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Córdoba–Fefferman collections are defined and used to char-
acterize functions whose corresponding maximal functions are
locally integrable. Córdoba–Fefferman collections are also
used to show that, if Mx and My respectively denote the
one-dimensional Hardy–Littlewood maximal operators in the
horizontal and vertical directions in R2, MHL denotes the
standard Hardy–Littlewood maximal operator in R2, and f
is a measurable function supported in the unit square Q =
[0, 1] × [0, 1], then

∫
Q

MHLf ∼
∫

Q
Mxf +

∫
Q

Myf .

We begin by introducing the following definition:

Definition 1. Let β be a countable collection of Lebesgue measurable sub-
sets of the unit n-cube In in Rn of positive measure. A (possibly finite)
subset {Ri} of β is said to be a Córdoba–Fefferman collection with respect
to β (denoted by {Ri} ∈ CFC(β)) if and only if there exists an enumeration
R̃1, R̃2, R̃3, . . . of the elements of {Ri} such that

∣∣R̃i∩
⋃

j<i R̃j

∣∣ ≤ 1
2 |R̃i| for

each i = 2, 3, 4, . . . .

A. Córdoba and R. Fefferman used what we are now calling Córdoba–
Fefferman collections in [1] to characterize geometric maximal operators
that are of weak type (p, p) for p > 1. The purpose of this paper is to
show that Córdoba–Fefferman collections may also be used to estimate the
integrals of maximal functions. The primary result in this regard is the
following:

Theorem 2. Let β be a countable collection of Lebesgue measurable subsets
of the unit n-cube In in Rn of positive measure. Let β be such that for any
point x in In, x ∈ R for some R ∈ β. Define the maximal operator Mβ on
L1(In) by

Mβf(x) = sup
x∈R∈β

1
|R|

∫
R
|f(y)| dy.(1)

Suppose Mβ satisfies the (Tauberian) condition∣∣{x ∈ In : MβχE(x) ≥ 1
2

}∣∣ ≤ Cβ|E|(2)
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for all measurable sets E ⊂ In. Then if f ∈ L1 (In),∫
In

Mβf ∼ sup
{Ri}∈CFC(β)

∫
In

|f |
∑

i

χRi .(3)

In particular,
1
2

sup
{Ri}∈CFC(β)

∫
In

|f |
∑

i

χRi ≤
∫

In

Mβf

≤ 4 Cβ sup
{Ri}∈CFC(β)

∫
In

|f |
∑

i

χRi .

Proof. We assume without loss of generality that f ∈ L∞ (In), f 6≡ 0. We
begin by showing∫

In

Mβf ≤ 4 Cβ sup
{Ri}∈CFC(β)

∫
In

|f |
∑

i

χRi .

Let ε > 0. It suffices to show there exists {Ri} ∈ CFC(β) such that

4 Cβ

∫
In

|f |
∑

i

χRi ≥
∫

In

Mβf − ε.

Let m be a positive integer such that

0 ≤
∫
{x∈In:Mβf(x)>2m}

Mβf <
ε

3
.

Let R1, R2, R3, . . . be an enumeration of the elements of β. Let R1,1 be the
first element on the list of the Ri such that

1
|R1,1|

∫
R1,1

|f | > 2m.

Assuming R1,1, R1,2, . . . , R1,k have been chosen, let R1,k+1 be the first ele-
ment on the list of the Ri such that∣∣∣R1,k+1 ∩

⋃k
i=1 R1,i

∣∣∣ ≤ 1
2 |R1,k+1|

and
1

|R1,k+1|

∫
R1,k+1

|f | > 2m.

(If such an element of β does not exist, we stop the selection procedure at
this point.) In this manner, a (possibly finite) sequence R1,1, R1,2, . . . is
attained.

Let j1 be an integer such that∣∣∣⋃j1
i=1 R1,i

∣∣∣ > 1
2

∣∣∣⋃∞
i=1 R1,i

∣∣∣.
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We renumerate β (allowing for multiple counting of individual elements) as

R1,1, R1,2, . . . , R1,j1 , R1, R2, R3, . . . .(∗2)

Now let R2,1 = R1,1. Let R2,2 be the first element on the list (∗2) such
that |R2,2 ∩R2,1| ≤ 1

2 |R2,2| and

1
|R2,2|

∫
R2,2

|f | > 2m−1.

Assuming R2,1, R2,2, . . . , R2,k have been selected, let R2,k+1 be the first
element on the list (∗2) such that∣∣∣R2,k+1 ∩

⋃k
i=1 R2,i

∣∣∣ ≤ 1
2 |R2,k+1|

and
1

|R2,k+1|

∫
R2,k+1

|f | > 2m−1.

In this manner the sequence R2,1, R2,2, . . . is generated.
Let j2 ≥ j1 be an integer such that∣∣∣⋃j2

i=1 R2,i

∣∣∣ > 1
2

∣∣∣⋃∞
i=1 R2,i

∣∣∣.
Note that R1,1 = R2,1, R1,2 = R2,2, . . . , R1,j1 = R2,j1 .

We continue inductively. Assume that Rn,1, Rn,2, . . . , Rn,jn have been
selected. We renumerate β as

Rn,1, Rn,2, . . . , Rn,jn , R1, R2, R3, . . . .(∗n+1)

Let Rn+1,1 = Rn,1. Let Rn+1,2 be the first element on the list (∗n+1) such
that |Rn+1,2 ∩Rn+1,1| ≤ 1

2 |Rn+1,2| and

1
|Rn+1,2|

∫
Rn+1,2

|f | > 2m−n.

Assuming Rn+1,1, . . . , Rn+1,k have been selected, let Rn+1,k+1 be the first
element on the list (∗n+1) such that∣∣∣Rn+1,k+1 ∩

⋃k
i=1 Rn+1,i

∣∣∣ ≤ 1
2 |Rn+1,k+1|

and
1

|Rn+1,k+1|

∫
Rn+1,k+1

|f | > 2m−n.

In this manner, a sequence Rn+1,1, Rn+1,2, . . . is selected. Let jn+1 ≥ jn

be an integer such that∣∣∣⋃jn+1

i=1 Rn+1,i

∣∣∣ > 1
2

∣∣∣⋃∞
i=1 Rn+1,i

∣∣∣.
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Note that Rn,1 = Rn+1,1, Rn,2 = Rn+1,2, . . . , Rn,jn = Rn+1,jn . This is
clear, as Rn,1, Rn,2, . . . , Rn,jn are the first jn elements of β chosen in the
procedure for selecting the Rn+1,i.

We now relate
∣∣⋃jn+1

i=1 Rn+1,i

∣∣ to |{x ∈ In : Mβf(x) > 2m−n}|. Suppose
for some p ∈ In that Mβf(p) > 2m−n. Then 1

|R|
∫
R |f | > 2m−n for some

R ∈ β. Then
∣∣R ∩

⋃∞
i=1 Rn+1,i

∣∣ ≥ 1
2 |R|. Hence

Mβ

(
χS∞

i=1 Rn+1,i

)
(p) ≥ 1

2 .

Since ∣∣{x ∈ In : MβχE(x) ≥ 1
2

}∣∣ ≤ Cβ|E|

for all measurable sets E ⊂ In, we see that

∣∣{x ∈ In : Mβf(x) > 2m−n
}∣∣ ≤ Cβ

∣∣∣⋃∞
i=1 Rn+1,i

∣∣∣ ≤ 2 Cβ

∣∣∣⋃jn+1

i=1 Rn+1,i

∣∣∣ .

(4)

We now let l be a positive integer such that 2m−l < ε/3. Then∣∣∣∣∣
∫
{x∈In:2m−l<Mβf(x)<2m}

Mβf −
∫

In

Mβf

∣∣∣∣∣ <
2ε

3
.

We now compare
∫
{x∈In:2m−l<Mβf(x)<2m}Mβf to

∫
In |f |

∑jl+1

i=1 χRl+1,i
. Set

λ(α) =
∣∣{x ∈ In : Mβf(x) > α

}∣∣,
µ(α) =

∣∣∣∣{x ∈ In : |f(x)| ·
jl+1∑
i=1

χRl+1,i
(x) > α

}∣∣∣∣,
ω(α) =

∣∣∣∣{x ∈ In :
jl+1∑
i=1

(
1

|Rl+1,i|

∫
Rl+1,i

|f |
)
· χRl+1,i

(x) > α

}∣∣∣∣.
Suppose 2m−l ≤ α ≤ 2m. Let r be the largest integer such that 2r ≤ α.

Clearly m− l ≤ r ≤ m. Now

Rl+1,1 = Rm−r+1,1, Rl+1,2 = Rm−r+1,2, . . . , Rl+1,jm−r+1 = Rm−r+1, jm−r+1 .

Also, by (4) we have

λ(2r) ≤ 2 Cβ

∣∣∣⋃jm−r+1

i=1 Rm−r+1,i

∣∣∣ .

Since
1

|Rm−r+1,i|

∫
Rm−r+1,i

|f | > 2r for i = 1, 2, . . . , jm−r+1,
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we get λ(2r) ≤ 2 Cβ ω(2r). Hence λ(α) ≤ 2 Cβ ω
(

α
2

)
for 2m−l ≤ α ≤ 2m. So∫

{x∈In:2m−l<Mβf(x)<2m}
Mβf ≤

∫ 2m

2m−l

λ(α) dα +
ε

3

≤ 2 Cβ

∫ 2m

2m−l

ω
(α

2

)
dα +

ε

3

≤ 4 Cβ

∫ ∞

0
ω(α) dα +

ε

3

= 4Cβ

∫ ∞

0
µ(α) dα +

ε

3

= 4Cβ

∫
In

|f | ·
jl+1∑
i=1

χRl+1,i
+

ε

3
.

Hence ∫
In

Mβf ≤ 4 Cβ

∫
In

|f |
jl+1∑
i=1

χRl+1,i
+ ε.

As ε is an arbitrary positive real number and {R`+1,i} ∈ CFC(β), we see
that ∫

In

Mβf ≤ 4 Cβ sup
{Ri}∈CFC(β)

∫
In

|f |
∑

i

χRi ,

as desired.
We now show that∫

In

Mβf ≥ 1
2

sup
{Ri}∈CFC(β)

∫
In

|f |
∑

i

χRi .

Let {Ri} ∈ CFC(β). Without loss of generality, we assume∣∣∣Ri ∩
(⋃i−1

j=1 Rj

)∣∣∣ ≤ 1
2 |Ri| for i = 2, 3, . . . .

It suffices to show that∫
In

Mβf ≥ 1
2

∫
In

|f | ·
∑

i

χRi .

Let E1 = R1 and Ek = Rk\
⋃k−1

i=1 Ri for k = 2, 3, . . . . Let

Tf(x) =
∑

k

(
1
|Rk|

∫
Rk

|f(y)| dy

)
χEk

(x).
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Clearly Tf(x) ≤ Mβf(x). Also,∫
In

Tf =
∫

In

∑
k

(
1
|Rk|

∫
Rk

|f(y)| dy

)
χEk

(x) dx

=
∑

k

∫
In

(
1
|Rk|

∫
Rk

|f(y)| dy

)
χEk

(x) dx

≥ 1
2

∑
k

∫
In

(
1
|Rk|

∫
Rk

|f(y)| dy

)
χRk

(x) dx

(since |Ek| ≥ 1
2 |Rk|)

=
1
2

∑
k

∫
Rk

|f(y)| dy

=
1
2

∫
In

|f |
∑

k

χRk
.

So ∫
In

|f |
∑

i

χRi ≤ 2
∫

In

Mβf,

as desired. �

To illustrate the role of the Tauberian condition in the above theorem,
we consider the following example:

For 0 < δ < 1
10 , define βδ by

βδ =
{
A ⊂ [0, 1] : A = [0, δ] ∪ [x, x + δ2] for some x ∈ [0, 1− δ2]

}
.

Note that Cβδ
& δ−1, since Mβδ

(χ[0,δ])(x) > 1
2 for all x ∈ [0, 1]. If {Ri} ∈

CFC (βδ), then {Ri} has only one element, say R1 = [0, δ] ∪ [x, x+δ2] for
some x ∈ [0, 1−δ2]. So ∫ 1

0
χ[0,1] · χR1 ≤ 2δ.

However, ∫ 1

0
Mβδ

χ[0,1] = 1.

Note that although the ratio of∫ 1

0
Mβδ

χ[0,1] to sup
{Ri}∈CFC(βδ)

∫
Q

χ[0,1] ·
∑

i

χRi

may be arbitrarily large (depending on the value of δ), the ratio is still
bounded by 4Cβδ

.

Before indicating applications of the preceding theorem, we list some basic
definitions.
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Definition 3 (Hardy–Littlewood maximal function). Let f be a measur-
able function defined on Rn. Let B(p, r) denote the Euclidean ball of radius
r in Rn centered at p, and let |B(p, r)| denote the Lebesgue measure of
B(p, r). The Hardy–Littlewood maximal function of f is defined on Rn by

MHLf(p) = sup
r>0

1
|B(p, r)|

∫
B(p,r)

|f(z)| dz.(5)

Definition 4 (Strong maximal function). Let f be a measurable function
defined on R2. The strong maximal function of f is defined on R2 by

MSf(x, y) = sup
x1<x<x2
y1<y<y2

1
(x2 − x1)(y2 − y1)

∫ x2

x1

∫ y2

y1

|f(u, v)| dv du.(6)

Definition 5 (Horizontal maximal function). Let f be a measurable func-
tion defined on R2. The horizontal maximal function of f is defined on R2

by

Mxf(u, v) = sup
u1<u<u2

1
u2 − u1

∫ u2

u1

|f(w, v)| dw.(7)

Definition 6 (Vertical maximal function). Let f be a measurable function
defined on R2. The vertical maximal function of f is defined on R2 by

Myf(u, v) = sup
v1<v<v2

1
v2 − v1

∫ v2

v1

|f(u, w)| dw.(8)

We now turn to one of the most useful applications of Córdoba–Fefferman
collection theory. In this discussion we will denote the unit square I2 in
R2 by Q. Also, if a given maximal operator Mβ is naturally associated
to a collection β, as, say, MS is associated to the set of rectangles with
sides parallel to the axes, we will frequently denote the Córdoba–Fefferman
collection CFC(β) by CFC(Mβ).

Suppose we are given the maximal operators Mα, Mβ, and Mγ , all of
which satisfy the desired Tauberian condition. Suppose also we want to
show that

∫
Q Mαf .

∫
Q Mβf +

∫
Q Mγf for some measurable function f

supported on Q. One strategy for doing this would be to show that, given
an arbitrary collection {Ai} ∈ CFC(Mα), one can produce {Bi} ∈ CFC(Mβ)
and {Ci} ∈ CFC(Mγ) such that∑

i

χAi(p) .
∑

i

χBi(p) +
∑

i

χCi(p)

for almost every p in Q. Theorem 2 would then yield the desired re-
sult. The primary difficulty in applying this strategy is that the produc-
tion of the {Bi} ∈ CFC(Mβ) and {Ci} ∈ CFC(Mγ) can be a compli-
cated matter and in some situations may not be possible. However, in
many cases one can modify this strategy by using the geometry of f to
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choose a particular {Ai} ∈ CFC(Mα) in such a manner that not only∫
Q Mαf ∼

∫
Q |f |

∑
i χAi , but also the production of the {Bi} ∈ CFC(Mβ)

and {Ci} ∈ CFC(Mγ) can follow in a geometrically intuitive fashion. Ac-
tually proving that

∫
Q Mαf ∼

∫
Q |f |

∑
i χAi often requires a duplication of

large parts of the proof of Theorem 2 in the special case determined by
the geometry of f and the desired properties of the collection {Ai}. We
illustrate these ideas in the proof of the following lemma:

Lemma 7. Let f be a nonnegative measurable function supported on Q such
that f (x1, y1) ≥ f (x2, y2) whenever 0 ≤ x1 ≤ x2, 0 ≤ y1 ≤ y2. Then∫

Q
MHLf ≤ C

( ∫
Q

Mxf +
∫

Q
Myf

)
.

for some universal constant C.

Proof. Since MHL and the operators Mx, My are bounded on L2(Q), we
may assume without loss of generality that f is smooth. Hence without loss
of generality we may assume f ∈ L∞(Q). Let m be the largest integer such
that 2m ≤ ‖f‖L∞(Q). Let

E(2m−j+1) = {x ∈ Q : MHLf(x) > 2m−j+1}.

For each positive integer j and to each p ∈ E(2m−j+1) associate a square
Qp,m−j+1 containing p such that

1
|Qp,m−j+1|

∫
Qp,m−j+1

f > 2m−j+1

and such that one of the edges of Qp,m−j+1 is contained in one of the co-
ordinate axes. Note that such a square exists, since f is nonincreasing in
each variable separately. Now associate to Qp,m−j+1 a dyadic subsquare
Q′

p,m−j+1 contained in Qp,m−j+1 which has an edge contained in one of the
coordinate axes, such that |Q′

p,m−j+1| ≥ 1
16 |Qp,m−j+1|, and such that no

dyadic subsquare of Qp,m−j+1 of the same size contains a point closer to the
origin than any point of Q′

p,m−j+1.
If Q′

p,m−j+1 intersects the origin, let Q′′
p,m−j+1 be Q′

p,m−j+1. Otherwise,
let Q′′

p,m−j+1 be the dyadic square with the same area as Q′
p,m−j+1 such

that Q′′
p,m−j+1 and Q′

p,m−j+1 share an edge, Q′′
p,m−j+1 has an edge con-

tained in one of the coordinate axes, and such that Q′′
p,m−j+1 contains a

point q which is closer to the origin than any point of Q′
p,m−j+1. Note that

1
|Q′′

p,m−j+1|

∫
Q′′p,m−j+1

f > 2m−j+1.(9)

Let 16Q′′
p,m−j+1 be the square concentric to Q′′

p,m−j+1 whose sides are
parallel to the axes and whose volume is 162 times that of Q′′

p,m−j+1. Note
that Qp,m−j+1 ⊂ 16Q′′

p,m−j+1.
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For each positive integer j, let Q1,m−j+1, Q2,m−j+1, . . . enumerate the
squares in

{
Q′′

p,m−j+1 : p ∈ E(2m−j+1)
}

that are not properly contained
in any of the other squares in

{
Q′′

p,m−j+1 : p ∈ E(2m−j+1)
}
. Since the

Qi,m−j+1 are dyadic, the interiors of the squares Q1,m−j+1, Q2,m−j+1, . . .
are disjoint. Also ∣∣∣⋃∞

i=1 Qi,m−j+1

∣∣∣ ≥ 2−8|E(2m−j+1)|,(10)

since E(2m−j+1) ⊂
⋃∞

i=1 16Qi,m−j+1. Also, by (9), each Qi,m−j+1 satisfies

1
|Qi,m−j+1|

∫
Qi,m−j+1

f > 2m−j+1.(11)

For each positive integer j, let ρm−j+1 be a positive integer such that∣∣∣⋃ρm−j+1

i=1 Qi,m−j+1

∣∣∣ ≥ 1
2

∣∣∣⋃∞
i=1 Qi,m−j+1

∣∣∣.(12)

We now form the following sequence of dyadic squares: let Q1 = Q1,m,
Q2 = Q2,m, . . . , Qρm = Qρm,m, Qρm+1 = Q1,m−1, Qρm+2 = Q2,m−1, . . . ,
Qρm+ρm−1 = Qρm−1,m−1, Qρm+ρm−1+1 = Q1,m−2, . . . .

Let now Q̃1 = Q1. Let Q̃2 be the first Q on the list Q1, Q2, Q3, . . . such
that |Q ∩ Q̃1| ≤ 1

2 |Q|. Assuming Q̃1, . . . , Q̃k have been chosen, let Q̃k+1 be
the first Q on the list Q1, Q2, Q3, . . . such that

∣∣Q ∩
⋃k

i=1 Q̃i

∣∣ ≤ 1
2 |Q|. In

this manner the sequence {Q̃i} is generated.
Now, let j1 ≤ j2 ≤ j3 ≤ . . . be such that Q ∈ {Q̃1, Q̃2, . . . , Q̃jk

} implies
(1/|Q|)

∫
Q |f | > 2m−k+1 and

∣∣∣⋃jk
i=1 Q̃i

∣∣∣ ≥ 1
4

∣∣∣⋃∞
i=1 Qi,m−k+1

∣∣∣.
This is possible via (12) and the selection rule for the Q̃i.

Note that (10) implies∣∣∣⋃jk
i=1 Q̃i

∣∣∣ ≥ 1
4 · 2

−8
∣∣E(2m−k+1)

∣∣.(13)

Pick ε > 0. Let ` > 1 be an integer such that 2m−`+1 < ε. Then∣∣∣∣∫
{x∈Q:2m−`+1<MHLf(x)<2m+1}

MHLf −
∫

Q
MHLf

∣∣∣∣ < ε.
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We compare
∫
{x∈Q:2m−`+1<MHLf(x)<2m+1}MHLf to

∫
Q f

∑j`
i=1 χ eQi

. Let

λ(α) =
∣∣{x ∈ Q : MHLf(x) > α}

∣∣,
µ(α) =

∣∣∣∣{x ∈ Q : f(x)
j∑̀

i=1

χ eQi
(x) > α

}∣∣∣∣,
ω(α) =

∣∣∣∣{x ∈ Q :
j∑̀

i=1

(
1

|Q̃i|

∫
eQi

f

)
χ eQi

(x) > α

}∣∣∣∣.
Now, suppose 2m−`+1 ≤ α < 2m+1. Let r be the largest integer such that

2r ≤ α. Hence m−`+1 ≤ r ≤ m. By (13) and the remarks preceding (13) we
see that λ(2r) ≤ 4·28ω(2r). Hence λ(α) ≤ 210ω

(
α
2

)
for 2m−`+1 ≤ α < 2m+1.

So∫
{x∈Q:2m−`+1<MHLf(x)<2m+1}

MHLf

≤
∫ 2m+1

2m−`+1

λ(α) dα + ε ≤ 210

∫ 2m+1

2m−`+1

ω
(α

2

)
dα + ε ≤ 211

∫ ∞

0
ω(α) dα + ε

= 211

∫ ∞

0
µ(α) dα + ε = 211

∫
Q

f

( j∑̀
i=1

χ eQi

)
+ ε.

Hence ∫
Q

MHLf ≤ 211

∫
Q

f

( j∑̀
i=1

χ eQi

)
+ 2ε.(14)

For i = 1, 2 we generate a finite sequence {Q̃i,j} as follows: Let Q̃i,1 be
the first square Q on the list Q̃1, Q̃2, . . . , Q̃j`

which contains an element
whose i-th component is 0 (i.e. there is an element p = (p1, p2) ∈ Q with
pi = 0.) For each positive integer j, let Q̃i,j be the j-th square on the list
with this property (if such a square exists). Since each of the Q̃i intersect
one of the coordinate axes, each cube Q̃i will be an element in at least one of
the two sequences. Suppose now that for each i = 1, 2 the sequence {Q̃i,j}
has qi squares. Then by (14),∫

Q
MHLf ≤ 211

∫
Q

f

( q1∑
i=1

χ eQ1,i
+

q2∑
i=1

χ eQ2,i

)
+ 2ε.(15)

For i = 1, 2 and each positive integer j, define Ri,j as the collection of
R ⊆ Q such that R is a rectangle with sides parallel to the axes, one of the
edges of R with smallest length is parallel to the line xi = 0, and one of the
edges of R with smallest length has length 2−j . For example, an element of
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R1,3 would be the rectangle with corners at the points
(
0, 1

8

)
,
(
0, 1

4

)
,
(

1
2 , 1

8

)
,

and
(

1
2 , 1

4

)
. Define the maximal operators Mi,j by

Mi,jf(x) = sup
x∈R∈Ri,j

1
|R|

∫
R
|f(y)| dy.(16)

Since f ∈ C∞(Q), it is clear that

lim
j→∞

∫
Q

M1,jf =
∫

Q
Mxf and lim

j→∞

∫
Q

M2,jf =
∫

Q
Myf.

For convenience, we will frequently denote Mx by M1 and My by M2. Hence
the equalities above become

lim
j→∞

∫
Q

Mi,jf =
∫

Q
Mif.

It follows that there exists an integer, designated by j0, such that∣∣∣∣∫
Q

Mi,j0f −
∫

Q
Mif

∣∣∣∣ <
ε

213
for i = 1, 2.(17)

We assume without loss of generality that

2−j0 ≤ inf
{
|Q̃1|1/2, |Q̃2|1/2, . . . , |Q̃j`

|1/2
}
.

We now show that for each i = 1, 2,∫
Q

f

qi∑
j=1

χ eQi,j
≤ 2

∫
Q

Mi,j0f.

Let R̃i,j,1, . . . , R̃i,j,2j0 | eQi,j |1/2 be the 2j0 |Q̃i,j |1/2 disjoint rectangles in Ri,j0

of equal area whose union is Q̃i,j . Let γij = 2j0 |Q̃i,j |1/2. For i = 1, 2, let
R̃i,1 = R̃i,1,1, R̃i,2 = R̃i,1,2 , . . . , R̃i,γi1 = R̃i,1,γi1 , R̃i,γi1+1 = R̃i,2,1, . . . ,
R̃i,γi1+γi2 = R̃i,2,γi2 , R̃i,γi1+γi2+1 = R̃i,3,1, . . . , R̃i,γi1+···+γiqi

= R̃i,qi,γiqi
.

Since for i = 1, 2 the squares Q̃i,j for j = 1, . . . , qi are all dyadic and
intersect the line {xi = 0}, the selection rule for the Q̃k yields∣∣∣R̃i,j ∩

⋃j−1
k=1 R̃i,k

∣∣∣ ≤ 1
2 |R̃i,j |(18)

for j = 2, 3, . . . , γi1 + · · ·+ γiqi .
Let γi = γi1 + · · · + γiqi . Now, (18) implies that {Ri,1, Ri,2, . . . , Ri,γi} ∈

CFC (Ri,j0). Hence Theorem 2 tells us that∫
Q
|f |

γi∑
j=1

χ eRi,j
≤ 2

∫
Q

Mi,j0f.(19)
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Now by the construction of the R̃i,j it is clear that
γi∑

j=1

χ eRi,j
=

qi∑
j=1

χ eQi,j
.(20)

(19) and (20) then yield∫
Q
|f |

qi∑
j=1

χ eQi,j
≤ 2

∫
Q

Mi,j0f.(21)

(15), (17), and (21) yield∫
Q

MHLf ≤ 212

(∫
Q

M1f +
∫

Q
M2f

)
+ 3ε.(22)

As ε is arbitrarily small, we see that∫
Q

MHLf ≤ C

(∫
Q

M1f +
∫

Q
M2f

)
(23)

for some universal constant C, completing the proof. �

The preceding lemma and the following rearrangement result will en-
able us to prove that if f is a measurable function supported on Q, then∫
Q MHLf ∼

∫
Q Mxf +

∫
Q Myf .

Lemma 8. Let f be a nonnegative measurable function supported on Q.
Let f̃ be the function supported on Q which is nonincreasing in x (i.e.,
f̃ (x1, y) ≥ f̃ (x2, y) whenever 0 ≤ x1 ≤ x2 ≤ 1, 0 ≤ y ≤ 1) and such that,
for each y ∈ [0, 1], f̃( · , y) and f( · , y) are equidistributed. Then∫

Q
Myf̃ ≤ c

∫
Q

Myf,

where c is a universal constant.

Proof. Let α > 0. Let λ(α) =
∣∣{(u, v) ∈ Q : Myf(u, v) > α}

∣∣. Define λ̃(α)
similarly. It suffices to show that λ̃(α) ≤ 400 λ (α/64).

Without loss of generality, assume f is smooth on Q. Take the Calderón–
Zygmund decomposition of f with respect to α on each vertical segment in
{s× [0, 1], s ∈ [0, 1]} of Q, yielding for each x ∈ [0, 1] disjoint sets Qx,j,α ⊆
[0, 1] such that

α <
1

|Qx,j,α|

∫
Qx,j,α

f(x, z) dz ≤ 2α.

(In the case that
∫ 1
0 f(x, z) dz > 2α, set Qx,1,α = [0, 1].) Note that f(p) ≤ α

for almost every p in the complement of⋃
x∈[0,1]
j∈Z+

(x×Qx,j,α) .
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For f̃ one may produce the associated sets Q̃x,j,α in a similar fashion.
Let Eα =

{
(x, y) ∈ Q : y ∈

⋃
x∈[0,1], j∈Z+

Qx,j,α

}
. Define Ẽα similarly.

It suffices to show that |Ẽ4α| ≤ 2|Eα|. Now, it is easily seen that if g

is a measurable function supported on [0, 1], g ≥ 0,
∫ 1
0 g ≤ 2α, λHL(α) =∣∣{x ∈ [0, 1] : MHLg(x) > α}

∣∣, and EHL,α =
⋃

Qj,α, where the Qj,α are the
intervals obtained by taking the Calderón–Zygmund decomposition of g with
respect to α, then |EHL,α| ≤ λHL(α/2) ≤ 200|EHL,α/8|. From this we readily
conclude that |Ẽ4α| ≤ 2|Eα| implies λ̃(α) ≤ 200|Ẽα/8| ≤ 400 |Eα/32| ≤
400 λ(α/64). Hence λ̃(α) ≤ 400 λ(α/64), as desired.

To show that |Ẽ4α| ≤ 2|Eα| we proceed as follows. First consider the
special case in which

∫ 1
0 f(x, y) dy ≤ α for any x ∈ [0, 1]. Having taken the

Calderón–Zygmund decomposition of f with respect to α described above,
we have the disjoint sets Qx,j,α ⊂ [0, 1] for each x ∈ [0, 1] and the associated
set Eα. Now, f(p) ≤ α for almost every p in the complement of Eα. So if
S is a measurable subset of Q and |S| > 2|Eα|, then

∫
S f ≤ 2α|S|. Now let

φ : Q → Q be a measure-preserving bijection such that f̃(φ(p)) = f(p) for
any p ∈ Q. Using φ we see that |Ẽ4α| ≤ 2|Eα|. Otherwise, if |Ẽ4α| > 2|Eα|,
we would have

1

|Ẽ4α|

∫
eE4α

f̃ =
1

|Ẽ4α|

∫
φ−1( eE4α)

f ≤ 2α

by the above; but the left-hand side is greater than 4α by the construction
of Ẽ4α. So |Ẽ4α| ≤ 2|Eα| if

∫ 1
0 f(x, y) dy ≤ α for all x ∈ [0, 1].

Now we let f be an arbitrary nonnegative smooth function on Q. Without
loss of generality assume there exists c ∈ (0, 1) such that

∫ 1
0 f(x, y) dy > α

if x < c, and
∫ 1
0 f(x, y) dy ≤ α if x ≥ c. Form the Calderón–Zygmund

decomposition of f with respect to α as before, obtaining the Qx,j,α and Eα.
Note that Qx,1,α = [0, 1] if x < c.

For each y ∈ [0, 1] we define the functions fy(x) on [0, 1] by fy(x) =
f(x, y). We construct a function f ′y(x) on [0, 1] equidistributed to fy(x)
such that f ′y (x2) ≤ f ′y (x1) if x2 ≥ c ≥ x1 and f ′y(x) ≤ fy(x) if x ≥ c as
follows:

Let By =
{
x ∈ [0, c) : fy(x) < f̃y(c)

}
.

Let Ay ⊂
{
x ∈ [c, 1] : fy(x) ≥ f̃y(c)

}
be such that the measure of its

interior is equal to |By|. Let A◦
y and B◦

y denote the interiors of Ay and By,
respectively. Let φy : A◦

y → B◦
y be a measure-preserving bijection such that∣∣{b ∈ B◦

y : b < φy(x)}
∣∣ =

∣∣{a ∈ A◦
y : a < x}

∣∣ if x ∈ A◦
y. Define f ′y(x) by

f ′y(x) =


fy(x) if x /∈ A◦

y ∪B◦
y ,

fy

(
φ−1

y (x)
)

if x ∈ B◦
y ,

fy (φy(x)) if x ∈ A◦
y.
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Note that f ′y(x)≤fy(x) if x>c. Define a function f ′ on Q by f ′(x, y)=f ′y(x).
Form the Calderón–Zygmund decomposition of f ′ with respect to α as above,
obtaining the associated sets Q′

x,j,α, E′
α. Note that Eα ⊇ E′

α, so without
loss of generality we may assume f = f ′. Hence, without loss of generality,
f (x1, y) ≥ f (x2, y) if 0 ≤ x1 < c ≤ x2 ≤ 1, and

∫ 1
0 f(x, y) dy > α if and

only if x < c.
Let f1 = f χ[0≤x<c], f2 = f χ[c≤x≤1]. So f = f1 + f2. Let f̃1 be a

rearrangement of f1 such that, for each y ∈ [0, 1], f1( · , y) and f̃1( · , y)
are equidistributed and f̃1(x, y) is nonincreasing in x. Define f̃2 to be the
rearrangement of f2 within

{
Q ∩ {(x, y) : c ≤ x ≤ 1}

}
such that, for each

y ∈ [0, 1], the functions f2( · , y) and f̃2( · , y) are equidistributed and such
that f̃2(x, y) is nonincreasing in x in {x : c ≤ x ≤ 1}. Now f̃ = f̃1 + f̃2. Let

E1,α =
⋃

x∈[0,c)
j∈Z+

(x×Qx,j,α) , E2,α =
⋃

x∈[c,1]
j∈Z+

(x×Qx,j,α) .

Define Ẽ1,α and Ẽ2,α similarly. Note that |Ẽ1,4α| ≤ 2|E1,α| trivially (since
Qx,1,α = [0, 1] if x < c) and |Ẽ2,4α| ≤ 2|E2,α| by the special case argument,
since

∫ 1
0 f(x, y) dy ≤ α for x ≥ c. Since |Eα| = |E1,α| + |E2,α| and |Ẽα| =

|Ẽ1,α|+ |Ẽ2,α|, we see that |Ẽ4α| ≤ 2|Eα|, as desired. �

Theorem 9. Suppose f is a measurable function supported on Q. Then

c

∫
Q

MHLf ≤
∫

Q
Mxf +

∫
Q

Myf ≤ C

∫
Q

MHLf(24)

for universal constants 0 < c, C < ∞.

Proof. From [4] we see that
∫
Q Mxf .

∫
Q MHLf and

∫
Q Myf .

∫
Q MHLf .

Hence it suffices to show that
∫
Q MHLf .

∫
Q Mxf +

∫
Q Myf . We may

assume without loss of generality that f is nonnegative. Let f̃(x, y) be
the function supported on Q which is nonincreasing in x and such that
f̃( · , y) and f( · , y) are equidistributed for each y ∈ [0, 1]. Let f∗(x, y) be the
function supported on Q which is nonincreasing in y and such that f∗(x, · )
and f̃(x, · ) are equidistributed for each x ∈ [0, 1]. Note that f∗ (x1, y1) ≥
f∗ (x2, y2) whenever 0 ≤ x1 ≤ x2 ≤ 1, 0 ≤ y1 ≤ y2 ≤ 1. As

∫
Q MHLf∗ ∼∫

Q MHLf ,
∫
Q Myf

∗ ∼
∫
Q Myf̃ , and

∫
Q Mxf̃ ∼

∫
Q Mxf by Stein’s L log L
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result [5], we see that∫
Q

MHLf ∼
∫

Q
MHLf∗

.
∫

Q
Mxf∗ +

∫
Q

Myf
∗ (Lemma 7)

.
∫

Q
Mxf̃ +

∫
Q

Myf̃ (Lemma 8)

.
∫

Q
Mxf +

∫
Q

Myf (Lemma 8),

as desired. �

Building upon these ideas, more sophisticated applications of Córdoba–
Fefferman collections are used collectively in [2] and [3] to prove that if f is
a function supported on Q such that

∫
Q MyMxf < ∞ but

∫
Q MxMyf = ∞,

there exists a set A of finite measure in R2 such that
∫
A MSf = ∞.
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