TWO APPLICATIONS OF PREQUANTIZATION IN LAGRANGIAN TOPOLOGY

Jon Wolfson
TWO APPLICATIONS OF PREQUANTIZATION IN LAGRANGIAN TOPOLOGY

Jon Wolfson

The main theorem characterizes the Lagrangian homology classes of a compact symplectic 2n-manifold with integral symplectic form ω. An integral homology n-class α is Lagrangian (i.e., can be represented by a Lagrangian n-cycle) if and only if $\alpha \cap [\omega] = 0$.

1. Introduction

In euclidean space \mathbb{R}^{2n} equipped with the standard symplectic structure $\omega = \sum_i^n dx_i \wedge dy_i$ a Lagrangian submanifold Σ is called exact if the integral of the Liouville form $\lambda = \frac{1}{2} \sum_i^n (x_i \wedge dy_i - y_i \wedge dx_i)$ along any closed path on Σ is zero. It is well-known that a Lagrangian submanifold is exact if and only if it admits a lift to a Legendrian submanifold of the contact manifold \mathbb{R}^{2n+1}. It is interesting that the notion of “exact Lagrangian” can be generalized to symplectic manifolds for which the symplectic form is not an exact form. To do this we use a construction sometimes called prequantization. Suppose that (N, ω) is a compact symplectic manifold with integral symplectic form ω. There is a complex line bundle L over N with unitary connection η and curvature $\omega[K]$. Denote the associated principal S^1-bundle by P. Then (P, η) is a contact manifold. The line bundle L is flat over a Lagrangian submanifold Σ and therefore, locally, Σ admits a Legendrian lift to (P, η). When Σ admits a global lift we call it exact. In this note we utilize the contact manifold (P, η) and the Legendrian lift to prove two results on the topology of Lagrangian submanifolds. Before we describe these results we remark on the integrality assumption. The Chern class of the line bundle L is $[\omega]$ and therefore it is necessary that the symplectic form be integral. However if ω is rational then after multiplying by a suitable scalar the form is integral. Since the property of being Lagrangian is independent of taking scalar multiples we can weaken the integrality assumption on ω to a rationality assumption.

Consider an integral homology class $\alpha \in H_n(N, \mathbb{Z})$ in the symplectic manifold (N, ω). An integral n-cycle is called a Lagrangian cycle if the n-simplices are Lagrangian (more precisely, if the n-simplices are the images of piecewise C^1 Lagrangian maps $\Delta^n \to N$). The class α is a Lagrangian class if α can be represented by a Lagrangian cycle. Note that if C is a Lagrangian
Let N be a compact symplectic manifold of dimension $2n$ with an integral symplectic form ω. An integral homology class $\alpha \in H_n(N, \mathbb{Z})$ is a Lagrangian class if and only if $\alpha \cap [\omega] = 0$.

When $n = 2$ the condition (1.1) becomes $[\omega](\alpha) = 0$. In [S-W] it is shown that this condition implies that α is a Lagrangian class. When $n = 3$ and N is simply connected (1.1) is satisfied for any class α. In [W2] it is shown that in this case every class is Lagrangian. In fact, every class can be represented by a Lagrangian immersion.

Next let Σ be a minimal submanifold of S^{2n-1} that is Legendrian for the standard contact structure on S^{2n-1}. It is easy to see that the image of Σ under the Hopf map is a minimal, Lagrangian submanifold Σ of $\mathbb{C}P^{n-1}$. Conversely, we show:

Theorem 1.2. Let Σ be a minimal, Lagrangian submanifold in $\mathbb{C}P^{n-1}$. Then Σ lifts to a minimal Legendrian submanifold $\Sigma \subset S^{2n-1}$.

The local version of the theorem is elementary. The global version follows from a consideration of the holonomy of the complex line bundle L described above. We remark that the tangent cone of an isolated special Lagrangian singularity is the cone on a minimal Legendrian submanifold of S^{2n-1} and therefore this theorem has some application to such singularities.

2. Lagrangian homology

Let N be a compact symplectic manifold of dimension $2n$ equipped with an integral symplectic form ω. Adopting the notation of the introduction we let (P, η) be the contact manifold such that $d\eta = \omega$. In particular $\pi : P \to N$ is an S^1 bundle with Chern class $[\omega]$.

Proposition 2.1. Let $\alpha \in H_n(N, \mathbb{Z})$. There is a class $\tilde{\alpha} \in H_n(P, \mathbb{Z})$ such that $\pi_*(\tilde{\alpha}) = \alpha$ if and only if $\alpha \cap [\omega] = 0$.

Proof. If $\pi_*(\tilde{\alpha}) = \alpha$ then

$$\alpha \cap [\omega] = \pi_*(\tilde{\alpha}) \cap [\omega] = \pi_*([\tilde{\alpha}] \cap \pi^*[\omega]) = \pi_*([\tilde{\alpha}] \cap [d\eta]) = 0.$$

Conversely, consider the Thom–Gysin sequence [S] of the S^1-bundle $\pi : P \to N$:

$$\cdots \to H_n(P; \mathbb{Z}) \xrightarrow{\pi_*} H_n(N; \mathbb{Z}) \xrightarrow{\Phi} H_{n-2}(N; \mathbb{Z}) \to \cdots,$$
where for $z \in H_n(N; \mathbb{Z}), \Phi(z) = z \cap [\omega]$. By assumption $\Phi(\alpha) = 0$ and therefore there exists $\tilde{\alpha} \in H_n(P; \mathbb{Z})$ such that $\pi_*(\tilde{\alpha}) = \alpha$. \hfill \Box

The next proposition uses successive applications of a horizontal extension lemma due to Gromov [G, 3.5]. Let V be a compact contact $2n+1$-manifold and S be an open k-simplex. A piecewise C^1 map $h : S \to V$ is called \textit{horizontal} if the image of the tangent space of S lies in the contact plane at each point. Suppose W is a simplicial k-complex with $k \leq n$ and $W_0 \subset W$ is a subcomplex. Let $f_0 : W_0 \to V$ be a piecewise C^1 horizontal map and suppose that there is continuous extension $g : W \to V$ of f_0. Then there is a piecewise C^1 horizontal extension $f : W \to V$ of f_0 that is homotopic to g.

\textbf{Proposition 2.2.} Any homology class in $H_n(P; \mathbb{Z})$ can be represented by a horizontal n-cycle.

\textit{Proof.} Let $b \in H_n(P; \mathbb{Z})$ and suppose B is a simplicial cycle that represents b. Suppose that B is sufficiently fine so that the 0 and 1 simplices have the following property: If v_0^i and v_2^i are vertices such that there is a 1-simplex s^1 in B joining them then there is a horizontal 1-simplex σ^1 joining v_0^i and v_2^i that is C^0 close to s^1. In particular there is a homotopy joining s^1 and σ^1. Use this property to construct a horizontal 1-cycle approximating the 1-simplices of B (and with the same 0-simplices as B). Consider a 2-simplex t^2 of B with 1-simplices s^1_i, $i = 1, 2, 3$ such that $\partial t^2 = s^1_1 - s^1_2 + s^1_3$. To each simplex s^1_i there is a corresponding horizontal simplex σ^1_i. The homotopies between s^1_i and σ^1_i and the 2-simplex t^2 show that the cycle $\sigma^1_1 - \sigma^1_2 + \sigma^1_3$ has a continuous extension and therefore by the horizontal extension lemma there is a horizontal 2-simplex τ^2 with $\partial \tau^2 = \sigma^1_1 - \sigma^1_2 + \sigma^1_3$. Moreover τ^2 is homotopic to t^2 and the homotopy can be taken to extend with the homotopies between s^1_i and σ^1_i. Carrying out this construction for each 2-simplex of B there is a horizontal 2-cycle approximating the 2-simplices of B. Successively apply this construction to the 3-simplices, the 4-simplices, \ldots, the n-simplices to construct a horizontal n-cycle Λ that is homotopic to B. The image of the homotopy determines an $(n+1)$-chain C with $B - \Lambda = \partial C$, proving the proposition. \hfill \Box

The following proposition and Proposition 2.1 together prove Theorem 1.1.

\textbf{Proposition 2.3.} Suppose that (N, ω) is a compact symplectic $2n$-manifold with integral symplectic form ω. If $\alpha \in H_n(N; \mathbb{Z})$ has a lift $\tilde{\alpha} \in H_n(P; \mathbb{Z})$ then α is a Lagrangian class.

\textit{Proof.} By Proposition 2.2 there is a Legendrian cycle Λ that represents $\tilde{\alpha}$. Then $\pi(\Lambda)$ is a Lagrangian cycle representing α. \hfill \Box
Remark. The above proof shows that under the hypothesis of Theorem 1.1 a homology class \(\alpha \) satisfying \(\alpha \cap [\omega] = 0 \) can be represented by a Lagrangian cycle that lifts to a Legendrian cycle in \((P, \eta)\).

As an application of Theorem 1.1 we prove:

Theorem 2.4. Let \((N, \omega)\) be a compact symplectic \(2n\)-manifold with integral symplectic form \(\omega\). Suppose that \(\alpha \in H_n(N; \mathbb{Z})\) satisfies \(\alpha \cap [\omega] = 0\). Then \(\alpha\) can be represented by a Lagrangian integral current \(T\) that minimizes mass (volume) among all Lagrangian \(n\)-cycles representing \(\alpha\).

Proof. By Theorem 1.1 the set of Lagrangian integral currents \(S\) with \(\partial S = \emptyset\) representing \(\alpha\) is nonempty. A mass minimizing sequence of such currents converges in the weak topology to a current \(T\) with \(\partial T = \emptyset\). It follows easily that \(T\) is Lagrangian. Since convergence in the weak topology is equivalent to convergence in the flat norm topology it follows from [F-F] that \(T\) is an integral current that represents \([\alpha]\). Thus

\[\|T\| = \inf_{\{S \in IL : [S] = \alpha\}} \|S\|, \]

where \(IL\) denotes the set of Lagrangian integral currents. \(\square\)

3. Lagrangian cones

Suppose that \(M\) is a special Lagrangian submanifold with an isolated singularity at \(p \in M\) in the Calabi–Yau manifold \(N\). Let \(C_p\) denote the tangent cone of \(p\). Then \(C_p\) is a special Lagrangian cone in \(\mathbb{C}^n\). Denote the link \(C_p \cap S^{2n-1}\) by \(\Sigma\). Then \(\Sigma\) is an imbedded Legendrian \(n-1\)-submanifold for the standard contact structure on \(S^{2n-1}\) and, in addition, \(\Sigma\) is a minimal submanifold of \(S^{2n-1}\). Let \(h : S^{2n-1} \to \mathbb{C}P^{n-1}\) be the Hopf map. Equivalently, let \(L \to \mathbb{C}P^{n-1}\) be the tautological bundle so that the total space of the associated \(S^1\) bundle is \(S^{2n-1}\). Then the bundle projection is the Hopf map. Denote the image of \(\Sigma\) under the bundle projection by \(\Sigma\). It is easy to verify that \(\Sigma\) is a minimal, Lagrangian submanifold in \(\mathbb{C}P^{n-1}\). This (well-known) construction thus associates a minimal Lagrangian submanifold of \(\mathbb{C}P^{n-1}\) to an isolated singularity in a special Lagrangian submanifold. The converse is given in the statement of Theorem 1.2. It follows from Theorem 1.2 that isolated special Lagrangian singularities are classified by minimal, Lagrangian submanifolds of \(\mathbb{C}P^{n-1}\).

The proof of the theorem proceeds as follows: Consider \(\mathbb{C}P^{n-1}\) equipped with the Fubini-Study metric and Kähler form \(\omega\). Note that \(\omega\) is integral. The tautological line bundle \(L\) over \(\mathbb{C}P^{n-1}\) has a unitary connection \(\eta\) with curvature \(\omega\). The total space of the associated \(S^1\) principal bundle is \(S^{2n-1}\) and \((S^{2n-1}, \eta)\) is a contact manifold over \((\mathbb{C}P^{n-1}, \omega)\). Consider a smooth Lagrangian immersion \(\iota : \Lambda \to \mathbb{C}P^{n-1}\). Locally \(\iota\) has a Legendrian lift to \(S^{2n-1}\). To determine when this lift is global note that the pulled-back
connection $i^*\eta$ of i^*L is flat. Thus there is a homomorphism (the holonomy homomorphism):

$$\text{Hol}(i^*\eta) : H_1(\Sigma, \mathbb{Z}) \to S^1.$$

Proposition 3.1. i lifts to a Legendrian immersion if and only if the values of $\text{Hol}(i^*\eta)$ are integral.

Suppose next instead of the line bundle L, we consider the canonical line bundle K with connection τ induced by the metric and with curvature $\text{Ric} = R\omega$. As above if $i : \Lambda \to \mathbb{C}P^{n-1}$ is a smooth Lagrangian immersion (not necessarily minimal) then the pulled-back connection $i^*\tau$ of i^*K is flat and i lifts to a Legendrian immersion if and only if the values of the holonomy homomorphism of $i^*\tau$ are integral. On $i(\Lambda)$ the mean curvature 1-form $\sigma_H = H \omega$ is closed since $\mathbb{C}P^{n-1}$ is Kähler–Einstein.

Proposition 3.2. Let γ be a closed curve on Λ. Then

$$\text{Hol}_\gamma(i^*\tau) = \exp\left(-2\pi i \int_\gamma \sigma_H\right).$$

Proof. See [W1].

Proof of Theorem 1.2. Note that Σ lifts locally to a minimal Legendrian submanifold of S^{2n-1}. The issue is the existence of a global lift. Because Σ is minimal the periods of σ_H vanish. Since $K = L^n$ and $\tau = n\eta$, it follows from Proposition 3.2 that the holonomy of η is integral. Therefore by Proposition 3.1 there is a global Legendrian lift.

References

Received August 22, 2003. The author was partially supported by NSF grant DMS-0304587.

Department of Mathematics
Michigan State University
East Lansing, MI 48824
E-mail address: wolfson@math.msu.edu