Vol. 215, No. 1, 2004

Download This Article
Download this article. For Screen
For Printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals

Isaac Pesenson

Abstract

It is shown that eigenvalues of the Laplace–Beltrami operator on a compact Riemannian manifold can be determined as limits of eigenvalues of certain finite-dimensional operators in spaces of polyharmonic functions with singularities. In particular, a bounded set of eigenvalues can be determined using a space of such polyharmonic functions with a fixed set of singularities. It also shown that corresponding eigenfunctions can be reconstructed as uniform limits of the same polyharmonic functions with appropriate fixed set of singularities.

It is shown that eigenvalues of the Laplace–Beltrami operator on a compact Riemannian manifold can be determined as limits of eigenvalues of certain finite-dimensional operators in spaces of polyharmonic functions with singularities. In particular, a bounded set of eigenvalues can be determined using a space of such polyharmonic functions with a fixed set of singularities. It also shown that corresponding eigenfunctions can be reconstructed as uniform limits of the same polyharmonic functions with appropriate fixed set of singularities.

It is shown that eigenvalues of the Laplace–Beltrami operator on a compact Riemannian manifold can be determined as limits of eigenvalues of certain finite-dimensional operators in spaces of polyharmonic functions with singularities. In particular, a bounded set of eigenvalues can be determined using a space of such polyharmonic functions with a fixed set of singularities. It also shown that corresponding eigenfunctions can be reconstructed as uniform limits of the same polyharmonic functions with appropriate fixed set of singularities.

It is shown that eigenvalues of the Laplace–Beltrami operator on a compact Riemannian manifold can be determined as limits of eigenvalues of certain finite-dimensional operators in spaces of polyharmonic functions with singularities. In particular, a bounded set of eigenvalues can be determined using a space of such polyharmonic functions with a fixed set of singularities. It also shown that corresponding eigenfunctions can be reconstructed as uniform limits of the same polyharmonic functions with appropriate fixed set of singularities.

It is shown that eigenvalues of the Laplace–Beltrami operator on a compact Riemannian manifold can be determined as limits of eigenvalues of certain finite-dimensional operators in spaces of polyharmonic functions with singularities. In particular, a bounded set of eigenvalues can be determined using a space of such polyharmonic functions with a fixed set of singularities. It also shown that corresponding eigenfunctions can be reconstructed as uniform limits of the same polyharmonic functions with appropriate fixed set of singularities.

Authors
Isaac Pesenson
Department of Mathematics
Temple University
Philadelphia, PA 19122