Vol. 218, No. 2, 2005

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 334: 1
Vol. 333: 1  2
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
A family of isochronous foci with Darboux first integral

Jaume Giné and Jaume Llibre

Vol. 218 (2005), No. 2, 343–355
Abstract

We consider the class of polynomial differential equations = λx y + Pn(x,y) + P2n1(x,y), = x + λy + Qn(x,y) + Q2n1(x,y) with n 2, where Pi and Qi are homogeneous polynomials of degree i. These systems have a focus at the origin if λ0, and have either a center or a focus if λ = 0. Inside this class we identify a new subclass of Darboux integrable systems having either a focus or a center at the origin. Under generic conditions such Darboux integrable systems can have at most two limit cycles, and when they exist are algebraic. For the case n = 2 and n = 3 we present new classes of Darboux integrable systems having a focus.

Keywords
integrability, algebraic limit cycle, focus, center
Mathematical Subject Classification 2000
Primary: 34C35, 34D30
Milestones
Received: 11 April 2003
Published: 1 February 2005
Authors
Jaume Giné
Departament de Matemàtica
Universitat de Lleida
Av. Jaume II, 69
25001 Lleida
Spain
Jaume Llibre
Departament de Matemàtiques
Universitat Autònoma de Barcelona
08193 – Bellaterra, Barcelona
Spain