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IRREDUCIBILITY OF −1-CLASSES ON ANTICANONICAL
RATIONAL SURFACES AND FINITE GENERATION OF THE

EFFECTIVE MONOID

MUSTAPHA LAHYANE AND BRIAN HARBOURNE

We give necessary and sufficient conditions for a divisor class on smooth
projective anticanonical rational surfaces to be the class of a smooth rational
curve of self-intersection −1. We characterize smooth projective anticanon-
ical rational surfaces for which the monoid of classes (modulo algebraic
equivalence) of effective divisors is not finitely generated, extending results
of Lahyane for the case of rational surfaces X with K 2

X = 0.

1. Introduction

A surface will always mean a smooth projective variety of dimension 2, over an
arbitrary algebraically closed field. We do not require the characteristic to be 0.

For a nonrational surface X , the number of irreducible exceptional curves (irre-
ducible curves C satisfying C2

= K X ·C = −1, which we will also call −1-curves)
is always finite. If X is given as a blow-up of points on a nonrational minimal model
Y , it is easy to identify all −1-curves C on X . When X is rational, this is no longer
true: there can be infinitely many −1-curves on X , and there can be infinitely many
divisor classes C that satisfy C2

= K X ·C = −1 and are not the class of an irre-
ducible curve, or even of an effective divisor. Thus it is desirable to have a criterion
on rational surfaces for when a divisor class C satisfying C2

= K X ·C = −1 is the
class of a −1-curve. We give such a necessary and sufficient criterion for certain
rational surfaces X : first in case K 2

X ≥ 0 (Proposition 3.3) and then (Theorem
3.5) more generally for any anticanonical rational surface, by which we mean
a surface X for which the anticanonical class −K X is the class of an effective
divisor. See [Harbourne 1997] for more information about anticanonical rational
surfaces, and Theorem 4.1 of [Alberich-Carramiñana] for an alternate independent
characterization of −1-curves.

We also consider the related question of when the monoid M(X) (in the group
of divisors modulo algebraic equivalence) of classes of effective divisors on an
anticanonical rational surface is finitely generated. The behavior of M(X) can
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vary widely among surfaces generally; see for instance [Rosoff 1981] and [Rosoff
2002, Theorems 1–4]. In the case of a rational surface X , for example, whereas
M(X) can fail to be finitely generated, M(X) is finitely generated if K 2

X > 0 (see
Proposition 4.3(a)), or, by [Lahyane 2001a], if K 2

X =0 and the anticanonical divisor
−K X of X is not nef (numerically effective — see Definition 2.6).

Given a surface X , a sufficient condition for M(X) not to be finitely generated
is that X have an infinite number of integral curves of negative self-intersection
[Rosoff 1980, Fact, p. 426]. If X is an anticanonical rational surface, we show
that this condition is also necessary. In fact, if X is rational and anticanonical, we
show in Corollary 4.2 that M(X) is not finitely generated if and only if X contains
infinitely many irreducible curves C of self-intersection −2 ≤ C2

≤ −1.
Although a rational surface with K 2

X ≥ 0 is always anticanonical, our results
on finite generation of M(X) are of interest mainly in the case of anticanonical
rational surfaces X with K 2

X < 0, since M(X) is always finitely generated when
K 2

X > 0, and [Lahyane 2001a; 2001b; 2004] give a complete characterization when
K 2

X = 0 (see Proposition 4.3(c, d)). This characterization is in terms of the set of
−2-curves, which in this situation must be a finite set. We partially extend this
result by showing (see Proposition 4.3(e)) for rational surfaces X such that −K X
is the class of a reduced irreducible curve of negative self-intersection, that M(X)

is finitely generated if and only if the set of classes of −2-curves is both finite and
spans K ⊥

X .
We close the paper with several examples of anticanonical rational surfaces for

which M(X) is not finitely generated, applying our results to give explicit infinite
families of −1-curves.

2. Preliminaries

In this section, we recall the notions that we need and set our notation and termi-
nology. We refer to [Hartshorne 1977] as a general reference. Let X be a surface.
A divisor on X is effective if it is a nonnegative linear combination of prime divi-
sors (i.e., reduced irreducible curves). Similarly, we say a divisor class (modulo
algebraic equivalence) on X is effective if this class contains an effective divisor.
If X is rational, note that algebraic, linear, numerical and rational equivalence of
divisors on X are the same, and that Pic(X) is isomorphic to the group Cl(X) of
divisors modulo linear equivalence. The latter is a finitely generated free abelian
group; its rank is referred to as the Picard number ρ(X) of X .

We being by recalling Riemann–Roch’s theorem in the case of rational surfaces.

Theorem 2.1. Let D be a divisor on a rational surface X. Then

h0(X, OX (D)) − h1(X, OX (D)) + h2(X, OX (D)) = 1 +
1
2(D2

− K X · D)

and
h2(X, OX (D)) = h0(X, OX (K X − D)).
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In the next lemma, K ⊥

Y denotes the subgroup of Cl(Y ) of classes x on a surface
Y with x ·KY = 0.

Lemma 2.2. Let Y be a rational surface such that K 2
Y ≥ 0, and let x ∈ K ⊥

Y . Then
Y is anticanonical and, if x2

≥ 0, then x2
= 0 and x = pKY for some integer p. In

particular, if K 2
Y > 0, then x and p vanish.

Proof. Since Y is rational, we have h0(Y, OY (2KY )) = 0; now by Theorem 2.1 it
follows that Y is anticanonical. If x2 > 0, then x⊥ is negative definite by the Hodge
index theorem, which contradicts K 2

Y ≥ 0. Thus x2
= 0. Now for any y ∈ K ⊥

Y ,
we have (t x + y)2 > 0 for some integer t unless x · y = 0. Thus either x = 0 or
x⊥

= K ⊥

Y , and hence, since KY is primitive (unless Y is minimal, in which case
x ∈ K ⊥

Y with x2
= 0 implies x = 0), x = pKY for some integer p. �

Definition 2.3. We call a divisor D on a rational surface Y a −1-divisor if D2
=

D ·KY = −1, and we call a divisor class on Y a −1-class if it is the class of a
−1-divisor. We call a −1-divisor a −1-curve if it is effective and irreducible (and
necessarily therefore reduced). Similarly, we call a divisor D on a rational surface
Y a −2-divisor if D2

= −2 and D ·KY = 0, and we call a divisor class on Y a
−2-class if it is the class of a −2-divisor. We call a −2-divisor a −2-curve if it is
effective and irreducible (and necessarily therefore reduced).

Remark 2.4. Let C be a prime divisor on a surface X . By the adjunction formula,
C2

+C ·K X = 2g−2, where g is the arithmetic genus of C . It follows that a −1- or
−2-curve is smooth and rational, and, if X is an anticanonical rational surface, that
C2 < 0 implies either −K X ·C < 0 and hence C is a fixed component of |−K X | (of
which there are at most finitely many), or −K X ·C ≥ 0 and C is a −1 or −2-curve.

Remark 2.5. Not every rational surface has any −1-divisors or −2-divisors. For
instance P2 has neither and the Hirzebruch surface Fn does not have −1-divisors
when n is even, or −2-divisors when n is odd. However, if a rational surface Y
has ρ(Y ) ≥ 3, the set of −1-curves on Y is not empty, while if ρ(Y ) ≥ 10, there
are always infinitely many −1-divisors and −2-divisors. Moreover, whereas every
−1-curve is a −1-divisor, and likewise for −2-curves, the converse is not true in
general. For example, consider the Hirzebruch surface F2n+1 with n > 0. Let B
denote the base curve (i.e., the integral curve of self-intersection −(2n + 1)) and
let F be any fiber of the ruling on F2n+1. Then B + nF is a −1-class but contains
no −1-curve, since B is a fixed component of |B + nF |. Similarly, for F2n with
n > 1, B + (n −1)F is a −2-class but contains no −2-curve. For another example,
let X be obtained by blowing up P2 at 10 points. Then K X is a −1-class, but it
is not effective, and hence not the class of any −1-curve. Finally, let E1 and E2
be the exceptional curves obtained by blowing up two distinct points of a rational
surface. Then E1 − E2 is a −2-class and is not the class of any −2-curve.

Definition 2.6. A divisor or divisor class D on a surface X is said to be numerically
effective (nef for short) if D ·C ≥ 0 for every prime divisor C on X .
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Example 2.7. An effective divisor that meets each of its irreducible components
nonnegatively is nef. Hence prime divisors of nonnegative self-intersection are nef,
as is the class of a line pulled back to X via π , where π : X → P2 is the blow-up
of the projective plane P2 at a finite set of points.

Remark 2.8. We recall some notions in the case that we have a birational morphism
X → P2 [Harbourne 1985b]. Then X is obtained by blowing up a sequence of
points of P2, possibly infinitely near. More precisely, there are points pi ∈ X i−1
such that p1 ∈ X0 = P2 and each X i → X i−1, for i ≥ 1, is obtained recursively by
blowing up pi ∈ X i−1. Then X = Xr , where r =ρ(X)−1. Also, we set Ei to be the
class of the scheme theoretic inverse image of pi under the composition X → X i−1,
and we take E0 to be the pullback to X of the class of a line in X0. Note that Ei is
an effective −1-class for i > 0, that Er is always the class of a −1-curve, and that
−K X = 3E0 − E1 − · · · − Er . The classes Ei , for i ≥ 0, give an orthogonal basis
of Cl(X), called an exceptional configuration, such that −E2

0 = E2
1 = · · · = −1.

Every birational morphism X → P2 is associated to an exceptional configuration,
which is unique up to the order of the Ei , i > 0. We also recall the action of the
Weyl group on Cl(X). Define classes s0 = E0 − E1 − E2 − E3, s1 = E1 − E2,
s2 = E2 − E3, . . . , sr−1 = Er−1 − Er . Reflections σi : x 7→ x + (x ·ri )ri in these
classes generate a group of isometries of Cl(X) under whose action K X is fixed;
this is called the Weyl group and denoted Wr . A useful fact for any class D with
D ·si ≥ 0 for all i is that wD = D + N for any w ∈ Wr , where N is a nonnegative
integer linear combination of the classes si . See [Harbourne 1985a, Lemma 0.9]
or [Looijenga 1981, I.3.3].

3. A criterion for −1-curves

We first consider the case that X is a rational surface with K 2
X ≥ 0. If X has P2 as a

minimal model, the following lemma shows that every −1-class on X is effective.

Lemma 3.1. Assume that there is a birational morphism X → P2 and that K 2
X ≥ 0.

If E is a −1-class on X , then E is effective.

Proof. Consider a given exceptional configuration Ei , 0 ≤ i ≤ ρ(X) − 1, corre-
sponding to X → P2. By blowing up additional points if need be, we may assume
that K 2

X = 0 (i.e., ρ(X) = 10), since effectivity is preserved under pullback, as
is the expression of a pullback in terms of the Ei . If E is any −1-class, then
E − E9 ∈ K ⊥

X ; hence we can write E = E9 −r K X + N for some N ∈ K ⊥

X ∩ E⊥

9 , in
which case r = −N 2/2. Thus the −1-classes are precisely the classes of the form
E9 −r K X + N with N ∈ K ⊥

X ∩ E⊥

9 and r = −N 2/2. One can check that the classes
of the given form E9 −r K X + N form the orbit W9 E9 of E9 under the action of W9
(using the fact from [Kac 1985] that W9 contains all homomorphisms of the form
τs : x 7→ x + (x ·K X )s + mK X , where s ∈ K ⊥

X and m is the uniquely determined
integer such that x2

= (x +(x ·K X )s+mK X )2). Thus, by Remark 2.8, E = E9+N ′
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for some nonnegative linear combination N ′ of the classes si ; hence E · E0 ≥ 0.
But by Riemann–Roch, either |E | or |K X − E | must be nonempty, and since we
now see that (K X − E)· E0 ≤ −3, the fact that E0 is nef implies E is effective. �

The next result extends Lemma 3.1 to rational surfaces X with K 2
X ≥0 but which

need not have a birational morphism to P2.

Lemma 3.2. Let X be a rational surface such that K 2
X ≥ 0. If E is a −1-class on

X , then E is effective.

Proof. This is just Lemma 3.1 when X is a blow-up of points of P2, so say X is a
blow up of points on a Hirzebruch surface Fn . Let B be the base curve on Fn (so
B2

= −n), and let F be a fiber in the ruling on Fn . Blow up more points, if need
be, so that K 2

X = 0 (so now X is a blow-up of Fn at 8 points, which are allowed to
be infinitely near; let E1, . . . , E8 be the corresponding exceptional divisors). Since
a blow-up of Fn at any point p can, by an elementary transformation, be regarded
as a blow-up of Fn+1 (if p ∈ B) or of Fn−1 (if p is not on B), we can assume n is
even. Since X would be a blow-up of P2 if n < 2 we may also assume that n ≥ 2.
Since n is even, there is an isometric isomorphism f : Cl(X) → G, where G is the
free abelian group on elements e0, . . . , e9, endowed with the intersection product
one would expect if it were an exceptional configuration. This isomorphism is
given by f (Ei ) = ei+1 for 2 ≤ i ≤ 8, f (E1) = e0 − e1 − e2, f (F) = e0 − e1, and
f (B)= e0−n(e0−e1)/2−e2. Note that f maps s ′

0 = E1−E2, s ′

1 = B+(n−2)F/2,
s ′

2 = F − E1 − E2, s ′

3 = E2 − E3, . . . , s ′

8 = E7 − E8, respectively, to the elements
s0, . . . , s8 (defined as in Remark 2.8, but using ei instead of Ei ). Any −1-class on X
is of the form E8+N ′, where N ′ is a nonnegative linear combination of the s ′

i (since
f (E8+ N ′)= e9+ N is a −1-class in terms of the ei , and as in the proof of Lemma
3.1, N is a nonnegative linear combination of the si ). Since (B +nF) ·s ′

i ≥ 0 for all
i , it follows that (B+nF)· E = (B+nF) ·(E8+N ′)≥0. But B+nF is nef and (B+

nF) ·K X = −2−n. As in the proof of Lemma 3.1, either E or K X − E is effective,
and since (B +nF)·(K X − E) ≤ −n −2 < 0, it can only be E that is effective. �

Now we give a characterization for a −1-class to be the class of a −1-curve.

Proposition 3.3. Let X be a rational surface such that K 2
X ≥0. Let E be a −1-class

on X. Then E is a −1-curve if and only if two conditions hold:

(1) E ·C ≥0 for all fixed components C 6= E of the complete linear system |−K X |.
(2) E ·C ≥ 0 for all −2-curves C on X.

Proof. The forward implication is clear, so say E is a −1-class. By Lemma 3.2,
E is effective, but E2 < 0, so there must exist a prime divisor C with C2 < 0 and
E ·C < 0. By Remark 2.4, and assuming (1) and (2) are satisfied, C must be a
−1-curve; hence we get (E −C)·K X = 0 and (E −C)2

≥ 0. It follows by Lemma
2.2 that (E − C)2

= 0 (hence E ·C = −1) and E − C = pK X for some integer p,
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with p = 0 if K 2
X > 0 (in which case E = C). If however K 2

X = 0, the fact that
E ·(C + pK X ) = E2

= −1 again implies that p = 0 and hence E = C . �

To extend Proposition 3.3 to the case of anticanonical rational surfaces X with
K 2

X < 0, we need a lemma.

Lemma 3.4. Let X be a rational surface. Let E be an effective −1-class for which
K X − E and all l K X + E , for l > 0, are not effective. Then E ·C ≥ 0 for all
−1-curves C 6= E.

Proof. First assume that there is a birational morphism X → P2, and hence an
exceptional configuration E0, . . . , En . Note that X is a specialization of a surface
X ′ obtained by blowing up generic points of P2. If ρ(X) < 10, the set of all
−1-classes is listed in [Manin 1986], and given any −1-classes E and C , one
directly checks that E ·C ≥ 0 as long as E 6= C . Thus we may assume that
n ≥ 10. With respect to the blow-up X ′

→ P2 we have the exceptional config-
uration E ′

0, . . . , E ′
n , which specializes to E0, . . . , En . We can define an isometric

isomorphism f : Cl(X ′)→ Cl(X) by f (E ′

i )= Ei for all i , with the inverse denoted
by ′. By semicontinuity we have f (M(X ′)) ⊂ M(X), so l K ′

X + E ′
= l K X ′ + E ′

and K ′

X − E ′
= K X ′ − E ′ are not effective. It follows by Riemann–Roch that E ′ is

effective. Since for any −1-curve C on X , C ′ is a −1-curve on X ′ (since f (D′) is
a component of C for any component D′ of C ′), it is enough to prove the lemma
on X ′. Thus we reduce to the case that X is obtained by blowing up generic points,
and so hereafter we suppress the primes.

Since X is generic, the action of Wn preserves M(X). (To see this, consider
an effective class F . Since the exceptional configuration E0, . . . , En comes from
blowing up generic points, w(E0), . . . , w(En) is another exceptional configuration
for X for each w∈ Wn [Nagata 1960b], and since w is invertible w(E0), . . . , w(En)

also comes from blowing up generic points. If F =
∑

i≥0 ai Ei , then w(F) =∑
i≥0 aiw(Ei ), so both F and w(F) have the same coefficients with respect to

exceptional configurations coming from blowing up generic points. Hence F is
effective if and only if w(F) is.)

Since E (and hence w(E) for each w) is effective, we always have w(E)· E0 ≥0.
Thus we can choose w′

∈ Wn such that w′(E) · E0 is a minimum, and hence w′(E)

meets s0 nonnegatively (because otherwise σ0w
′(E)· E0 < w′(E) · E0). Moreover,

W includes the group of permutations of E1, . . . , En (just consider the action by
the σi for i > 0), so we can apply a permutation σ such that σw(E)·si ≥ 0 for i > 0,
and we still have σw′(E)·s0 ≥0, since otherwise σ0σw′(E)· E0 <w′(E)· E0. Thus
for some w ∈ Wn we have w(E)·si ≥ 0 for all i ≥ 0 (the algorithm of [Harbourne
1985b] gives an effective method for finding such an element w), and this implies
that w(E) must be a nonnegative integer linear combination of the classes −K X ,
E1 +· · ·+ En , E2 +· · ·+ En , . . . , En , E0, E0 − E1, and 2E0 − E1 − E2 (compare
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[Harbourne 1985b, Lemma 1.4]), each of which other than −K X is effective, and
each of which other than −K X and En meets −K X at least twice.

Since l K X + E (and hence w(l K X + E) = l K X + w(E)) is not effective, this
linear combination does not involve −K X . Since −K X ·w(E)=w(−K X )·w(E)=

−K X · E = 1, the only possibility is w(E) = En . Since X is generic and n > 2, the
set of −1-curves (see [Nagata 1960b]) is precisely the orbit Wn En , so E and C are
both −1-curves, so if E 6= C , then E ·C ≥ 0.

We are left with handling the case that there is no birational morphism to the
plane. By blowing up enough additional generic points on X (and thus off any
given C), we may assume that C is still a −1-curve and that X is obtained by
blowing up at least n − 1 generic points of an Fn , for some n. By elementary
transformations at these blow-ups, there is a birational morphism X → P2. After
pulling E back to the blow-up, it is still an effective −1-class, and l K X + E and
K X − E are still not effective, so we are reduced to the previous case. �

Now we state our characterization for a −1-divisor on an anticanonical rational
surface to be irreducible.

Theorem 3.5. Let X be an anticanonical rational surface and E a −1-class on X.
Then E is a −1-curve if and only if the following three assertions hold:

(1) E ·C ≥ 0 for all fixed components C 6= E of | − K X |.
(2) E ·C ≥ 0 for all −2-curves C on X.
(3) Neither K X + E nor K X − E is effective.

Proof. The forward implication is clear, except perhaps for why K X + E is not
effective when E is a −1-curve. But let X → Y be obtained by blowing down E .
Let A be the pullback to X of an ample divisor on Y . Note that A · E = 0, that A
is nef, and that

A ·(K X + E) = A ·K X = A ·(KY + E) = A ·KY

is negative since A is the pullback of an ample divisor on Y and −KY is effective
(since on X we have −KY = −K X + E , which is effective), so K X + E is not
effective.

For the converse, K X − E is not effective by assumption, so it follows by
Riemann–Roch that E is effective. As in the proof of Proposition 3.3, E ·C < 0
for some −1-curve C on X . But l K X + E is not effective for l > 0. (Suppose it
were effective. Then, since −K X is effective, (l K X + E) − (l − 1)K X = K X + E
would be too, contrary to hypothesis.) Thus we can apply Lemma 3.4, and hence
E ·C ≥ 0 unless E = C . �

Remark 3.6. The fact that, for example, (3E0 − E1 − E2 − · · · − E10) + 2E10,
−(3E0 − E1 − · · · − E10) and 6E0 − 2(E1 + · · · + E8) − (E9 + E10 + E11) +

E12 + E13 are −1-classes that cannot be classes of −1-curves shows the necessity
of hypothesis (3) in Theorem 3.5.
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4. Criteria for finite generation of M(X)

In this section we present some results on finite generation of the monoid M(X)

of effective divisor classes on an anticanonical rational surface X . For ρ(X) < 3,
finite generation of M(X) is well known. For example, if ρ(X) = 1, then X is P2

(in which case M(X) is generated by the class of a line). If ρ(X) = 2, then X is
a Hirzebruch surface Fn (in which case M(X) is generated by the classes B of the
base curve and F of a fiber of the ruling). The following lemma gives generators
for the case ρ(X) > 2.

Lemma 4.1. Let N(X) be the set of prime divisors of negative self-intersection on
an anticanonical rational surface X with ρ(X) ≥ 3. The monoid M(X) of effective
classes is generated by N(X) together with −K X .

Proof. It is enough to show that the class D of every prime divisor is in the sub-
monoid of Cl(X) generated by N(X) and −K X . If D2 < 0, then D ∈ N(X). So
assume D2

≥ 0; hence D is nef. Then it is enough by induction to show that D−C
is effective for some C ∈ N(X) or for C = −K X .

First assume that there is a birational morphism X → P2, so we have an excep-
tional configuration E0, . . . , En and we can write D = m0 E0 −m1 E1 −· · ·−mn En
for some (nonnegative) integers mi .

As in the proof of Lemma 3.4, we consider the blow-up X ′
→ P2 at generic

points, for which we write the exceptional configuration as E ′

0, . . . , E ′
n , and we

have the isometry f : Cl(X ′) → Cl(X) defined by f (E ′

i ) = Ei for all i , with the in-
verse to f being denoted by ′; by semicontinuity we again have f (M(X ′))⊂ M(X).

Now, D′2
= D2

≥ 0, −K X ′ · D′
= −K X · D ≥ 0, and E0 · D ≥ 0 (hence K X − D

and so K X ′ − D′ are not effective), so D′ is effective by Riemann–Roch. As in
the proof of Lemma 3.4, for some w ∈ Wn , w(D′) must be a nonnegative integer
linear combination of the classes −K ′

X , E ′

1 + · · · + E ′
n , E ′

2 + · · · + E ′
n , . . . , E ′

n ,
E ′

0 = (E ′

0−E ′

1−E ′

2)+E ′

1+E ′

2, E ′

0−E ′

1 = (E ′

0−E ′

1−E ′

2)+E ′

2, and 2E ′

0−E ′

1−E ′

2 =

2(E ′

0 − E ′

1 − E ′

2) + E ′

1 + E ′

2. The class f (w−1(−K ′

X )) = −K X is effective by
hypothesis. If F ′ is any other of the listed classes, then F ′ is effective, hence (as
in the proof of Lemma 3.4) so is w−1(F ′), and therefore also f (w−1(F ′)). Thus,
if −K ′

X occurs in the combination, D + K X is effective. If one of the other listed
classes occurs, D − E is effective for some effective −1-class E (since each of the
other listed classes is a sum of −1-curves, and the action of Wn on X ′ preserves the
set of −1-curves). We do not know that all of the components of E have negative
self-intersection, but since E2 < 0, we know at least one of them must. Take C to
be a component of E of negative self-intersection; then D−C = (D−E)+(E −C)

is effective. Thus in any case we conclude by induction that D is in the monoid
generated by N(X) together with −K X .

Now assume that there is no birational morphism X → P2. Thus a minimal
model for X must be Fn for some n. Since ρ(X) ≥ 3, X would be a blow-up of
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P2 unless n ≥ 2, so we may assume n ≥ 2. In any case, X is obtained by blowing
up r = ρ(X)−2 > 0 points pi of Fn , the corresponding exceptional divisors being
E1, . . . , Er .

If r = ρ(X) − 2 ≤ n − 2, write D = bB + cF − m1 E1 − · · · − mr Er for some
integers b, c, and mi . Since D is nef, we know D · Ei = mi ≥ 0, D · F = b ≥ 0,
D ·(F − Ei ) = b − mi ≥ 0, and D · B = c − bn ≥ 0. Thus c ≥ bn ≥ m1 +· · ·+ mr ,
so k = c − (m1 + · · · + mr ) ≥ 0; hence we can write D = bB + k(F − E1) +

k E1 + m1(F − E1) + · · · + mr (F − Er ) as a sum of effective divisors of negative
self-intersection. Letting C be a component of negative self-intersection of one of
the summands that has a positive coefficient, we see D −C is effective, as desired.

If, however, r = ρ(X) − 2 > n − 2, let X ′′ be the surface obtained by blowing
up r generic points p′′

i of Fn , with the corresponding exceptional divisors being
E ′′

1 , . . . , E ′′
r . Let f ′′

: Cl(X ′′) → Cl(X) be the isometry defined by f ′′(B) = B,
f ′′(F) = F and f ′′(E ′′

i ) = Ei (where B comes from the base curve and F from a
fiber of the ruling). Again we have f ′′(M(X ′′)) ⊂ M(X).

Since r = ρ(X)−2 > n −2, there is via elementary transformations a birational
morphism X ′′

→ P2. Hence X ′′ is a specialization of a blow-up X ′
→ P2 at generic

points. Let f ′
: Cl(X ′) → Cl(X ′′) be the isometry given by the corresponding

exceptional configurations in the usual way; thus f ′(M(X ′))⊂ M(X ′′). We denote
the composition f ′′

◦ f ′ by f : Cl(X ′) → Cl(X). Using f , the argument now goes
through as above. �

We now can prove the main result of this section:

Corollary 4.2. Let X be an anticanonical rational surface. Then M(X) fails to
be finitely generated if and only if either the set of −1-curves on X or the set of
−2-curves on X is infinite.

Proof. The reverse implication is clear, since a prime divisor of negative self-
intersection is not the sum of two nontrivial effective divisors (or see [Rosoff 1980,
Fact, p. 426]). For the converse, apply Lemma 4.1 and Remark 2.4. �

Here are some special cases of interest:

Proposition 4.3. Let X be a rational surface.

(a) If K 2
X > 0, then M(X) is finitely generated.

(b) If K 2
X = 0, then M(X) is finitely generated if and only if X has only finitely

many −1-curves.
(c) If K 2

X = 0 but −K X is not nef , M(X) is finitely generated.
(d) If K 2

X = 0 and −K X is nef , M(X) is finitely generated if and only if the span
of the −2-curves has rank ρ(X) − 1 and −K X can be written as a positive
rational linear combination of the −2-curves (all of them occurring).

(e) If K 2
X < 0 and X has a reduced irreducible anticanonical divisor, M(X) is

finitely generated if and only if X has only finitely many −2-curves and the
span of the −2-curves has rank ρ(X) − 1.



110 MUSTAPHA LAHYANE AND BRIAN HARBOURNE

Proof. (a) This is well known, and follows from the purely intersection-form-
theoretic fact that there are only finitely many −1 and −2-classes. (Blow up points,
if need be, so K 2

X = 1. If there is a birational morphism π : X → P2, see [Manin
1986]; if not, this applies anyway, using the isometry defined in Lemma 3.2.)

(b) One implication is clear. Conversely, it is enough to verify that there never
can be infinitely many −2-curves. First suppose there is a birational morphism
X → P2; let E0, . . . , E9 be the exceptional configuration. Consider a −2-class D.
For some r , we have (D +r K X )· E9 = 0, but it is easy to check that D +r K X is a
−2-class, except now D + r K X is in the span of E0, . . . , E8. By the proof of (a),
there are only finitely many −2-classes in the span of E0, . . . , E8. If there were
infinitely many −2-curves on X , two different ones, A 6= B, would have to be the
same modulo K X , and hence one, say A, would equal B − mK X for some m > 0,
which is impossible, since

−2 = A2
= A ·(B − mK X ) = A · B > 0.

By the usual isometry argument, even if there is no birational morphism to the
plane, we would still have only finitely many −2-classes modulo K X , and the
result again follows.

(c, d) These follow from [Lahyane 2001a; 2004], over C, but the proofs work over
any algebraically closed field.

(e) Note that there is a birational morphism X → P2. (If not, X is a blow-up of Fn
for some n > 2; hence −K X · B < 0, so the proper transform B ′ of B also meets
−K X negatively. But −K X is irreducible, so B ′ must equal −K X , which is not the
case since −K X = 2B + (n +2)F − E1 − E2 −· · ·− Er for some r , whereas B ′ is
of the form B minus some of the Ei ’s.) Moreover, any curve contracted by such a
morphism must be a −1 or −2-curve.

If M(X) is finitely generated, there are only finitely many −1 and −2-curves,
hence only finitely many exceptional configurations. The span of the −2-curves
has rank ρ(X) − 1, by [Harbourne 1985a, Theorem 3.1]. Conversely, if there
are only finitely many −2-curves and their span has rank ρ(X)− 1, there are only
finitely many exceptional configurations, also by [Harbourne 1985a, Theorem 3.1].
However, given a −1-curve E on an anticanonical rational surface with a reduced
irreducible anticanonical curve, the proof of [Harbourne 1985b, Theorem 2.1] gives
a construction of an exceptional configuration E0, . . . , in which E is Ei for some
i > 0. There are only finitely many exceptional configurations, so there can be only
finitely many −1-curves E , and M(X) is finitely generated by Corollary 4.2. �

5. Applications

In this section, we give examples of rational surfaces X with an infinite number of
−1-curves. By [Nagata 1960a, Theorem 5], there is a birational morphism X → P2
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for any such X ; hence each of our examples X has an exceptional configuration,
E0, . . . , En . In all but Example 5.5, we will have n = 9. We remind the reader of
the notation si from Remark 2.8 for certain particular −2-classes.

Example 5.1. This example provides a configuration of −2-curves whose inter-
section graph is of type E8. Let p be a flex of a smooth plane cubic curve C . Blow
up eight times, starting at p and continuing with the seven successive points of C
infinitely near p; hence s0, . . . , s7 are the classes of −2-curves. Then blow up a
ninth point q ∈C such that p−q does not have finite order in the divisor class group
of C . Then s0, . . . , s7 give the only −2-curves on the resulting surface X . (This
is because, by [Harbourne 1985a, Lemma 1.3 and p. 136] or [Looijenga 1981],
any −2-curve N is a nonnegative integer linear combination of s0, . . . , s8 which
restricts trivially to the proper transform C ′ of C . Since OC ′(s8) = OC ′(p − q),
this combination cannot involve s8, so now we see that the combination must be
one of s0, . . . , s7, since N is irreducible.) Hence M(X) is not finitely generated by
Proposition 4.3(d), and, by Proposition 3.3, E9 + d(s8 + K X ) − d2K X is the class
of a −1-curve on X for each positive integer d .

Example 5.2. This example provides a configuration of −2-curves of type A1 E7.
Let p and q be as in the previous example, but blow up only 7 times at p and twice
at q . Arguing as in the previous example, we see that the only −2-curves on X
are s0, . . . , s6 and s8. As before, M(X) is not finitely generated, and this time, for
each positive integer d, E9 + ds7 − d2K X is the class of a −1-curve.

Example 5.3. This example provides a configuration of −2-curves of type A1 A7.
This time choose p and q on a smooth elliptic curve C such that p −q has infinite
order, and embed C in the plane using |2p + q|. Neither p nor q is a flex and the
line tangent to C at p goes through q. Blow up twice at p, and then seven times at
q. Arguing as before, the −2-curves are s0, s1 and s3, . . . , s8, again M(X) is not
finitely generated, and for each positive integer d , E9 +ds2 −d2K X is a −1-curve.

Example 5.4. This example provides a configuration of −2-curves of type 2A1 D6.
This time, start with an abstract elliptic curve C such that Pic0(C) contains a sub-
group isomorphic to Z/2Z × Z. Let p1 be any point of C , but pick p2 and q such
that p1 − p2 is a generator for Z/2Z and p1 − q is a generator for Z. Embed
C in the plane via |2p1 + q|. By construction, the line tangent to C at either p1
or p2 passes through q . Now blow up 6 times on C at p1, then twice at p2 and
once at q . The resulting −2-curves are s1, . . . , s5, s7, E0 − E1 − E2 − E9, and
E0 − E7 − E8 − E9. Then M(X) is not finitely generated, and for each positive
integer d, E9 + d(E9 − K X − E1) − d2K X is the class of a −1-curve on X .

Example 5.5. The set of −2-curves can be infinite, and their span can even have
rank ρ(X)−1; see [Harbourne 1985a, Note 3.3] for an example with ρ(X)=11. In
this example, it turns out that there are also infinitely many −1-curves. This raises
several questions. Can it ever happen that there are infinitely many −2-curves but
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only finitely many −1-curves, or is M(X) not finitely generated if and only if there
are infinitely many −1-curves? Does M(X) failing to be finitely generated always
imply the existence of a birational morphism X → P2? What can be said about
these questions if X is rational but not necessarily anticanonical?

Example 5.6. We show in case K 2
X = 0 that M(X) can fail to be finitely generated

although the span of the −2-curves has rank 9. For specificity and simplicity, we
work over the complex numbers, but with suitable changes, similar examples can
be obtained over any algebraically closed field. Pick three distinct points p, q, r
on a line L in the plane. Choose an affine coordinate t on L such that t = 0 is p,
t = −1 is q and t = 1 is r . Choose a fourth point s whose value of t is such that( t

t + 1

)m
6=

(1
2

)m

for all positive integers m. Thus t/(t + 1) has a zero at p and a pole at q , but no
power of t/(t+1) ever takes on the same value at r and s. Now pick a smooth conic
C that meets L at r and s, and choose a point c on C such that the line through
c and q is tangent to C at c. Blow up the plane at the point c, and then again at
the point of the proper transform of C infinitely near to c, and continue in this way
until you have blown up six times. Thus the proper transform C ′ of C is a −2-
curve. Similarly, blow up three times on L at p, so the proper transform L ′ of L is
a −2-curve. Let X denote the plane blown up at the nine given points. In terms of
the sequence of blow-ups just specified, we have an exceptional configuration E0,
. . . , E9 with respect to which C ′

= 2E0 − E1 −· · ·− E6, L ′
= E0 − E7 − E8 − E9,

and s1, . . . , s5, s7 and s8 are −2-curves.
Suppose N is a −2-curve other than L ′ or C ′. Then N , as before, is a nonnegative

integer linear combination of s0, . . . , s8 whose restriction to L ′
+ C ′

= −K X is
trivial. For the restriction to be trivial, we must of course have N ·L ′

= 0 and
N ·C ′

= 0, and in addition we need OL ′+C ′(N ) = 0. But s0, . . . , s8 form a basis of
K ⊥

X , and each restricts trivially to L ′
+ C ′ except that

OL ′+C ′(s0) = OL ′+C ′(q − c) and OL ′+C ′(s6) = OL ′+C ′(c − p).

Thus for any N with N ·L ′
= 0 and N ·C ′

= 0 we have

OL ′+C ′(N ) = OL ′+C ′(m(p − q)).

Suppose this is trivial for some m. If m = 0, then N is a combination of only
s1, . . . , s5, s7 and s8, and being irreducible N must be one of s1, . . . , s5, s7 and
s8. If m 6= 0, we may assume m > 0, in which case there must be a rational
function on L with a zero of order m at p and a pole of order m at q , taking on the
same values at r and s (and so extending to L + C). By construction, there is no
such rational function on L . Thus there are no −2-curves beyond the nine already
noted, whose span has rank 9. On the other hand, E7 − E9 is in K ⊥

X , meets every
−2-curve nonpositively, and meets s7 (and s8 for that matter) negatively. Thus
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−K X cannot be a rational linear combination of the −2-curves with all positive
coefficients. Thus Proposition 4.3(d) implies M(X) is not finitely generated. Here
E9 + d(E9 − E7 − K X )− d2K X is the class of a −1-curve on X , for each positive
integer d.
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