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SECOND-ORDER DIFFERENTIAL OPERATOR

CYRINE BACCAR AND LAKHDAR TANNECH RACHDI

For a class of singular second-order differential operatorsA, we define and
study the Weyl transforms W,, associated withA, wheregs is a symbol inS™,
for m e R. We give criteria in terms of ¢ for boundedness and compactness
of the transform W, .

Introduction

Herman Weyl 193] studied extensively the properties of pseudodifferential oper-
ators arising in guantum mechanics, regarding them as bounded linear operators ¢
L?(R"), the space of square-integrable functionsfrwith respect to Lebesgue
measure). M. W. Wong calls these operators, which are the subject of his bool
[Wong 1998, Weyl transforms.

Here we consider the second-order differential operator definé@, aroo[ by

A/
Au=U"+ Ku/ + p?u,

whereA is a nonnegative function satisfying certain conditions arngla nonneg-
ative real number.

This operator plays an important role in analysis. For example, many specia
functions (orthogonal polynomials) are eigenfunctions of an operatar tyfpe.
The radial part of the Beltrami—Laplacian in a symmetric space is al2otgpe.
Many aspects of such operators have been studied; we mention, in chronologi
cal order, Chebli 1979 Trimeche 1981Zeuner 1989Xu 1994 Triméche 1997
Nessibi et al. 1998 In particular, the first two of these references investigate stan-
dard constructions of harmonic analysis, such as translation operators, convolutio
product, and Fourier transform, in connection wikh

Building on these results, we define and study the Weyl transforms associate
with A, giving criteria for boundedness and compactness of these transforms. Tt
obtain these results we first define the Fourier-Wigner transform associated witl
A, and establish an inversion formula.

MSC2000:42A38, 65R10.
Keywords: Weyl transform, compact operator, Fourier—Wigner transform.
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More precisely, irSection lwe recall some properties of harmonic analysis for
the operatorA. In Section 2we define the Fourier—Wigner transform associated
with A, study some of its properties, and prove an inversion formula.

In Section 3we introduce the Weyl transform, associated with\, with o
a symbol in classS™, for m € R, and we give its connection with the Fourier—
Wigner transform. We prove that, far sufficiently smoothW, is a compact
operator fromL2(dv) (the space of square-integrable functions with respect to the
measuralv(x) = A(x) dx) into itself.

In Section 4ve definew,, for o in a certain spackP(dv®dy), with pe[1, 2],
and we establish thad/, is again a compact operator.

In Section 5we defineW, for o in another function space, and use this to prove
in Section &hat for p > 2 there exists a functios in the LP space corresponding
to that of Section 4 with the property that the Weyl transforwii, is not bounded
on L2(dv).

1. The operator A

We consider the second-order differential operatatefined on|0, +oo[ by

A/
Au=U"+ —U + pu,
A
wherep is a nonnegative real number and

(1-1) AX) =x*TB(x),  a>-1,

for B a positive, even, infinitely differentiable function éhsuch thatB(0) = 1.
Moreover we assume th@t and B satisfy the following conditions:

() Aisincreasing ang Jlrim A(X) = 4o00.
——+00
A : . A(X)
i) — is decreasing and lim =
(i) A 9 x=+oo A(X)
(iii) There exists a constafit= 0 such that

2p.

B'(x) e

Box) D(x) exp(—8x) if p =0,
AX) .

A 2p + D(X) exp(—éx) if p >0,

whereD is an infinitely differentiable function o}0, +oo[, bounded and with
bounded derivatives on all intervdlgg, +ool[, for xg > 0.

This operator was studied i€pebli 1979 Nessibi et al. 1998Triméche 198],
and the following results have been established:
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() For all » € C, the equation

(1-2)

Au = —)2u
uO =1, VO =0

admits a unique solution, denoted py, with the following properties:

e ¢, satisfies theroduct formula

o0

(1-3) 01X (Y) = /0 (D w(X,y,z)A(z)dz for x,y>0;

wherew(X, Y, -) is a measurable positive function B +oo[, with support
in [[x—yl[, Xx+Y], satisfying

o0
/ w(X,Y,2)A(2)dz=1,
0

w(X,y,2)=w(y, X,z forz>0,

wX,Y,2)=w(x,zy) forz>0
e for x > 0, the function. — ¢, (x) is analytic onC;
e for A € C, the functionx — ¢, (X) is even and infinitely differentiable dR;
o [p(X)|<1forallxeRandx eR;

e for x > 0, and)x > 0 we have

(1-4) jo (%) + ATY2(x)0;.(%),

1
@.(X) = —W

where j, is defined byj,(0) =1 and j,(s) = 2*T (¢ + 1)s™ J,(S) if s#£ 0
(with J, the Bessel function of first kind), and the functiénsatisfies

16,00 < —= </|Q<s>|ds) exp(9/|Q<s)|ds)
A2tz \Jo A Jo

with ¢, ¢, positive constants an@ the function defined of0, +oo[ by

2

1
_a— LA\, LAY 2
(1-5) Q(x) = X2 +Z1<A(x)) +2(A(X)) P

(I) For nonzerox e C, the equatiomu = —A2u has a solutionb; satisfying
@, (x) = A"Y2(x) exp(i AX)V (X, M),

with limy_, . o V(X, A) = 1. Consequently there exists a function (spectral func-
tion)
A= c(A),



204 C. BACCAR AND L. T. RACHDI

such that
¢ =C(A) Py +c(—A)d_; for nonzeror € C.

Moreover there exist positive constakis k», k3 such that
(1-6) Ke|A[*F2 < e 7t < ko [a[*FH2
for all » such that Imk < 0 and|)\| > Ka.

Notation. We denote by

e dv(x) the measure defined ¢8, +oo[ by
dv(x) = A(x)dx;

e LP(dv), for 1 < p < +o0, the space of measurable functions [Gn-+oo[
satisfying

+o00 1/p
||f||p,ui=(/ If(X)Ipdv(X)) <400 forl<p<-+oo,
0

| f lloc,» := €ss sup f (x)| < +o0;
X€[0,+o0[

e dy (1) the measure defined ¢, +oo[ by

dx

WO = e

e LP(dy), for 1 < p < +o0, the space of measurable functions [6n-+oo[
satisfying|| f || p,, < +o0;

¢ D.(R)the space of even, infinitely differentiable functiongywith compact
support;
e H,(C) the space of even analytic functions ©nrapidly decreasing of expo-
nential type.
Definition 1.1. The translation operatorassociated with\ is defined onL(dv)
by

+o0
ﬁxf(y):f f(@Qwx,y,2dv(z) forx,y=>0,
0

wherew is defined in(1-3) Theconvolution producassociated with is defined
by

+0o0

(f*g)(X)Z/O I f(y)g(y)dv(y) for f,ge L (dv).
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Properties of translation and convolution.

e The translation operator satisfies

Tx@r(Y) = @i.(X) @.(Y).
e Let f e L1(dv). Then

—+o0 —+o0
f Iy f(y) dv(y) :/ f(y)dv(y) forxe][0, +oo[
0 0

and
1T fllee <1 fllzv.

o Let f € LP(dv) with 1 < p < +oc0. For allx € [0, +oo[, the functionTy f
belongs toL P(dv) and

1Fx Fllp,w < 11 fllp,v-

e For f,g € L(dv) the functionf % g also lies inL(dv). The convolution
product is commutative and associative.

e For f € L1(dv) andg € LP(dv), with 1 < p < +o0, the functionf * g lies
in LP(dv) and we have

1f 5 llpy < I Fll 1911 p.y-
e For f, g even and continuous dR, with supports
suppf c[—a,a] and supm C [—b, b],
the functionf x g is continuous orik and
1-7) suppf xg) C [—a—b, a+Db].
Definition 1.2. The Fourier transformassociated with the operatar is defined
on L1(dv) by
+o00
Ff (1) :/ f(X) @, (xX)dv(x) foraieR.
0

Properties of the Fourier transform.

e For f € L1(dv) such thatFf € L1(dy), we have the inversion formula
+o00
(1-8) f(x) =/ FTW)er(x)dy(r) fora.e.x € [0, +o0[.
0

e For f e L1(dv),

F(Tx YA = (X)Ff (1) forall x € [0, +oo[ andi € R.
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e For f,ge Li(dv),
F(fxg)(A) =FF (W) Fg(r). forall x € [0, +o0l.

e % can be extended to an isometric isomorphism friofddv) onto L?(dy).
This means that

(1-9) 1% 12, = I fll2y for f e L?(dv),
(1-10) 1F )20 = fllz, for feL2dy).

Proposition 1.3.Let f be in LP(dv), with pe[1, 2]. ThenZf belongs to I’ (dy),
withl/p+1/p’'=1,and

(1-11) 1FE M,y < 1 Elpo

Proof. Since ¢, (X)] < 1 for A € R andx € R, we get||Ff|lo, < [Tl
This, together with(1-9) and the Riesz—Thorin TheorerStein 1956 Stein and
Weiss 197}, shows that for under the conditions of the propositiohbelongs to
L (dy) and satisfie1—-11) O

From [Chebli 1979, the Fourier transforré is a topological isomorphism from

D.(R) ontoH,(C) (see page04for notation). The inverse mapping is given by

+00
(1-12) O}‘1f(x):/ fV)e,x)dy () forx eR.
0

2. Fourier-Wigner transform associated withA

Definition 2.1. The Fourier—Wigner transform associated with the operatis
the mappingv defined onD, (R) x D.(R) by

+o00o

V(9o = [ T0Tanem ) for xR xR,
Remark. The transfornV can also be written in the forms
(2-1) V()X 1) =F(FIxP Q) = @i f xg(Xx).
Notation. We denote by

¢ D.(R?) the space of infinitely differentiable functions BR, even with respect
to each variable, with compact support;

o S.(R?) the space of infinitely differentiable functions B3, even with respect
to each variable, rapidly decreasing together with all their derivatives;
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e LP(dv®dv), for 1 < p < 400, the space of measurable functions on the
product[0, +oo[ x [0, +oo[ satisfying
+o0 1/p
I fllpaen = ([ / f0x, y>|pdv<x)dv(y>) <400 forlsp<-os,

| flloo,vew := €SS sup|f(x,y)| <4o0;
X,ye[0,4o00[

e LP(dv®dy), for 1< p < +o0, the space similarly defined (withy(x) dy (y)
in the integrand).

Proposition 2.2. (i) The Fourier—Wigner transform V is a bilinear mapping from
D.(R) x D.(R) into S.(R?).

(ii) For pell, 2] and g suchthatl/p+1/p’ =1, we have

IVE DIl vey < 1Tl 191p,0-

The transform V can be extended to a continuous bilinear operdaroted
also by V, from LP(dv) x LP (dv) into LP' (dv @ dy).

Proof. (i) Let F be the function defined dR? by F(x, y) = f (y) Jxg(y). It's clear
thatF € D, (R?), and we have

V(9 A) =1 F(F)(X 1),

wherel is the identity operator. This and the fact ti¥ais a topological isomor-
phism fromD, (R) ontoH, (C) imply (i).

(i) This follows from the first equality in(2—1) together withProposition 1.3
Minkowski’s inequality for integralsHolland 1984 p.186], and the fact that

19x9llpv < l9llp,y  forxeR. O
Theorem 2.3.For f, g € D.(R), we have

FRF L(V(F,9) (1, 1) =9, W) F)Fg(n) for u, 1 eR.

Proof. Using Definition 2.1and Fubini’s Theorem we have, for all » € R,
400
FRF T(V(F,9)(n. 1) = / / V(f, 9) (X, ¥) g (X) oy (1) dv(X) dy ()
+00
/ / FHETXDY) 9 (X) @y (1) dv(X) dy (y)

=/0 %(X)</o J"U%Q)(Y)(ﬁy(ﬂ@()/))dV(X)-
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From (1-8)we deduce

+00
FRF L(V(f,9) (1, 4) = /o P () F () Txg(r) dv(x)

= fOFTD W) = T )@ (V) Fg(). O
Corollary 2.4. For all f, g e D.(R), we have

+00
/ FoF V() (w2 dvi) = FF (W TFg(u) for ue R,
0

+00
/ FoF V(L) o dyw=fgR)  foriel.
0
Proof. Theorem 2.3jives
+o0 +oo
/0 FoF L (V(f.g) (1 1) dv(h) = /0 0.0 £ 0)FG(0) dv(h)
=Ff (W Fg(u) forueR,
+o00 —+00
/0 F@F LV, ) (. 1) dy () = fo 0.0 F ) TG0 dy ()
+o0
— 10 /0 0. (VF(w) dy ()
=f)gh) forreR. O

Theorem 2.5.Let f, g € L*(dv) N L2(dv) be such that e= [,"°g(x) dv(x) # 0.

Then
+o0

1
Ff) = E/ V(f,g)(x,2)dv(x) forieR.
0
Proof. From Definition 2.1, we have
+oo + +00

/0 V(f, 9)(x, 4) dv(x) =fo 0(/0 f(Y) Txa(y) @a(y) dV(Y)> dv(x)

for all A € R. The result follows from Fubini’'s Theorem and the equality
+00 +oo
| e = [ goodveo = o

Corollary 2.6. With the hypothesis dfheorem 2.5if #f e L(dy), we have the
following inversion formula for the Fourier—Wigner transform V

1 —+00 —+00
f<x>=5/0 %AX)(/O V(T 9, u)dV(Y))dy(M) forae x < R.
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3. The Weyl transform associated withA

We now introduce the Weyl transform and relate it to the Fourier—Wigner trans-
form. To do this, we must define the class of pseudodifferential operatsd
199§.

Definition 3.1. Letm e R. We defineS™ to be the set of all infinitely differentiable
functionso on R x R, even with respect to each variable, and such that for all
P, g € N, there exists a positive constap q m satisfying

(ot 9] Cunms s

Definition 3.2. Form € R ando € S™, we define the operatdt, on D, (R) x
D. (R) by

400 ~+00
(3-1) H,(f,9)0) = /O ( /0 o (% Yoy OV (1. (X, Y) dv(x)> dy ),
for all A € R, and we put

(3_2) Ha(fa g) = H, ( f, g)(O)

Proposition 3.3. Defineo € S" by o(x, y) = —y? for x, y € R. Then for all
f, g € D.(R), we have

H,(f,g)(A) =cAf(L) forieR,
where c= ;" g(x) dv(x).
Proof. From (3—1), we have

400/ 400
Ho (F, (1) = fo ( fo V2o,V (. g, y>dv<x>> dy (y)for & € R.

Using Definition 2.1we obtain

~+00 +00 ~+00
Ha(f,g)(k)=fo (/0 —y2<py()\)</o f(Z)gxg(z)(;oy(z)dv(z)>dv(x)>dV(Y)

for » € R. From Fubini’'s Theorem, we get
Ho (f, 9 ()
+00 +00 +00
:/0 —Y2py(R) (/0 f (D ey (2) (/O T 29(X) dV(X)) dV(Z))dV(Y)

+o00 +oo
=c/0 —y2€0y(?»)(/0 f(Z)‘Py(Z)dV(Z))dV(y)

+00
=C/O —y2oy (W) F T (y) dy (y).
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But, for ally € R, —y?Ff(y) = F(Af)(y). We complete the proof using the
inversion formula(1-8). O

Definition 3.4. Leto € S"; m < —a — 1. TheWeyl transformassociated with
is the mapping\, defined onD..(R) by

~+00 ~+00
Wa(f)(k)=/o (/0 py(R)o (X, y)%f(X)dv(X)> dy(y) foraeR.

Notation. We denote by

e S.(R) the space of even, infinitely differentiable functions@®nrapidly de-
creasing together with all their derivatives.

o S(R) = ¢oS.(R), wheregy is the solution of1-2)with 1 = 0.

For p = 0 these two spaces coincidériméche 199} The Fourier transforn¥
is a topological isomorphism fror82(R) onto S,(R), whose inverse is given by
(1-12)

Lemma 3.5.For o € D,(R?), the function k defined by
+00
. 9) = [ 00T )Wy Gy Torx,y e R

belongs to IP(dv ® dv), for all p € [2, +o0].

Proof. The defining equation ok can be rewritterk(x, y) = Jx(G(-, X))(Y),
where
Gx,y)=1®F Lo)(x.y) forx,yeR,

for | the identity operator. It follows that, for ap) € [2, +o0[,

+00 p+00 +00 +00
/O/O|k<x,y)|pdv<x>dv<y>=/o (fo |%<G<-,x>(y)>|"dv(y>)dv(x)

+00 +o0

= /0 (/0 IG(y. X)|pdV(Y)) dv(x)
400 400

5/ (/ 1 ®@F o)y, X)\pdv(y)) dv(x).
0 0

We distinguish two caseg = 2 andp € ]2, +ool, the casg = +oo being trivial.
Forp=2,

+00 00 , ooy oo 5
/0 /o K. )| dv(x)dv(y)s/o </O (0 (x. ) ()| dv(x))dv(w.

From (1-10)we deduce that

+00 p+00 +o00 +o00
[O /0 KX, )2 dv oo du(y) < /O (/O |a(y,x>|2dy(y>)dv<y><+oo,
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because belongs toD,.(R?). The casep € ]2, +oo[ is more complex. From the
hypotheses o, we deduce that, as— +oo,

2a+1 if o=0
(3-3) AC) ~ o=
exp2ox) if p > 0.

e For p = 0, recall that¥ is an isomorphism frong,(R) onto itself. Thus
| ® % 1(0) belongs toS,(R?), and the asymptotid8—3) implies

400 400
(3-4) fo /0 Kex, y)[Pdv(x) du(y)
+00 ~+00
<f (/ |I ®%*l(o)(y, x)|pdv(x)> dv(y) < +o0.
0 0

e Forp > 0, we have fromTriméche 1997p. 99]
loa (X)) < @o(X) =m(L+x)exp(—px) forall A e Randx >0,

wherem is a positive constant. Then
+00
195 @)y, 0] =M+ exp-px) [ loty. 21 dv.
0
Sinceo belongs toD,.(R?), there exists a positive constavit such that
+o00
| ew.aia@<m for y=o
0

which implies that
1 ®F 1(0)(y, )| < MM(L+ X) exp(—pX).

This, together with the asymptoti¢8—3), implies the validity of the same
bound(3—4)as in the previous case. O
Theorem 3.6.Leto € D, (R?) and f € D,(R).
+00
i) Wo(HH(x) = k(x, y) f(y)dv(y) forall x € R.
0
(i) W (F)llpv < lIKllprvevll Tl p,v for pe[l, 2] and g suchthatl/p+1/p'=1.

(i) W, can be extended to a bounded operator frof(dv) into L (dv). In
particular, W, : L2(dv) — L?(dv) is a Hilbert-Schmidt operatgrhence
compact
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Proof. (i) From Definition 3.4 we have, for alk € R;
+00 +00
W, (F)(X) = /0 Py (X) (fo o(z,y)7xf(2) dv{Z)) dy(y)

+00 +00 .
_ /o <py<x>( fo t @yl (. y>](z)dv<z>) dy(y)

From Fubini’s Theorem, we get, for atle R,
+00 +00
W (F)(x) =/0 f(Z)</o ey (X)Ixlo (., Y)](Z)d)/(y)) dv(2)

+o00
= /0 f(2k(x, 2) dv(2).
(i) Follows from (i), Holder’s inequality, andlemma 3.5
(iii) Since k € L?(dv ® dv), the mapping
W, : L?(dv) — L2(dv)
is a Hilbert—Schmidt operator, and so compact. O

Theorem 3.7.Letm< —a —1lando € S". For all f, g € D.(R),

+oo
(3-5) Hy (f, ) = /O £ OOW, g(x) dv ().

Proof. Using (3—2) and Definition 2.1we obtain
“+00 +00
Ho (f, ) :fo (/0 o (X, YV (f, 9)x, y)dv(X)) dy(y)

+00 +o0 +o0o
=/0 (/0 G(X,Y)</O f(k)gxg(k)wy(k)dV(k))dV(X))dV(Y)-

From Fubini's theorem, we get

+00 +oo +oo
Hy (f, g) = /O fm(fo wm(/o a(x,y)ﬂxgmdv(x)) dy(y)) dv()

“+oo
— [ tows @ v, o
4. The Weyl transform with symbolin LP(dv®dy),forl < p=<2

In this section we show usin@-5)that, if 1 < p < 2, the Weyl transform with
symbol inLP(dv ® dy) is a compact operator.
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Notation. We denote byB(L?(dv)) the C*-algebra of bounded operatoksfrom
L2(dv) into itself, equipped with the norm

Wi, = sup W(Hllz,-
”f”2,17:1

Theorem 4.1.Let(- /- ) denote the inner product inAdv). There exists a unique
operator Q: L?(dv ® dy) — B(L2(dv)), whose action we denote by— Q,,
such that

_ +00 +00
<QU(@D/1‘>=/O (/0 cr(x,y)V(f,g)(x,y)dv(X))dy(y) for f, ge L%(dv).

Furthermore || Q|1+« < llo ll2,vey -

Proof. Let o € D,(R?). Forg € D4 (R), put Q. (g) = W, (g). From Theorem8.6
and3.7, we obtain

(Qs(9)/ ) = (W,(9)/f) =H,(f, )
400 +o0
:/o (fo o (X, YV (f, g9)(x, y)dv(X)) dy (y).

On the other hand, frorRroposition 2.8i), we have
Qo (@)/ F)| < llolzvey I Fllzy 19112,y -
ThusQ, € B(L?(dv)) and

(4-1) 1Qs Il < lloll2vey -

Now considers € L?(dv ® dy). Let (ox)ken be a sequence iB, (R?) such that
lox — o ll2,vey @approaches 0 ds— +oo. From(4-1)we have, for alk,| € N,

||Ql7k - Qa| I« < llok — o ||2,v®y < llok — U”Z,v@y + oy — U||2,v®y-

Thus(Q,, )ken is @ Cauchy sequenced(L?(dv)). Let it converge t@Q, . Clearly
Q. is independent from the choice Gfy)ken, and we have

Qs I« = kﬂToo I on”* =< kﬂToo ||Uk||2,v®y = ”0”2,v®y-
We consider firstf, g € D.(R). Then
(Qo(@)/ f) = lim (Qq @)/ )
— 400

kK—+400

+o0 ~+00
= Iim/O (/0 crk(x,y)V(f,g)(X,y)dv(X))dV(Y)

+o00

+00
=f0 (/O o(x,y)V(f,g)(x,y)dv(X)>dy(y).
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Now let f, g be in L?(dv). Pick sequenceéfy)ken, and (giken in D, (R) con-
verging to f andg, respectively, in the] - ||2,-norm. Then

(Qu(9)/ ) = lim_(Qu (g f
+00

+00
= Iim/o </0 a(x,y)V(fk,gk)(x,y)dv(X))dy(v)

k—+o00
+00

+00
:/0 (/O o(x,y)V(f,g)(x,y)dv(X))dy(y). O

We now give an extension atheorem 4.1that will allow us to prove that for
1 < p < 2 the Weyl transform with symbol ib P(dv ®dy), is a compact operator.

Theorem 4.2.Let pe [1, 2]. There exists a unique bounded operator
Q: LPdv®dy) — B(L?(dv)),

whose action is denoted lby— Q,, such that

_ +o00 +o0
<Qa<q>/f>=/0 (/O o(x,y>V<f,g><x,y>dv(x)) dy(y) for f.ge D.(R).

Moreover || Qq ll« < llo |l p,vey -

Proof. The casep = 2 is given byTheorem 4.1 We turn to the cas@ = 1. For
o € D,.(R?), we defineQ, by

Q(r (g) = W(r (g) for ge D*(R)

From Theorem$8.6 and3.7, we have, forf € D.(R),

_ +o00 +o0
(@ @)/ f) =H, (Lo = [ (/O o (% YV (T, X, y)dv(x)) dy (y).
From Holder’s inequality we then obtain

Qo @)/ F)| < o ll1sy IV (F, Do vey < loll1iey I iz, IGl2,-

This shows thaQ, € B(L?(dv)) and||Qq ||, < lollLvey -

We extend the definition 0Q, and the two facts just proved to the case of
o € L(dv ® dy), working as in the proof oTheorem 4.1

Finally, the Riesz—Thorin Theoren${ein 1956 Stein and Weiss 197 lallows
us to generalize the same results from the cpsed andp=2toallpe[1,2]. O

Theorem 4.3.Let pe [1, 2]. For o € LP(dv ®dy), the operator Q from L2(dv)
into itself is compact
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Proof. Giveno € LP(dv ® dy), choose a sequencey)ken in D, (R?) approxi-
matingo in the|| - || p g, -nOrm. The last assertion @heorem 4.%ays that
[ Qak — Qs lls < llox — || p,vRY >

S0 Q,, approache®, in B(L3(dv)). From Theorem 3.68we know thatW,, =
Qo is compact for alk € N. The theorem then follows from the fact that the
subspacét(L?(dv)) of B(L2(dv)) consisting of compact operators is a closed
ideal of B(L?(dv)). O

5. The Weyl transform with symbol in S;,O([RRZ)

Notation. We denote by

e S, o(R?) the subspace @, (R?) consisting of functions with compact support
with respect to the first variable;

e S (R the topological dual 08, o(R?);

e D, (R) the space of even distribution & It is the topological dual oD, (R).
Definition 5.1. Foro € S;’O(RZ) andg € D, (R), we define the operatdW, (g) on
D.(R) by
(5-1) (W, (@)(f) =0 (V(f, @) forfeD,R),
whereV is the mapping fronDefinition 2.1 ClearlyW, (g) belongs toD,, (R).

Proposition 5.2. Consider the distributiorr of S*’O([Riz) given by the constant
functionl. For all g € D,.(R), we have

WG (g) = Caa

+00
where c= g(x) dv(x) and$ is the Dirac distribution a0.
0

Proof. For f, g € D, (R), we get
+00 +00
(Wo (@) (f) =a(V(f,9) =/0 (/O V(f, 9,y dV(X)) dy (y).
But from the proof ofTheorem 2.5we have

+o00
[ V(f, )X, y)dv(x) =cFf(y) foryeR.
0

Integrating both sides ovdb, +oo[ with respect to the measuds, and using
(1-8), we obtain
+00

o(V(f,g)):(WU(g))(f):c/O Ftyydy(y)=cf(@=(s, f). O
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Note that byProposition 5.2there exister € kayo([RRZ), given by a function in
L>(dv®dy), such that for alf € D..(R) satisfyingc = [, g(x) dv(x) # 0, the
distribution W, (g) is not given by a function inL?(dv).

6. The Weyl transform with symbolin LP(dv® dy),for2 < p< oo

Theorem 6.1. Let p e 12, oo[. There exists a functioa € LP(dv ® dy) such
that the Weyl transform Wdefined by(5-1)is not a bounded linear operator on
L2(dv).

We break down the proof into two lemmas, of which the theorem is an immediate
consequence.

Lemma 6.2. Let p € ]2, oo[. Suppose that for alb € LP(dv ® dy), the Weyl
transform W, given by(5—1)is a bounded linear operator on?(dv). Then there
exists a positive constant M such that

(6-1) IWsls <M llollp.g, foralleeLlLPdvedy).

Proof. Under the assumption of the lemma, there exists for each.P(dv @ dy)
a positive constant, such that

IW, (@20 < Coligllzy  for g e L%(dv).

Let f, g € D«(R) be such thaf| f ||, , = llgll,, = 1 and define a linear operator
Qfg:LP(dv®dy) — Chy

Q1.g(0) = (W, (g)/f).
Then

sup  [Qg(0) =Cs.
|fl20=Igl2.,=1

By the Banach—Steinhaus theorem, the oper@tpg is bounded o P(dv ®dy),
so there exist$1 > 0 such that

Qfgll= sup [Qfg(o)l <M.

llollp,vey=1

From this we deduce that for afl g € D..(R) ando € LP(dv ® dy),
|<Wa(g)/f_>| < Mllollpveyll fllzv gl
which implies(6-1). OJ

Lemma 6.3.For 2 < p < oo, there is no positive constant M satisfyi(&-1).
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Proof. Suppose there exists such h Let p’ be such that Ap+1/p’=1. Then
p’ €11, 2[. We consider, forf, g € D, (R), the functionV ( f, g) of Definition 2.1
We have

+00
IV(f. Dllpvey =  sup / / o (X, MV (E, 9)(x. y)dv(x)dy(y)

llollp,vey=1
= sup |Wo(@/f)[< sup [W,(@llzull fllzv.
||J|‘p,v®y:l |‘G‘|p,u®y:

and consequently

(6-2) IV Dllpvey =Mz 1912,

Now considerf, g in L?(dv). Choose sequencési)ken and (gk)ken i Dy (R)
approximatingf andg in the || - ||2,,-norm. By Proposition 2.2 the sequence
(V (fx, gk))ken cOnverges to/ (f, g) in LP (dv ®dy), and thus we have extended
(6-2)to all f,g e L2(dv). We will exhibit an example where this leads to a
contradiction.

Let f be an even, measurable function@nsupported if—1, 1]. We have

IV(E, DGy < 1 f1F10,

wherex is the convolution productdefinition 1.1). From(1-7), we deduce that
for all y € R, the functionx — V (f, f)(x, y) is supported if—2, 2]. Hoélder's

inequality gives
p 1/p
dy(y)>

“+00
(/
2 1/p +00 2 ) 1/p
5(/dv(X)) (/ (/ V(E B, y>|pdv<x>)dy<y>)
0 0 0
2 1/p 2 1/p
=(f0 dv(x)) IV, f)||pf,v®ysM(/o dv(x)) 112,

the last inequality following fron{6—2). This proves that the function

2
V(f, f)x,y)dv(x)
0

y|—>/ V(f, f)x,y)dv(x) =cFf (y)

belongs toL p’(dy); herec = |, +oo f (x)dv(x). and we have used the proof of
Theorem 2.5or the equality on the right-hand side. Putting this together with the
preceding inequality we see thatgif 0, the functionZf belongs ta P (dy) and

M 2 1/p )
(6-3) 15l < o |</ dv(x)) 1112,



218 C. BACCAR AND L. T. RACHDI

Now consider the particular functioh given by

x|
f(X) = —— 1;_1 11(X
(X) 800 —1,11(X)

whereB is the function defined byl-1)and1;_1 1; is the characteristic function
of the interval[—1, 1]. If r > —(a + 1), this function belongs ta.*(dv) N L(dv).
From (1-4)we get

1 1
Ff (1) = / X'+l (ax)dx + / x'+e+1/2g, (x)dx
0 0

1

A 1
= r+2a+1; r+a+1/2
- )Lr+20z+2/0 X JO,(X)dX—i—/O X' TETHEG, (X) dX.

Using the asymptotic expansion of the functipn[Lebedev 1972Watson 1944
given by

_ 2220 (@ 4+ 1) T 7 1

we deduce that for(a +1) <r < —(a + %), the integral
+00
a:= f x" 2041 (x) dx
0
exists and is finite, so

1 ~ a
+20+1; ~
Az [)X jo (X) dX TrT2ai? asiA — +4oo.

On the other hand, foxr > 1,

1 1
r+a+1/2 G r+a+1/2
/o X 0. (x)dx S—A“+3/2/() X W (x)dx,

\I/(X):(/ |Q(s)|ds)exp(c2/ |Q(s)|ds) forall x>0
0 0

andQ is given by(1-5) Since—(e¢+1) <r < —(a + %), we deduce that

where

Ff(A) ~ asi — +o00.

Al +2a+2
Using this and1-6), it follows that there exisK, R > 0 such that

K
21 |C(A) |2 z AP +20+2)—20—1

\Ff ()| forr> R
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so forr such thatp'(r + 2« + 2) < 20 + 2, we get

o +00 o dx +00 K
(o e —
171y, z/R |Zf ()] 27 GO z/R ,\p/(r+2a+z)fza71dk = +00.

This shows that the relatiof®—3) is false if we choose so as to satisfy simulta-
neously the conditions > —(¢ +1),r < —(a + %) and

200+ 2
f<—Qut2)+ 22
This contradiction proves the lemma ahideorem 6.1 O
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