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We investigate flat surfaces in hyperbolic 3-space with ad-
missible singularities, called flat fronts. An Osserman-type
inequality for complete flat fronts is shown. When equality
holds in this inequality, we show that all the ends are embed-
ded, and give new examples for which equality holds.

Introduction

It is a classical fact that any complete flat surface in the hyperbolic 3-
space H3 must be a horosphere or a hyperbolic cylinder. However, this
does not imply the lack of an interesting global theory for flat surfaces.
Recently, Gálvez, Mart́ınez and Milán [4] established a Weierstrass-type
representation formula for such surfaces. More recently, the authors [7]
proved another representation formula constructing a flat surface from a
given pair of hyperbolic Gauss maps, and also gave new examples.

In this paper, we investigate global properties of flat surfaces with admis-
sible singularities, accounting for all the previous examples in [4] and [7].
(A singular (i.e., degenerate) point is called admissible if the corresponding
points on nearby parallel surfaces are regularly immersed. See Section 2.)
Such surfaces are characterized as the projections of Legendrian immersions
in the unit cotangent bundle T ∗1 H3 of H3, called flat fronts. The 5-manifold
T ∗1 H3 has the canonical contact form η. If we identify H3 with the Poincaré
ball (D3;x1, x2, x3), any element α of the cotangent bundle T ∗H3 can be
written as

α = p1(α) dx1 + p2(α) dx2 + p3(α) dx3 (∈ T ∗H3).

Then (p1, p2, p3, x
1, x2, x3) gives a canonical coordinate system of T ∗H3 and

the canonical form on T ∗H3,

η = p1 dx1 + p2 dx2 + p3 dx3,

which induces a canonical contact form on T ∗1 H3. An immersion L : M2 →
T ∗1 H3 is called Legendrian if the pullback L∗η vanishes identically. For a
given immersion f : M2 → H3, there exists a unique Legendrian immersion

Lf : M2 −→ T ∗1 H3
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Figure 1. Hyperbolic Gauss maps.

such that π ◦ Lf = f , where π : T ∗1 H3 → H3 is the projection. That is, any
immersion can be lifted to a Legendrian immersion. However, the converse
is not true. A projection

π ◦ L : M2 −→ H3

of a Legendrian immersion L is called a (wave) front , which may have sin-
gular points (points where the Jacobi matrix degenerates.) A point which
is not singular is called regular , where the first fundamental form is positive
definite. The Gaussian curvature is well-defined at regular points. A front
is called flat if the Gaussian curvature vanishes at each regular point.

A front f is called complete if there is a symmetric tensor T on M2 which
has compact support such that T + ds2 is a complete Riemannian metric
on M2, where ds2 is the first fundamental form of f . If M2 is orientable,
M2 can be regarded as a Riemann surface whose complex structure is com-
patible with respect to the pullback of the Sasakian metric on T ∗1 H3 by Lf .
Moreover, the second fundamental form is Hermitian with respect to this
structure, and there is a closed Riemann surface M2 such that M2 is biholo-
morphic to M2 \ {p1, . . . , pn}. The points p1, . . . , pn are called the ends of
f .

For each point p ∈ M2, there exists a pair (G(p), G∗(p)) ∈ S2 × S2 of
distinct points on the ideal boundary S2 = ∂H3 such that the geodesic in
H3 starting from G∗(p) towards G(p) coincides with the oriented normal
geodesic at p (see Figure 1). The maps

G, G∗ : M2 \ {p1, . . . , pn} −→ S2

are called the positive and negative hyperbolic Gauss maps of f , respectively.
They are holomorphic if we regard S2 = ∂H3 as the Riemann sphere. An
end pj is called regular if both G and G∗ extend holomorphically across
it. As we shall show later, there are many flat fronts with regular ends.
Moreover, such surfaces satisfy the following global property:
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Theorem. An orientable complete flat front f : M2 \ {p1, . . . , pn} → H3

with regular ends satisfies the inequality

deg G + deg G∗ ≥ n,

where deg G is the degree of the holomorphic map G : M2 → CP1 = S2.
Equality holds if and only if all ends are embedded.

This inequality is an analogue of the Osserman inequality

2 deg G + χ
(
M2 \ {p1, . . . , pn}

)
≥ n,

which holds for the Gauss map G of either a complete minimal surface
f : M2 \ {p1, . . . , pn} → R3 with finite total curvature, or a surface f : M2 \
{p1, . . . , pn} → H3 of mean curvature 1. In these two cases, as in ours,
equality implies the embeddedness of ends. (See [8, 5] for the minimal
surface case and [12] for the hyperbolic case.)

To prove that equality implies the ends are embedded, a criterion for
embeddedness of ends given in [4] will be applied. Furthermore, we shall
classify flat 3-noids and exhibit a genus-1 flat front with regular ends (Sec-
tion 4).

On the other hand, since the pullback of the Sasakian metric dσ2 by
the Legendrian lift of a complete flat front f is complete, it satisfies the
Cohn-Vossen inequality

1
2π

∫
M2

(−Kdσ2) dAdσ2 ≥ −χ(M2),(0.1)

where dAdσ2 is the area element of dσ2 and χ(M2) is the Euler number of
M2. In Section 3, we shall prove that equality holds if and only if all ends
are asymptotic to a hyperbolic cylinder.

Note that flat hypersurfaces in Hn (n ≥ 4) are totally umbilic. So n = 3
is the interesting case.

The authors are very grateful to P. Pirola and E. Musso for fruitful dis-
cussions. The authors also thank the referee for his valuable comments.

1. Local properties of flat surfaces

In this section, we review local properties of flat immersions. We denote by
H3 the hyperbolic 3-space of constant curvature −1. Let M2 be a 2-manifold
and

f : M2 −→ H3

a flat immersion, meaning that the Gaussian curvature of the induced metric
vanishes. It follows from the Gauss equation that the second fundamental
form is positive or negative definite and thus M2 is orientable. We fix an
orientation of M2. Then M2 can be regarded as a Riemann surface such



152 M. KOKUBU, M. UMEHARA AND K. YAMADA

that the second fundamental form dh2 is Hermitian. A holomorphic map or
immersion

E =
(

A B
C D

)
: M2 −→ SL(2,C)

is called a Legendrian curve or immersion if

D dA−B dC = 0.(1.1)

Indeed, (1.1) implies the vanishing of the pullback of a holomorphic contact
form on SL(2,C). As is shown in [4], there exists a holomorphic Legendrian
immersion

Ef : M̃2 −→ SL(2,C)

defined on the universal cover M̃2 of M2 such that f is the projection of Ef

onto H3 = SL(2,C)/ SU(2). Ef is called a holomorphic Legendrian lift of
f . Since (1.1) implies E−1

f dEf is off-diagonal, we can set

E−1
f dEf =

(
0 θ
ω 0

)
.

The holomorphic 1-forms ω and θ are called the first canonical form and
the second canonical form, respectively. We have

ω =


dA

B

(
if dA 6≡ 0 or B 6≡ 0

)
,

dC

D

(
if dC 6≡ 0 or D 6≡ 0

)
,

(1.2)

θ =


dB

A

(
if dB 6≡ 0 or A 6≡ 0

)
,

dD

C

(
if dD 6≡ 0 or C 6≡ 0

)
.

(1.3)

Here 6≡ 0 means that the 1-form or function in question are not identically
zero.

In particular,

ω =
dA

B
=

dC

D
and θ =

dB

A
=

dD

C
(1.4)

if all cases in (1.2) and (1.3) are well-defined. Then the first and second
fundamental forms ds2 and dh2 have the expressions

ds2 = (ω + θ)(ω + θ) = ωθ + ωθ + |ω|2 + |θ|2,(1.5)

dh2 = |θ|2 − |ω|2.(1.6)
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Though ω and θ are defined only on the universal cover M̃2, the first fun-
damental form ds2 is well-defined on M2, and then so is the (1, 1)-part of
ds2:

ds2
1,1 := |ω|2 + |θ|2.(1.7)

Since (1.6) is well-defined on M2, so are |ω|2 and |θ|2. Moreover, we can
deduce that

|ω|2 and |θ|2 define flat pseudometrics on M2 compatible
with the complex structure of M2.

(1.8)

The (2, 0)-part of ds2 is called the Hopf differential and is denoted by Q:

Q := ωθ.(1.9)

The positive hyperbolic Gauss map G and the negative hyperbolic Gauss
map G∗ of the flat surface are defined by

G =
A

C
, G∗ =

B

D
.(1.10)

They are single-valued on M2. The geometric meaning of G and G∗ is
described in the Introduction. (See also [4].) By definition,

dG = d

(
A

C

)
=

dA C −A dC

C2
=

BC −DA

C2
ω = − ω

C2
.(1.11)

Similarly,

dG∗ = d

(
B

D

)
=

dB D −B dD

D2
=

AD −BC

D2
θ =

θ

D2
.(1.12)

On the other hand,

G−G∗ =
A

C
− B

D
=

AD −BC

CD
=

1
CD

.(1.13)

We have the identity

Q = ωθ = −(CD)2dGdG∗ = − dGdG∗
(G−G∗)2

.(1.14)

Now we set

g(q) :=
∫ q

p0

ω, g∗(q) :=
∫ q

p0

θ (q ∈M2),(1.15)

where p0 is a base point. Then g and g∗ are holomorphic functions defined
on M̃2. We remark that (g,G) and (g∗, G∗) satisfy the important relation

S(g)− S(G) = 2Q, S(g∗)− S(G∗) = 2Q,(1.16)

(see [4]), where S(G) is the Schwarzian derivative

S(G) =
((G′′

G′

)′
− 1

2

(G′′

G′

)2
)

dz2
(
′ =

d

dz

)
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with respect to a local complex coordinate z on M2. Though the mero-
morphic 2-differentials S(g) and S(G) depend on complex coordinates, the
difference S(g)− S(G) does not.

Remark 1.1. Hyperbolic 3-space H3 can be realized as a hyperboloid in
Minkowski 4-space (L4, (x0, x1, x2, x3)):

H3 =
{

(x0, x1, x2, x3) ∈ L4 ; x0 > 0, −(x0)2 +
3∑

j=1

(xj)2 = −1
}

.

Let f : M2 → H3 be a flat immersion and assume M2 is connected. Then
the universal cover M̃2 of M2 is diffeomorphic to R2 and has a coordinate
system (x, y) defined on M̃2 such that the first fundamental form ds2 can
be written as

ds2 = dx2 + dy2.

Then we have an orthonormal frame field

e : M̃2 3 p 7→
(
f(p), fx(p), fy(p), ν(p)

)
∈ SO(3, 1),

where ν(p) ∈ TpH
3(⊂ L4) is the unit normal vector of the immersion f at p.

Now, we can identify L4 with the set Herm(2) of 2 by 2 Hermitian matrices:

L4 3 (x0, x1, x2, x3)←→
(

x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)
∈ Herm(2).(1.17)

Then the hyperbolic 3-space H3 can be rewritten as

H3 = {X ∈ Herm(2) ; det(X) = 1, trace X > 0}
= {aa∗ ; a ∈ SL(2,C)},

where a∗ = ta. Setting

v0 :=
(

1 0
0 1

)
, v1 :=

(
0 i
i 0

)
, v2 :=

(
0 i
−i 0

)
, v3 :=

(
1 0
0 −1

)
,

there is a lift E : M̃2 → SL(2,C) of the orthonormal frame e such that e =
π ◦E, where π : SL(2,C)→ SO(3, 1) is the 2-fold covering homomorphism,
that is,

f = EE∗, fx = Ev1E
∗, fy = Ev2E

∗, ν = Ev3E
∗.(1.18)

Thus E coincides with Ef . This implies that E itself is holomorphic with
respect to the complex structure induced from the second fundamental form.
Multiplication E 7→ aE by a matrix a = (aij) ∈ SL(2,C) corresponds to
an isometric change of the surface, f 7→ afa∗. This induces the change of
hyperbolic Gauss maps, as follows:

G 7→ a ? G :=
a11G + a12

a21G + a22
, G∗ 7→ a ? G∗ =

a11G∗ + a12

a21G∗ + a22
.(1.19)
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It is interesting to compare this with the case of surfaces of constant
mean curvature 1 in H3. In that case, there is a holomorphic immersion
F : M̃2 → SL(2,C) such that f = FF ∗, but it does not coincide with
the lift E : M̃2 → SL(2,C) of an orthonormal frame. We must adjust E
by multiplying by a local SU(2)-section s : M̃2 → SU(2) so that F := Es
becomes holomorphic. (See Bryant [1].)

2. Flat surfaces as (wave) fronts

In this section, we define flat fronts as projections of Legendrian immersions
into the unit cotangent bundle T ∗1 H3. Since T ∗1 H3 is isomorphic to the unit
tangent bundle T1H

3, we can make the identification

T ∗1 H3 ∼= F :=
{
(x, v) ∈ L4 × L4 ; −〈x, x〉 = 〈v, v〉 = 1, 〈x, v〉 = 0},

where 〈 , 〉 is the inner product of L4. The metric

dσ2
0 :=

3∑
j=0

(dxj)2 +
3∑

j=0

(dvj)2
(
x = (x0, x1, x2, x3), v = (v0, v1, v2, v3)

)
on F induced from the product of Lorentzian metrics of L4 ×L4 is positive
definite, and is called the Sasakian metric. In fact, if we identify F with
T1H

3, it coincides with the metric on the unit tangent bundle defined by
Sasaki [9, 10]. The contact form of F is given by

η :=
3∑

j=0

vjdxj .

Now, a Legendrian immersion L of a 2-manifold M2 into the unit cotangent
bundle can be identified with an immersion

L : M2 −→ F
such that L∗η vanishes. We denote the two canonical projections by

πF : F 3 (x, v) 7−→ x ∈ H3, π′F : F 3 (x, v) 7−→ v ∈ L4.

A map f : M2 → H3 is called a front if there exists a Legendrian immersion
Lf : M2 → F such that

πF ◦ Lf = f.

Lf is called the Legendrian lift of f .
By definition, any immersion f : M2 → H3 is a front if M2 is orientable.

In fact, Lf is given by the pair (f, νf ) consisting of f and the unit normal
vector νf of f .

For a given front f : M2 → H3, we can define a parallel front ft : M2 →
H3 of distance t by

ft := (cosh t)f + (sinh t)νf = πF ◦ Lt,
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where

Lt := (ft, νft
)

(
νft

:= (sinh t)f + (cosh t)νf

)
is a Legendrian immersion and

νf := π′F ◦ Lf : M2 −→ L4.

When f is an immersion, this is nothing but the definition of a parallel
surface. So we call νf the unit normal vector (field) of the front f .

For a given front f : M2 → H3,

ds2 := 〈df, df〉 and dh2 := −〈df, dνf 〉
are called the first and the second fundamental forms, respectively.

Definition 2.1. A front f : M2 → H3 is called flat if, for each p ∈ M2,
there exists a real number t ∈ R such that the parallel front ft gives a flat
immersion at p.

Remark 2.2. An equivalent definition of a flat front is that the Gaussian
curvature of f vanishes at all regular points. However, this definition is not
suitable when all points of f are degenerate, and such a case really occurs,
since hyperbolic cylinders can collapse to a geodesic.

As shown in the following proposition, all parallel fronts ft (t ∈ R) of a
flat front f are also flat fronts.

Proposition 2.3. Let f : M2 → H3 be a flat front. Then the second fun-
damental form dh2 is proportional to the pullback of the Sasakian metric
dσ2 = L∗fdσ2

0. The parallel front ft of f is also a flat front for all t. In
particular, the Gaussian curvature of ft at the regular point vanishes.

Remark 2.4. As in [4], the lift Eft of ft is given by

Eft = Ef

(
et/2 0
0 e−t/2

)
.

Proof of Proposition 2.3. We fix a point p ∈ M2. By definition, there is a
parallel front ft0 : M2 → H3 such that ft0 is regular at p and the Gaussian
curvature of ft0 vanishes around p. Without loss of generality, we may
assume that t0 = 0, that is, f = ft0 .

First, we consider the case that the first and second fundamental forms
are proportional. Then f must be a horosphere and the statement of the
theorem is obvious.

So we may assume that the second fundamental form is not proportional
to the first. We can write the Legendrian lift Lf as a pair Lf = (f, νf ),
where νf is the unit normal vector field of f . Then

dσ2 = 〈df, df〉+ 〈dν, dν〉.(2.1)
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Now fix a local coordinate neighborhood (U ;u, v) of M2 and define three 2
by 2 matrices:

M1 :=
(
〈fu, fu〉 〈fu, fv〉
〈fu, fv〉 〈fv, fv〉

)
,

M2 := −
(
〈fu, νu〉 〈fu, νv〉
〈fu, νv〉 〈fv, νv〉

)
,

M3 :=
(
〈νu, νu〉 〈νu, νv〉
〈νu, νv〉 〈νv, νv〉

)
.

We set A := M−1
1 M2, which is the shape operator of f . The Gauss equation

implies that

det A = 1 + Kds2 ,(2.2)

where Kds2 is the Gaussian curvature of ds2. On the other hand, by the
definition of M3, we have

M3 = M2A = M1A
2.

By the Cayley–Hamilton theorem, we have

M3 = M1

(
2(trace A)A− (1 + Kds2)I

)
= 2(trace A)M2 −Kds2M1,

where I is the identity matrix. Thus

M1 + M3 − 2(trace A)M2 = −Kds2M1.

Since M1 is not proportional to M2, this implies that M1+M3 is proportional
to M2 if and only if Kds2 vanishes. So the second fundamental form dh2 is
proportional to dσ2 when f is flat. Now we shall show that ft is also flat.
Indeed, ft and its unit normal vector νt have the expressions

ft = (cosh t)f + (sinh t)ν, νt = (sinh t)f + (cosh t)ν.

The fundamental forms are

ds2
t = (cosh2 t)ds2 + 2(cosh t sinh t)dh2 + (sinh2 t)〈dν, dν〉,

dh2
t = (cosh t sinh t)ds2 + 2(cosh2 t + sinh2 t)dh2 + (cosh t sinh t)〈dν, dν〉,

〈dνt, dνt〉 = (sinh2 t)ds2 + 2(cosh t sinh t)dh2 + (cosh2 t)〈dν, dν〉,

where 〈dν, dν〉 is the third fundamental form of f . Since dσ2 = ds2+〈dν, dν〉,
we have

dh2
t = (cosh t sinh t)dσ2 + 2(cosh2 t + sinh2 t)dh2,

and

dσ2
t := ds2

t + 〈dνt, dνt〉 = (cosh2 t + sinh2 t)dσ2 + 4 cosh t sinh t dh2.

Since dh2 is proportional to dσ2, dh2
t and dσ2

t are also proportional. Since
f is not a horosphere, ds2 is not proportional to dh2 and thus ft is flat for
all t ∈ R. �
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From now on, we assume that M2 is oriented. (If M2 is not orientable, we
can take the double cover.) Then there is a complex structure on M2 such
that dσ2 is Hermitian. Since the second fundamental form is proportional to
dσ2, this complex structure of M2 coincides with the one treated in Section 1,
as long as f is an immersion. So, we shall call this complex structure the
canonical complex structure, and M2 is always considered as a Riemann
surface.

Proposition 2.5. Let M2 be a Riemann surface and E : M̃2 → SL(2,C) a
holomorphic Legendrian immersion defined on the universal cover M̃2 and
such that f = EE∗ is single-valued on M2. Then f is a flat front. If

E−1dE =
(

0 θ
ω 0

)
,(2.3)

the first and the second fundamental forms are represented as

ds2 = ωθ + ωθ + (|ω|2 + |θ|2),
dh2 = |θ|2 − |ω|2.

(2.4)

Conversely, any flat front is given as a projection of a holomorphic Legen-
drian immersion.

Proof. Let E : M̃2 −→ SL(2,C) be a holomorphic Legendrian curve and let
(ω, θ) be as in (2.3). Then E is an immersion if |ω|2+ |θ|2 is positive definite.
On the other hand, we have

df = dE E∗ + E dE∗ = E(E−1dE + (E−1dE)∗)E∗

= E

(
0 θ + ω

ω + θ 0

)
E∗,

dν = dEv3E
∗ + Ev3dE∗ = E(E−1dEv3 + v3(E−1dE)∗)E∗

= E

(
0 −θ + ω

ω − θ 0

)
E∗.

In the identification as in (1.17), the canonical Lorentzian inner product is
given by

〈X, Y 〉 := −1
2 trace(XỸ )

(
X, Y ∈ Herm(2)

)
,

where Ỹ is the cofactor matrix of Y . If Y ∈ SL(2,C), we have Ỹ = Y −1.
Then

ds2 = 〈df, df〉 = −1
2

trace
{(

0 θ + ω

ω + θ 0

) (
0 −θ − ω

−ω − θ 0

)}
= (ω + θ)(ω + θ).
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Similarly, since dh2 = −〈df, dν〉, we have (2.4). Thus, the pullback of the
Sasakian metric by (f, ν) as in (2.1) is represented as

dσ2 = 〈df, df〉+ 〈dν, dν〉 = 2(|ω|2 + |θ|2).(2.5)

Hence Lf is an immersion if and only if |ω|2 + |θ|2 is positive definite. This
proves the assertion. �

Remark 2.6. As seen in the proof of Proposition 2.5, the (1, 1)-part of the
first fundamental form

ds2
1,1 = |ω|2 + |θ|2(2.6)

is equal to one-half of dσ2, the pullback of the Sasakian metric by (f, ν).
Also, ds2

1,1 is the pullback of the bi-invariant Hermitian metric of SL(2,C)
by E.

A flat front f : M2 → H3 can be interpreted from two points of view. The
first is the projection of a (real) Legendrian immersion Lf : M2 → T ∗1 H3 ∼=
F , and the second is the projection of a (holomorphic) Legendrian immersion
Ef : M̃2 → SL(2,C). One can naturally expect that these two Legendrian
immersions are related. In fact, SL(2,C) acts F transitively and we can
write

T ∗1 H3 ∼= T1H
3 ∼= F ∼= SL(2,C)/ U(1).

We denote the canonical projection by

pSL : SL(2,C) −→ F .

Proposition 2.7. The pullback of the contact form η by pSL is equal to the
real part of the holomorphic contact form on SL(2,C), that is,

p∗SL(η) = 2 Re(s22ds11 − s12ds21)

holds, where (sij) ∈ SL(2,C). In particular, the real Legendrian immer-
sion Lf can be interpreted as the projection of a holomorphic Legendrian
immersion Ef .

Proof. Since

x−1 = (ss∗)−1 = (s∗)−1s−1, dv = s(s−1dsv3 + v3(s−1ds)∗)s∗,

we have

η = 〈x, dv〉 = −1
2 trace(x−1dv) = −1

2 trace(s−1ds v3 + v3(s−1ds)∗)

= −Re(trace(s−1ds v3)) = 2 Re(s22ds11 − s21ds12),

where we set s = (sij) ∈ SL(2,C). �
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Remark 2.8. Since the holomorphic Legendrian lift Ef of a flat front f is
not single-valued on M2 in general, Ef has the monodromy representation
ρf : π1(M2)→ SU(2) such that Ef ◦ τ = Efρf (τ) for any deck transforma-
tion τ ∈ π1(M). On the other hand, since Ef ◦ τ is also Legendrian, the
representation ρf is reducible, that is, it reduces to the isotropy group U(1)
of the action of SL(2,C) to F .

We can define the hyperbolic Gauss maps of the flat front f in the same
way as for an immersion:

G =
A

C
, G∗ =

B

D
,

where

Ef =
(

A B
C D

)
.

These are single-valued on M2. Since AD − BC = 1, G(p) never coincides
with G∗(p), and we get the holomorphic map

G := (G, G∗) : M2 −→ S2 × S2 \ {the diagonal set} =: Geod(H3),

where Geod(H3) is the set of oriented geodesics in H3.

Theorem 2.9. Let M̃2 be the universal cover of a Riemann surface M2

and let E : M̃2 → SL(2,C) be a holomorphic Legendrian curve such that
f = EE∗ is single-valued on M2. The following assertions are equivalent:

(1) E is an immersion.
(2) Lf is an immersion.
(3) The (1, 1)-part of the first fundamental form

ds2
1,1 = |ω|2 + |θ|2

is positive definite, where ω and θ are the off-diagonal components of
E−1dE.

(4) G := (G, G∗) : M2 → Geod(H3) is an immersion.

Remark 2.10. A point where E degenerates is called a branch point of E
(or of f = EE∗), and the projection of a holomorphic Legendrian curve is
called a branched flat front . The conditions above imply that f is free of
branch points.

Proof of Theorem 2.9. The equivalence of the first three assertions follows
from the proof of Proposition 2.5. So it is sufficient to prove that (3) and (4)
are equivalent. By (1.11) and (1.12),

ds2
1,1 = |ω|2 + |θ|2 = |C2dG|2 + |D2dG∗|2.

If both C and D are nonvanishing, the equivalence of (3) and (4) is obvious.
If instead C = 0, then D 6= 0, ω = 0,

ds2
1,1 = |θ|2 = |D2dG∗|2,
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and ds2 is positive definite if and only if dG∗ 6= 0. Similarly, if D = 0, we
get C 6= 0, θ = 0,

ds2
1,1 = |ω|2 = |C2dG|2,

and ds2 is positive definite if and only if dG 6= 0. �

In [7], the authors gave a representation formula for Legendrian curves in
SL(2,C) via the data (G, G∗). We now reformulate it for the construction
of flat fronts in H3:

Theorem 2.11. Let G and G∗ be nonconstant meromorphic functions on a
Riemann surface M2 such that G(p) 6= G∗(p) for all p ∈M2. Assume that:

(1) All poles of the 1-form
dG

G−G∗
are of order 1.

(2)
∫

γ

dG

G−G∗
is purely imaginary for each loop γ on M2.

Set

ξ(z) := c exp
∫ z

z0

dG

G−G∗
,(2.7)

where z0 ∈ M2 is a base point and c ∈ C \ {0} is an arbitrary constant.
Then

E :=
(

G/ξ ξG∗/(G−G∗)
1/ξ ξ/(G−G∗)

)
(2.8)

is a nonconstant meromorphic Legendrian curve defined on M̃2 in SL(2,C)
whose hyperbolic Gauss maps are G and G∗, and such that the projection
f = EE∗ is single-valued on M2. Moreover, f is a front if and only if G and
G∗ have no common branch points. Conversely, any non-totally-umbilical
flat fronts can be constructed in this manner.

Proof. Given a pair (G, G∗) of nonconstant meromorphic functions, on a
Riemann surface M2 satisfying (1), the meromorphic map E defined by
(2.8) is a holomorphic Legendrian curve in SL(2,C), as a consequence of
Theorem 3 of [7]. Then condition (2) implies that f = EE∗ is single-valued
on M2. Now, by Theorem 2.9, the branched flat front f is free of branch
points if and only if the pair (G, G∗) gives an immersion of M2 into S2×S2.

Since any flat front can be lifted to a holomorphic Legendrian curve de-
fined on M̃2, Theorem 3 of [7] also implies that any non-totally-umbilical
flat front can be constructed in this manner. (If one of the hyperbolic Gauss
maps is constant, it is totally umbilic, i.e., locally a horosphere.) �

3. Flat fronts with complete ends

We define completeness of fronts as follows:
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Definition 3.1. Let M2 be a 2-manifold. A front f : M2 → H3 is called
complete if there is a symmetric 2-tensor T with compact support such that
the sum

T + ds2

is a complete Riemannian metric of M2, where ds2 is the first fundamental
form of f .

Remark 3.2. Note that the parallel family of a complete front f may con-
tain an incomplete flat front. For example, the hyperbolic cylinder, that is,
the surface equidistant from a geodesic (Example 4.1 in Section 4), contains
a geodesic in its parallel family.

The following assertion is a simple consequence of Lemma 2 of [4]:

Lemma 3.3. Let M2 be an oriented 2-manifold and f : M2 → H3 a com-
plete flat front. There exists a compact Riemann surface M2 and finitely
many points p1, . . . , pn ∈M2 such that M2 (as a Riemann surface) is biholo-
morphic to M2 \ {p1, . . . , pn}. The Hopf differential Q of f can be extended
meromorphically on M2.

These points p1, . . . , pn are called ends of the front f .

Proof of Lemma 3.3. Since f is complete, there exists a symmetric tensor T
supported in a compact subset of M2 and such that

ds2 := T + ds2

is complete, where ds2 is the first fundamental form. Since the Gaussian
curvature of ds2 vanishes, the total absolute curvature of ds2 is finite. Then
by Huber’s theorem, there is a compact 2-manifold M2 and finite points
p1, . . . , pn ∈ M2 such that M2 is diffeomorphic to M2 \ {p1, . . . , pn}. Now
we take a sufficiently small neighborhood Uj of an end pj such that ds2 = ds2

holds on Uj . If |ω| = |θ| at a point q ∈ Uj , the first fundamental form ds2

is degenerate at q because of (1.5). Hence |ω| 6= |θ| on Uj . If |ω| > |θ|, by
(25) of [4], we have

ds2 = ωθ + ωθ + |ω|2 + |θ|2 ≤ 2|ω||θ|+ |ω|2 + |θ|2 = (|ω|+ |θ|)2 ≤ 4|ω|2.

Since ds2 is complete at pj , so is a metric |ω|2. Moreover, by the holomor-
phicity of ω with respect to the complex structure induced from the second
fundamental form, the metric |ω|2 is a flat metric conformal to the complex
structure of M2 and complete at pj . This proves the first assertion. (See
also Lemma 1 of [4].) In the case of |ω| < |θ|, we reach the conclusion using
the conformal metric |θ|2.

The meromorphicity of Q is proved in Lemma 2 of [4]. �

As seen in the proof of Lemma 3.3, we have:
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Figure 2. An incomplete flat front (Remark 3.5).

Corollary 3.4. If a flat front f is complete, so is the (1, 1)-part

ds2
1,1 = |ω|2 + |θ|2

of the first fundamental form.

Remark 3.5. If a flat front is complete and is also a proper mapping, then
its image is a closed subset of H3. However, a proper flat front f whose
image is closed in H3 may not be complete. (When f has no singularity, it
is complete by the Hopf–Rinow theorem.) In fact, we consider a flat front
f = EE∗ : C→ H3, where

E :=
(

ze−z (z − 1)ez

e−z ez

)
.(3.1)

It can easily be checked that f(z) tends to the north pole of the ideal bound-
ary in the Poincaré ball as z →∞, which implies that f is a proper mapping.
But the first fundamental form vanishes on the imaginary axis, which ap-
pears as cuspidal edges. (See Figure 2. The criterion for singularities of flat
fronts will appear in the forthcoming paper [6].)

It is a classical fact that there are no compact flat surfaces in H3. We
can also prove the nonexistence of compact flat fronts.

Proposition 3.6. There are no compact flat fronts without boundary.

Proof. Let f : M2 → H3 be a compact flat front, and take a holomorphic
Legendrian lift E of f . Recall that f and E are matrix-valued. The trace
of f satisfies

(trace f)zz = trace(fzz) = trace {Ez(Ez)∗} ≥ 0,

where z is a complex coordinate of M2. Hence the function trace f : M2 → R
is subharmonic, and must be constant, since M2 is compact. By an isometry
in H3, we may assume that f(z0) = I, where I is the 2× 2 identity matrix.
Then trace f is identically 2. At the same time, det f is identically 1 so the
eigenvalues λ1, λ2 of f satisfy

λ1 + λ2 = 2, λ1λ2 = 1.
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Hence λ1 = λ2 = 1. Since f is Hermitian, this implies that f(z) is equal to
the identity matrix, a contradiction. �

Gálvez, Mart́ınez and Milán investigated complete ends of flat surfaces
deeply. The following fact is proved in [4]:

Lemma 3.7 (Theorem 4 of [4]). Let p be an end of a complete flat front.
The following three conditions are equivalent:

(1) The Hopf differential Q has at most a pole of order 2 at p.
(2) The positive hyperbolic Gauss map G has at most a pole at p.
(3) The negative hyperbolic Gauss map G∗ has at most a pole at p.

Remark 3.8. The hyperbolic Gauss maps and the Hopf differential of the
flat front f = EE∗ as in (3.1) are

G = z, G∗ = z − 1, Q = dz2.

This means that meromorphicity of G and G∗ does not imply that Q has at
most poles of order 2 without assuming the completeness of ends. In fact,
Q has pole of order 4 at z =∞.

If an end of a flat front satisfies one of the three conditions above, it is
called a regular end. An end that is not regular is called an irregular end.
An end p is said to be embedded if there is a neighborhood U of p ∈ M2

such that the restriction of the front to U \ {p} is an embedding.

Lemma 3.9 (Theorem 5 of [4]). Let p be a regular end of a complete flat
front. Suppose that |θ| < |ω| at p. Then p is embedded if and only if it is
not a branch point of the positive hyperbolic Gauss map G.

Lemma 3.10. The two hyperbolic Gauss maps take the same value at a
regular end of a complete flat front. That is, G(p) = G∗(p) if p is a regular
end.

Proof. Assume that G(p) 6= G∗(p) for a regular end p. By Lemma 3.7,
G(z) and G∗(z) are both meromorphic at p. In particular, the function
ξ(z) defined in Theorem 2.11 is holomorphic. Then so is E, contradicting
the completeness of the first fundamental form of the front at p. Thus
G(p) = G∗(p). �

Let f : M2 \ {p1, . . . , pn} → H3 be a complete flat front and ω, θ its first
and second canonical forms. Suppose all ends p1, . . . , pn are regular. By
Lemma 2 of [4], there exist real numbers µj and µ∗j (j = 1, . . . , n) such that

ω(z) = (z − pj)µjω0(z) (ω0(pj) 6= 0),

θ(z) = (z − pj)µ∗j θ0(z) (θ0(pj) 6= 0),

where (U ; z) is a complex coordinate around pj and ω0(z) and θ0(z) are holo-
morphic 1-forms defined on U . The real numbers µj and µ∗j do not depend
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on the choice of the coordinate z and equal the order of the pseudometrics
|ω|2 and |θ|2, respectively:

|ω|2 = |z − pj |2µj
(
aj + o(1)

)
|dz|2,

|θ|2 = |z − pj |2µ∗j
(
a∗j + o(1)

)
|dz|2,

(3.2)

where aj and a∗j are positive real numbers and o(1) denotes higher order
terms. By (1.14), we have

µj + µ∗j = ordpj Q,(3.3)

where ordpj Q is the order of the Hopf differential Q at pj . Suppose that the
Laurent expansion of Q at z = pj is

Q =
1

(z − pj)2
(
q−2(pj) + o(1)

)
dz2,

where o(1) is a function satisfying limz→pj o(1) = 0. The following lemma
is a direct consequence of the formula (1.16):

Lemma 3.11. The identity

4q−2(pj) = mj(mj + 2)− µj(µj + 2) = m∗
j (m

∗
j + 2)− µ∗j (µ

∗
j + 2)

holds, where µj and µ∗j are the orders of the pseudometrics |ω|2 and |θ|2,
respectively, and mj and m∗

j are the branching orders of G and G∗ at pj.
(For instance, mj = 1 implies pj is a double point of G.)

Proposition 3.12. A regular end pj of a complete flat front is embedded if
and only if either G or G∗ does not branch at pj.

Proof. First, we assume the end pj is embedded. As pointed out in a previous
paper [7], the holomorphic Legendrian lift Ef enjoys the following duality.
We set

Êf := Ef

(
0 i
i 0

)
.

Then Êf is also a holomorphic Legendrian immersion such that f = Êf Ê∗
f ,

and the roles of (G, ω) and (G∗, θ) are interchanged. Then, replacing Ef by
Êf if necessary, we may assume |θ| < |ω| near pj . By Lemma 3.9, G does
not branch at pj .

Conversely, we assume either G or G∗ does not branch at pj . Replacing
Ef by Êf if necessary, we may assume G does not branch at pj , that is,
mj = 0. If |θ| < |ω| near pj , the assertion follows from Lemma 3.9. So we
may assume |θ| > |ω| near pj , and then we have µj ≥ µ∗j . By Lemma 3.11,

(mj −m∗
j )(mj + m∗

j + 2) = (µj − µ∗j )(µj + µ∗j + 2).

By (3.3),

µj + µ∗j + 2 = ordpj Q + 2.
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Since pj is regular, ordpj Q ≥ −2. Thus 0 = mj ≥ m∗
j (≥ 0), and so neither

G nor G∗ branch at p. Replacing Ef by Êf if necessary, we may assume
|θ| < |ω| and get the embeddedness of p directly from Lemma 3.11. �

Now we shall prove an assertion stated in the Introduction:

Theorem 3.13. Let f : M2 \ {p1, . . . , pn} → H3 be a complete flat front
whose ends are all regular. Then

deg G + deg G∗ ≥ n,

and equality holds if and only if all ends are embedded.

To prove the theorem, we shall prepare two lemmas.

Lemma 3.14. Let g and h be meromorphic functions on a compact Rie-
mann surface M2. Suppose that g and h have no common poles. Then

deg(ag + bh) = deg g + deg h,

where a, b ∈ C are nonzero constants.

Proof. Since g, h are meromorphic, their degrees equal the number of their
poles, counting multiplicities. If P (g) is the divisor of poles of g (so that
P (g) = s1q1 + · · ·+ snqn, with q1, . . . , qn the poles of g and s1, . . . , sn their
multiplicities), the degree of g is the sum of the coefficients of P (g), and
likewise for h. But P (ag + bh) = P (g) + P (h) unless ab = 0. Thus

deg g + deg h = deg(ag + bh). �

Lemma 3.15. Let f : M2 \ {p1, . . . , pn} → H3 be a complete flat front.
Suppose that p = pj is a regular end. Then p is an embedded end if and only
if the difference

h := G−G∗

of the two hyperbolic Gauss maps does not branch at p.

Proof. If p is not a branch point of h, then either G or G∗ does not branch
at p. Then embeddedness of the end p = pj follows from Proposition 3.12.
Conversely, suppose now that an end p is embedded. We take a complex
coordinate z around p such that z(p) = 0. Then, by an isometry of H3, we
may assume G(0) = G∗(0) = 0 because of Lemma 3.10 and (1.19). It follows
from Proposition 3.12 that G and G∗ are expanded as

G(z) = a z + o(z) and G∗(z) = a∗z + o(z),

where a and a∗ are complex numbers such that a 6= 0 or a∗ 6= 0, and o(z)
denotes a higher order term. Thus by (1.14), the Hopf differential Q has the
expansion

Q = − aa∗ + o(1)(
(a− a∗)z + o(z)

)2 dz2.
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By Lemma 3.7, we have aa∗ = 0 or a− a∗ 6= 0. If a− a∗ 6= 0, it follows that
h does not branch at 0. If aa∗ = 0, one of G and G∗ branches at 0 and the
other does not. Then h = G−G∗ does not branch at 0. �

Proof of Theorem 3.13. Taking an isometry if necessary, we may assume
that all ends p1, . . . , pn are not poles of both hyperbolic Gauss maps G and
G∗. The ends of the front are equal to the zeros of h := G−G∗, so G and G∗
have no common poles. The zero divisor Z(h) of the meromorphic function
h is of the form

Z(h) =
n∑

j=1

mjpj ,

where m1, . . . ,mn are positive integers. Then by Lemma 3.14

deg G + deg G∗ = deg h =
n∑

j=1

mj ≥ n,

which proves the inequality. Moreover, the equality holds if and only if

m1 = · · · = mn = 1.

By Lemma 3.15, this is the case if and only if all ends are embedded. �

Remark 3.16. As seen in the proof, the inequality in Theorem 3.13 holds
even if f has branch points (see Remark 2.10), that is, common branch
points of G and G∗ on M2. However, the category of branched flat front
seems too wide for the study of flat surfaces. In fact, branched covers of flat
fronts are all branched flat fronts whose images are the same as the original
fronts.

Remark 3.17. Let M2 be a compact Riemann surface with positive genus.
Since there are no meromorphic functions on M2 of degree 1, a complete flat
front defined on M2 minus a finite number of points must have at least 4
ends. Is there a flat front with positive genus and exactly 4 embedded ends?
There does exist a genus-1 flat front with 5 ends (Example 4.6), but it is
still unknown whether there one with 4 ends. (One can construct a genus-1
branched flat front with 4 embedded ends, but the image of such a front is
a double cover of a genus-0 flat front.)

As seen in Remark 3.16, the inequality of Theorem 3.13 is valid for
branched flat fronts. On the other hand, we show an inequality which reflects
properties of fronts. First some terminology:

Definition 3.18. Let p be a regular end of a flat front and let (ω, θ) be as
in (2.3). The end p is called cylindrical if

ordp |ω|2 = ordp |θ|2 = −1,
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where ordp |ω|2 and ordp |θ|2 are the orders of the pseudometrics |ω|2 and
|θ|2, as in (3.2), respectively.

The ends of a hyperbolic cylinder, a surface equidistant from a geodesic,
are cylindrical. (See Example 4.1, and also [4, p. 427] or [7, Example 4.1].)

Lemma 3.19 (Theorem 6 of [4]). A cylindrical end is asymptotic to a fi-
nite cover of a hyperbolic cylinder. �

Lemma 3.20. A regular end p of a complete flat front is cylindrical if and
only if ordp |ω|2 = −1 or ordp |θ|2 = −1.

Proof. Assume ordp |ω| = −1. Then ω is written as ω = (z − p)−1ω0(z),
where ω0 is a holomorphic 1-form such that ω0(p) 6= 0 and z is a complex
coordinate around p. After an isometry of H3 if necessary, we may assume
G(p) = 0 because of (1.19). Then G is written as (z − p)mG0(z), where
m ≥ 1 is an integer and G0(z) is a holomorphic function such that G0(p) 6= 0.
From (1.16) we conclude that the order of the Hopf differential Q at z = p
is −2. Hence by (1.9), ordp |θ|2 = −1. Similarly, if ordp |θ|2 = −1, we have
ordp |ω|2 = −1. �

Let f : M2 \ {p1, . . . , pn} → H3 be a complete flat front and let (ω, θ) be
as in (2.3). By (2.5), the pullback of the Sasakian metric of T ∗1 H3 by the
Legendrian lift of f is

dσ2 = 2(|ω|2 + |θ|2).(3.4)

Since ω and θ are holomorphic 1-forms, the Gaussian curvature Kdσ2 of dσ2

is nonpositive. Moreover, dσ2 is complete because of Corollary 3.4. Thus it
satisfies the Cohn-Vossen inequality (0.1) in the Introduction.

Proposition 3.21. Equality holds in (0.1) if and only if all ends are regular
and cylindrical.

Proof. In fact,

1
2π

∫
M2

(−Kdσ2) dAdσ2 = −χ(M2) +
n∑

j=1

ordpj dσ2

= −χ(M2) +
n∑

j=1

(ordpj dσ2 + 1).

(See [11] or Corollary 1 of [3].) In our case ordpj dσ2 ≤ −1, since dσ2

is complete. Hence equality holds if and only if ordpj dσ2 = −1 for all
j = 1, . . . , n. But by (3.4),

ordpj dσ2 = min{ordpj |ω|2, ordpj |θ|2}.

Hence if ordpj dσ2 =−1, the end pj is regular because of (1.9) and Lemma 3.7,
and then pj is cylindrical because of Lemma 3.20. �
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Note that the left-hand side of (0.1) may not be an integer.

4. Examples and a classification

In this section, we investigate complete flat fronts all of whose ends are
regular and embedded. We shall classify them when the number of ends is
less than or equal to 3. We begin by reviewing known examples and their
hyperbolic Gauss maps.

Example 4.1 (flat fronts of revolution). Let M2 denote the Riemann
sphere S2 = C∪{∞} and consider a pair (G, G∗) of meromorphic functions
on M2 defined by G(z) = z and G∗(z) = αz, for some constant α ∈ R\{1}.
Define M2 by

M2 :=

{
M2 \ {0} if α = 0
M2 \ {0,∞} otherwise.

(4.1)

One can easily check that M2 and (G, G∗) satisfy conditions (1) and (2) of
Theorem 2.11. Indeed, these data give a Legendrian immersion

E =


z−α/(1−α)

c

cαz1/(1−α)

1− α

z−1/(1−α)

c

czα/(1−α)

1− α

 for some constant c(4.2)

and a resulting flat front f := EE∗ : M2 → H3.
This flat front f is a horosphere if α = 0 or a hyperbolic cylinder if

α = −1. We shall call f an hourglass if α(6= −1) < 0, or a snowman if
α > 0. The first and second canonical forms and the Hopf differential are

ω = − 1
c2

z−2/(1−α) dz, θ =
c2α

(1−α)2
z2α/(1−α) dz, Q = − α

(1−α)2
z2 dz2.

The total curvature of the pullback of the Sasakian metric is calculated as

1
2π

∫
M2

(−Kdσ2) dAdσ2 = 2
∣∣∣∣1 + α

1− α

∣∣∣∣.
Horospheres can be characterized by the hyperbolic Gauss maps.

Proposition 4.2. Let f : M2 → H3 be a complete flat front. Assume that
one of the hyperbolic Gauss maps G, G∗ is constant. Then f is a horosphere.

Proof. It suffices to prove the case of G∗ constant. In this case, G must be
nonbranched, because G = (G, G∗) is an immersion. On the other hand, Q
is identically zero. It follows from Lemma 3.7 that G has at most poles, that
is, G is a meromorphic function on a compact Riemann surface M2. This
implies that G gives a biholomorphism M2 ∼= S2. Therefore we may assume
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α = −1 α < 0 (α 6= −1)

α > 0

Figure 3. Flat fronts of revolution.

G(z) = z on M2(∼= S2 ∼= C ∪ {∞}). Then it follows from Example 4.1 that
f is a horosphere. �

Lemma 4.3. Let f : M2 = M2 \{p1, . . . , pn} → H3 be a complete flat front
with embedded regular ends p1, . . . , pn. If n ≤ 3, then M2 is biholomorphic
to the Riemann sphere.

Proof. By Proposition 4.2, it suffices to prove this when both G and G∗ are
nonconstant, i.e., deg G ≥ 1 and deg G∗ ≥ 1. Since all ends are regular and
embedded, deg G + deg G∗ = n ≤ 3. Therefore deg G = 1 or deg G∗ = 1.
Thus G or G∗ is a biholomorphism to the Riemann sphere. �

Let us investigate complete flat fronts f : M2 \ {p1, p2} → H3 with 2
embedded regular ends p1, p2. As stated in Lemma 4.3, M2 = S2 ∼= C∪{∞}.
Without loss of generality, we may assume that the images of the 2 ends are
0,∞ ∈ S2 (= ∂H3):

G(p1) = G∗(p1) = 0, G(p2) = G∗(p2) =∞.(4.3)

Since the ends are embedded, G and G∗ have degree 1. We identify M2 with
S2 via G, that is, G(z) = z. Then the coordinates of p1, p2 are z = 0,∞,
respectively. We can also set G∗(z) = (az + b)/(cz + d). It follows from
(4.3) that b = c = 0. Therefore G∗(z) = αz for some nonzero constant α.
Moreover, conditions (1) and (2) of Theorem 2.11 imply α ∈ R \ {0, 1}.

To summarize, f is congruent to a flat front of (G, G∗) = (z, αz) for some
α ∈ R \ {0, 1}. Hence, it is a flat front of revolution (see Example 4.1).
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Next we investigate complete flat fronts f : M2 \{p1, p2, p3} → H3, called
trinoids, with 3 embedded regular ends p1, p2, p3. We may assume M2 =
S2 ∼= C ∪ {∞} by Lemma 4.3 and deg G = 1, deg G∗ = 2. As in the case of
2-end fronts above, we may assume that G(z) = z and that

G∗(0) = 0, G∗(1) = 1, G∗(∞) =∞(4.4)

are the images of the ends. Since G∗ is a meromorphic function on M2 = S2

of degree 2, it is a quotient of polynomials of degree ≤ 2. Indeed, one can
check from (4.4) that G∗ has the form

G∗(z) =
z(αz + β)

γz + 1
,(4.5)

where α, β, γ ∈ C satisfy

α + β = γ + 1, α 6= 0, α− βγ 6= 0.(4.6)

The conditions (4.6) can be rewritten as

β = −α + γ + 1, α(α− γ)(γ + 1) 6= 0.(4.7)

By straightforward computation, we see that
dG

G−G∗
=

(
1

γ − α

)
γz + 1

z(z − 1)
dz,

which has poles only at z = 0, 1,∞. All of them are simple poles, with
residues −1/(γ − α), (γ + 1)/(γ − α), −γ/(γ − α), respectively. These
residues must be real, because of condition (2) of Theorem 2.11. Hence
α, γ ∈ R (β ∈ R). It follows from Theorem 2.11 and (1.11) that

ξ

(
= c exp

∫
dG

G−G∗

)
= c z1/(α−γ)(z − 1)(γ+1)/(γ−α),

ω
(
= −ξ−2dG

)
= −c−2 z2/(γ−α)(z − 1)(2γ+2)/(α−γ) dz.

The Hopf differential Q is computed as

Q

(
= − dGdG∗

(G−G∗)2

)
= − 1

(γ − α)2
αγz2 + 2αz + β

z2(z − 1)2
dz2.

Thus Q has poles only at z = 0, 1,∞ with orders at most 2. Indeed,

(ord0 Q, ord1 Q, ord∞Q)=


(−1,−2,−2) if α=γ+1 (⇐⇒ β=0),
(−2,−1,−2) if α=−1 (⇐⇒ αγ+2α+β=0),
(−2,−2,−1) if γ=0 (⇐⇒ αγ =0),
(−2,−2,−2) otherwise.

To summarize, we have obtained the following classification theorem:

Theorem 4.4. Let f : M2 → H3 be a complete flat front of which all ends
are regular and embedded. If f has at most 3 ends, it is congruent to one of
the following:
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(i) a horosphere if it has a single end,
(ii) a hyperbolic cylinder, an hourglass, or a snowman if it has 2 ends,
(iii) a trinoid with

(G, G∗) =
(

z,
z(αz + β)

γz + 1

)
,

where α, β, γ are real constants satisfying (4.7), if it has 3 ends.

For arbitrary distinct points p1, . . . , pn ∈ ∂H3 = C ∪ {∞}, we can con-
struct a flat front of genus zero with embedded regular ends p1, . . . , pn as
follows:

Example 4.5. Let p1, . . . , pn be arbitrary distinct points in ∂H3 = C ∪
{∞}. Without loss of generality, we may assume that pn = ∞. Choose
nonzero real numbers a1, . . . , an−1 such that a1 + · · ·+ an−1 6= 0, 1. Set

M2 = C \ {p1, . . . , pn−1},
G = z,

G∗ =
(

z
n−1∑
k=1

(
ak

∏
j 6=k

(
z − pj

))
−

n−1∏
j=1

(z − pj)
)/ n−1∑

k=1

(
ak

∏
j 6=k

(z − pj)
)

.

Then

dG

G−G∗
=

(
a1

z − p1
+

a1

z − p1
+ · · ·+ an−1

z − pn−1

)
dz.(4.8)

It follows that M2 and (G, G∗) satisfy the conditions of Theorem 2.11.
Therefore these data yield a flat front. A straightforward computation shows
that

ξ = c

n−1∏
j=1

(z − pj)aj ,

ω( = −dG/ξ2) = −c−2

( n−1∏
j=1

(z − pj)−2aj

)
dz,

Q =
( n−1∑

j=1

aj

(z − pj)2
−

( n−1∑
j=1

aj

z − pj

)2 )
dz2.

It follows that p1, . . . , pn−1,∞ are complete regular ends. Moreover, they
are embedded ends since deg G + deg G∗ (= 1 + (n− 1) = n) is equal to the
number of ends (see Theorem 3.13).

Finally, we give examples of a complete flat front of genus 1.
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c = 0.3 (1/4-cut) c = 0.3

c = 1.0 (1/4-cut) c = 1.0

Figure 4. Genus-1 flat fronts with 5 embedded ends (Exam-
ple 4.6). In the figures of 1/4-cut (left), the ends are shown
as the dotted points.

Example 4.6 (flat front of genus 1 with 5 embedded ends). Let ℘ denote
the Weierstrass ℘ function on the square torus T 2 = C/{Z⊕ iZ}. We note
that ℘ satisfies the differential equation(

℘′
)2 = 4℘

(
℘2 − e2

1

)
, e1 = ℘(1/2).

Take the meromorphic functions

G = ℘′, G∗ = −8e2
1

3
℘

℘′
(4.9)

on T 2. Let M2 be a Riemann surface T 2 punctured at 5 points where G
and G∗ take the same value:

M2 := T 2 \ {z ; ℘(z)(3℘(z)2 − e2
1) = 0}.(4.10)

We remark that ℘ has a double zero at z = (1 + i)/2, and 3℘2 − e2
1 has 4

simple zeros.
For these data, a computation gives

dG

G−G∗
=

3
2

℘′

℘
dz.

This implies that conditions (1) and (2) of Theorem 2.11 are satisfied. There-
fore, the Riemann surface (4.10) and the meromorphic functions (4.9) define
a flat front.



174 M. KOKUBU, M. UMEHARA AND K. YAMADA

The first canonical form ω and the Hopf differential Q are computed to
be

ω = − 2
c2

3℘2 − e2
1

℘3
dz, Q =

−6e2
1(℘

2 + e2
1)

℘(3℘2 − e2
1)

dz2,

from which the completeness of the ends {z ; ℘(3℘2− e2
1) = 0} follows. One

can also verify the consistency of the data G, ω and Q by formula (1.10) in
[7]. Obviously, all ends are regular.

Since G∗ has only simple zeros, at z = 0 and 1
2(1 + i), its degree is

2. Clearly deg G = 3. Hence, the equality in Theorem 3.13 is attained.
Therefore all 5 ends are embedded.
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minimales et applications, Astérisque, 154–155 (1988), 321–347, MR 0955072,
Zbl 0635.53047.

[2] S. Cohn-Vossen, Kürzeste Wege und Totalkrümmung auf Flächen, Composito Math.,
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