Vol. 218, No. 1, 2005

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Local zeta function for nondegenerate homogeneous mappings

W. A. Zuniga-Galindo

Vol. 218 (2005), No. 1, 187–200
Abstract

We give an explicit description of the poles of the Igusa local zeta function associated to a polynomial mapping g, in the case in which it is a nondegenerate homogeneous mapping of degree d. The proof uses a generalization of the p-adic stationary phase formula and Néron p-desingularization.

Keywords
local zeta function, polynomial mappings, p-adic stationary formula, congruences in many variables
Mathematical Subject Classification 2000
Primary: 11S40, 11D79
Milestones
Received: 27 December 2002
Published: 1 January 2005
Authors
W. A. Zuniga-Galindo
Barry University
Department of Mathematics and Computer Science
11300 NE Second Avenue
Miami Shores FL 33161
http://Euclid.Barry.edu/~zuniga