GENERALIZED FOCK SPACES AND WEYL COMMUTATION RELATIONS FOR THE DUNKL KERNEL

FETHI SOLTANI
GENERALIZED FOCK SPACES AND WEYL
COMMUTATION RELATIONS FOR THE DUNKL KERNEL

Fethi Soltani

In this paper we study a class of generalized Fock spaces associated with the Dunkl operators. Next we introduce the commutator relations between the Dunkl operators and multiplication operators which lead to a generalized class of Weyl commutation relations for the Dunkl kernel.

1. Introduction.

Fock space (called also Segal-Bargmann space [5]) is the Hilbert space of entire functions of \(\mathbb{C}^d \) with inner product given by

\[
(f, g) := \frac{1}{\pi^d} \int_{\mathbb{C}^d} f(z) \overline{g(z)} e^{-|z|^2} \, dx \, dy, \quad z = x + iy,
\]

where

\[
|z|^2 = \sum_{i=1}^{d} x_i^2 + y_i^2, \quad dx \, dy = \prod_{i=1}^{d} dx_i \, dy_i.
\]

This space which associated with Fock's [12] realization of the creation and annihilation operators of Bose particles is studied by Bargmann [4]. Next, the ordinary Fock space \(\mathcal{A} \) is the subject of many works ([5, 7] and [8]).

In 2001, M. Sifi and F. Soltani [21] introduced a Hilbert space \(\mathcal{A}_\gamma \) of entire functions where the inner product is weighted by a generalized Gaussian distribution. On \(\mathcal{A}_\gamma \) the Dunkl operator on the real line:

\[
T_\gamma(f)(z) := \frac{d}{dz} f(z) + \frac{2\gamma}{z} \left[\frac{f(z) - f(-z)}{2} \right], \quad \gamma > 0,
\]

and the multiplication by \(z \) are adjoints and satisfy the commutation rule

\[
[T_\gamma, z] = I + 2\gamma B, \quad \text{where} \quad Bf(x) = f(-x).
\]

This commutator rule leads to a generalized class of Weyl commutation relations for the Dunkl kernel in the one dimensional.

In this paper we consider the differential-difference operators \(T_j, \ j = 1, \ldots, d \), on \(\mathbb{R}^d \) introduced by C.F. Dunkl in [9] and called Dunkl operators in the literature. These operators are very important in pure Mathematics and in Physics. They provide a useful tool in the study of special functions associated with root systems [10]. They are closely related to certain
representations of degenerated affine Hecke algebras ([6] and [16]). Moreover the commutative algebra generated by these operators has been used in the study of certain exactly solvable models of quantum Mechanics, namely the Calogero-Sutherland-Moser models, which deal with systems of identical particles in the one dimensional space ([2, 3] and [14]).

The Dunkl kernel $E_k(x, y)$ is the unique solution of the initial problem

$$T_j^x u(x, y) = y_j u(x, y); \quad u(0, y) = 1; \quad j = 1, \ldots, d,$$

see [10, 17] and [18]. This kernel has a unique holomorphic extension to $\mathbb{C}^d \times \mathbb{C}^d$. Furthermore, the Dunkl kernel $E_k(z, w); \quad z, w \in \mathbb{C}^d$ can be expanded in a power series in the form

$$E_k(z, w) = \sum_{\nu \in \mathbb{N}^d} \varphi_{\nu}(z)\varphi_{\nu}(w),$$

with some homogeneous orthonormal basis $\{\varphi_{\nu}\}_{\nu \in \mathbb{N}^d}$ of polynomials ([17] and [19]).

We introduce in this paper the generalized Fock space A_k associated with the Dunkl operators. This is a Hilbert space of functions f on \mathbb{C}^d which can be written

$$f(z) = \sum_{\nu \in \mathbb{N}^d} a_{\nu}\varphi_{\nu}(z)$$

with

$$\|f\|_k^2 = (f, f)_k := \sum_{\nu \in \mathbb{N}^d} |a_{\nu}|^2 < \infty.$$

If $f, g \in A_k$, having series expansions $f(z) = \sum_{\nu \in \mathbb{N}^d} a_{\nu}\varphi_{\nu}(z)$ and $g(z) = \sum_{\nu \in \mathbb{N}^d} b_{\nu}\varphi_{\nu}(z)$. Then the inner product is given by the generalized spherical harmonics

$$(f, g)_k = \left(f(T)\tilde{g}\right)(0),$$

where $f(T) = f(T_1, \ldots, T_d)$ and $\tilde{g}(z) = \sum_{\nu \in \mathbb{N}^d} b_{\nu}\varphi_{\nu}(z)$.

The generalized Fock space A_k, has also a reproducing kernel K given by

$$K(z, w) = E_k(z, w); \quad z, w \in \mathbb{C}^d.$$ If $f \in A_k$, then we have

$$f(w) = (f, E_k(\cdot, w))_k, \quad w \in \mathbb{C}^d.$$ Thus the Dunkl kernel serves as the generalized Dirac delta function in A_k.

The associated operators for the generalized Fock space A_k are T_j and the multiplication operator by z_j. They are adjoints in A_k and satisfy a commutation rule:

$$[T_i, z_j] = \delta_{i,j}I + \sum_{\alpha \in R_+} k(\alpha)\alpha_i\alpha_j B_\alpha; \quad i, j = 1, \ldots, d,$$

where B_α a reflection operator, $k(\alpha)$ a multiplicity function and R_+ is a positive root system.

These commutators rule lead to a generalized class of Weyl commutation relations for the Dunkl kernel.

These relations are studied in the classical case ($k = 0$) in [13].
Throughout this paper we shall use the standard multi-index notations. For multi-indices $\nu, s \in \mathbb{N}^d$, we write $|\nu| = \sum_{i=1}^{d} \nu_i$, $\nu! = \prod_{i=1}^{d} \nu_i!$, $(\nu,s) = \prod_{i=1}^{d} (\nu_i s_i)$ as well as $z^\nu = \prod_{i=1}^{d} z_{\nu_i}^i$, $D^\nu = \prod_{i=1}^{d} D_{\nu_i}^i$, for $z = (z_1, \ldots, z_d) \in \mathbb{C}^d$ and any family $D = (D_1, \ldots, D_d)$ of commuting operators. Finally, we will need the partial ordering \leq on \mathbb{N}^d, which is defined by $s \leq \nu \iff s_i \leq \nu_i$, $i = 1, \ldots, d$.

2. Preliminaries.

In this section we collect some notations and results on Dunkl operators and Dunkl kernel that will be important later on. General references here are [9, 17, 18, 19] and [20].

We consider \mathbb{R}^d with the Euclidean scalar $\langle ., . \rangle$ and $|x| = \sqrt{\langle x, x \rangle}$. On \mathbb{C}^d, $|.|$ denotes also the standard Hermitian norm, while $\langle z, w \rangle = \sum_{j=1}^{d} z_j w_j$ and $\ell(z) = \langle z, z \rangle$.

For $\alpha \in \mathbb{R}^d \setminus \{0\}$, let σ_α be the reflection in the hyperplane $H_\alpha \subset \mathbb{R}^d$ orthogonal to α,

$$
\sigma_\alpha x := x - \frac{2\langle \alpha, x \rangle}{|\alpha|^2} \alpha.
$$

A finite set $R \subset \mathbb{R}^d \setminus \{0\}$ is called a root system if $R \cap \mathbb{R} \alpha = \{-\alpha, \alpha\}$ and $\sigma_\alpha R = R$ for all $\alpha \in R$. We assume that it is normalized by $|\alpha|^2 = 2$ for all $\alpha \in R$. For a given root system R the reflections $\sigma_\alpha, \alpha \in R$ generated a finite group $G \subset O(d)$, the reflection group associated with R. All reflections in G correspond to suitable pairs of roots. For a given root system R the reflections $\sigma_\alpha, \alpha \in R$ generated a finite group $G \subset O(d)$, the reflection group associated with R. All reflections in G correspond to suitable pairs of roots. For a given $\beta \in H = \mathbb{R}^d \setminus \bigcup_{\alpha \in R} H_\alpha$, we fix the positive subsystem $R_+ = \{\alpha \in R / \langle \alpha, \beta \rangle > 0\}$, then for each $\alpha \in R$ either $\alpha \in R_+$ or $-\alpha \in R_+$. The connected components of H are called the Weyl chambers of G.

A function $k : R \to \mathbb{C}$ on a root system R is called a multiplicity function if it is invariant under the action of the associated reflection group G. If one regards k as a function on the corresponding reflections, this means that k is constant on the conjugacy classes of reflections in G. For abbreviation, we introduce the index

$$
\gamma = \gamma(k) := \sum_{\alpha \in R_+} k(\alpha).
$$

Moreover, let w_k denotes the weight function:

$$
w_k(x) := \prod_{\alpha \in R_+} |\langle \alpha, x \rangle|^{2k(\alpha)}, \quad x \in \mathbb{R}^d,
$$

which is G-invariant and homogeneous of degree 2γ.
For $d = 1$ and $G = \mathbb{Z}_2$, the multiplicity function k is a simple parameter denoted $\gamma > 0$ and
\[w_k(x) = |x|^{2\gamma}, \quad x \in \mathbb{R}. \]

The Dunkl operators $T_j; j = 1, \ldots, d$, on \mathbb{R}^d associated with the finite reflection group G and multiplicity function k are given for a function f of class C^1 on \mathbb{R}^d, by
\[T_j f(x) := \frac{\partial}{\partial x_j} f(x) + \sum_{\alpha \in \mathbb{R}_+} k(\alpha)\alpha_j \frac{f(x) - f(\sigma_\alpha x)}{\langle \alpha, x \rangle}. \]

In the case $k = 0$, the $T_j; j = 1, \ldots, d$, reduce to the corresponding partial derivatives. In this paper we will assume throughout that $k \geq 0$.

For $y \in \mathbb{R}^d$, the initial problem
\[\begin{cases} T_j x u(x, y) = y_j u(x, y); & j = 1, \ldots, d, \\ u(0, y) = 1, \end{cases} \]
admits a unique analytic solution on \mathbb{R}^d, which will be denoted $E_k(x, y)$ and called the Dunkl kernel ([17, 18, 19] and [20]). This kernel has a unique holomorphic extension to $\mathbb{C}^d \times \mathbb{C}^d$.

Examples.

1) If $k = 0$, then $E_k(z, w) = e^{\langle z, w \rangle}$ for $z, w \in \mathbb{C}^d$. (Recall that $\langle ., . \rangle$ was defined to be bilinear on $\mathbb{C}^d \times \mathbb{C}^d$.)

2) If $d = 1$ and $G = \mathbb{Z}_2$, the Dunkl kernel is given by
\[E_\gamma(z, w) = \Im\frac{1}{z^{\gamma+\frac{1}{2}}} \left(\Im\frac{1}{z^{\gamma-\frac{1}{2}}} + \Im\frac{1}{z^{\gamma+\frac{1}{2}}} \right), \]
where
\[\Im\frac{1}{z^{\gamma+\frac{1}{2}}} = \Gamma\left(\gamma + \frac{1}{2} \right) \sum_{n=0}^{\infty} \frac{1}{n! \Gamma(n + \gamma + \frac{1}{2})} \left(\frac{z w}{2} \right)^{2n}, \]
is the modified Bessel function of order $\gamma - \frac{1}{2}$ [21].

Let $\mathcal{P} = \mathbb{C}[\mathbb{R}^d]$ denotes the \mathbb{C}- Algebra of polynomial functions on \mathbb{R}^d and $\mathcal{P}_n, n \in \mathbb{N}$, the subspace of homogeneous polynomials of degree n. In the context of generalized spherical harmonics, C.F. Dunkl in [9] introduced on \mathcal{P} the following bilinear form:
\[(p, q)_k := \left(p(T)q \right)(0); \quad p, q \in \mathcal{P}. \]

Here $p(T)$ is the operator derived from $p(x)$ by replacing x_i by T_i. A useful collection of its properties can be found in [9] and [17]. We recall that $(., .)_k$ is symmetric, positive-definite and $(p, q)_k = 0$, for $p \in \mathcal{P}_n, q \in \mathcal{P}_m$ with $n \neq m$. Moreover, for all $j = 1, \ldots, d$ and $p, q \in \mathcal{P},$
\[(x_j p, q)_k = (p, T_j q)_k. \]
Let \(\{ \varphi_\nu \}_{\nu \in \mathbb{N}^d} \) be an orthonormal basis of \(P \) with respect to the scalar product \((.,.)_k\) such that \(\varphi_\nu \in P_{|\nu|} \) and the coefficients of the \(\varphi_\nu \) are real. As \(P = \bigoplus_{n \in \mathbb{N}} P_n \) and \(P_n \perp P_m \) for \(n \neq m \), the \(\varphi_\nu \) with \(|\nu| = n \) can for example be constructed by Gram-Schmidt orthogonalization within \(P_n \) from an arbitrary ordered real-coefficients basis of \(P_n \). If \(k = 0 \) the canonical choice of the homogeneous orthonormal basis \(\varphi_\nu \) is just \(\varphi_\nu(x) = \frac{x^\nu}{\sqrt{\nu!}} \).

As in the classical case, M. Rösler obtained in [17, p. 524] the following connection of the basis \(\varphi_\nu \) with the Dunkl kernel:

\[
E_k(z, w) = \sum_{\nu \in \mathbb{N}^d} \varphi_\nu(z) \varphi_\nu(w); \quad z, w \in \mathbb{C}^d,
\]

where the convergence is normal on \(\mathbb{C}^d \times \mathbb{C}^d \).

Example. If \(d = 1 \) and \(G = \mathbb{Z}_2 \) every homogeneous orthonormal basis is of the form

\[
\varphi_n(z) = \frac{z^n}{\sqrt{b_n(\gamma)}}, \quad b_n(\gamma) = \frac{2^n ([n/2]!) \Gamma \left(\frac{n + 1}{2} \right) \Gamma \left(\frac{n + 1 + \gamma}{2} + \frac{1}{2} \right)}{\Gamma(\gamma + 1)}.
\]

Here \([n/2]\) is the integer part of \(n/2 \).

From (2), the Dunkl kernel \(E_k \) possesses the following properties ([17, 19] and [20]): For all \(z, w \in \mathbb{C}^d \) and \(\lambda \in \mathbb{C} \),

\[
E_k(z, w) = E_k(w, z), \quad E_k(\lambda z, w) = E_k(z, \lambda w),
\]

\[
E_k(z, w) = E_k(z, \overline{w}), \quad E_k(z, \overline{z}) = \sum_{\nu \in \mathbb{N}^d} |\varphi_\nu(z)|^2,
\]

\[
|E_k(z, w)| \leq e^{||z||_2}.
\]

In [18], M. Rösler establish the Bochner-type representation of the Dunkl kernel

\[
E_k(x, z) = \int_{\mathbb{R}^d} e^{\langle \xi, z \rangle} d\mu_x(\xi); \quad x \in \mathbb{R}^d, \quad z \in \mathbb{C}^d,
\]

where \(\mu_x \) is a probability measure on \(\mathbb{R}^d \) with support in \(\{ \xi \in \mathbb{R}^d / |\xi| \leq |x| \} \).

The Dunkl kernel \(E_k \) is analytic on \(\mathbb{C}^d \times \mathbb{C}^d \). Therefore, there exist unique analytic functions \(m_\nu, \nu \in \mathbb{N}^d \), on \(\mathbb{C}^d \) with

\[
E_k(z, w) = \sum_{\nu \in \mathbb{N}^d} \frac{m_\nu(z)}{\nu!} w^\nu; \quad z, w \in \mathbb{C}^d.
\]

The restriction of \(m_\nu \) to \(\mathbb{R}^d \) are called the \(\nu \)-th moment functions ([18, 19] and [20]). It is given explicitly by

\[
m_\nu(x) = \int_{\mathbb{R}^d} \xi^\nu d\mu_x(\xi), \quad x \in \mathbb{R}^d,
\]

where \(\mu_x \) is the measure given by (7).
The functions m_ν are homogeneous polynomials of degree $|\nu|$. Among the applications of these moments, we mention the construction of martingales from Dunkl-type Markov processes [19].

In this section we define and study the generalized Fock space for the Dunkl kernel in d-dimensions.

Definition 1. The generalized Fock space A_k associated with the Dunkl operators is the space of holomorphic functions f on \mathbb{C}^d which can be written

$$f(z) = \sum_{\nu \in \mathbb{N}_d} a_\nu \varphi_\nu(z)$$

with

$$\|f\|_k^2 := \sum_{\nu \in \mathbb{N}_d} |a_\nu|^2 < \infty.$$

Hence the inner product in A_k is given for $f(z) = \sum_{\nu \in \mathbb{N}_d} a_\nu \varphi_\nu(z)$ in A_k and $g(z) = \sum_{\nu \in \mathbb{N}_d} b_\nu \varphi_\nu(z) \in A_k$, by

$$(f,g)_k := \sum_{\nu \in \mathbb{N}_d} a_\nu \overline{b_\nu}.$$

Remark. If $k = 0$, A_0 is the ordinary Fock space A [4].

Proposition 1.

i) If $f, g \in A_k$ with $f(z) = \sum_{\nu \in \mathbb{N}_d} a_\nu \varphi_\nu(z)$ and $g(z) = \sum_{\nu \in \mathbb{N}_d} b_\nu \varphi_\nu(z)$, we have

$$(f,g)_k = \left(f(T) \bar{g} \right)(0),$$

where $\bar{g}(z) = \sum_{\nu \in \mathbb{N}_d} \overline{b_\nu} \varphi_\nu(z)$.

ii) If $f \in A_k$ with $f(z) = \sum_{\nu \in \mathbb{N}_d} a_\nu \varphi_\nu(z)$, we have

$$|f(z)| \leq e^{||z||^2/2} \|f\|_k.$$

Proof. i) From [17, p. 529], we have

$$\left(\varphi_\nu(T) \bar{\varphi}_s \right)(0) = \delta_{\nu,s},$$

where $\delta_{\nu,s}$ is the Kronecker symbol.

Thus

$$(f,g)_k = \sum_{\nu,s \in \mathbb{N}_d} a_\nu \overline{b_s} \left(\varphi_\nu(T) \varphi_s \right)(0).$$

Using the continuously of the inner product, we obtain the result.

ii) Using Cauchy-Schwarz’s inequality, then

$$|f(z)|^2 \leq \left[\sum_{\nu \in \mathbb{N}_d} |a_\nu|^2 \right] \left[\sum_{\nu \in \mathbb{N}_d} |\varphi_\nu(z)|^2 \right] = \|f\|^2_k E_k(z, \bar{z}).$$
Thus
\[|f(z)| \leq [E_k(z, z)]^{1/2} \|f\|_k. \]
The result follows from the inequality (6).

From Proposition 1 ii), the map \(f \to f(z), \ z \in \mathbb{C}^d \), is a continuous linear functional on \(A_k \). Thus from Riesz theorem [1], \(A_k \) has a reproducing kernel.

Proposition 2. The function \(K \) given for \(w, z \in \mathbb{C}^d \), by
\[K(z, w) = E_k(z, w), \]
is a reproducing kernel for the generalized Fock spaces \(A_k \), that is:

i) For every \(w \in \mathbb{C}^d \), the function \(z \to K(z, w) \) belongs to \(A_k \).

ii) The reproducing property: For every \(w \in \mathbb{C}^d \) and \(f \in A_k \), we have
\[(f, K(\cdot, w))_k = f(w). \]

Proof. i) Using (5) and (6), we deduce for \(w \in \mathbb{C}^d \),
\[\|E_k(\cdot, w)\|_k^2 = \sum_{\nu \in \mathbb{N}^d} |\varphi_\nu(w)|^2 = E_k(w, w) \leq e^{|w|^2}, \]
which proves i).

ii) If \(f(z) = \sum_{\nu \in \mathbb{N}^d} a_\nu \varphi_\nu(z) \in A_k \), it follows from (9) that
\[(f, E_k(\cdot, w))_k = \sum_{\nu \in \mathbb{N}^d} a_\nu \varphi_\nu(w) = f(w). \]

\[\Box \]

Corollary 1.

i) The set \(\{E_k(\cdot, w), w \in \mathbb{C}^d\} \) is complete in \(A_k \).

ii) For all \(z, w \in \mathbb{C}^d \), we have
\[E_k(z, w) = (E_k(\cdot, z), E_k(\cdot, w))_k. \]

iii) Let \(m \in \mathbb{N}\setminus\{0\} \) and \(z_1, z_2, \ldots, z_m \in \mathbb{C}^d \), with \(z_i \neq z_j \), then
\[\det \left[E_k(z_i, z_j) \right]_{i,j=1}^m > 0. \]

Notation. We denote by \(L^2(\mu_k) \) the Hilbert space of measurable functions on \(\mathbb{R}^d \), for which
\[\|f\|_{2, k} := \left[\int_{\mathbb{R}^d} |f(x)|^2 d\mu_k(x) \right]^{1/2} < \infty. \]

Here \(\mu_k \) is the measure defined on \(\mathbb{R}^d \), by
\[d\mu_k(x) := c_k w_k(x) dx, \]
with \(c_k = \left(\int_{\mathbb{R}^d} e^{-|x|^2} d\mu_k(x) \right)^{-1} \),
is the Mehta-type constant.
In the next part of this section we establish the unitary equivalence of $L^2(\mu_k)$ and A_k. First we recall some properties of the generalized Hermite functions ([17] and [19]):

Definition 2. The generalized Hermite polynomials $\{H_\nu\}_{\nu \in \mathbb{N}^d}$ associated with the basis $\{\varphi_\nu\}_{\nu \in \mathbb{N}^d}$ on \mathbb{C}^d, are given by

$$H_\nu(z) := 2^{\nu} e^{-\frac{1}{4} \Delta_k} \varphi_\nu(z) = 2^{\nu} \sum_{n=0}^{[\nu/2]} (-1)^n \frac{n^n \Delta^n_k \varphi_\nu(z)}{2^{2n} n!},$$

where $\Delta_k = \sum_{i=1}^d T_i^2$ is the Dunkl Laplacian [17].

Moreover, we define the generalized Hermite functions on \mathbb{C}^d, by

$$h_\nu(z) := 2^{-\nu/2} e^{-\frac{1}{2} \ell(z)} H_\nu(z).$$

Examples.

1) If $k = 0$, we obtain

$$H_\nu(x) = \frac{2^{\nu} \prod_{i=1}^d e^{-\frac{1}{4} \partial_i^2} (x_i^{\nu_i})}{\sqrt{\nu!}} \prod_{i=1}^d \tilde{H}_{\nu_i}(x_i), \quad x \in \mathbb{R}^d,$$

where

$$\tilde{H}_{\nu_i} = (-1)^{\nu_i} e^{x_i^2} \frac{\partial^{\nu_i}}{\partial x_i^{\nu_i}} (e^{-x_i^2}).$$

2) If $d = 1$ and $G = \mathbb{Z}_2$, we obtain

$$H_n(z) = \sum_{i=0}^{[n/2]} (-1)^i b_{n-2i}(\gamma) \frac{(2x)^{n-2i}}{i!}, \quad x \in \mathbb{R},$$

where $b_n(\gamma)$ are the constants given by (3).

The following lemma is shown in [17, p. 525-529]:

Lemma 1.

i) The set $\{h_\nu\}_{\nu \in \mathbb{N}^d}$ is an orthonormal basis of $L^2(\mu_k)$.

ii) For all $z, w \in \mathbb{C}^d$, there is a generating function for the generalized Hermite polynomials,

$$e^{-\ell(w)} E_k(2z, w) = \sum_{\nu \in \mathbb{N}^d} h_\nu(z) \varphi_\nu(w).$$

Notation. We denote by U_k the kernel given for $z, w \in \mathbb{C}^d$, by

$$U_k(z, w) := e^{-(\ell(z)+\ell(w))/2} E_k(\sqrt{2}z, w).$$

(10)

Lemma 2. For $w, z \in \mathbb{C}^d$, we have

$$U_k(z, w) = \sum_{\nu \in \mathbb{N}^d} h_\nu(z) \varphi_\nu(w).$$
Proof. From Definition 2, we have
\[\sum_{\nu \in \mathbb{N}^d} h_{\nu}(z)\varphi_{\nu}(w) = e^{-\ell(z)/2} \sum_{\nu \in \mathbb{N}^d} 2^{-|\nu|/2} H_{\nu}(z)\varphi_{\nu}(w). \]
As \(\varphi_{\nu} \) is homogeneous of degree \(|\nu| \), then
\[\varphi_{\nu}\left(\frac{w}{\sqrt{2}}\right) = 2^{-|\nu|/2} \varphi_{\nu}(w). \]
Thus
\[\sum_{\nu \in \mathbb{N}^d} h_{\nu}(z)\varphi_{\nu}(w) = e^{-\ell(z)/2} \sum_{\nu \in \mathbb{N}^d} H_{\nu}(z)\varphi_{\nu}\left(\frac{w}{\sqrt{2}}\right). \]
Applying Lemma 1 ii) and (4), we obtain
\[\sum_{\nu \in \mathbb{N}^d} h_{\nu}(z)\varphi_{\nu}(w) = e^{-\ell(z) + \ell(w)/2} E_k(2z, \frac{w}{\sqrt{2}}) = U_k(z, w). \]
\[\square \]

Lemma 3.

i) For all \(z, w \in \mathbb{C}^d \), we have
\[E_k(z, w) = \int_{\mathbb{R}^d} U_k(z, x)U_k(w, x)d\mu_k(x). \]

ii) For all \(z \in \mathbb{C}^d \), the function \(x \to U_k(z, x) \) belongs to \(L^2(\mu_k) \), and we have
\[\|U_k(z, \cdot)\|_{2,k}^2 = E_k(z, z). \]

iii) For all \(x \in \mathbb{R}^d \), the function \(z \to U_k(z, x) \) belongs to \(A_k \), and we have
\[\|U_k(\cdot, x)\|_{2,k}^2 = e^{-3|x|^2} E_k(2x, x). \]

Proof. i) We put
\[I = \int_{\mathbb{R}^d} U_k(z, x)U_k(w, x)d\mu_k(x). \]
From (10), we have
\[I = e^{-(\ell(z) + \ell(w))/2} \int_{\mathbb{R}^d} e^{-|x|^2/2} E_k(\sqrt{2}z, x)E_k(\sqrt{2}w, x)d\mu_k(x). \]
So from [17, p. 523] and (4), we get
\[\int_{\mathbb{R}^d} e^{-|x|^2/2} E_k(\sqrt{2}z, x)E_k(\sqrt{2}w, x)d\mu_k(x) = e^{(\ell(z) + \ell(w))/2} E_k(z, w), \]
which proves i).

ii) This assertion follows from i) and (5).

iii) For \(z \in \mathbb{C}^d \), we put
\[\phi(z) := e^{-\ell(z)/2}. \]
Let \(x \in \mathbb{R}^d \), then from Proposition 2 ii), (10) and (4), we have
\[
\|U_k(\cdot, x)\|_k^2 = e^{-|x|^2} (\phi(\cdot)E_k(\cdot, \sqrt{2}x), E_k(\cdot, \sqrt{2}x))_k = e^{-3|x|^2} E_k(2x, x).
\]

Definition 3. The chaotic transform \(C_k \) (also called \(S \)-transform in the stochastic calculus [15]) is the transformation defined on \(L^2(\mu_k) \), by
\[
C_k(f)(z) := \int_{\mathbb{R}^d} U_k(z, x)f(x)d\mu_k(x), \quad z \in \mathbb{C}^d.
\]

Remark. The basis elements of \(L^2(\mu_k) \) and \(\mathcal{A}_k \) are called chaos. In the following theorem we shall prove that the transformation \(C_k \) maps the chaos of \(L^2(\mu_k) \) to these of \(\mathcal{A}_k \).

Theorem 1. The chaotic transform \(C_k \) is a unitary mapping of \(L^2(\mu_k) \) on \(\mathcal{A}_k \). Moreover, the basis elements are related by
\[
C_k(h_\nu) = \varphi_\nu.
\]

Proof. It follows directly from Lemma 1 i) and Lemma 2, that for \(\nu \in \mathbb{N}^d \),
\[
C(h_\nu)(z) = \int_{\mathbb{R}^d} U_k(z, x)h_\nu(x)d\mu_k(x) = \varphi_\nu(z), \quad z \in \mathbb{C}^d.
\]

Consequently \(C_k \) maps the subspace generated by the family \(\{h_\nu\}_{\nu \in \mathbb{N}^d} \) into the polynomials in \(\mathcal{A}_k \). Thus \(C_k \) maps a dense set in \(L^2(\mu_k) \) into a dense set in \(\mathcal{A}_k \). Further, if \(f \in L^2(\mu_k) \), then \(f(z) = \sum_{\nu \in \mathbb{N}^d} a_\nu h_\nu(x) \). For \(\nu \in \mathbb{N}^d \), let \(f_N(x) = \sum_{j=0}^{N} |\nu|_j a_\nu h_\nu(x), \quad x \in \mathbb{R} \). Then
\[
C_k(f_N)(z) = \sum_{j=0}^{N} \sum_{|\nu|_j = j} a_\nu \varphi_\nu(z); \quad \lim_{N \to \infty} \|f - f_N\|_{2,k} = 0.
\]

On the other hand, from Hölder’s inequality and Lemma 3 ii), we have
\[
|C_k(f - f_N)(z)| \leq |E_k(z, z)|^{1/2}\|f - f_N\|_{2,k}.
\]

Thus we obtain
\[
C_k(f)(z) = \sum_{\nu \in \mathbb{N}^d} a_\nu \varphi_\nu(z).
\]

Hence
\[
\|C_k(f)\|_k^2 = \sum_{\nu \in \mathbb{N}^d} |a_\nu|^2 = \|f\|_{2,k}^2.
\]

It follows that \(C_k \) is a unitary transformation from \(L^2(\mu_k) \) into \(\mathcal{A}_k \).

Clearly, if \(g(z) = \sum_{\nu \in \mathbb{N}^d} a_\nu \varphi_\nu(z) \in \mathcal{A}_k \), we have
\[
(11) \quad C_k^{-1}(g)(x) = \sum_{\nu \in \mathbb{N}^d} a_\nu h_\nu(x), \quad x \in \mathbb{R}^d.
\]

Which completes the proof. \(\Box \)
Proposition 3. If \(g \in \mathcal{A}_k \), we have
\[
\mathcal{C}^{-1}_k(g)(x) = (g, U_k(\cdot, x))_k, \quad x \in \mathbb{R}^d.
\]

Proof. Let \(g \in \mathcal{A}_k \). We put for \(x \in \mathbb{R}^d \),
\[
\Psi_k(g)(x) = (g, U_k(\cdot, x))_k.
\]
Using Lemma 2, Lemma 3 iii) and the same method as in the proof of Theorem 1 we obtain
\[
\Psi_k(g)(x) = \sum_{\nu \in \mathbb{N}^d} a_\nu h_\nu(x) = \mathcal{C}^{-1}_k(g)(x), \quad x \in \mathbb{R}^d.
\]
\[\square\]

We define the multiplication operators \(Q_i; i = 1, \ldots, d \) on \(\mathcal{A}_k \) by
\[
Q_i f(z) := z_i f(z), \quad z \in \mathbb{C}^d.
\]
We denote also by \(T_i; i = 1, \ldots, d \) the operators defined on \(\mathcal{A}_k \).
Let
\[
\mathcal{D}(Q_i) = \{ f \in \mathcal{A}_k / Q_i(f) \in \mathcal{A}_k \},
\]
\[
\mathcal{D}(T_i) = \{ f \in \mathcal{A}_k / T_i f \in \mathcal{A}_k \}
\]
denote the domains of \(Q_i \) and \(T_i \) respectively.

We denote by \([,]\) the commutator product \([A, B] = AB - BA\). As in [11], we have the following relations:

Lemma 4. The operators \(Q_i \) and \(T_i; i = 1, \ldots, d \) satisfy on \(\mathcal{A}_k \) the commutation relations:
\[
[T_i, T_j] = [Q_i, Q_j] = 0; \quad i, j = 1, \ldots, d,
\]
\[
[T_i, Q_j] = \delta_{i,j} I + \sum_{\alpha \in R_+} k(\alpha) \alpha_i \alpha_j B_\alpha; \quad i, j = 1, \ldots, d,
\]
where \(I \) the identity operator and \(B_\alpha \) is the reflection operator \((B_\alpha^2 = I)\) given by
\[
B_\alpha f(z) = f(\sigma_\alpha z).
\]

Proof. Using the fact that \(\sigma_\alpha^2 = id \) and \(\langle \alpha, \sigma_\alpha z \rangle = -\langle \alpha, z \rangle \), we obtain
\[
T_i T_j f(z) = T_i \left(\frac{\partial}{\partial z_j} f \right)(z) + \sum_{\alpha \in R_+} k(\alpha) \alpha_j \frac{\partial}{\partial z_i} \left(\frac{f(z) - f(\sigma_\alpha z)}{\langle \alpha, z \rangle} \right).
\]
Since
\[
\frac{\partial}{\partial z_i} (f(\sigma_\alpha z)) = \frac{\partial}{\partial z_i} f(\sigma_\alpha z) - \sum_{\ell=1}^d \alpha_i \alpha_\ell \frac{\partial}{\partial z_\ell} f(\sigma_\alpha z),
\]

we have
\[T_i T_j f(z) = -\frac{\partial^2}{\partial z_i \partial z_j} f(z) + T_i \left(\frac{\partial}{\partial z_j} f \right) (z) + T_j \left(\frac{\partial}{\partial z_i} f \right) (z) \]
\[- \sum_{\alpha \in R_+} k(\alpha) \alpha_i \alpha_j \left[\frac{f(z) - f(\sigma_\alpha z)}{(\langle \alpha, z \rangle)^2} - \sum_{\ell=1}^d \alpha_\ell \frac{\partial}{\partial z_\ell} f(\sigma_\alpha z) \right]. \]
Thus
\[[T_i, T_j] f(z) = 0. \]
The other relations are evident. □

Proposition 4. Let
\[f(z) = \sum_{\nu \in \mathbb{N}^d} a_\nu \varphi_\nu(z) \in D(Q_i) \quad \text{and} \quad g(z) = \sum_{\nu \in \mathbb{N}^d} a_\nu \varphi_\nu(z) \in D(T_i), \]
then
\[(Q_i f, g)_k = (f, T_i g)_k. \]

Proof. Applying Proposition 1 i), we get
\[(Q_i f, g)_k = (Q_i f(T)g)(0) = \sum_{\nu, s \in \mathbb{N}^d} a_\nu b_\nu T_i \varphi_\nu(T) \varphi_s(0). \]
Then from (12) we obtain
\[(Q_i f, g)_k = \sum_{\nu, s \in \mathbb{N}^d} a_\nu b_\nu T_i \varphi_\nu(T) \varphi_s(0) = (f, T_i g)_k. \]
□

Lemma 5. If \(f \in A_k \), then \(B_\alpha f \in A_k \), and we have
\[\| Q_i f \|_k^2 = \| T_i f \|_k^2 + \| f \|_k^2 + \sum_{\alpha \in R_+} k(\alpha) \alpha_i^2 (f, B_\alpha f)_k, \]
where \(B_\alpha \) is the operator given by (14).

Proof. Let \(f \in A_k \). Applying the chaotic transform, in view of Theorem 1, it suffices to show that \(C_k^{-1}(B_\alpha f) \in L^2(\mu_k) \). From (11), we have
\[C_k^{-1}(B_\alpha f)(x) = C_k^{-1}(f)(\sigma_\alpha x), \quad x \in \mathbb{R}^d. \]
Putting \(u = \sigma_\alpha x \), we get
\[d\mu_k(x) = |J_\alpha| d\mu_k(u) \quad \text{where} \quad J_\alpha = \det \left[\delta_{i,j} - \alpha_i \alpha_j \right]_{i,j=1}^d. \]
Since \(J_\alpha = -1 \), we obtain
\[\| C_k^{-1}(B_\alpha f) \|_{2,k}^2 = \int_{\mathbb{R}^d} |C_k^{-1}(f)(u)|^2 d\mu_k(u). \]
Which proves that $B_{\alpha} f \in \mathcal{A}_k$.

On the other hand, from Proposition 4, we deduce

$$\|Q_i f\|^2_k = (f, T_i Q_i f)_k.$$

But from (13), we have

$$T_i Q_i f = Q_i T_i f + f + \sum_{\alpha \in \mathbb{R}_+} k(\alpha) \alpha_i^2 B_{\alpha} f.$$

Thus

$$\|Q_i f\|^2_k = (f, T_i Q_i f)_k + \|f\|^2_k + \sum_{\alpha \in \mathbb{R}_+} k(\alpha) \alpha_i^2 (f, B_{\alpha} f)_k.$$

Using another time Proposition 4, we obtain the result. □

Proposition 5. The operators Q_i and T_i are closed densely defined operators on \mathcal{A}_k, and we have

$$\mathcal{D}(Q_i) = \mathcal{D}(T_i); \quad Q_i^* = T_i; \quad T_i^* = Q_i,$$

where Q_i^* and T_i^* are the adjoints operators of Q_i and T_i, respectively.

Proof. These results follow from [4, Theorem 1.2], Lemma 5 and Proposition 4 by using the same method as [21, Proposition 6]. □

Lemma 6. For $\nu \in \mathbb{N}_d \setminus \{0\}$, we have the following relations:

i)

$$[T^\nu, Q_j] = \nu_j T_1^{\nu_1} \cdots T_{i-1}^{\nu_{i-1}} T_i^{\nu_i} T_{i+1}^{\nu_{i+1}} \cdots T_d^{\nu_d}$$

$$+ B_{\alpha} \sum_{i=1}^{d} \sum_{\ell=0}^{\nu_i} \sum_{\alpha \in \mathbb{R}_+} k(\alpha) \alpha_i \alpha_j H_1^{\nu_1} \cdots H_{i-1}^{\nu_{i-1}} H_i^{\nu_i} T_{i+1}^{\nu_{i+1}} \cdots T_d^{\nu_d},$$

where $H_i; \ i = 1, \ldots, d$, are given by the differential-difference operators

$$H_i = -T_i + 2 \frac{\partial}{\partial x_i} - \sum_{\ell=1}^{d} \alpha_i \alpha_\ell \frac{\partial}{\partial x_\ell}.$$

ii)

$$[T_j, Q^\nu] = \nu_j Q_1^{\nu_1} \cdots Q_{i-1}^{\nu_{i-1}} Q_i^{\nu_i} Q_{i+1}^{\nu_{i+1}} \cdots Q_d^{\nu_d}$$

$$+ B_{\alpha} \sum_{i=1}^{d} \sum_{\ell=0}^{\nu_i} \sum_{\alpha \in \mathbb{R}_+} k(\alpha) \alpha_i \alpha_j Z_1^{\nu_1} \cdots Z_{i-1}^{\nu_{i-1}} Z_i^{\nu_i} Z_{i+1}^{\nu_{i+1}} Q_{i+1}^{\nu_{i+1}} \cdots Q_d^{\nu_d},$$

where $Z_i; \ i = 1, \ldots, d$, are the multiplication operators given by

$$Z_i = Q_i - \sum_{\ell=1}^{d} \alpha_i \alpha_\ell Q_\ell.$$
Proof. From (13), we have
\[
[T^\nu_i, Q_j] = \sum_{\ell=0}^{\nu_i-1} T^\ell_i [T_i, Q_j] T^{\nu_i-\ell-1}_i
\]
\[
= \nu_i \delta_{ij} T^\nu_i \quad + \sum_{\ell=0}^{\nu_i-1} k(\alpha) \alpha_i \alpha_j T^\ell_i B_\alpha T^{\nu_i-\ell-1}_i.
\]
From this equality, we get
\[
[T^\nu, Q_j] = \sum_{i=1}^{d} T^\nu_i \ldots T^\nu_{i-1} [T^\nu_i, Q_j] T^\nu_{i+1} \ldots T^\nu_d
\]
\[
= \nu_j T^\nu_1 \ldots T^\nu_{i-1} T^\nu_i \ldots T^\nu_{i+1} T^\nu_{i+1} \ldots T^\nu_d
\]
\[
+ \sum_{\ell=0}^{\nu_i-1} k(\alpha) \alpha_i \alpha_j T^\nu_i \ldots T^\nu_{i-1} T^\nu_i B_\alpha T^{\nu_i-\ell-1}_i T^{\nu_i+1}_{i+1} \ldots T^\nu_d.
\]
But
\[
T^\nu_i B_\alpha = B_\alpha H^\nu_i,
\]
where
\[
H_i = -T_i + 2\frac{\partial}{\partial x_i} - \sum_{\ell=1}^{d} \alpha_i \alpha_\ell \frac{\partial}{\partial x_\ell}.
\]
Thus we obtain Assertion i). And similarly we get ii). \(\square\)

Notation. For \(x \in \mathbb{R}^d\) and \(z \in \mathbb{C}^d\), we denote by
\[
I_k(z, x) := \frac{E_k(z, x) - E_k(z, \sigma_\alpha x)}{\langle \alpha, x \rangle}.
\]
From [17, p. 533], we can write the function \(I_k(z, x)\) in the form
\[
I_k(z, x) = \langle \nabla_x E_k(z, x), \alpha \rangle + \frac{1}{2} \langle \alpha, x \rangle \alpha^t D^2_x E_k(z, \xi) \alpha,
\]
with some \(\xi\) on the line segment between \(x\) and \(\sigma_\alpha x\).
(Here \(\nabla\) and \(D^2 f(x)\) denote the usual gradient and Hessian of \(f\) in \(x\).)

Lemma 7. For \(a, b \in \mathbb{C}^d\), we have the following commutation relations:

i) \([E_k(a, T), Q_j] = a_j E_k(a, T) - R_{k, j}(a, T),\) where
\[
R_{k, j}(a, T) = \sum_{\alpha \in \mathbb{R}^+} k(\alpha) \alpha_j I_k(a, T)
\]
\[
- B_\alpha \sum_{\nu_i \in \mathbb{N}^d} \sum_{i=1}^{d} \sum_{\ell=0}^{\nu_i-1} k(\alpha) \alpha_i \alpha_j \frac{m_\alpha(a)}{\nu!} H^\nu_1 \ldots H^\nu_{i-1}_i H^\nu_i T^{\nu_i-\ell-1}_i T^{\nu_i+1}_{i+1} \ldots T^\nu_d.
\]
ii) \([T_j, E_k(b, Q)] = b_j E_k(b, Q) - S_{k,j}(b, Q) \), where
\[
S_{k,j}(b, Q) = \sum_{\alpha \in R^+} k(\alpha) \alpha_j I_k(b, Q)
- B_\alpha \sum_{\nu \in \mathbb{N}^d} \sum_{i=1}^d \sum_{\ell=0}^{\nu_i-1} k(\alpha) \alpha_i \alpha_j \frac{m_\nu(b)}{\nu!} Z_1^{\nu_1} \cdots Z_{i-1}^{\nu_{i-1}} Z_i^{\nu_i-\ell-1} Q_i^{\nu_{i+1}} \cdots Q_d^{\nu_d}.
\]

Proof. Using (8) and Lemma 6 i), we obtain
\[
[E_k(a, T), Q_j] = \sum_{\nu \in \mathbb{N}^d} \frac{m_\nu(a)}{\nu!} [T^\nu, Q_j]
= \sum_{\nu \in \mathbb{N}^d} \frac{m_\nu(a)}{\nu!} \nu_j T_1^{\nu_1} \cdots T_d^{\nu_d}
+ B_\alpha \sum_{\nu \in \mathbb{N}^d} \sum_{i=1}^d \sum_{\ell=0}^{\nu_i-1} k(\alpha) \alpha_i \alpha_j \frac{m_\nu(a)}{\nu!} H_1^{\nu_1} \cdots H_{i-1}^{\nu_{i-1}} H_i^\ell T_i^{\nu_i-\ell-1} T_{i+1}^{\nu_{i+1}} \cdots T_d^{\nu_d}.
\]

Applying the relation
\[
\frac{\partial}{\partial w_j} E_k(z, w) = z_j E_k(z, w) - \sum_{\alpha \in R^+} k(\alpha) \alpha_j I_k(z, w); \quad z, w \in \mathbb{C}^d,
\]
we obtain
\[
[E_k(a, T), Q_j] = a_j E_k(a, T) - R_{k,j}(a, T).
\]
This proves i). Similarly, we can prove ii). \(\square \)

Remark. If \(d = 1 \) and \(G = \mathbb{Z}_2 \) \([21]\), we have
\[
R_\gamma(a, T_\gamma) = \frac{2\gamma}{2\gamma + 1} a(T_\gamma - I) \mathfrak{Z}_{\gamma+\frac{1}{2}}(aT_\gamma),
\]
\[
S_\gamma(b, Q) = \frac{2\gamma}{2\gamma + 1} b(T_\gamma - I) \mathfrak{Z}_{\gamma+\frac{1}{2}}(bQ),
\]
where \(B f(x) = f(-x) \).

Since \(E_k(a, 0) = 1 \), the Dunkl kernel \(E_k(a, z); a, z \in \mathbb{C}^d \), is a unit in the integral domain formal power series over \(\mathbb{C}^d \). We define
\[
E_k^{-1}(a, z) := \sum_{\nu \in \mathbb{N}^d} \frac{t_\nu(a)}{\nu!} z^\nu.
\]

Writing
\[
E_k(a, z) E_k^{-1}(a, z) = E_k^{-1}(a, z) E_k(a, z) = 1,
\]
we obtain
\[
t_0(a) = 1, \sum_{\nu \in \mathbb{N}^d} \left\{ \sum_{s \leq \nu} \binom{\nu}{s} m_{\nu-s}(a) t_s(a) \right\} \frac{z^{\nu}}{\nu!} = 1.
\]
Thus \(\{t_\nu(a)\}_{\nu \in \mathbb{N}^d}\) is a sequence of moment functions in \(a\) determined by
\[
t_0(a) = 1, \ t_\nu(a) = -\sum_{s \leq \nu-1} \binom{\nu}{s} m_{\nu-s}(a) t_s(a).
\]

The function \(E_k^{-1}(a, z)\) occurs in the generalized Weyl commutation relations for the Dunkl kernel.

Theorem 2. Let \(a, b \in \mathbb{C}^d\), then:

i) \(E_k(b, Q) E_k(a, T) = E_k(a, T) E_k(b, P_a), \ P_a = (P_{a,1}, \ldots, P_{a,d}), \) where
\[
P_{a,j} = Q_j - a_j I + E_k^{-1}(a, T) R_{k,j}(a, T).
\]

ii) \(E_k(a, T) E_k(b, Q) = E_k(b, Q) E_k(a, L_b), \ L_b = (L_{b,1}, \ldots, L_{b,d}), \) where
\[
L_{b,j} = T_j + b_j I - E_k^{-1}(b, Q) S_{k,j}(b, Q).
\]

iii) \(E_k(a, Q) E_k(b, Q) = E_k(a\#b, Q), \ E_k(a, T) E_k(b, T) = E_k(a\#b, T), \)

where \(a\#b\) is the convolution of \(a\) and \(b\) given by
\[
m_\nu(a\#b) = \sum_{s \leq \nu} \binom{\nu}{s} m_s(a)m_{\nu-s}(b).
\]

Proof. We shall prove i), ii) follows in the same way. For \(j = 1, 2, \ldots, d\), we have
\[
E_k^{-1}(a, T) Q_j E_k(a, T) = E_k^{-1}(a, T) \left\{ E_k(a, T) Q_j - [E_k(a, T), Q_j] \right\}.
\]
Using Lemma 7 i), we obtain
\[
E_k^{-1}(a, T) Q_j E_k(a, T) = Q_j - a_j I + E_k^{-1}(a, T) R_{k,j}(a, T).
\]
Thus implies that for \(\nu \in \mathbb{N}^d:\)
\[
E_k^{-1}(a, T) Q^\nu E_k(a, T) = P^\nu_{a,1}, \ P_a = (P_{a,1}, \ldots, P_{a,d}), \)
where
\[
P_{a,j} = Q_j - a_j I + E_k^{-1}(a, T) R_{k,j}(a, T).
\]
Multiplying by \(\frac{m_\nu(b)}{\nu!}\) and summing, we get
\[
E_k^{-1}(a, T) E_k(b, Q) E_k(a, T) = E_k(b, P_a).
\]
Then i) follows upon multiplication by \(E_k(a, T)\).

iii) It suffices to prove the first relation.
Using (8) and (12), we can write
\[
E_k(a, Q)E_k(b, Q) = \sum_{\nu, s \in \mathbb{N}^d} \frac{m_{\nu}(a)m_s(b)}{\nu! s!} Q^{\nu+s}
\]
\[
= \sum_{\nu \in \mathbb{N}^d} \left\{ \sum_{s \leq \nu} \left(\begin{array}{c} \nu \\ s \end{array} \right) m_s(a)m_{\nu-s}(b) \right\} \frac{Q^\nu}{\nu!}
\]
\[
= \sum_{\nu \in \mathbb{N}^d} \frac{m_{\nu}(a\#b)}{\nu!} Q^\nu.
\]
Thus we obtain
\[
E_k(a, Q)E_k(b, Q) = E_k(a\#b, Q).
\]
\[\square\]

Remarks.

1) In the classical case \((k = 0)\) [13, p. 223], the Weyl commutation relations are given by
\[
e^{(a,P)}e^{(b,Q)} = e^{(a,b)}e^{(b,Q)}e^{(a,P)},
\]
\[
e^{(a,P)}e^{(b,P)} = e^{(a+b,P)},
\]
\[
e^{(a,Q)}e^{(b,Q)} = e^{(a+b,Q)},
\]
where \(P = (\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_d})\) and \(Q = (Q_1, \ldots, Q_d)\).

2) If \(d = 1\) and \(G = \mathbb{Z}_2\) [21], the Weyl commutation relations are given by
\[
E_\gamma(bQ)E_\gamma(aT_\gamma) = E_\gamma(aT_\gamma)E_\gamma(bP_a);
\]
\[
E_\gamma(aT_\gamma)E_\gamma(bQ) = E_\gamma(bQ)E_\gamma(aL_b),
\]
where
\[
P_a = Q - aI + \frac{2\gamma}{2\gamma + 1} aE_\gamma^{-1}(aT_\gamma)(I - B)\mathbb{S}_{\alpha+1}(aT_\gamma),
\]
and
\[
L_b = T_\gamma + bI - \frac{2\gamma}{2\gamma + 1} bE_\gamma^{-1}(bQ)(I - B)\mathbb{S}_{\alpha+1}(bQ).
\]

Acknowledgments. It is our pleasure to thank Professor Dr. M. Rössler and Professor M. Voit for their interesting discussions.
References

Received July 25, 2002 and revised June 26, 2003.

Department of Mathematics
Faculty of Sciences of Tunis
University of Tunis-EL Manar
1060 Tunis
Tunisia
E-mail address: Fethi.Soltani@fst.rnu.tn