Vol. 217, No. 2, 2004

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Card shuffling and the decomposition of tensor products

Jason Fulman

Vol. 217 (2004), No. 2, 247–262
Abstract

Let H be a subgroup of a finite group G. We use Markov chains to quantify how large r should be so that the decomposition of the r tensor power of the representation of G on cosets on H behaves (after renormalization) like the regular representation of G. For the case where G is a symmetric group and H a parabolic subgroup, we find that this question is precisely equivalent to the question of how large r should be so that r iterations of a shuffling method randomize the Robinson–Schensted–Knuth shape of a permutation. This equivalence is remarkable, if only because the representation theory problem is related to a reversible Markov chain on the set of representations of the symmetric group, whereas the card shuffling problem is related to a nonreversible Markov chain on the symmetric group. The equivalence is also useful, and results on card shuffling can be applied to yield sharp results about the decomposition of tensor powers.

Milestones
Received: 3 July 2003
Revised: 25 February 2004
Published: 1 December 2004
Authors
Jason Fulman
Department of Mathematics
301 Thackeray Hall
University of Pittsburgh
Pittsburgh PA 15260