Vol. 215, No. 2, 2004

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
On the minimal number of ramified primes in some solvable extensions of

Bernat Plans

Vol. 215 (2004), No. 2, 381–391
Abstract

For each finite solvable group G, there is a minimal positive integer ram(G) (resp. ramt(G)) such that G appears as the Galois group of an extension of (resp. a tamely ramified extension of ) ramified at only ram(G) (resp. ramt(G)) finite primes. We obtain bounds for ram(G) and ramt(G), where G is either a nilpotent group of odd order or a generalized dihedral group.

Milestones
Received: 30 June 2003
Revised: 25 September 2003
Published: 1 June 2004
Authors
Bernat Plans
Dept. de Matemàtica Aplicada I
Universitat Politècnica de Catalunya
Av. Diagonal, 647
08028 Barcelona
Spain