(Λ1,Λ0) ∼= D(KQ1).
Then Γ0 ⊕ Γ1 can be identified with KQop

0 ⊕KQ
op
1 .

A positively graded algebra A is a Koszul algebra in case Ωn(A0) is
locally finite and generated in degree n, for all n ≥ 0. In that case, A = Λ
is a graded factor of a path algebra and Γ ∼= A!.

The organization of the paper goes as follows: Let A = ⊕n≥0An be a
positively graded algebra with quiver Q. In Section 2 we show that the
graded versions of − ⊗ A and HomA0(A,−) embed KQGr in two different
ways as a full subcategory of the category GrA[X] of Z×Z-graded modules
over A[X]. That induces by restriction equivalences of categories between
!AGr = GrA! and the categories LCA and LC∗A of linear complexes of projec-
tive and almost injective graded A-modules, respectively (Theorems 2.4 and
2.10). In Section 3 we show that in the case when A = Λ is a graded factor
of a path algebra, Λ is orthogonal to its Yoneda algebra Γ and then there
is an induced duality between eΛlfgr and the category LcΓ of linear com-
plexes of finitely generated projective graded modules over Γ (Theorem 3.3).
Among the consequences of these results, we characterize quadratic alge-
bras in categorical terms (Corollary 3.4) and show that the categories of
linear complexes of projective (resp. almost injective) graded modules are
equivalent for quadratically equivalent algebras. In case the algebras are
quadratically equivalent graded factors of path algebras, the categories of
linear complexes of finitely generated projective graded modules over their
Yoneda algebras are also equivalent (Corollary 3.5). In the final Section 4,
somewhat independent from the rest, we extend some equivalences of de-
rived categories obtained by Bernstein, Gelfand and Gelfand (cf. [4] and [9])
in the classification of algebraic vector bundles over the projective space.
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2. Koszul equivalences.

All throughout this section A = ⊕n≥0An will be a positively graded algebra
with quiver Q. We fix a homomorphism πA : KQ −→ A of graded K-
algebras and put p = πA(p), for every path p in Q. One-sided modules over
A0 = KQ0 will be considered indistinctly as left or right modules, with the
same action of A0 on both sides. It is convenient now to make some com-
ments concerning the canonical duality D. Suppose A0SA0 is a bimodule and
B is a K-basis of S satisfying the following property: For every b ∈ B there
exist (necessarily unique) i, j ∈ Q0 such that u = eiuej . We put i = o(b)
and j = t(b). For each b ∈ B, we denote by b∗ the homomorphism of right
A0-modules defined by the rule b∗(c) = δbcet(c), where δbc is the Kronecker
symbol. It is clear that B∗ = {b∗ : b ∈ B} is a K-linearly independent
subset of D(S), which is a basis when S is finite dimensional. A symmetric
argument works when we consider homomorphisms of left A0-module, but
then b∗(c) = δbceo(c). We shall call B∗ the dual basis of B, the side of the
A0-homomorphisms being clear from the context. The following remark and
the next two lemmas will be very useful in the sequel.

Remark 2.1. Let S be finite dimensional in the above situation and let
XA0 (resp. A0X) be an A0-module. For each b ∈ B and each x ∈ Xet(b)
(resp x ∈ eo(b)X), we consider the A0-homomorphisms xb∗(−) : S −→ X
(resp. b∗(−)x : S −→ X), mapping s −→ xb∗(s) (resp. s −→ b∗(s)x). Then
the set {xb∗(−) : b ∈ B, x ∈ Xet(b)} (resp. {b∗(−)x : b ∈ B, x ∈ eo(b)X})
generates HomA0(S,X) as a K-vector space

Proof. Straightforward consequence of the isomorphism X ⊗ D (S) ∼=
HomA0(S,X) (resp. D(S) ⊗ X ∼= HomA0(S,X)), which maps x ⊗ b∗ onto
xb∗(−) (resp. b∗ ⊗ x onto b∗(−)x), for all x ∈ X, b ∈ B. �

Lemma 2.2. The assignment X −→ X ⊗ A extends to a fully faithful co-
variant exact functor T : ModA0 −→ GrA with essential image Proj 0

A. In
particular, it induces an equivalence of categories ModA0

∼= Proj 0
A.

Proof. It is clear that the assignment extends to a covariant functor T =
−⊗A : ModA0 −→ GrA with essential image contained in Proj 0

A. Moreover,
since A0A is projective, the functor is clearly exact. We also have that
ModA0 = Add ((A0)A0), Proj 0

A = Add (AA), T preserves direct sums and
T (A0) ∼= A. From that it follows that Proj 0

A ⊆ Im (T ), and hence equality.
It also follows that the fully faithful condition reduces to check that the
functorial map HomA0(A0, A0) −→ HomGrA(A,A), λ −→ T (λ) is bijective.
That is straightforward. �

The isomorphisms of next lemma and Lemma 2.9 can be derived from
apropriate adjunction settings, but we give their explicit definition for they
are used in the proofs or our theorems.
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Lemma 2.3. Let X, Y be A0-modules. The map ϕ : HomKQ0(KQ1 ⊗
X,Y ) −→ HomA0(X,Y ⊗A1) taking µ onto ϕ(µ) : x −→

∑
α∈Q1

µ(α⊗x)⊗α
is an isomorphism of K-vector spaces. Moreover, if µ ∈ HomKQ0(KQ1 ⊗
X,Y ), µ′ ∈ HomKQ0(KQ1 ⊗ X ′, Y ′) and f : X −→ X ′, g : Y −→ Y ′ are
A0-homomorphisms, then one of the following diagrams commutes iff the
other does:

KQ1 ⊗X
µ−−−→ Y

1⊗f
y yg

KQ1 ⊗X ′ µ′−−−→ Y ′

X
ϕ(µ)−−−→ Y ⊗A1

f

y yg⊗1

X ′ ϕ(µ′)−−−→ Y ′ ⊗A1.

Proof. Since {α : α ∈ Q1} is a basis of A1, every element of Y ⊗ A1 can be
written as a sum

∑
α∈Q1

yα⊗α, where yα ∈ Y eo(α), for all α ∈ Q1. In partic-
ular, if f ∈ HomA0(X,Y ⊗A1) then it maps x onto a sum

∑
α∈Q1

fα(x)⊗α,
with fα(x) ∈ Y eo(α) for all α ∈ Q1. Moreover, if x ∈ Xei then the fact that
f is a morphism in ModA0 implies that we can take fα(x) = 0 whenever
i 6= t(α). Hence, we get a uniquely determined family of K-linear maps
{fα : Xet(α) −→ Y eo(α) : α ∈ Q1} such that f(x) =

∑
α∈Q1

fα(x) ⊗ α.
We now define ξ : HomA0(X,Y ⊗ A1) −→ HomKQ0(KQ1 ⊗ X,Y ) by the
rule ξ(f)(α ⊗ x) = fα(x). The choice of the fα guarantees that ξ(f) is a
morphism in A0Mod. We leave as an easy exercise to check that ϕ and ξ are
mutually inverse. The rest of the proof is then routinary. �

Let (Ak)k∈Z be a family of categories. We shall denote by
∏
k∈ZAk the

corresponding product category. Its objects are the families (Uk)k∈Z such
that Uk ∈ Ak, for every k ∈ Z. Its morphisms are families of morphisms (fk :
Uk −→ Vk)k∈Z, with fk a morphism in Ak, for all k ∈ Z. The composition
of morphisms is defined pointwise. In particular, we shall denote by AZ the
category

∏
k∈ZAk, where Ak = A, for all k ∈ Z. If U ∈ AZ and n ∈ Z then

the object U{n} of AZ is defined by the rule U{n}k = Un+k for all k ∈ Z.
If f : U −→ V {n} is a morphism in AZ, we shall write f : U n−→ V and
shall say that f is a morphism of degree n from U to V .

We are mainly interested in the cases when A =KQ0 Mod = ModA0 and
A = GrA in the above situation. For technical reasons, we shall still keep
subindices for the first case, while we shall use superindices for the second
case (e.g., an object of GrZA will be denoted by P · = (P k)k∈Z, where P k ∈
GrA for all k). We introduce now a new (Grothendieck) category GrA[X] as

follows: Its objects are pairs (P ·, d·), where P · ∈ GrZA and d· : P · +1−→ P · is
a morphism in GrZA of degree +1. A morphism f · : (P ·, d·) −→ (Q·, δ·) in
GrA[X] is just a morphism f · : P · −→ Q· in GrZA such that f · ◦ d· = δ· ◦ f ·.
The notation GrA[X] makes sense. Indeed, we can provide the polynomial
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algebra A[X] with a Z×Z-grading by putting A[X](m,n) = AmX
n, whenever

m,n ≥ 0, and A[X](m,n) = 0 otherwise. If M = ⊕M(m,n) is a Z × Z-
graded right A[X]-module, then Mn = ⊕m∈ZM(m,n) is an object of GrA
and multiplication by X yields morphisms in GrA, dn : Mn −→ Mn+1, for
all n ∈ Z. In that way, we get an object of GrA[X] and the category of
Z × Z-graded right A[X]-modules is identified with GrA[X]. We shall pay
attention to the full subcategory LGA of GrA[X] consisting of those pairs
(P ·, d·) such that P · ∈

∏
k∈Z Proj kA, i.e., such that P k is a projective object

of GrA generated in degree −k, for all k ∈ Z. Inside LGA we consider the full
subcategory LCA consisting of those (P ·, d·) which are cochain complexes,
i.e., such that d· ◦ d· = 0. The objects of LCA are called linear complexes
of projectives. The full subcategory of LCA with objects (P ·, d·) such that
P k is finitely generated, for all k ∈ Z, will be denoted LcA.

Our main results in the section concern the category KQGr. We point
out that an object of that category can be identified with a pair (M,µ),
where M = (Mk) is an object of KQ0ModZ and µ = (µk : KQ1 ⊗Mk −→
Mk+1) is a family of morphisms in KQ0Mod. In that vein, a morphism
f : (M,µ) −→ (N,µ′) in KQGr is identified with a morphism f = (fk)k∈Z

in KQ0ModZ = ModZ
A0

such that fk+1 ◦µk = µ′k ◦ (1KQ1 ⊗ fk), for all k ∈ Z.
We shall indistinctly use this and the classical interpretation of the category
KQGr.

When Λ ∼= KQ/I is a graded factor of a path algebra (e.g., Λ =! A in our
case), the category ΛGr can be identified with the full subcategory of KQGr
consisting of graded left KQ-modules annihilated by I. That is the sense of
the word ‘restriction’ in our next theorem.

Theorem 2.4. Let A = ⊕n≥0An be a positively graded algebra with quiver
Q. There is a fully faithful exact functor ψ = ψA : KQGr −→ GrA[X] which

induces by restriction equivalences of categories !AGr = GrA!

∼=−→ LCA and
!Alfgr = lfgrA!

∼=−→ LcA.

Proof. By Lemma 2.2, the composition ModA0

T−→ GrA
−[k]−→ GrA, X  

X ⊗ A[k], is a fully faithful covariant exact functor, which we denote by
Tk and induces an equivalence of categories ModA0

∼=−→ Proj k, for every
k ∈ Z. As a consequence the product T̂ =

∏
kZ Tk : ModZ

A0
−→ GrZA is a

fully faithful exact functor inducing an equivalence of categories

T̂ : ModZ
A0
∼=

∏
k∈Z

Proj k.(∗)

With the above interpretation of the objects in KQGr and GrA[X], we are
ready to define a functor ψ : KQGr −→ GrA[X] verifying the require-
ments. Using Lemma 2.3, to every (M,µ) ∈KQ Gr we can assign a fam-
ily (ϕ(µk) : Mk −→ Mk+1 ⊗ A1)k∈Z of morphisms in ModA0 . But we
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have a K-linear isomorphism HomA0(Mk,Mk+1 ⊗ A1) ∼= HomGrA(Mk ⊗
A[k],Mk+1⊗A[k+ 1]), for every k ∈ Z. Hence, the family µ = (µk) induces
a uniquely determined family ϕ(µ) = (ϕ(µk) : T̂ (M)k = Mk ⊗ A[k] −→
Mk+1 ⊗ A[k + 1] = T̂ (M)k+1)k∈Z of morphisms in GrA. That is, we get a
morphism ϕ(µ) : T̂ (M) +1−→ T̂ (M) in GrZA of degree +1. We then define
ψ : KQGr −→ GrA[X] on objects by taking the pair (M,µ) onto (T̂ (M), d·),
with d· = ϕ(µ). Suppose now that (M,µ) and (N,µ′) are objects of KQGr
and let g : T̂ (M) −→ T̂ (N) be a morphism in GrZA. Since T̂ (M) and T̂ (N)
belong to

∏
k∈Z Proj kA, the above equivalence (∗) gives a uniquely deter-

mined morphism f : M −→ N in ModZ
A0

such that T̂ (f) = g. Then gk =
fk ⊗ 1A[k], for all k ∈ Z. We claim that f is a morphism (M,µ) −→ (N,µ′)
in KQGr iff g is a morphism (ψ(M), ϕ(µ)) −→ (ψ(N), ϕ(µ′)) in GrA[X]. If
that is proved it will follow that, defining ψ(f) = T̂ (f) for every morphism
f in KQGr, one obtains a fully faithful exact functor ψ : KQGr −→ GrA[X]

with essential image LGA. Let us prove our claim. We know that f is a
morphism in KQGr iff fk+1◦µk = µ′k ◦(1⊗fk), for all k ∈ Z. By Lemma 2.3,
that is equivalent to say that (fk+1⊗1A1)⊗ϕ(µk) = ϕ(µ′k)◦fk, for all k ∈ Z.
This is in turn equivalent to say that gk+1 ◦dk = dk ◦gk, for all k ∈ Z, where
d· = ϕ(µ). That occurs iff g is a morphism in GrA[X], thus proving our
claim.

In the final part of the proof, we come back to the classical interpretation
of objects in KQGr = GrKQop , which will be looked at as graded right
KQop -modules. With the equality LGA = Imψ at hand, the rest of the
proof reduces to check that ψ(M) is a cochain complex iff Mk · I⊥2 = 0 for
every k ∈ Z, where I = Ker(πA). From that the equivalences of the last
part of the theorem will follow. On one hand, ψ(M) is a cochain complex iff

the composition Mk⊗A[k] dk

−→Mk+1⊗A[k+1] d
k+1

−→ Mk+2⊗A[k+2] is zero,
for each k ∈ Z. But, since Mk ⊗ A[k] is generated by Mk ⊗ A0

∼= Mk, that
is equivalent to say that dk+1 ◦ dk vanish on Mk. Direct calculation shows
that (dk+1 ◦ dk)(x) =

∑
p∈Q2

px ⊗ p =
∑

p∈Q2
xpo ⊗ p, for all x ∈ Mk. In

particular, (dk+1 ◦dk)(Mk) ⊆Mk+2⊗A2
1, where A2

1 = A1 ·A1. On the other
hand, the obvious sequences 0→ I2 −→ KQ2 −→ A2

1 → 0 and 0→ I⊥2 −→
KQop

2 −→ D(I2)→ 0 (in A0Mod and ModA0 , respectively) are dual to each
other. Hence, we have an isomorphism A2

1
∼= D(I⊥2 ) which maps p onto the

restriction of po∗ to I⊥2 , where {po∗ : p ∈ Q2} is the dual basis in D(KQop
2 )

of Qop
2 . Taking now the composition of dk+1 ◦ dk : Mk −→ Mk+2 ⊗ A2

1

followed by the canonical isomorphism Mk+2 ⊗ A2
1
∼= Mk+2 ⊗ D(I⊥2 ) ∼=

HomA0(I
⊥
2 ,Mk+2), we get a map δk : Mk −→ HomA0(I

⊥
2 ,Mk+2). In a

routinary way, one checks that δk(x) : I⊥2 −→ Mk+2 is the restriction to
I⊥2 of the map fx =

∑
p∈Q2

(xpo)po∗(−) : KQop
2 −→ Mk+2 (with notation
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as in Remark 2.1). The latter maps qo onto xqo, for every q ∈ Q2, so that
δk(x)(a) = xa for all a ∈ I⊥2 . Therefore dk+1◦dk vanish on Mk iff Mk ·I⊥2 = 0
as desired. �

Remark 2.5. The equivalences of the above theorem restrict to the cor-
responding full subcategories of upper or lower bounded objects. For in-
stance, the equivalence !Alfgr = lfgrA!

∼=−→ LcA restricts to an equivalence
!Alfgr

− = lfgr−
A!

∼=−→ Lc−A.

In case Λ = KQ/I is a graded factor of a path algebra, the category GrΛ
can be seen in a canonical way as a subcategory of GreΛ. In particular, for
every positively graded algebra A which is orthogonal to Λ, swapping the
roles of Q and Qop, Theorem 2.4 yields a fully faithful exact embedding ψA :
GrΛ −→ GrA[X] such that ψA(M) is a cochain complex, for all M ∈ GrΛ.
We then have the following consequence:

Corollary 2.6. Let Λ = KQ/I be a graded factor of a path algebra. For
every M ∈ Gr−Λ and every j ∈ Z, the following assertions are equivalent:

1) M is cogenerated in degree j.
2) For every positively graded algebra A = ⊕n≥0An orthogonal to Λ, the

cohomology graded A-module Hk(ψA(M)) is generated in degrees >
−k, for all k 6= j.

3) There is a positively graded algebra A orthogonal to Λ satisfying 2).

Proof. Suppose M = ⊕k≤k0Mk, with Mk0 6= 0. Then M is cogenerated
in degree j implies k0 = j. On the other hand, Hk(ψA(M)) = 0, for all
k > k0 and Hk0(ψA(M))−k0 ∼= Mk0 ⊗ A0

∼= Mk0 6= 0. Hence, j = k0

in 1), 2) or 3). Now M is cogenerated in degree j iff for every k < j
and for every 0 6= x ∈ Mk, xΛj−k 6= 0. But, in our case, Λn = Λn1 =
Λ1

n· · · Λ1 for all n > 0. We then get that M is cogenerated in degree j
iff for every k < j and for every 0 6= x ∈ Mk, xΛ1 6= 0. On the other
hand, given any positively graded algebra A orthogonal to Λ, the graded
A-module Hk(ψA(M)) has support contained in {n ∈ Z : n ≥ −k}, for all
k ∈ Z. Moreover, the homogeneous component of degree −k of Hk(ψA(M)),
denoted Hk(ψA(M))−k, is the kernel of the map dk : Mk

∼= Mk ⊗ A0 −→
Mk+1⊗A1. This map, after the suitable adaptation from Theorem 2.2 due to
the swapping of roles of Q andQop, takes the form x −→

∑
α∈Q1

xα⊗αo. We
now compose this latter map with the canonical isomorphism Mk+1⊗A1

∼=
Mk+1⊗D(KQ1) ∼= HomA0(KQ1,Mk+1) ∼= HomA0(Λ1,Mk+1). The resulting
map Mk −→ HomA0(Λ1,Mk+1) takes x onto

∑
α∈Q1

(xα)α∗(−) : β −→ xβ

(with the notation of Remark 2.1). Then Hk(ψA(M))−k ∼= {x ∈ Mk :
xΛ1 = 0} and the desired equivalence of 1), 2) and 3) follows. �

We leave as an exercise the proof of the following lemma, which will be
useful in the proof of our next theorem:
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Lemma 2.7. Let f, g : M −→ N be two morphisms in GrA and assume
that N is cogenerated in degree j. Then f = g if, and only if, fj = gj.

Given a A0-module X and viewing each Ai as a right A0-module, the vec-
tor space HomA0(A,X) = ⊕k∈Z HomA0(A−k, X) gets a canonical structure
of graded right A-module by definingHomA0(A,X)k = HomA0(A−k, X) and
(fa)(x) = f(ax) whenever a ∈ Aj , f ∈ HomA0(A,X)k and x ∈ A−(j+k). In
the particular case when X = A0, we get HomA0(A,A0) = D(A). We have
now:

Lemma 2.8. Assume that A is locally finite. The assignment X −→
HomA0(A,X) extends to a fully faithful covariant exact functor H : ModA0

−→ GrA with essential image Inj 0
A. In particular, it induces an equivalence

of categories ModA0
∼= Inj 0

A.

Proof. We define H(f) = f∗ : u −→ f ◦ u, for every composable morphisms
f and u in ModA0 . Then we clearly get a covariant functor H : ModA0 −→
GrA such that H(X) = HomA0(A,X), for every X ∈ ModA0 . The functor
is exact because AA0 is projective. Since each Ak is a finitely generated
A0-module, H preserves direct sums. Notice that ModA0 = Add (A0A0

)
and Add (H(A0)) = Add (D(A)A) = Inj 0

A. Then, using the preservation of
direct sums, we conclude that our task reduces to check that H induces a
bijection

HomA0(A0, A0)→ HomGrA(H(A0),H(A0)) = HomGrA(D(A), D(A)).(∗)

Let us prove this. By the canonical duality D : Alfgr −→ lfgrA, every
morphism g : D(A) −→ D(A) in GrA is of the form D(ρa), where ρa :
A −→ A is right multiplication by a, for a uniquely determined a ∈ A0. We
take the left multiplication by a, λa : A0 −→ A0, which is a morphism in
ModA0 . Then, for every x ∈ Ak and u ∈ HomA0(Ak, A0) = H(A0)−k, we
have [H(λa)(u)](x) = (λa ◦u)(x) = au(x). Then commutativity of A0 yields
au(x) = u(x)a = u(xa) = [D(ρa)(u)](x) = (g(u))(x), from which we get
g = H(λa), for a uniquely determined a ∈ A0. This proves that the map (∗)
is bijective, thus ending the proof. �

Lemma 2.9. Let X,Y be A0-modules. The map η : HomKQ0(KQ1 ⊗
X,Y ) −→ HomA0(HomA0(A1, X), Y ) defined by η(µ)(u) =

∑
α∈Q1

µ(α ⊗
u(α)), for all u ∈ HomA0(A1, X) and all µ ∈ HomKQ0(KQ1 ⊗X,Y ), is an
isomorphism of K-vector spaces. Moreover, if µ ∈ HomKQ0(KQ1 ⊗X,Y ),
µ′ ∈ HomKQ0(KQ1 ⊗ X ′, Y ′) and f : X −→ X ′, g : Y −→ Y ′ are A0-
homomorphisms, then one of the following diagrams commutes iff the other
does:
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KQ1 ⊗X
µ−−−→ Y

1⊗f
y yg

KQ1 ⊗X ′ µ′−−−→ Y ′

HomA0(A1, X)
η(µ)−−−→ Y

f∗

y yg
HomA0(A1, X

′)
η(µ′)−−−→ Y ′.

Proof. We define ρ : HomA0(HomA0(A1, X), Y ) −→ HomKQ0(KQ1 ⊗X,Y )
by the rule ρ(h)(α ⊗ x) = h(xα∗(−)), where xα∗(−) : A1 −→ X is as in
Remark 2.1, using {α = πA(α) : α ∈ Q1} as basis of A1. The fact that η and
ρ are mutually inverse follows easily using that u =

∑
α∈Q1

u(α)α∗(−) (with
the same terminology of Remark 2.1), for every morphism u : A1 −→ X in
ModA0 . The rest is routine. �

In the sequel we shall denote by LG∗A the full subcategory of GrA[X]

consisting of those pairs (I ·, d·) such that I · ∈
∏
k∈Z Inj kA, i.e., such that

Ik is an almost injective graded right A-module cogenerated in degree −k,
for every k ∈ Z. Also, we denote by LC∗A the full subcategory of LG∗A
consisting of those (I ·, d·) which are cochain complexes. The objects of LC∗A
are called linear complexes of almost injectives. Within LC∗A we shall
also consider the full subcategory Lc∗A consisting of those (I ·, d·) ∈ LC∗A such
that Ik is finitely cogenerated, for every k ∈ Z.

Theorem 2.10. Let A = ⊕n≥0An a locally finite positively graded algebra
with quiver Q. There is a fully faithful covariant exact functor υ = υA :
KQGr −→ GrA[X] which induces, by restriction, equivalences of categories

!AGr = GrA!

∼=−→ LC∗A and !Alfgr = lfgrA!

∼=−→ Lc∗A.

Proof. The first part of the proof is parallel to the corresponding one in
the proof of Theorem 2.4, using the functor H of Lemma 2.8 instead of
the functor T and Lemma 2.9 instead of Lemma 2.3. Indeed, the functor
H induces a fully faithful exact functor Ĥ :KQ0 ModZ = ModZ

A0
−→ GrZA

with essential image
∏
k∈Z Inj kA. Notice that, due to Lemma 2.7, we have

K-linear isomorphisms

HomGrA(Ĥ(N)k, Ĥ(N)k+1)(∗)
= HomGrA(Hom(A,Nk)[k],Hom(A,Nk+1)[k + 1])
∼= HomA0(HomA0(A1, Nk), Nk+1),

for all k ∈ Z. We now define the desired functor υ. On objects, it will take
an object (N,µ) ∈KQ0 Gr onto the object (I ·, d·), where I · = Ĥ(N) and

d· : Ĥ(N) +1−→ Ĥ(N) is the morphism of degree +1 in GrZA induced by the
family of maps (η(µk) : HomA0(A1, Nk) −→ Nk+1)k∈Z (see Lemma 2.9) and
the above isomorphisms (∗). On the other hand, if (N,µ) and (N ′, µ′) are
objects of KQGr and g : Ĥ(N) −→ Ĥ(N ′) is a morphism in GrZA, then there
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is a uniquely determined morphism f : N −→ N ′ in KQ0ModZ = ModZ
A0

such that Ĥ(f) = g. Using the last part of Lemma 2.9, one sees that f is a
morphism (N,µ) −→ (N ′, µ′) in KQGr iff g is a morphism (Ĥ(N), η(µ)) −→
(Ĥ(N ′), η(µ′)) in GrA[X]. That proves that the assignment f −→ υ(f) =:
Ĥ(f) defines a fully faithful exact functor υ : KQGr −→ GrA[X] with essen-
tial image LG∗A.

For the final part, as in the proof of Theorem 2.4, we view the ob-
jects of KQGr as graded right KQop -modules. We want to prove that
υ(N) is a cochain complex iff Nk · I⊥2 = 0 for all k ∈ Z, where I =
Ker(πA). From that it will follow that υ induces an equivalence of cat-
egories !AGr = GrA!

∼=−→ LC∗A. We have that υ(N) is a cochain com-

plex iff the composition HomA0(A,Nk)[k]
dk

−→ HomA0(A,Nk+1)[k + 1] d
k+1

−→
HomA0(A,Nk+2)[k + 2] is zero, for all k ∈ Z. According to Lemma 2.7,

that is equivalent to say that its −(k + 2)-component HomA0(A2, Nk)
dk

−→
HomA0(A1, Nk+1)

dk+1

−→ HomA0(A0, Nk+2) ∼= Nk+2 is zero, for all k ∈ Z. Us-
ing the explicit definition of d·, one sees that (dk+1 ◦dk)(f) =

∑
p∈Q2

f(p)po,
for all f ∈ HomA0(A2, Nk). Since A2

1 = A1 · A1 is a direct summand
of A2 in ModA0 and p ∈ A2

1, for all p ∈ Q2, we get that υ(N) is a
cochain complex iff (dk+1 ◦ dk)(f) = 0, for all f ∈ HomA0(A

2
1, Nk). Now

we argue as in the corresponding part of the proof of Theorem 2.4. We
have A2

1
∼= D(I⊥2 ) and the composition of the canonical isomorphism Nk ⊗

I⊥2
∼= Nk ⊗ DD(I⊥2 ) ∼= HomA0(D(I⊥2 ), Nk) ∼= HomA0(A

2
1, Nk) followed by

dk+1 ◦ dk : HomA0(A
2
1, Nk) −→ Nk+2 is just the canonical multiplication

map Nk ⊗ I⊥2 −→ Nk+2 coming from the right KQ-module structure of N .
Therefore dk+1 ◦ dk vanishes iff Nk · I⊥2 = 0 as desired.

It only remains to see that υ also induces an equivalence !Alfgr = lfgrA!
∼=−→ Lc∗A. That reduces to prove that if X ∈ ModA0 then X is finite di-

mensional iff H(X) = HomA0(A,X) is a finitely cogenerated graded right
A-module. By Lemma 2.8, that follows immediately from the fact that an
object of Inj 0

A is finitely cogenerated in GrA iff it is a direct summand of a
finite direct sum of copies of D(A). �

The following is dual to Corollary 2.6 and we leave the proof as an exercise:

Corollary 2.11. Let Λ = KQ/I be a graded factor of a path algebra. For
M ∈ Gr+Λ and j ∈ Z, the following assertions are equivalent:

1) M is generated in degree j.
2) For every locally finite positively graded algebra A = ⊕n≥0An orthogo-

nal to Λ, the cohomology graded A-module Hk(υA(M)) is cogenerated
in degrees < −k, for all k 6= j.

3) There is a positively graded algebra A orthogonal to Λ satisfying 2).
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3. Koszul dualities and the Yoneda algebra.

All throughout this section, Λ = KQ/I will be a graded factor of a path
algebra and Γ will be its Yoneda algebra. The main goal of this section is
to see that Λ̃ and Γ are orthogonal. A first ingredient for that is the next
straightforward consequence of Theorem 2.4, which is valid for an arbitrary
positively graded algebra.

Corollary 3.1. Let A = ⊕n≥0An be a positively graded algebra with quiver
Q, let D : lfgrKQ −→ KQlfgr be the canonical duality and ι : KQlfgr ↪→

KQGr be the inclusion functor. The composition φ = φA : lfgrKQ
D−→

KQlfgr
ι
↪→ KQGr

ψA−→ GrA[X] is a fully faithful contravariant exact functor

which induces by restriction a duality of categories A! lfgr = lfgr!A

∼=−→ LcA.

Remark 3.2. When restricted to the full subcategories of lower or upper
bounded graded modules, the above duality ‘changes signs’. For instance,
it induces a duality of categories A! lfgr+ ∼= Lc−A.

The following is the main result of this section:

Theorem 3.3. Let Λ = KQ/I be a graded factor of a path algebra and let
Γ = ⊕n≥0Γn be its Yoneda algebra. Then Λ and Γ are orthogonal graded
algebras. In particular, φ = φΓ : KQlfgr = lfgrKQop −→ GrΓ[X] induces a

duality of categories eΛlfgr ∼=−→ LcΓ.

Proof. Let πΛ : KQ −→ Λ and πΓ : KQop −→ Γ the canonical homomor-
phisms, with kernels I and J . We want to prove that I⊥2 = J2. Notice that
πΓ(αo) = α̃ can be identified, via the isomorphism Γ1 = Ext1Λ(Λ0,Λ0)

∼=−→
HomΛ(Λ≥1,Λ0), with the unique Λ-homomorphism α̃ : Λ≥1 −→ Λ0 mapping
an arrow γ onto δαγeo(α), where δαγ is the Kronecker symbol. Our goal is to
interpret the Yoneda product α̃ · β̃ as a Λ-homomorphism Ω2(Λ0) −→ Λ0,
bearing in mind that Γ2 = Ext2Λ(Λ0,Λ0) ∼= HomΛ(Ω2(Λ0),Λ0). First, for
the convenience of the reader, we shall adapt to our terminology a known
explicit description of Ω2(Λ0). Recall that Ω2(Λ0) = Ω1(Λ≥1) is the ker-
nel of the canonical multiplication map µ : Λ ⊗ Λ1 −→ Λ≥1. Suppose ρ is
a homogeneous generating set of the ideal I of relations. We write every
r ∈ ρ as a linear combination

∑
γ∈Q1

rγγ, where rγ ∈ KQeo(γ) is uniquely
determined for every γ ∈ Q1. We claim that Ω2(Λ0) is the Λ-submodule of
Λ⊗Λ1 generated by the set {

∑
γ∈Q1

rγ⊗γ : r ∈ ρ}, where the bar on top of
an element of KQ always means its image by πΛ. Indeed, let {aγ : γ ∈ Q1}
be a family of elements of KQ such that aγ ∈ KQeo(γ) for all γ ∈ Q1 and
µ(

∑
γ∈Q1

aγ ⊗γ) =
∑

γ∈Q1
aγγ = 0 in Λ. Then

∑
γ∈Q1

aγγ ∈ I. This means
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that we have an equality∑
γ∈Q1

aγγ =
∑
r∈ρ

frrgr +
∑
r∈ρ

hrr(∗)

in KQ, where fr, hr ∈ KQ are all zero but finitely many and where gr ∈
KQ≥1, for all r ∈ ρ. We write gr =

∑
γ∈Q1

gr,γγ and r =
∑

γ∈Q1
rγγ,

with gr,γ ∈ KQeo(γ) for every γ ∈ Q1. By substituting in the equality
(∗), we get that

∑
γ∈Q1

aγγ =
∑

γ∈Q1
(
∑

r∈ρ frrgr,γ +
∑

r∈ρ hrrγ)γ in KQ.
From that it follows that aγ =

∑
r∈ρ frrgr,γ +

∑
r∈ρ hrrγ in KQ, which

implies that aγ =
∑

r∈ρ hrrγ in Λ. We then get an equality
∑

γ∈Q1
aγ ⊗ γ =∑

r∈ρ hr(
∑

γ∈Q1
rγ ⊗ γ) in Λ⊗ Λ1 which proves the claim.

Once we have an explicit description of Ω2(Λ0), we are ready for an iden-
tification of α̃ · β̃. We consider the morphism v : Λ ⊗ Λ1 −→ Λ in ΛMod
mapping

∑
γ∈Q1

aγ ⊗ γ onto aαeo(α). Clearly, v(Ω2(Λ0)) ⊆ Λ≥1, so that we
get by restriction a Λ-homomorphism u : Ω2(Λ0) −→ Λ≥1 making commute
the following diagram:

0 −−−→ Ω2(Λ0) −−−→ Λ⊗ Λ1 −−−→ Λ≥1 −−−→ 0yu yv yeα
0 −−−→ Λ≥1 −−−→ Λ −−−→ Λ0 −−−→ 0

where the rows are the obvious exact sequences. Then the Yoneda product

α̃ · β̃ is represented by the composition Ω2(Λ0)
u−→ Λ≥1

eβ−→ Λ0. Take a
generator xr =

∑
γ∈Q1

rγ⊗γ of Ω2(Λ0). When the path βα does not appear
in r, that element is mapped onto zero by α̃ · β̃ = β̃ ◦ u. When βα does
appear in r, it is mapped onto eo(β). That implies that α̃ · β̃ vanishes on
{xr : r ∈ ρ and length(r) > 2}. That is, the action of α̃ · β̃ on Ω2(Λ0) is
completely identified by its action on the K-subspace generated by {xr :
r ∈ ρ and length(r) = 2}, which is a Λ0-submodule of Λ0Ω

2(Λ0) isomorphic
to I2. We then have a restriction map ϕ : Γ2

∼= HomΛ(Ω2(Λ0),Λ0) −→
HomΛ0(I2,Λ0) and our argument says that the kernel J2 of the canonical
map π : KQop

2 −→ Γ2 coincides with the kernel of ϕ ◦ π. But the action
of (ϕ ◦ π)(αoβo) = α̃ · β̃ on I2 is the restriction to I2 of the action of the
morphism (βα)∗ : KQ2 −→ KQ0 in Λ0Mod, which maps βα onto eo(β),
and the remaining paths of length 2 to zero. Hence, via the isomorphism
KQop

2
∼= D(KQ2), we have that J2 is identified with the kernel of the

restriction map D(KQ2) −→ HomΛ0(I2,Λ0), f −→ f|I2 . Therefore J2 = I⊥2
as desired.

The last assertion of the theorem follows now directly from Corollary 3.1.
�
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We now get the following categorical characterization of quadratic alge-
bras:

Corollary 3.4. Let Λ = KQ/I be a graded factor of a path algebra and Γ
be its Yoneda algebra. The following assertions are equivalent:

1) Λ is quadratic;
2) ψA : GrKQ = KQopGr −→ GrA[X] induces by restriction an equiva-

lence of categories GrΛ ∼= LCA (resp. lfgrΛ ∼= LcA), for every (or
some) positively graded algebra A which is orthogonal to Λ;

3) ψΓ : GrKQ = KQopGr −→ GrΓ[X] induces by restriction an equivalence
of categories GrΛ ∼= LCΓ (resp. lfgrΛ ∼= LcΓ);

4) φΓ : KQlfgr = lfgrKQop −→ GrΓ[X] induces by restriction a duality of
categories Λlfgr ∼= LcΓ;

5) υA : GrKQ = KQopGr −→ GrA[X] induces by restriction an equivalence
of categories GrΛ ∼= LC∗A (resp. lfgrΛ ∼= Lc∗A), for every (or some)
locally finite positively graded algebra A which is orthogonal to Λ.

Proof. Λ is quadratic iff Λ = Λ̃ and this is equivalent to say that one (or
all) of the categories GrΛ, lfgrΛ or Λlfgr coincides with the corresponding
category of graded modules over Λ̃, viewed as full subcategories of GrKQ
or KQGr according to the case. Since Λ̃ ∼= A!, for every positively graded
algebra A which is orthogonal to Λ, the result follows directly from Theo-
rems 2.4, 2.10 and 3.3. �

We end this section with an interesting consequence of our theorems.

Corollary 3.5. Let A and B be two quadratically equivalent positively
graded algebras. The following assertions hold:

1) There is an equivalence of categories LCA ∼= LCB (resp. LcA ∼= LcB).
2) When A and B are locally finite, there is an equivalence of categories
LC∗A ∼= LC∗B (resp. Lc∗A ∼= Lc∗B).

3) When A, B are graded factors of path algebras, there is an equivalence
of categories LcΓ ∼= LcΓ′, where Γ and Γ′ are the Yoneda algebras of
A and B, respectively.

Proof. Since Ã ∼= B̃ and A! ∼= B!, the result is a direct consequence of
Theorems 2.4, 2.10 and 3.3. �

4. Some equivalences of derived categories.

Throughout this section, for every abelian category A, Db(A) will be the
full subcategory of its derived category D(A) with objects those isomorphic
(in D(A)) to bounded complexes of objects in A. We follow [17] for the
terminology concerning derived categories. In the sequel, Λ will be a Koszul
algebra with Yoneda algebra Γ ∼= Λ!. Recall from [1] that we have mutually
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inverse equivalences of triangulated categories F : D↓(Λ) −→←− D↑(Γ) : G,
where we adopt the same terminology of [1], but working with right instead
of left graded modules. With that in mind, if M · is an object in D↓(Λ) then
F (M ·) is a complex of graded Γ-modules with F (M ·)p = ⊕i+j=pM i

j⊗Γ[j] =
⊕i+j=pψ(M i)j , where ψ = ψΓ. Conversely if N · is an object in D↑(Γ), then
one has G(N ·)p = ⊕i+j=pυ(N i)j , with υ = υΛ. Moreover, in the particular
case when Λ is finite dimensional and Γ is Noetherian, those equivalences
induce mutually inverse equivalences Db(gr − Λ) ∼= Db(gr − Γ) ([1, Theor.
2.12.6]). Our next result is a slight extension of this. Recall that a positively
graded algebra A = ⊕n≥0An is graded right coherent in case every finitely
generated graded right ideal is finitely presented. In that case, fpgrA is an
abelian category with exact inclusion functor fpgrA −→ GrA.

Proposition 4.1. Let Λ be a Koszul finite dimensional algebra with graded
right coherent Yoneda algebra. The equivalences of categories

F : D↓(Λ) −→←− D↑(Γ) : G

induce by restriction mutually inverse equivalences of triangulated categories
F : Db(grΛ) −→←− Db(fpgrΓ) : G.

Proof. The restriction of F to Gr−Λ , viewed as the full subcategory of D↓(Λ)
consisting of stalk complexes at the 0-position, is just ψΓ. Then F takes the
simple objects of Gr−Λ onto indecomposable projective objects of GrΓ. But
then F and G induce by restriction mutually inverse equivalences between
the triangulated subcategories of D↓(Λ) and D↑(Γ) generated by the simple
objects of GrΛ and the indecomposable projective objects of GrΓ, respec-
tively. Those subcategories are Db(grΛ) and Db(fpgrΓ). The latter is due
to the fact that Γ has finite graded global dimension, because its Yoneda
algebra Λ, is finite-dimensional (cf. [15, Cor., p. 424]). �

We shall consider the full subcategory IΛ of Db(grΛ) whose objects are
the complexes isomorphic (in D↓(Λ)) to bounded complexes of injective
graded Λ-modules. On the other hand, when Γ is right coherent, every
finite-dimensional graded Γ-module is finitely presented, because so are the
simples. We denote by FΓ the full subcategory of Db(fpgrΓ) consisisting (up
to isomorphism in Db(fpgrΓ)) of bounded complexes of finite dimensional
graded Γ-modules.

Corollary 4.2. Let Λ be a finite dimensional Koszul algebra such that its
Yoneda algebra Γ is graded right coherent. The equivalences F : Db(grΛ) −→←−
Db(fpgrΓ) : G induce mutually inverse equivalences of triangulated cate-
gories IΛ ∼= FΓ and Db(grΛ)/IΛ ∼= Db(fpgrΓ)/FΓ.

Proof. The restriction of G to Gr+Γ is υΛ, so that G(Γ0) is the stalk complex
D(Λ) at the 0-position. Then F and G induce mutually inverse equivalences
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between the triangulated subcategories of Db(grΛ) and Db(fpgrΓ) generated
by D(Λ) and Γ0, respectively, and their corresponding Verdier quotients.
Those subcategories are precisely IΛ and FΓ. �

Let A be an abelian category. Recall that a Serre subcategory T of A is a
full subcategory satisfying the property that in every short exact sequence of
A, say 0→ A −→ B −→ C → 0, the central object B belongs to T iff so do
A,C. By [7], we have a quotient abelian categoryA/T and an exact quotient
functor π : A −→ A/T . In case of existence of the respective derived
categories, we have an induced exact functor Dπ : D(A) −→ D(A)/T . The
following is well-known (cf. [13, Theorem 3.2]):

Lemma 4.3. The kernel K of Dπ is the full subcategory with objects the
complexes having cohomology in T and Dπ induces an equivalence of trian-
gulated categories D∗(A)/K ∼= D∗(A/T ), for ∗ = +,−, b.

For every positively graded algebra A = ⊕n≥0An, we shall denote by
LA the full subcategory of GrA consisting of finite dimensional graded A-
modules. Within the derived category D(GrA) we shall consider the full
subcategory FA consisting of bounded complexes of objects of LA. We close
FA under isomorphism in any full subcategory of D(GrA) containing it that
we use in the sequel.

Theorem 4.4. Let A = ⊕n≥0An be a positively graded right coherent alge-
bra such that each ideal A≥s = ⊕n≥sAn is finitely generated on the right,
for every s ≥ 0 (e.g., when A = KQ/I is a right coherent generalized
graded factor of a path algebra). Then all graded right A-modules of fi-
nite length are finitely presented and the canonical quotient functor π :
fpgrA −→ fpgrA/LA induces an exact functor of triangulated categories
Dπ : Db(fpgrA) −→ Db(fpgrA/LA) with kernel FA. In particular, it also
induces an equivalence of triangulated categories

Db(fpgrA)/FA ∼= Db(fpgrA/LA).

Proof. If S = ⊕n∈ZSn is a simple object of GrA, then it is generated
by a homogeneous element, so that S = S≥m, with Sm 6= 0, for some
m ∈ Z. But the chain S · A≥1 ⊆ S≥m+1 ⊂ S≥m = S of inclusions in
GrA and the simplicity of S imply that S · A≥1 = S≥m+1 = 0. Then
S = Sm is a necessarily simple A0-module. This argument also proves
that A≥1 is the graded Jacobson radical of A. In particular, S is a di-
rect summand of A/A≥1

∼= A0 in GrA. Since A/A≥1 is a finitely presented
graded right A-module by hypothesis, we conclude that every simple ob-
ject of GrA, and hence every object of finite length, belongs to fpgrA.
Clearly, LA is then a Serre subcategory of fpgrA and the quotient func-
tor π : fpgrA −→ fpgrA/LA makes sense. Let K be the full subcategory of
Db(fpgrA) with objects the complexes X · having cohomology in LA. Bear-
ing in mind the previous lemma, in order to prove the assertions concerning
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derived categories, we only need to prove the equality K = FA. Since we
clearly have FA ⊆ K , we just need to check the converse inclusion. Let
X · ∈ K , then H∗(X ·) = ⊕i∈ZH

i(X ·) is a (finitely presented) graded A-
module of finite length. Then it is finitely graded, i.e., H∗(X ·)n = 0 for
all but finitely many n ∈ Z. We pick up an interval of integers [k,m] such
that H∗(X ·)n = 0, for all n /∈ [k,m]. Then the complexes X ·

>m and X ·/X ·
≥k

having in their i-th position Xi
>m = ⊕n>mXi

n and Xi/Xi
≥k, respectively, are

acyclic. Notice that our hypothesis on each A≥s guarantees that all these
complexes are complexes of finitely presented graded modules. Now, from
the exact sequences of complexes 0 → X ·

>m −→ X · −→ X ·/X ·
>m → 0 and

0 → X ·
≥k/X

·
>m −→ X ·/X ·

>m −→ X ·/X ·
≥k → 0, we immediately deduce

that X · is isomorphic in Db(fpgrR) to X ·
≥k/X

·
>m. But the fact that A≥s is

finitely generated as a right ideal, for every s ≥ 0, easily implies that each
As has finite length as an A0-module. From that it follows that, for every
finitely presented graded right A-module M , its homogeneous components
Ms are all A0-modules of finite length. In particular, X ·

≥k/X
·
>m is a complex

in FA. Hence K ⊆ FA, and the converse inclusion is clear.
Finally, we clarify the assertion between brackets. If A = KQ/I is a right

coherent generalized graded factor of a path algebra, take d = max{deg(α) :
α ∈ Q1}. If p is a path in Q such that p = p+ I ∈ An, with n > s+ d, then
the decompostion p = qα, with α ∈ Q1, yields that deg(q) ≥ s. By iteration
of this argument, we conclude that A≥s is generated by As ⊕ · · · ⊕ As+d,
which is finite dimensional over K. Therefore A≥s is a finitely generated
graded right ideal of A, for every s ≥ 0. �

If A is a positively graded finite dimensional algebra, we shall denote by
grA the stable category (module injectives) of grA. Its objects are those
of grA and HomgrA

(M,N) = HomgrA(M,N)/I (M,N), for all M,N ∈ grA,
where I (M,N) is the vector subspace of HomgrA(M,N) given by the mor-
phisms which factor through an injective object of grA. The stable category
(modulo projectives) of grA, denoted gr

A
is defined dually. It is well-known

that grA has a structure of suspended category (in the terminology of [12])
or right triangulated category (in the terminology of [3]) whose stabilization
S(grA) is the triangulated category Db(grA)/IA (cf. [2][dual of Theorem
3.8]). We now have:

Corollary 4.5. Let Λ = KQ/I be a finite dimensional Koszul algebra with
graded right coherent Yoneda algebra Γ. There is an equivalence of trian-
gulated categories S(grΛ) ∼= Db(fpgrΓ/LΓ). In particular, when Λ is self-
injective, there is an equivalence of triangulated categories gr

Λ
= grΛ

∼=
Db(fpgrΓ/LΓ).
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Proof. Just apply Corollary 4.2 and Theorem 4.4 and the fact that, when Λ
is selfinjective, gr

Λ
= grΛ is already a triangulated category coincident with

S(grΛ). �

Remark 4.6. When V ⊆ Pn is a projective irreducible variety with coor-
dinate algebra K[V ], Serre’s theorem (see [16], Chap. III) says that the
category coh (V ) of coherent sheaves on V is equivalent to the category
grK[V ]/LK[V ]. Hence, last corollary extends and reproves in a different way
the well-known result of Bernstein, Gelfand and Gelfand (see, e.g., [4] or [9,
Ch. IV, Section 3]) stating that Db(coh (Pn)) is equivalent to gr

Λ
, where Λ

is the exterior algebra of a (n+ 1)-dimensional vector space.
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378 ROBERTO MARTÍNEZ VILLA AND MANUEL SAORÍN
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