Vol. 219, No. 2, 2005

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Upper bounds for the spectral radius of the n×n Hilbert matrix

Peter Otte

Vol. 219 (2005), No. 2, 323–331
Abstract

We derive upper bounds for the spectral radius of the n × n Hilbert matrix. The key idea is to write the Hilbert matrix as integral operator with positive kernel function and then to use a Wielandt-type min-max principle for the spectral radius. Choosing special trial functions yields a new bound that improves the best bound known heretofore.

Keywords
Hilbert matrix, Hilbert inequality, spectral radius, Wielandt min-max principle, integral operator
Mathematical Subject Classification 2000
Primary: 15A42, 15A60, 47G10
Milestones
Received: 20 October 2003
Revised: 19 March 2004
Published: 1 April 2005
Authors
Peter Otte
Ruhr-Universität Bochum
Fakultät für Mathematik
Universitätsstraße 150
D-44780 Bochum
Germany