Vol. 216, No. 2, 2004

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
An inverse problem for the transport equation in the presence of a Riemannian metric

Stephen R. McDowall

Vol. 216 (2004), No. 2, 303–326
Abstract

The stationary linear transport equation models the scattering and absorption of a low-density beam of neutrons as it passes through a body. In Euclidean space, to a first approximation, particles travel in straight lines. Here we study the analogous transport equation for particles in an ambient field described by a Riemannian metric where, again to first approximation, particles follow geodesics of the metric. We consider the problem of determining the scattering and absorption coefficients from knowledge of the albedo operator on the boundary of the domain. Under certain restrictions, the albedo operator is shown to determine the geodesic ray transform of the absorption coefficient; for “simple” manifolds this transform is invertible and so the coefficient itself is determined. In dimensions 3 or greater, we show that one may then obtain the collision (or scattering) kernel.

Milestones
Received: 30 July 2003
Revised: 2 April 2004
Published: 1 October 2004
Authors
Stephen R. McDowall
Department of Mathematics
Western Washington University
Bellingham WA 98225-9063