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We consider the class of polynomial differential equations ẋ = λx − y +

Pn(x, y) + P2n−1(x, y), ẏ = x + λy + Qn(x, y) + Q2n−1(x, y) with n ≥ 2,
where Pi and Q i are homogeneous polynomials of degree i . These systems
have a focus at the origin if λ 6= 0, and have either a center or a focus if λ= 0.
Inside this class we identify a new subclass of Darboux integrable systems
having either a focus or a center at the origin. Under generic conditions
such Darboux integrable systems can have at most two limit cycles, and
when they exist are algebraic. For the case n = 2 and n = 3 we present new
classes of Darboux integrable systems having a focus.

1. Introduction and statement of the results

Three of the main problems in the qualitative theory of real planar differential
systems are the determination of centers, limit cycles and first integrals. This paper
deals mainly with the determination of first integrals and limit cycles.

As usual a center is a singular point having a neighborhood filled of periodic
orbits, and a focus is a singular point having a neighborhood where all the orbits
spiral in forward or in backward time to it.

Here we study real planar polynomial differential systems of the form

(1)
ẋ = λx − y + Pn(x, y) + P2n−1(x, y),

ẏ = x + λy + Qn(x, y) + Q2n−1(x, y),

where Pi and Qi are homogeneous polynomials of degree i . Inside this class we
will characterize a new subclass of Darboux integrable systems having either a
focus or a center at the origin.
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We establish some notation and preliminary results. In polar coordinates (r, θ),
defined by

(2) x = r cos θ, y = r sin θ,

system (1) becomes

(3)
ṙ = λr + fn+1(θ)rn

+ f2n(θ)r2n−1,

θ̇ = 1 + gn+1(θ)rn−1
+ g2n(θ)r2n−2,

where
fi (θ) = cos θ Pi−1(cos θ, sin θ) + sin θ Qi−1(cos θ, sin θ),

gi (θ) = cos θ Qi−1(cos θ, sin θ) − sin θ Pi−1(cos θ, sin θ)

are certain homogeneous trigonometric polynomials in the variables cos θ and sin θ

having degree in the set {i, i−2, i−4, . . . }. Indeed, fi (θ) can be of the form
(cos2 θ +sin2 θ)s fi−2s with fi−2s a trigonometric polynomial of degree i −2s ≥ 0,
and a similar situation occurs for gi (θ).

If we impose gn+1(θ) = g2n(θ) = 0 and make the change R = rn−1, system (3)
becomes the differential equation

(4)
d R
dθ

= (n − 1)
(
λR + fn+1(θ)R2

+ f2n(θ)R3).
Differential equations of this kind appeared in Abel’s studies on the theory of el-
liptic functions. For more details on Abel differential equations, see [Kamke 1943;
Cheb-Terrab and Roche 2003; Gasull and Llibre 1990].

We say that all polynomial differential systems (1) with gn+1(θ) = g2n(θ) = 0
define class F if f2n(θ) and fn+1(θ) satisfy

(5) f ′

2n(θ) fn+1(θ) − f2n(θ) f ′

n+1(θ) = (n − 1)
(
a fn+1(θ)3

− λ fn+1(θ) f2n(θ)
)

for some a ∈ R. Clearly, the class of our polynomial differential systems (1) has
dimension 6n+4 in the space of all coefficients, and the subclass F is an algebraic
subvariety of it.

We shall prove that all polynomial differential systems (1) in class F have a
Darboux first integral. We have found the subclass F thanks to the Abel differential
equations studied in [Kamke 1943, pp. 24–25, cases (a–d)]. Using these same
techniques new Darboux integrable systems are found in [Giné and Llibre 2004]
for polynomial systems formed by a linear part plus homogeneous nonlinearities.

A function of the form f λ1
1 . . . f λp

p exp(h/g), where fi , g and h are polynomials
in C[x, y] and the λi ’s are complex numbers, is called a Darboux function. System
(1) is called Darboux integrable if the system has a first integral or an integrating
factor which is a Darboux function (for a definition of a first integral and of an
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integrating factor, see [Chavarriga et al. 1999; Christopher and Llibre 2000], for
instance). Our main result is the following:

Theorem 1. For polynomial differential systems (1) in the class F the following
statements hold.

(a) If λ 6= 0 and f2n(θ) fn+1(θ) 6= 0, then the origin is a focus and the system has
the Darboux first integral H̃(x, y) obtained from

H(R, θ) =



R exp((n−1)λθ) exp
(

−
1

√
4a−1

arctan
(1+2R f2n(θ)/ fn+1(θ))

√
4a−1

)
√

R2 f 2
2n(θ)/ f 2

n+1(θ)+R f2n(θ)/ fn+1(θ)+a
if a > 1

4 ,

R exp((n−1)λθ) exp 1
1+2R f2n(θ)/ fn+1(θ)

1+2R f2n(θ)/ fn+1(θ)
if a =

1
4 ,

R exp((n−1)λθ)

(
√

1−4a+1+
2R f2n(θ)

fn+1(θ)

)(−1+1/
√

1−4a)/2

(
√

1−4a−1−
2R f2n(θ)

fn+1(θ)

)(1+1/
√

1−4a)/2 if a < 1
4 , a 6= 0,

exp((n−1)λθ) f2n(θ)

fn+1(θ)
if a = 0,

through the changes of variables (2) and with R = rn−1.

(b) If λ 6= 0 and a = f2n(θ) fn+1(θ) = 0, then the origin is a focus and the system
has the Darboux first integral H̃(x, y) obtained from

H(R, θ)=


exp((n−1)λθ)

R + (n−1)
∫

exp((n−1)λθ) fn+1(θ) dθ if f2n(θ) = 0,

exp(2(n−1)λθ)

R2 + 2(n−1)
∫

exp(2(n−1)λθ) f2n(θ) dθ if fn+1(θ) = 0,

through the changes of variables (2) and with R = rn−1.

(c) If λ = 0, the origin is a center, and the system has an analytic first integral
H̃(x, y) obtained by taking λ= 0 in the expressions for H̃(x, y) in (a) and (b).

(d) If λ = 0, the origin is a center, and the following systems have a rational first
integral:

(d1) Systems with fn+1(θ) = f2n(θ) = 0.
(d2) Systems with f2n(θ) = 0 and

∫ 2π

0 fn+1(θ) dθ = 0.
(d3) Systems with fn+1(θ) = 0 and

∫ 2π

0 f2n(θ) dθ = 0.
(d4) Systems whose a (defined in (5)) satisfies a < 1

4 , a 6= 0, and
√

1 − 4a is
rational.

Theorem 1 will be proved in Section 2. Part (c) follows easily from (a) and (b).
A limit cycle of system (1) is a periodic orbit isolated in the set of periodic

orbits of system (1). We say that a limit cycle γ is algebraic if it is contained in
an algebraic curve.
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Theorem 2. If a system (1) in class F with λ 6= 0 and f2n(θ) fn+1(θ) 6= 0 has a
limit cycle, it is algebraic. Moreover, such a system can have at most two limit
cycles. There are systems with 0, 1 or 2 limit cycles.

In the course of the proof, given in Section 3, we provide an explicit expression
for algebraic limit cycles.

Systems (1) for n =2 are cubic differential systems. The problem of determining
when a cubic differential system (1) has a center at a singular point is open. Trying
to distinguish whether a weak focus of a general cubic system is a center or a
focus has produced disappointing results, due to the huge expressions obtained
for its Poincaré–Liapunov constants; see [Schlomiuk 1993]. But several authors
have studied particular subclasses of cubic polynomial differential systems; see for
instance [Pearson et al. 1996] and the references therein. The center problem for
cubic polynomial differential system (1) satisfying x Q3(x, y)− y P3(x, y) = 0 has
been totally solved in [Chavarriga and Giné 1998; Lloyd et al. 1997].

Other polynomial differential systems recently investigated are those of the form

(6) ẋ = y + x F(x, y), ẏ = −x + yF(x, y),

where F(x, y)=
∑4

i=1 Fi (x, y) for homogeneous polynomials Fi (x, y) of degree i .
Such systems satisfy x Qi (x, y) − y Pi (x, y) = 0 for i = 1, . . . , 4; therefore, they
have constant angular speed θ̇ = 1. When a system (6) has a center at the origin,
this center is called a uniformly isochronous center [Conti 1994]. If F(x, y) = 0,
the origin is a linear center. The conditions for a system (6) to have a center have
been studied in [Collins 1997] when F3 = F4 = 0. Systems of the form (6) have
been studied in [Giné and Santallusia 2001] in the case that F(x, y) is of degree 3
with F2 = 0, and in [Chavarriga et al. 2001] in the case that F(x, y) is of degree 3.
The case where F(x, y) is of degree 4 is totally solved in [Volokitin 2002] when
F1 = F3 = 0.

It is easy to check that systems (1) with n = 2 satisfying g3(θ) = g4(θ) = 0 can
be written into the form

(7)
ẋ = λx − y + x(αx + βy + Ax2

+ Bxy + Cy2),

ẏ = x + λy + y(αx + βy + Ax2
+ Bxy + Cy2),

where α, β, A, B and C are arbitrary constants. In [Collins 1997] it has been proved
that the origin of system (7) is a center if and only if

λ = 0, A + C = 0 and Aα2
+ Bαβ + Cβ2

= 0.

In Corollary 5 we compute the class of cubic polynomial differential systems
satisfying (a) and (b) in Theorem 1, thereby exhibiting new classes of Darboux
integrable cubic systems having a focus.
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Polynomial systems (1) with n = 3 satisfying g4(θ) = g6(θ) = 0 can be written
to the form

(8)
ẋ = λx−y+x(Ax2

+Bxy+Cy2
+Dx4

+Ex3 y+Fx2 y2
+Gxy3

+H y4),

ẏ = x+λy+y(Ax2
+Bxy+Cy2

+Dx4
+Ex3 y+Fx2 y2

+Gxy3
+H y4),

where A, B, C, D, E, F, G and H are arbitrary constants. Volokitin [2002] has
proved that the origin of system (8) is a center if and only if one of the following
sets of conditions are satisfied:

(i) λ = 0, A = B = C = 0, and F = −3(D + H).

(ii) λ = 0 and A = C = D = F = H = 0.

(iii) λ = 0, A 6= 0, C = −A, F = 3B(AE − B D)/2A2,

H =
−2A2 D + B(B D − AE)

2A2 , G =
2A2 B D + (2A2

− B2)(B D − AE)

2A3 .

In Corollary 6 we will provide new classes of Darboux integrable systems (8)
having either a focus or a center at the origin.

2. Proof of Theorem 1

Proof of Theorem 1(a). Following [Kamke 1943, p. 25, case (d)], we make the
change of variables (R, θ) → (η, ξ) defined by R = u(θ)η(ξ), where u(θ) =

exp ((n − 1)λθ) and ξ =
∫

exp ((n − 1)λθ) (n−1) fn+1(θ) dθ . This transformation
writes the Abel differential equation (4) into the form

(9) η′(ξ) = g(ξ) η(ξ)3
+ η(ξ)2,

where g(ξ) = exp ((n − 1)λθ) f2n(θ)/ fn+1(θ) and ′
= d/dξ . Making the change

ξ → t in the independent variable defined by ξ ′
=−1/(tη(ξ)), where now ′

=d/dt ,
equation (9) becomes

(10) t2ξ ′′(t) + g(ξ(t)) = 0.

Note that g(ξ) = aξ means

exp((n − 1)λθ) f2n(θ)/ fn+1(θ) = a
∫

exp((n − 1)λθ)(n − 1) fn+1(θ) dθ;

equivalently, by differentiating with respect to θ , we get

(11)
d

dθ

f2n(θ)

fn+1(θ)
= a(n − 1) fn+1(θ) −

(n − 1)λ f2n(θ)

fn+1(θ)
,

which is equivalent to condition (5). Thus g(ξ) = aξ , and (10) is an Euler dif-
ferential equation. Applying the change t = exp(τ ) to the independent variable,
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equation (10) then becomes a linear ordinary differential equation with constant
coefficients:

(12) ξ ′′(τ ) − ξ ′(τ ) + aξ(τ ) = 0,

where ′
= d/dτ . Equation (12) has the characteristic equation k2

− k + a =

0, so its general solution is ξ(τ ) = C1 exp(τ/2) + C2τ exp(τ/2) if a =
1
4 , and

ξ(τ ) = C1 exp(k1τ) + C2 exp(k2τ) if a 6=
1
4 , where k1 and k2 are the roots of the

characteristic equation. Going back to the independent variable t = exp(τ ), the
solution of the Euler differential equation is ξ(t) = C1

√
t +C2

√
t ln t if a =

1
4 and

ξ(t) = C1tk1 + C2tk2 if a 6=
1
4 .

Finally, going back through the change of variables to the variables (R, θ) and
taking into account whether the roots k1 and k2 are real or complex, we obtain the
first integrals shown in statement (a), according to the value of a.

We now prove that the systems in (a) are Darboux integrable, by showing that all
terms that appear in the first integral of those systems are of the form f λ1

1 . . . f λp
p ,

with fi a polynomial and λi a complex number. First, the term exp((1 − n)λθ)

takes the form

exp((1 − n)λθ) = exp((1 − n)λ arctan(y/x))

= (x + iy)i(n−1)λ/2(x − iy)−i(n−1)λ/2.

Recall that if f = 0, with f ∈ C[x, y], is an invariant algebraic curve of a real
polynomial differential system, the complex conjugate f =0 is also an invariant al-
gebraic curve; see [Christopher and Llibre 2000], for instance. Therefore, if among
the invariant algebraic curves of system (1) there occurs a complex conjugate pair
f = 0 and f = 0, the first integral has a factor of the form f µ f µ̄, which is the
(multivalued) real function

(
(Re f )2

+ (Im f )2)Re µ exp
(

−2 Im µ arctan
Im f
Re f

)
.

On the other hand, writing R = rn−1, it follows that

F =
fn+1(θ) + 2R f2n(θ)

fn+1(θ)
=

rn+1( fn+1(θ) + 2rn−1 f2n(θ))

rn+1 fn+1(θ)
,

is a rational function in cartesian coordinates because f2n(θ) and fn+1(θ) are ho-
mogeneous trigonometric polynomials of degree 2n and n+1, respectively. Taking
into account these relations, the first integral for a > 1

4 is the Darboux function

H(ρ, θ) = ρ exp((1 − n)λθ) f µ f µ̄,
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where Re f = F , Im f =
√

4a − 1, Re µ = −
1
2 , and Im µ = 1/(2

√
4a − 1). The

first integral for a =
1
4 is the Darboux function

H(ρ, θ) = ρ exp((1 − n)λθ) exp(1/F)/F.

The first integral for a < 1
4 and a 6= 0 is the Darboux function

H(ρ, θ) = ρ exp((1 − n)λθ)
∣∣√1 − 4a + F

∣∣µ1
∣∣√1 − 4a − F

∣∣µ2
,

where µ1 =
1
2(−1 + 1/

√
1 − 4a) and µ2 =

1
2(1 + 1/

√
1 − 4a). Finally, the first

integral for a = 0 is the Darboux function

H(ρ, θ) =
exp((1 − n)λθ) f2n(θ)r2n

rn−1 fn+1(θ)rn+1 ,

and this completes the proof of statement (a). �

Proof of Theorem 1(b). In the cases f2n(θ)= 0 and fn+1(θ)= 0, the Abel differen-
tial equation (4) is the Bernoulli differential equation d R/dθ = (n−1)( fn+1(θ)R2

+

λR) and d R/dθ = (n − 1)( f2n(θ)R3
+λR), respectively. Solving these Bernoulli

equations we obtain the first integrals of statement (b).
Systems of statement (b) are Darboux integrable because their first integrals are

obtained by integrating elementary functions; see [Singer 1992] for more details.
The integrals appearing in the first integrals in question can be computed using
recurrence formulas; see for instance [Petit Bois 1961, p. 149]. �

Proof of Theorem 1(c). The proof follows easily taking λ = 0 in statements (a)
and (b). �

Proof of Theorem 1(d). If fn+1(θ) = f2n(θ) = 0, system (3) with λ = 0 satisfies
ṙ = 0 and therefore it has a polynomial first integral H = x2

+ y2. Statement (d1)
follows.

If f2n(θ) = 0, from the Abel differential equation (4) it is easy to derive that
H(R, θ) = 1/R + (n − 1)

∫
fn+1(θ) dθ is a first integral. Taking into account that∫ 2π

0 fn+1(θ) dθ vanishes and going back to cartesian variables, we obtain a rational
first integral and (d2) follows.

If fn+1(θ) = 0, again from the Abel differential equation (4) it is easy to derive
that H(R, θ) = 1/R2

+2(n −1)
∫

f2n(θ) dθ is a first integral. Taking into account
that

∫ 2π

0 f2n(θ) dθ vanishes and going back to cartesian variables, we obtain a
rational first integral, and (d3) follows.

Finally, from the expression of the first integral H(R, θ) for a < 1
4 and a 6=0 with

√
1 − 4a rational, we have H 2(R, θ) = R2

∣∣√1 − 4a + F
∣∣2µ1

∣∣√1 − 4a − F
∣∣2µ2 ,

where µ1 and µ2 are defined at the end of the proof of part (a). Therefore, a
convenient power of H 2(R, θ) gives a rational first integral. There follows (d4).

�
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Now we investigate whether it is possible to find other integrable classes from the
well known integrable cases of the Abel differential equation. Following [Kamke
1943, p. 24, case (4)], first we perform the change of variables (R, θ) → (η, ξ)

defined by R = w(θ)η(ξ) − fn+1(θ)/(3 f2n(θ)), where

w(θ) = exp
( ∫

(n − 1)(λ − f 2
n+1(θ)/(3 f2n(θ))) dθ

)
and ξ =

∫
(n − 1) f2n(θ)w2(θ) dθ . This puts the Abel equation (4) into the normal

form

(13) η′(ξ) = η(ξ)3
+ I (θ),

where

I (θ) =
1

(n−1) f2n(θ)w3(θ)

(
d

dθ

fn+1(θ)

3 f2n(θ)
−

(n−1)λ fn+1(θ)

3 f2n(θ)
+

2(n−1) f 3
n+1(θ)

27 f 2
2n(θ)

)
.

From the definition of w(θ) we have

(14) ln |w(θ)| = (n − 1)

∫ (
λ −

f 2
n+1(θ)

3 f2n(θ)

)
dθ

= (n − 1)

∫
fn+1(θ)

f2n(θ)

(
λ f2n(θ)

fn+1(θ)
−

fn+1(θ)

3

)
dθ.

In the case a 6= 0, the right-hand side of (14) becomes, upon use of (5) (or,
equivalently, of (11)),

−
1

3a

∫ d
dθ

(
f2n(θ)/ fn+1(θ)

)
f2n(θ)/ fn+1(θ)

dθ +

(
1 −

1
3a

)
(n − 1)

∫
λ dθ

= −
1

3a
ln

∣∣∣∣ f2n(θ)

fn+1(θ)

∣∣∣∣ + (
1 −

1
3a

)
(n − 1)λθ.

This leads to w(θ) =
∣∣ f2n(θ)/ fn+1(θ)

∣∣−1/3a exp((n − 1)(1 − 1/(3a))λθ), so I (θ)

becomes

(15) I (θ) =

(2 − 9a
27

)(
f2n(θ)

fn+1(θ)

)(1−3a)/a

exp((n − 1)(1 − 3a)λθ/a).

It is easy to see that I (θ) = 0 for a =
2
9 and I (θ) = −

1
27 for a =

1
3 . In these

two cases, we can separate variables in the differential equation (13) and obtain the
associated first integrals. But I (θ) = 0 and I (θ) = −

1
27 imply that (5) holds with

a =
2
9 and a =

1
3 , respectively. So we obtain cases already studied. New cases of

integrability would only appear for I (θ) 6= 0, − 1
27 .
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Cases (b) and (c) of the Abel differential equation of [Kamke 1943, p. 25] again
lead to the case already studied, with a =

2
9 .

3. Algebraic limit cycles with Darboux first integral

The next proposition presents what is probably the easiest example of a polynomial
differential system that has a Darboux first integral and an algebraic limit cycle.
Other examples of this kind were given in [Dolov 1976; Kooij and Christopher
1993; Christopher 1994]. In fact, it has now been proved that any finite configura-
tion of limit cycles is realizable by algebraic limit cycles of a Darboux integrable
polynomial differential systems [Llibre and Rodríguez 2004].

Proposition 3 [Chavarriga et al. 1999]. The differential system

(16) x ′
= x − y − x(x2

+ y2), y′
= x + y − y(x2

+ y2)

has the algebraic solution x2
+ y2

−1 = 0 as a limit cycle. In polar coordinates (2)
the function H(r, θ) = (r2

−1) exp(2θ)/r2
= C is a Darboux first integral defined

on R2
\ 6, where 6 = {(0, 0)} ∪ {(x, y) : x2

+ y2
− 1 = 0}.

To study the existence or nonexistence of limit cycles in system (1) we shall use
the following result.

Theorem 4 [Giacomini et al. 1996, Theorem 9]. Let (P, Q) be a C1 vector field
defined in an open subset U of R2. Let V = V (x, y) be a C1 solution of the linear
partial differential equation

P
∂V
∂x

+ Q
∂V
∂y

=

(
∂ P
∂x

+
∂ Q
∂y

)
V,

defined in U . If γ is a limit cycle of (P, Q), then γ is contained in {(x, y) ∈ U :

V (x, y) = 0}.

Under the assumptions of Theorem 4, the function 1/V is an integrating factor
in U \{V (x, y) = 0} (see [Chavarriga et al. 1999; Christopher and Llibre 2000] for
details). So the function V is called an inverse integrating factor.

Proof of Theorem 2. For systems (1) in class F with λ 6= 0 and f2n(θ) fn+1(θ) 6= 0,
it is easy to check that

V (ρ, θ) = R(R2 f 2
2n(θ)/ f 2

n+1(θ) + R f2n(θ)/ fn+1(θ) + a)

is an inverse integrating factor of the associated Abel differential equation (4).
Notice that V is defined for all (R, θ) such that fn+1(θ) 6= 0. Again by Theorem 4,
if system (1) and consequently its associated Abel equation (4) have limit cycles,
those of the Abel equation must be contained in the set {V (R, θ) = 0}.
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From the expression of the inverse integrating factor, the unique possible limit
cycles must be given by

R(θ) =

{
1
2(−1 ±

√
1 − 4a ) fn+1(θ)/ f2n(θ) if a < 1

4 ,

−
1
2 fn+1(θ)/ f2n(θ) if a =

1
4 .

For these expressions to define limit cycles, R(θ) must be defined and positive for
all θ . Since f2n(θ) and fn+1(θ) are homogeneous trigonometric polynomials of
degree 2n and n + 1 respectively, we conclude that n must be odd and a ≤

1
4 .

Clearly a system in our class (1) has no limit cycles if n is even, or if a > 1
4

and f2n(θ) fn+1(θ) 6= 0. It can have one limit cycle if a =
1
4 : for instance, setting

A = 2, B = E = 0 in Corollary 6(c) yields the system ẋ = −y − x(x2
+ y2

− 1)2,
ẏ = x−y(x2

+y2
−1)2, which has exactly one limit cycle, the circle x2

+y2
−1=0.

And the system can have two limit cycles if n is odd and a < 1
4 : setting A = 4,

B = E = 0 in Corollary 6(c) yields the system ẋ = x − y − x(x2
+ y2

− 2)2,
ẏ = x+y−y(x2

+y2
−2)2, which has exactly two limit cycles given, x2

+y2
−3=0

and x2
+ y2

− 1 = 0. This completes the proof. �

4. Some corollaries

System (1) with n = 2 and g3(θ) = g4(θ) = 0 — i.e., the cubic system (7) —
has a focus or a center at the origin. The following corollary characterizes cubic
polynomial systems (7) belonging to class F.

Corollary 5. A cubic system (7) with λ 6= 0 belongs to class F if and only if one of
the following statements holds.

(a) α = β = 0. Then (7) has the Darboux first integral

H(x, y) =
(x2

+ y2) exp
(
−2λ arctan y

x

)
P2(x, y)

,

where P2(x, y) = 2λ3
+ (A + C)(x2

+ y2) + 2λ2(Ax2
+ y(Bx + Cy)) +

λ(2 − 2Cxy + 2Axy + B(y2
− x2)).

(b) A = aα(αλ − β)/(1 + λ2), B = a(α2
− β2

+ 2αβλ)/(1 + λ2), and C =

aβ(α+βλ)/(1+λ2). Then (7) has, if a> 1
4 , the Darboux first integral H(x,y)=

(x2
+ y2) exp

(
−2λ arctan y

x −
2

√
1−4a

arctan 1+λ2
−2a(β−αλ)x+2a(α+βλ)y

(1+λ2)
√

1−4a

)
P2(x, y)

,

where P2(x, y)=1+k4
+aβ2x2

+αy+aα2 y2
+k3(αx+βy)+k(αx+βy)(1−

2aβx+2aαy)−β(x+2aαxy)+k2(2+aα2x2
+αy+aβ2 y2

+βx(−1+2aαy));
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if a < 1
4 and a 6= 0 it has the Darboux first integral

H(x, y) =
(x2

+ y2) exp
(
−2λ arctan y

x

)
R1(x, y)

R2(x, y)
,

where

R1(x, y) =
(
(−1+

√
1−4a)(1+λ2)−2a(−βx+αλx+αy+βλy)

)−1−1/
√

1−4a
,

R2(x, y) =
(
(−1−

√
1−4a)(1+λ2)+2a(−βx+αλx+αy+βλy)

)1−1/
√

1−4a
;

in the case a =
1
4 the Darboux first integral is

H(x, y) =

(x2
+ y2) exp

(
−2λ arctan y

x −
2(1+λ2)

1+λ2−2aβx+2aαλx+2a(α+βλ)y

)
(
1 + λ2 − 2aβx + 2aαλx + 2a(α + βλ)y

)2 ;

and in the case a = 0 the Darboux first integral is

H(x, y) =
(x2

+ y2) exp
(
−2λ arctan y

x

)
(1 + λ2 − βx + αλx + αy + βλy)2 .

Consequently, for λ 6= 0 these cubic systems have a focus at the origin and are
Darboux integrable.

Proof. This follows from parts (a) and parts (b) of Theorem 1 for n = 2, after
tedious computations. �

System (1) with n = 3 and g4(θ) = g6(θ) = 0 — i.e., the quintic system (8) —
has a focus or a center at the origin. The following corollary characterizes quintic
polynomial systems (8) belonging to class F.

Corollary 6. A system (8) with λ 6= 0 belongs to class F if and only if one of the
following statements holds.

(a) A = B = C = 0. Then (8) has the Darboux first integral given by Theorem
1(b) with n = 3 and f4(θ) = 0.

(b) A = B = D = E = 0, F = a C2/(2λ(1 + λ2)), G = −a C2/(1 + λ2) and
H = a C2(1 + 2λ2)/(2λ(1 + λ2)). Then (8) has the Darboux first integral
given by Theorem 1(a) with n = 3.

(c) B = 2λA, C = 2λD(1 + λ2) − a A2/(a A), E = 2a A2, F = 2λ(2a2 A4
+

D2
−aλA2 D +λ2 D2)/(a A2), G=2(4aλA2 D −a2A4

−2λ2D2
+4aλ3 A2 D −

2λ4 D2)/(a A2) and H = D(1 + 2λ2)(2λD(1 + λ2) − a A2)/(a A2). Then (8)
has the Darboux first integral given by Theorem 1(a) with n = 3.

(d) C = (−a AB + aλB2
− 2aλA2

+ 2λE − 4aλ2 AB + 2λ3 E)/(a(B − 2λA)),
D = A(2a A2

− E)/(2λA − B), F = (3a2 AB3
+ 8λa2 A4

− 12a2λA2 B2
−

8aλA2 E −aλB2 E +2λE2
+16a2λ2 A3 B +2aλ2 AB E −8aλ3 A2 E +2λ3 E2)/
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(a(B − 2λA)2), G = (a2 B4
− 4a2 A2 B2

+ aB2 E − 4a2λAB3
+ 4aλAB E +

4aλ2 A2 E − 4λ2 E2
+ 8aλ3 AB E − 4λ4 E2)/(a(B − 2λA)2), H = (−2a A2

+

aB2
+ E − 4aλAB + 2λ2 E)(−a AB − 2aλA2

+ aλB2
+ 2λE − 4aλ2 AB +

2λ3 E)/(a(B − 2λA)2). Then (8) has the Darboux first integral given by
Theorem 1(a) with n = 3.

(e) D = E = F = G = H = 0. Then (8) has the Darboux first integral given by
Theorem 1(b) with n = 3 and f6(θ) = 0.

Consequently, for λ 6= 0 these quintic systems have a focus at the origin and are
Darboux integrable.

Proof. This follows from parts (a) and parts (b) of Theorem 1 for n = 3, after
tedious computations using a computer-algebra program. �
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