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ON THE BEHAVIOUR OF ∞-HARMONIC FUNCTIONS ON
SOME SPECIAL UNBOUNDED DOMAINS

TILAK BHATTACHARYA

We study nonnegative∞-harmonic functions defined on unbounded do-
mains, in particular the half-space and the exterior of the unit closed ball.
We prove that if such a function u vanishes continuously on the boundary
then in the first caseu is affine, and in the second caseu is radial and linear.
We also discuss growth rates in an infinite strip.

1. Introduction and statements of results

We study nonnegative∞-harmonic functions on unbounded domains with special
geometry, in particular the half-space and the exterior of the unit closed ball. We
consider functions that vanish on the boundaries while their behaviour at infinity is
left unspecified. One may view this work as a step towards understanding the kind
of growth rates possible for infinity-harmonic functions on unbounded domains.
An analogous result appears in [Crandall et al. 2001], where it is shown that an
∞-harmonic function bounded below by a plane is affine. This is related to the
conjecture that globally Lipschitz∞-harmonic functions onRn are affine; however
we do not attempt to prove this. The restriction on the sign plays a strong role in
this work and has been critical in obtaining estimates for growth rates. It is unclear
what happens if this restriction is removed.

Let u = u(x) be an∞-harmonic function defined on a (possibly unbounded)
domain� ⊂ Rn, for n ≥ 2. That is,u solves

1∞u(x) =

n∑
i, j =1

∂u

∂xi

∂u

∂x j

∂2u

∂xi ∂x j
= 0 for x ∈ �

in the viscosity sense. We refer to [Bhattacharya 2002; 2004, Crandall and Evans
2001; Crandall et al. 1992; 2001] for definitions. For the most part we assume that
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u(x) ≥ 0 for x ∈ �, that the boundary∂� is smooth, and thatu is continuous up
to ∂�. Let O denote the origin inRn, and forx = (x1, x2, . . . , xn) ∈ Rn, set

|x| =

√∑n
i =1 x2

i .

Theorem 1.1(The infinite half-space).Let � = {x ∈ Rn
: xn > 0} be the infinite

half-space. Suppose u(x) ≥ 0 is ∞-harmonic in� and vanishes continuously on
the hyperplane{xn = 0}. Then either u(x) = 0 for all x ∈ �, or there exists a
positive constant K> 0 such that u(x) = K xn for all x ∈ �.

In this case, the sign restriction leads to linear growth rate in�. This also holds
when� is the exterior of a ball. In both cases, linear growth rate implies global
Lipschitz continuity. The truth of the conjecture mentioned earlier would then
imply Theorem 1.1. Solutions with unrestricted sign may have faster growth rates
as demonstrated by the well known example

u(x, y) = |x|
4/3

− |y|
4/3

onR2, in the half planes bounded by|x| = |y|. It is not clear whether a growth rate
faster than4

3 is possible in general, or whether the imposition of a growth rate of
4
3 would imply thatu is of this type.

Let B(1, O) be the unit open ball inRn, centered atO, and let�= Rn
\B(1, O),

whereB(1, O) denotes the closure ofB(1, O).

Theorem 1.2(The exterior of a ball).Let u ≥ 0 be∞-harmonic in�. Suppose
that u vanishes continuously on∂ B(1, O). Then either u(x) = 0 for all x ∈ �, or
there exists a positive constant K such that u(x) = K (|x| − 1) for all x ∈ �.

While solutions are globally Lipschitz continuous, Theorem 1.2 would not fol-
low from the conjecture mentioned earlier. It is unclear if a faster growth rate is
possible when the sign restriction is removed. It would also be interesting to know
if Theorems 1.1 and 1.2 would follow for solutions with unrestricted sign but with
linear growth rate.

We also discuss the case of the infinite strip{x : 0 < xn < 1} and show that
any nontrivial solutionu(r ) grows faster than any integral power ofr , wherer
is the distance from thexn-axis. However, it is not clear if nontrivial solutions
exist (see Section 5). In this work, we make considerable use of the properties
proven in [Bhattacharya 2002; 2004; Crandall et al. 2001]. The devices mostly used
are monotonicity, the Harnack inequality, comparison, cone comparison and the
boundary Harnack inequality for flat boundaries. For discussion see [Bhattacharya
2002; Crandall et al. 2001]. Also see [Aronsson et al. 2004; Bhattacharya et al.
1989] for more information of the origins of such questions and issues related to
∞-harmonic functions.
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We have divided our work as follows. In Section 2, we introduce notations
needed in our work, and recall some preliminary results about∞-harmonic func-
tions. We prove Theorem 1.1 in Section 3, and the proof of Theorem 1.2 appears
in Section 4. Finally, in Section 5, we present a short discussion in the case of the
infinite strip.

2. Notations and Preliminaries

Let O be the origin inRn, let U denote the closure of a setU in Rn, and letEen

be the unit vector parallel to the positivexn-axis. Let B(r, P) denote the open
ball in Rn with center P and radiusr > 0, let �(r, P) denote the intersection
� ∩ B(r, P), let ∂(r, P) be ∂� ∩ B(r, P) and letE(r, P) be ∂ B(r, P) ∩ �. For
A= (A1, A2, A3, . . . , An)∈ Rn, let xn(A)= An, let A′

= (A1, A2, A3, . . . ., An−1),
let

|P−Q|n−1 =

√∑n−1
i =1 (Pi −Qi )

2

and, for t ∈ R, let A + t Een = (A′, An + t). For P ∈ Rn, let C(r, P) denote the
cylinder{x ∈ Rn

: Pn < xn < Pn+2r, |x−P|n−1 < r }. ThusC(r, P) has length 2r
and radiusr , and its axis is parallel to thexn-axis. LetF(r, P) denote the flat face
{x ∈ Rn

: xn = Pn, |x−P|n−1<r } of C(r, P) which lies in the hyperplanexn = Pn.
We study the problem

1∞u(x) = 0 for x ∈ �,

u(x) = 0 for x ∈ ∂�.

We assume thatu(x) ≥ 0 for x ∈ � unless otherwise stated, and that∂� will
be smooth andu continuous up to∂�. It is well known thatu is locally Lips-
chitz continuous in� (see [Bhattacharya 2002; Crandall et al. 2001; Jensen 1993;
Lindqvist and Manfredi 1995]) and has the cone comparison property, and we
make considerable use of these facts throughout this work. We now list a set of
facts about∞-harmonic functions.

We use the following version of the Harnack inequality [Bhattacharya 2002;
2004; Lindqvist and Manfredi 1995]: letu > 0 be∞-harmonic in�, and letδ > 0
be such that the set�δ = {x ∈ � : dist(x, ∂�) ≥ δ} is not empty. If P and Q
are points in�δ and the segmentP Q ⊂ �δ, thenu(P) ≥ e−|P−Q|/δu(Q). If P is
joined toQ by a smooth path in�δ, with arc lengthl (P, Q) then

(1) u(P) ≥ e−l (P,Q)/δu(Q).

Monotonicity plays a crucial role here [Bhattacharya 2002, Lemma 3.6; 2004,
Lemma 3]. Letu ≥ 0 be∞-harmonic in�, and B(r, z) ⊂ �. For x ∈ B(r, z),
defined(x) = r −|x−z| = dist(x, ∂ B(r, z)); if Eη is a unit vector and 0≤ s< t < r ,
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then

(2)
u(z)

r
=

u(z)

d(z)
≤

u(z+ sEη)

d(z+ sEη)
=

u(z+ sEη)

r − s
≤

u(z+ t Eη)

r − t
=

u(z+ t Eη)

d(z+ t Eη)
.

We will need a different version of (2). We takeu = 0 on∂�, and forz ∈ Rn we
defineM(r, z) = sup�(r,z) u(x) = sup∂�(r,z) u(x).

Lemma 2.1. Let u≥ 0 be∞-harmonic in� and u|∂� = 0; suppose z∈ Rn, and
r > 0 is such that�(r, z) is not empty. Let x, y ∈�(r, z) be on the same radial line
through z, with |x−z|< |y−z|<r , and suppose that u(x)≤ l+(M(r, z)−l )|x−z|/r
for some l∈ R, and all x∈ �(r, z). Then

M(r, z) − l

r
≤

M(r, z) − u(x)

r − |x − z|
≤

M(r, z) − u(y)

r − |y − z|
.

If z ∈ � this holds with u(z) in place of l.

Proof. Fix x ∈ �, setB(r, x, z) = B(r −|x−z|, x) andO(x, z, r ) = B(r, x, z)∩�.
For w ∈ O(x, z, r ) define

ω(w) = u(x) +
(M(r, z) − u(x))|w − x|

r − |x − z|
.

Thenu ≤ ω on ∂ B(r, x, z) ∩ � and∂� ∩ B(r, x, z), andu(x) = ω(x). By com-
parison,u ≤ ω in O(x, z, r ) [Barles and Busca 2001; Bhattacharya 2002; Crandall
et al. 2001; Jensen 1993]. Note thatO(x, z, r ) ⊂ �(r, z). The first inequality
follows trivially, and the second follows by takingw = y. Let z ∈ � and define

v(x) = u(z) +
(M(r, z) − u(z))|x − z|

r

in �(r, z). By comparison,u(x) ≤ v(x) in �(r, z) and the claim follows. �

We recall the boundary Harnack inequality [Bhattacharya 2002]. LetP ∈ Rn

and s > 0. Suppose thatu1, u2 > 0 are∞-harmonic inC(8s, P), and vanish
continuously onF(8s, P). Then there exist constantsM1 andM2, independent of
s andui , such that for allx ∈ C(s, P),

(3) M1
u1(z)

u2(z)
≤

u1(x)

u2(x)
≤ M2

u1(z)

u2(z)
,

wherez= (P′, Pn +2s). We now assume that� is unbounded and show that non-
constant∞-harmonic functions, with unrestricted sign, have at least linear growth.
If u ≥ 0 and has linear growth in� then Lemma 2.3 implies global Lipschitz
continuity.

Lemma 2.2.Let u be∞-harmonic in� such that u|∂� = 0. Fix z ∈ Rn and t≥ 0,
and defineδ = dist(z, �). Then
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(i) M(r, z) is convex in r, for all r ≥ δ, and

(ii) M(r, z) ≥ M(δ, z) +
(
M(t, z) − M(δ, z)

)(r −δ

t−δ

)
for r > t > δ.

Proof. Setρ(x) = |x − z| and choosea, b andc such thatδ < a < c < b. As the
intersection∂ B(a, z) ∩ ∂� is not empty, by the maximum principle,

0 ≤ M(a, z) ≤ M(c, z) ≤ M(b, z).

Definev(x) = M(a, z) +
(
M(b, z) − M(a, z)

)
(ρ(x) − a)/(b − a) ≥ 0 for all x

in �(b, z) \ �(a, z). Clearly, u ≤ v on ∂ B(a, z) ∩ � and on∂ B(b, z) ∩ �, and
u = 0 ≤ v on ∂� ∩ (B(b, z) \ B(a, z)). By the cone comparison,u(x) ≤ v(x) for
all x ∈ �(b, z) \ �(a, z). Hence

sup
|x−z|=c

u(x) = M(c, z) ≤ M(a, z) +
(
M(b, z) − M(a, z)

)
(c− a)/(b− a),

and convexity follows. Since
(
M(r, z)− M(a, z)

)
/(r −a) increases asr increases,

selectinga = δ andr > t > δ, a simple rearrangement yields part (ii). Note that
M(δ, z) = 0 if z ∈ Rn

\ �, andM(δ, z) = M(0, z) = u(z) if z ∈ �. �

Lemma 2.3. Let u ≥ 0 be∞-harmonic in� and u|∂� = 0. If , for some z∈ �,
some C> 0 and some a> 0, M(r, z)≤ Cr for all r ≥ a, then u is globally Lipschitz
continuous in�, with Lipschitz constant C.

Proof. Fix x, y ∈ �. Forρ > 0, letv(w) = u(x)+
(
M(ρ, x)−u(x)

)
(|w − x|/ρ) in

�(ρ, x). Thenu≤v = M(ρ, x), on∂ B(ρ, x)∩�. Also,u=0≤v on∂�∩B(ρ, x)

andu(x) = v(x). By comparison,u ≤ v in �(ρ, x). By the maximum principle,
M(ρ, x) ≤ M(ρ + |x − z|, z) ≤ C(ρ + |x − z|). Setw = y andρ > |x − y|, then

u(y) − u(x)

|x − y|
≤

M(ρ, x) − u(x)

ρ

≤
M(ρ + |x − z|, z) − u(x)

ρ
≤ C

(
1+

|x − z|

ρ
−

u(x)

ρ

)
.

The claim follows by lettingρ → ∞. �

3. The infinite half-space

Here� ⊂ Rn is the half-spaceH = {x ∈ Rn
: xn > 0} and H0 is the hyperplane

xn = 0. Alsou ≥ 0 is∞-harmonic inH and vanishes continuously onH0. By the
Harnack inequality,u > 0 in H . We will prove thatu(x) = Cxn in H for some
C > 0. This will be the consequence of several lemmas. ForP ∈ Rn, it follows that
∂(r, P)=∂�∩B(r, P)= H0∩B(r, P) andE(r, P)=∂ B(r, P)∩�=∂ B(r, P)∩H .
Thus∂�(r, P)= ∂(r, P)∪E(r, P). If �(r, P) is not empty, then by the maximum
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principle

(4) M(r, P) = sup
�(r,P)

u(x) = sup
∂�(r,P)

u(x) = sup
E(r,P)

u(x) > 0.

If P ∈ H , then M(0, P) = u(P). We introduce some additional notation. For
S∈ H0, let

T(S) = {x : x = (S1, S2, . . . , Sn−1, t) = (S′, t) for t ≥ 0}

be the straight ray inH , starting atS and parallel to thexn-axis. Setu(S+ t) =

u(S+ t Een) for t > 0, and letB(θ, S+ θ) be the ball of radiusθ > 0 centered at
S+ θ Een.

Lemma 3.1. Let u> 0 be∞-harmonic in H such that u|H0 = 0, and let xn > 0.
Then for every S∈ H0

(i) u(S+ xn)/xn is decreasing in xn and limxn↑∞ u(S+ xn)/xn = L(S, ∞) < ∞,

(ii) 0 < limxn↓0 u(S+ xn)/xn = L(S, 0) < ∞, and

(iii) 0 < L(S, ∞) ≤ L(S, 0).

Moreover, there is a positive number L such that L(S, ∞) = L for all S ∈ H0.

Proof. Let S∈ H0 and, forxn >0, consider the ballB= B(xn, S+xn). If 0< yn <xn

thenS+yn andS+xn lie in T(S). Also yn =dist(S+yn, ∂ B) andxn =dist(xn, ∂ B).
Monotonicity (2) implies thatu(S+xn)/xn ≤ u(S+yn)/yn. Thus the first assertion
follows and implies the second. Except for the finiteness ofL(S, 0), the third
assertion follows from the first two. To show thatL(S, 0) is finite, consider the
functionv(x) = M(1, S)|x − S| in �(1, S). Clearlyv(x) ≥ u(x) on ∂�(1, S). By
comparison,u(x)≤v(x) in �(1, S) andu(S+xn)≤ M(1, S)xn for 0≤xn ≤1. Thus
0 < L(S, 0) ≤ M(1, S) < ∞. We now show that theL(S, ∞) are all equal. Take
xn > |S|, thenS+xn ∈ B(xn, O+xn) and dist(S+xn, ∂ B(xn, O+xn))=xn−|S|. By
(2), u(O + xn)/xn ≤ u(S+ xn)/(xn − |S|). ThenL(O, ∞) ≤ L(S, ∞) by letting
xn → ∞. Switch S with O to get equality. We employ the boundary Harnack
inequality (3) to show thatL > 0. We selectu1(x) = u(x) andu2(x) = xn. For all
s > 0, the cylinderC(8s, O) is contained inH ; (3) then implies that

M1
u(O + 2sEen)

2s
≤

u(x)

xn
≤ M2

u(O + 2sEen)

2s
for all x ∈ C(s, O).

Takes>0 large and fixt ∈ (0, s). The preceding inequalities yield, forx = O+t Een,

M1L = lim
s→∞

M1
u(O + 2sEen)

2s
≤

u(O + t Een)

t
≤ lim

s→∞
M2

u(O + 2sEen)

2s
= M2L .

Letting t → 0, it follows M1L ≤ L(O, 0)≤ M2L. It is clear that this estimate holds
for everyS∈ H . �
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Remark 3.2. Lemma 3.1 implies thatM1L ≤ b = supS∈H0
L(S, 0) ≤ M2L < ∞.

By the first part of Lemma 3.1, we have 0< Lxn ≤ u(x) ≤ bxn for x ∈ H .

This remark and Lemma 2.3 imply thatu is globally Lipschitz continuous inH .
Thus there existsK > 0, independent ofx, y ∈ H , such that

(5) |u(x) − u(y)| ≤ K |x − y| for x, y ∈ H.

We now studyu on infinite strips inH . For a > 0, defineHa = {x : xn = a},
H(a) = {x : 0 < xn < a}, and∂ H(a) = H0 ∪ Ha. Define

(6) µ(a) = supHa
u(x) > 0 and F(a) = supH(a) u(x) > 0.

By Remark 3.2 and (5),µ(a) is bounded, andF(a) is bounded and increasing.

Lemma 3.3.Let u> 0 be as in Lemma 3.1. If µ(a) and F(a) are as defined in(6),

µ(a) = F(a) and µ(a) = 3a,

where3 = µ(1) and a> 0 is arbitrary.

Proof. By the Harnack inequality (1),F(a) cannot be attained in the interior of
H(a). If F(a) > µ(a), then there is a sequence{Pm}

∞

m=1 such that 0< xn(Pm) < a
for all m, |Pm| → ∞ and u(Pm) → F(a) > µ(a). We argue by contradiction.
For eachm, let Qm = (P′

m, a) ∈ Ha, thenu(Qm) ≤ µ(a). By (5), we see that
u(Pm) − µ(a) ≤ u(Pm) − u(Qm) ≤ K

(
a − xn(Pm)

)
for all m. Thus, for largem,

(7) a − xn(Pm) ≥
u(Pm) − u(Qm)

K
≥

3

4

F(a) − µ(a)

K
= A > 0.

For 0< θ < 1, let Rm(θ) = (P′
m, a− θ A) ∈ Ha−θ A ⊂ H(a). From (5), we see that

u(Pm) ≤ K xn(Pm) and so, for allm,

(8)
F(a)

K
≤ lim inf

k→∞

xn(Pk) ≤ lim sup
k→∞

xn(Pk) ≤ a − A < xn(Rm(θ)) = a − θ A.

Fix θ ; then (7) and (8) imply that, for largem,

0 < xn(Pm) ≤ a − A < xn(Rm(θ)) = a − θ A,

lim sup
k→∞

∣∣Pk − Rk(θ)
∣∣ = lim sup

k→∞

(
xn(Rk(θ)) − xn(Pk)

)
≤ (a − θ A) − F(a)/K ,

and

min
(
dist(Pm, ∂ H(a)), dist(Rm(θ), ∂ H(a))

)
≥ min(θ A, F(a)/K ) = B > 0.
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By applying the Harnack inequality to the functionv(x) = F(a) − u(x), we now
see that

0 = lim
m→∞

(
F(a) − u(Pm)

)
≥ exp

(
−

(
(a − θ A) − F(a)/K

)
B

)
lim

m→∞

(
F(a) − u(Rm(θ))

)
≥ 0.

Thusu(Rm(θ)) → F(a) asm→ ∞. We show that this, together with (5), leads to
a contradiction. LetXm(θ) = (Rm(θ)′, a); then (7) holds. That is, for largem,

θ A = a − xn(Rm(θ)) ≥
u(Rm(θ)) − u(Xm(θ))

K
≥

3

4

F(a) − µ(a)

K
= A > 0.

ThusF(a) = µ(a).
We now prove thatµ(a) = 3a. Let b > a; we show thatµ(a)/a ≥ µ(b)/b. By

the first part of Lemma 3.1,u(S+ a Een)/a ≥ u(S+ b Een)/b for all S ∈ H0. Now
take the supremum of both sides. We claim thatµ(a) is convex ina. Let S∈ H0

and, for 0≤ s < t , setr = (s+ t)/2. Consider

vs,t(x) = µ(s) +
(
µ(t) − µ(s)

) |x−S| − s

t − s
≥ 0,

for all x ∈�(t, S)\�(s, S). Using the equalityF(a)=µ(a) and the cone compar-
ison we see thatu ≤ vs,t in �(t, S)\�(s, S). Now we takex = S+ r Een to see that
µ(r ) = supS∈H0

u(S+ r Een) ≤
1
2

(
µ(s)+µ(t)

)
. Convexity follows. Sinceµ(0) = 0,

we see thatµ(a)/a is both increasing and decreasing as a function ofa — in other
words, it is constant. �

Proof of Theorem 1.1.It is clear that Theorem 1.1 would follow if we could show
that 3 = L. For Q ∈ H0 and r > 0, set PQ(r ) = (Q′, r ). For 0≤ ε < 3, let
Q = Q(ε) ∈ H0 be such thatu(PQ(ε)(1)) ≥ 3−ε = µ(1)−ε. We fix ε andQ, and
suppress the argumentε. By Lemma 3.1(i) we haveu(PQ(1)) ≤ u(Q+ xn)/xn for
0 < xn < 1. Thus

(9) u(PQ(xn)) = u(Q + xn) ≥ (3 − ε)xn for 0 < xn ≤ 1.

SinceM(0, Q) = 0, Lemma 2.2(i) and equation (4) imply thatM(r, Q)/r is in-
creasing. From (9)

M(1, Q) ≥ u(PQ(1)) ≥ 3 − ε and M(r, Q) ≥ (3 − ε)r for r ≥ 1.(10)

Forr >0, definet = t (ε, r ) byµ(t)=3t = (3−ε)r . LetT =T(r, ε)∈∂ B(r, Q) be
such thatu(T) = M(r, Q). By Lemma 3.3 and (10),u(x) < µ(t) for all x ∈ H(t);
moreover

T ∈ ∂ B(r, Q) ∩ {x : xn ≥ t} and xn(T) ≥ t =

(
1−

ε

3

)
r.(11)
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Let ϒ = ϒ(ε, Q) be the interior of the cone with vertexQ, axis parallel toEen and
half-angleθ = θ(ε, Q) = cos−1(1− ε/3). Clearly (11) implies thatT lies in the
intersectionϒ ∩ ∂ B(r, Q). Since the pointsPQ(r ) andT lie on ∂ B(r, Q), the arc
length of PQ(r )T , along a great circle, is at mostθr . The distance toH0 is at
leastt . Applying the Harnack inequality (1) tou(PQ(r )) andu(T) = M(r, Q),
and using (10), we see that forr > 1,

u(PQ(r )) ≥ exp
(
−

θ

1−ε/3

)
M(r, Q) ≥ exp

(
−

cos−1(1− ε/3)

1− ε/3

)
(3 − ε)r,

and so

L = lim
r ↑∞

u(Q + r Een)

r
= lim

r ↑∞

u(PQ(r ))

r
≥ exp

(
−

cos−1(1− ε/3)

1− ε/3

)
(3 − ε).

Since this holds for allε > 0, it follows thatL ≥ 3 andu(x) = 3xn for xn > 0. �

4. The exterior of a ball

Let � = Rn
\ B(1, O), and assume thatu > 0 andu|∂� = 0. We prove that

u = K (|x| − 1) for someK > 0. Forr > 1 set

µ(r ) = sup
|x|=r

u(x) = sup
B(r,O)\B(1,O)

u(x),

m(r ) = inf
|x|=r

u(x) > 0.

(On the first line we have used the maximum principle.) Clearly,µ(1) = m(1) = 0.
Let Sn−1 be the unit sphere inRn, and for t > 1 andω ∈ Sn−1 set 1(t, ω) =

u(tω)/(t − 1).

Lemma 4.1.Let u> 0 be∞-harmonic inRn
\ B(1, O) and u|∂ B(1,O) = 0. Letµ,

m and1 be as defined above. Then

(i) u(tω)/(t −1) decreases as t increases, andlimt→∞ u(tω)/(t −1)= L(ω)> 0
for all ω ∈ Sn−1;

(ii) µ(2) = µ(t)/(t − 1) for all t > 1, and L(ω) ≤ µ(2) for all ω ∈ Sn−1;

(iii) m(t)/(t − 1) decreases as t increases, and L(ω) ≥ limt→∞ m(t)/(t − 1) ≥

e−πµ(2) > 0, for all ω ∈ Sn−1;

(iv) there exists K> 0 such that, if min(t1,t2) > 4, max(t1,t2) < 10 min(t1,t2), and
α = cos−1

〈ω1, ω2〉 for ω1, ω2 ∈ Sn−1, then∣∣1(t1, ω1) − 1(t2, ω2)
∣∣ ≤ K

(
|t1−t2|
t2−1

+ α
)
.

Proof. Parts (i), (ii) and (iii) follow from (2) and are interrelated. Fixω ∈ Sn−1; for
t >1, consider the ballB(t−1, tω). If 1<s< t then dist

(
sω, ∂ B(t−1, tω)

)
=s−1,
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and (2) impliesu(sω)/(s−1)≥ u(tω)/(t −1). ThusL(ω)≥ 0 exists (for positivity
see part (iii)). Taking the supremum overω on both sides, we see thatµ(t)/(t −1)

decreases ast increases. Similarly,m(t)/(t − 1) decreases ast increases. By
Lemma 2.2,µ(t) is convex int ≥ 1 and sinceµ(1) = 0, µ(t)/(t − 1) increases
ast increases. Thusµ(t) is linear int − 1 and part (ii) follows. LetP(t), Q(t) ∈

∂ B(t, O) be such thatu(P(t)) = µ(t) and u(Q(t)) = m(t). The arc length of
P(t)Q(t) along a great circle does not exceedπ t , and dist

(
P(t)Q(t), ∂ B(1, O)

)
=

t − 1. Applying the Harnack inequality (1),

u(tω)

t −1
≥

m(t)

t −1
=

u(Q(t))

t −1
≥

u(P(t))

t −1
exp

(
−π t
t −1

)
= µ(2) exp

(
−π t
t −1

)
.

Part (iii) follows by lettingt → ∞. To see (iv), fixω1 andω2 in Sn−1 and let
0 ≤ α = cos−1

〈ω1, ω2〉 ≤ π . Take min(t1, t2) > 4 andt1 ≤ t2 ≤ 10t1. The distance
from t1ω1 to t2ω2 is estimated by going fromt1ω1 to t1ω2 along a great circle, and
then fromt1ω2 to t2ω2. Settingδ = |t1 − t2| + t1α andd = t1 − 1 (the distance
to the boundary), the Harnack inequality impliesu(t1ω1) ≤ eδ/du(t2ω2). Set J =

max
(
u(t1ω1), u(t2ω2)

)
; then, for someK1 = K1(µ(2)) > 0 andK = K (µ(2)) > 0,

1(t1, ω1) − 1(t2, ω2) =
u(t1ω1)(t2 − t1)

(t1 − 1)(t2 − 1)
+

u(t1ω1) − u(t2ω2)

t2 − 1

≤ µ(2)
|t2 − t1|

t2 − 1
+ J

eδ/d
− 1

t2 − 1

≤ K1

(
|t2 − t1|

t2 − 1
+

δ

d

)
≤ K

(
|t2 − t1|

t2 − 1
+ α

)
,

which proves part (iv). �

Remark 4.2. From Lemma 4.1, ifL =infω∈Sn−1 L(ω), thenL ≤ u(x)/(|x| − 1) ≤

µ(2) for all x ∈ �. Also |L(ω1) − L(ω2)| ≤ µ(2)(eα
− 1) ≤ C|ω1 − ω2|.

Remark 4.3. As in Section 3, there is a ray throughO on whichµ(t) is attained
for every t > 1. To see this, letP(t) ∈ ∂ B(t, O) be such thatu(P(t)) = µ(t),
and letω(t) = P(t)/|P(t)|. SinceSn−1 is compact, there is a sequence{tm}

∞

m=1
so thattm ↑ ∞, ω(tm) → ω0, andθm = cos−1

〈ω(tm), ω0〉 → 0 asm ↑ ∞. Setting
Qm = tmω0, the Harnack inequality (1) and Lemma 4.1 imply that

µ(2) =
u(P(tm))

tm−1
≥

u(Qm)

tm−1
≥

u(P(tm))

tm−1
exp

(
−θmtm
tm−1

)
= µ(2) exp

(
−θmtm
tm−1

)
for all m. ClearlyL(ω0) = µ(2) and the claim follows.

We now prove thatu(tω) = L(ω)(t − 1) for all ω ∈ Sn−1 and all t > 1 (see
Lemma 4.5). This depends on a comparison result, Lemma 4.4, involvingu and
a scaled version ofu, and uses the fact that the1(t, ω), for different values of
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ω, are comparable at large values oft . Now some notation for Lemma 4.4: fix
P ∈ ∂ B(1, O). For ω ∈ Sn−1, let R1 = R1(ω) be the ray{O + sω, s ≥ 0}, and
R2 = R2(ω) be the ray{P + sω, s ≥ 0}; also setQ = Q(ω) = O +ω ∈ ∂ B(1, O).
For x ∈ �, letω = ω(x) = (x− P)/|x− P|, thenx = P+|x− P|ω(x) ∈ R2(w(x)).
We definey = y(x, P) = Q(ω(x))+ (x − P), so|y− Q| = |x − P|. We scalex as
follows: for θ >1, setxθ =xθ (P)= P+θ(x−P) andyθ = yθ (x, P)= Q+θ(x−P).
Theny, yθ ∈ R1(ω(x)) andx, xθ ∈ R2(ω(x)), andy− x = yθ − xθ = Q− P; thus
|y − x| = |yθ − xθ | ≤ 2. Now setuθ (x) = uθ (x, P) = u(xθ ) = u

(
P + θ(x − P)

)
.

Clearly for fixedP andθ > 0, uθ (x) is ∞-harmonic.

Lemma 4.4.Let u>0 be as in Lemma 4.1 and P∈ ∂ B(1, O). For θ >1 and x∈�,
let ω(x), R1, R2, Q, xθ , and yθ be as defined above. Set uθ (x)= uθ (x, P)= u(xθ );
if 1 < s < θ , then uθ (x) ≥ su(x) for all x ∈ �. Then uθ (x) ≥ θu(x) for all x ∈ �.

Proof. This is done in four steps. FixP andθ > 1. We show that there existsρ > 1
such thatuθ (x) ≥ su(x) for all x ∈ ∂ B(r, O) andr ≥ ρ. Comparison will then
imply the lemma.

Step 1: Properties of uθ . Clearly the set

Zθ = {x : uθ (x) = 0} =
{
|x − (1− 1/θ)P| = 1/θ

}
lies in B(1, O). Thusuθ (x) ≥ 0 on∂ B(1, O). Since|Q| = |P| = 1, we have

(a) θ |x − P| − 1 ≤ |xθ | ≤ θ |x − P| + 1,

(b) |yθ | = θ |x − P| + 1, and

(c) |x − P| − 1 ≤ |x| ≤ |x − P| + 1.

Thus dist(yθ , ∂ B(1, O)) = |yθ | − 1 ≈ dist(xθ , ∂ B(1, O)) = |xθ | − 1 when|x| is
large. From (a), (b) and the Harnack inequality,

u(yθ ) exp

(
−

|yθ − xθ |

θ |x − P|

)
≤ uθ (x) = u(xθ ) ≤ u(yθ ) exp

(
|yθ − xθ |

θ |x − P| − 2

)
.

Fix ω and selectx, xθ ∈ R2(ω), andy, yθ ∈ R1(ω). Divide by |yθ | − 1 and note
that (a), (b), (c) and Lemma 4.1 imply that

(12) lim
x→∞

uθ (x)

|x| − 1
= θ L(ω) and lim

x→∞

u(x)

|x| − 1
= L(ω),

since|yθ − xθ | = |P − Q|. The second conclusion follows by working similarly
with u, x andy.

Step 2.Fix 1 < s < θ and letε1 > 0 andε2 > 0 be such thatε1 + ε2 < L(θ − s),
whereL = infω L(ω). Thenθ L(ω)−ε1 > sL(ω)+ε2 for all ω ∈ Sn−1. From (12)
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there is aρ = ρ(ε1, ε2, s, ω) > 0, such that for allx ∈ R2(ω) with |x| ≥ ρ,

uθ (x)

|x| − 1
> θ L(ω) − ε1 > sL(ω) + ε2 >

su(x)

|x| − 1
.(13)

In Step 3, we show that there is aρ such that (13) holds independently of the choice
of ω ∈ Sn−1.

Step 3.We first show that there is aρ > 0 such that the first inequality in (13) holds
for all ω. Recall thatω = ω(v) = (v− P)/|v− P| for v ∈ ∂ B(r, O). We prove that
the quantity

D(θ, r, v, ω, ε1) =
uθ (v)

|v| − 1
− (θ L(ω) − ε1)

is continuous inω and positive for larger , for all v ∈ ∂ B(r, O). Let ω1 ∈ Sn−1

and let x lie in R2(ω1) ∩ ∂ B(r, O), with r > 20; takeω2 close toω1 and let
z lie in R2(ω2) ∩ ∂ B(r, O). By Remark 4.2,θ |L(ω2) − L(ω1)| is small. Clearly,
max

(
|z−P|, |x−P|

)
≤ r +1. Noting thatzθ = P+θ(z−P) andxθ = P+θ(x−P),

we see that|zθ − xθ | = θ |x − z| ≤ θ(r + 5)α, whereα = cos−1
〈ω1, ω2〉. From (a)

and (c) in Step 1, we see that, for larger ,

θ(r − 1) ≈ max(|xθ | − 1, |zθ | − 1) ≥ min(|xθ | − 1, |zθ | − 1) ≈ θ(r − 1).

By the Harnack inequality,uθ (z) = u(zθ ) ≥ uθ (x) exp
(
−α(r + 5)/(r − 1)

)
. Thus

uθ (x) ≤ uθ (z)e25α/19. By Remark 4.2,uθ (v) = u(vθ ) ≤ µ(2)(|vθ | − 1). Thus (12)
yields

(14)
|uθ (x) − uθ (z)|

|x| − 1
≤

sup(uθ (x), uθ (z))

|x| − 1
(e25α/19

− 1) ≤ θµ(2)(e25α/19
− 1).

This and Remark 4.2 yield, for someC > 0 independent ofr ,

(15)
∣∣D(θ, r, x, ω1, ε1) − D(θ, r, z, ω2, ε1)

∣∣ ≤ Cθα

for x, z∈ ∂ B(r, O) andr > 20. Fixω1, and letρ be such thatD(θ, r, x, ω1, ε1) >
1
2ε1 for all r ≥ ρ and x ∈ R2(ω1) ∩ ∂ B(r, O). By (15), in a fixed smallω-
neighborhood, positivity ofD persists. The conclusion follows by the compactness
of Sn−1.

We now discuss the second inequality in (12). Letx ∈ R2(ω1) ∩ ∂ B(r, O) and
z ∈ R2(ω2) ∩ ∂ B(r, O) with α small. Clearly

|u(x) − u(z)| ≤ max
(
u(x), u(z)

)
e(r +5)α/(|r −1).
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Applying Remark 4.2, Lemma 4.1 and selectingr ≥ ρ to be large, we see that∣∣∣∣(sL(ω1) + ε2 −
su(x)

|x| − 1

)
−

(
sL(ω2) + ε2 −

su(z)

|z| − 1

)∣∣∣∣
≤ s

|u(x) − u(z)|

|x| − 1
+ s|L(ω1) − L(ω2)| ≤ sµ(2)(e2α

− 1) + Ksα.

We again use the compactness ofSn−1.

Step 4.From Step 1,uθ ≥ 0 = su on ∂ B(1, O). From Step 3, withε1 andε2 as in
Step 2, and for allr ≥ ρ(ε1, ε2), we see thatuθ > su in ∂ B(r, O). By comparison,
uθ ≥ su in B(ρ, O) \ B(1, O). This holds in all of�, and for all 1< s < θ . Thus
uθ (x) ≥ θu(x) for all x ∈ �. �

Next we show that Lemma 4.4 implies thatu is linear along rays throughO.

Lemma 4.5.For everyω ∈ Sn−1, let T(ω) be the ray{O+sω : s≥ 0}, and let P=

O+ω. Letθ > 1, and let u and uθ be as in Lemma 4.4. Then u(x) = L(ω)(|x|−1)

for all x ∈ T(ω) ∩ �.

Proof. Fix x, y ∈ T(ω)∩� with |x− P| < |y− P|, and defineθ = |y− P|/|x− P|.
Theny = P + θ(x − P) = xθ , and souθ (x) = u(xθ ) = u(y). By Lemma 4.4,

u(y) = u(xθ ) ≥ θu(x) =
|y − P|

|x − P|
u(x), hence

u(y)

|y − P|
≥

u(x)

|x − P|
.

Since|x−P|= |x|−1 and|y−P|= |y|−1, Lemma 4.1(i) implies equality in these
equations. Sincex andy are arbitrary,u(z) = L(ω)(|z| − 1) for all z ∈ T(ω). �

We set�a = {x ∈ � : u(x) < a} for a > 0 and show, using Lemma 4.5, that
B(1, O) ∪ �a is convex. Forω ∈ Sn−1(O) andt > 1, setQ = Q(t, ω) = O + tω.
Define the hyperplaneHt = Ht(ω) = {x : 〈x − Q, ω〉 = 0}, and the half-planes
H+

t = H+
t (ω) = {x : 〈x − Q, ω〉 > 0} and H−

t = H−
t (ω) = {x : 〈x − Q, ω〉 < 0}.

Then B(1, O) ⊂ H−
t (ω). For a > 0, let t (a) = t (a, ω) = 1 + a/L(ω), and let

Qa = Qa(ω) = O + t (a)ω.

Lemma 4.6.For a > 0, let S(a) = �a ∪ B(1, O). Then

(i) u(x) ≥ L(ω)(〈x, ω〉 − 1) ≥ L(ω)(t − 1) for all x ∈ H+
t (ω),

(ii) S(a) =
⋂

ω∈Sn−1 H−

t (a)(ω) and Ht (a)(ω) is a supporting hyperplane to S(a) at

Qa, and O Qa ⊥ Ht (a)(ω), for all ω ∈ Sn−1. Clearly, S(a) is convex.

Proof. By Lemma 4.5,u(Q) = L(ω)(|Q| − 1) for all ω ∈ Sn−1. Also, Qa lies in
Ht (a)(ω), andu(Qa) = a. To prove part (i), setR(ω) = {O + sω, s > 0} and let
r ≥ t . Fix x ∈ Hr (ω) ⊂ H+

t (ω), and chooseP ∈ R(ω), with |P| large, such that
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|P|−1> |P−x|. Thenx lies in B(|P|−1, P), and by applying monotonicity (2)
along the rayPx, we see that

L(ω) = u(P)/(|P| − 1) ≤ lim
|P|→∞

u(x)/(|P| − 1− |x − P|) = u(x)/(r − 1)

for P ∈ R(ω). Sincer = 〈x, ω〉 > t , part (i) follows. We now prove part (ii). Fix
ω. Then, by Lemma 4.5,u(tω) < u(Qa) = a whenever 0≤ t < t (a) = 1+a/L(ω).
If A(a) =

⋃
ω∈Sn−1{tω : 1 < t < t (a)}, thenu(x) < a for all x ∈ A(a). We show

that �a = A(a). Clearly, A(a) ⊂ �a, so supposex 6∈ A(a), and setω = x/|x|.
Then x = sω for somes ≥ t (a, ω), and x ∈ Ht (a)(ω) ∪ H+

t (a)(ω). By part (i),
u(x) ≥ a and henceA(a) = �a. Also A(a)∩ (Ht (a)(ω)∪ H+

t (a)(ω)) = ∅ for all ω,
implying thatA(a) ⊂ H−

t (A)(ω). As x 6∈ A(a) implies thatx 6∈ H−

t (a)(ω) for someω,

A(a) =
⋂

ω

(
H−

t (a) \ B(1, O)
)
. By part (i),∂ A(a) ∩ Ht (a)(ω) = Qa(ω). ThusS(a)

is convex and∂S(a) =
⋃

ω{Qa(ω)} =
⋃

ω{
(
1+ a/L(ω)

)
ω}. Clearly Ht (a) is the

supporting hyperplane at everyQa ∈ ∂S(a). By the definition ofHt (a) it follows
that O Qa(ω) ⊥ Ht (a)(ω) for all ω ∈ Sn−1. �

We now show that Lemma 4.6 implies that�a is a ball.

Proof of Theorem 1.2.Let F : R+
× Sn−1

→ Rn by F(a, ω) = O+(1+a/L(ω))ω.
Then by Lemmas 4.1 and 4.6, fora > 0 fixed, F is a bijective Lipschitz map, and
F(Sn−1) = ∂�a. Thus∂�a is connected andEF(ω) ⊥ Ht (a)(ω). Let ω1, ω2 ∈ Sn−1,
then Q1 = Qa(ω1) and Q2 = Qa(ω2) lie on ∂�a. Let 5 be the two-dimensional
plane containingO, ω1 andω2, andC be ∂ B(1, O) ∩ 5. Note thatQ1 and Q2

lie in 5. Let τ(s) ∈ ∂ B(1, O) ∩ 5 be a smooth parametrization ofC such that
τ(0) = ω1 and τ(1) = ω2. The curveσ(s) = F(τ (s)) =

(
1 + a/L(τ (s))

)
τ(s)

in 5 ∩ ∂�a is Lipschitz continuous ins, andσ(0) = Q1 andσ(1) = Q2. Let
s0 ∈ [0, 1] be a point of differentiability ofσ(s). Call 6(s) = Ht (a)(τ (s)); by
Lemma 4.6,6(s0) is the supporting hyperplane atσ(s0). Furthermore,6(s0) is
perpendicular toσ(s0), andσ(s) ∈ H−

t (a)(τ (s0))∩5 for all s. Sinces0 is a point of
differentiability, a simple argument shows thatσ ′(s0) lies in6(s0)∩5, and hence
σ(s0) ⊥ σ ′(s0). Thus |σ(s0)|

′
= 0. Since this holds for almost everys ∈ [0, 1],

Lipschitz continuity implies that|Q2| = |σ(1)| = |σ(s)| = |σ(0)| = |Q1|. Thus�a

is a ball andL(ω) = C for all ω ∈ Sn−1. The remainder of the proof follows from
Lemma 4.5. �

5. The infinite strip {0 < xn < 1}

Let � be the infinite strip{x : 0 < xn < 1}, let H(0) = {x : xn = 0}, and let
H(1) = {x : xn = 1}. We assume thatu is ∞-harmonic, thatu ≥ 0 in �, and
that u vanishes continuously onH(0) and H(1). For r > 0, defineD(r ) to be
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{x : |x′
|n−1 < r, 0 < xn < 1}, wherex′

= (x1, x2, . . . , xn−1) and

|x′
|n−1 =

√∑n−1
i =1 x2

i .

Set M(r ) = supD(r ) u(x), with the understanding thatM(0) = sup{x′=0}∩� u(x).
We setL(r ) = {x ∈ D(r ) : |x′

| = r, 0 ≤ xn ≤ 1}, the lateral boundary of the
cylinder D(r ). By the maximum principle,M(r ) is attained only onL(r ). Let
J(r )∈ L(r ) be such thatM(r )=u(J(r )). LetC(r, P) denote the truncated cylinder
{x : |x′

− P′
|n−1 < r, Pn < xn < Pn +2r }. The functionue is the extension ofu to

all of Rn defined as follows. Set

ue(x
′, xn) =

{
u(x′, xn) for 0 ≤ xn ≤ 1,

−u(x′, −xn) for −1 ≤ xn ≤ 0,

and extend periodically with period 2. Thenue is ∞-harmonic inRn; see [Bhat-
tacharya 2002].

Step 1.We first observe that there exists a universal constantK > 0 such that

(16) min
(
xn(J(r )), 1− xn(J(r ))

)
≥ K for all r > 0.

Let T = T(r ) ∈ L(r ) ∩ H(0) and consider the cylinderC(1
2, T) ⊂ �. Since

xn(T) = 0 andu > 0 in C(1
2, T), the boundary Harnack inequality (3) withs=

1
16,

u1 = u, u2 = xn andz = T +
1
8Een = (T ′, 1

8) yields

(17) M1
u(z)

1/8
≤

u(x)

xn
≤ M2

u(z)

1/8
for all x ∈ C( 1

16, T).

Let P = (T ′, 1
2). Since |z − P|/zn = 3, the Harnack inequality implies that

u(z)e−3
≤ u(P) ≤ u(z)e3. Thus (17) with new constantsM1 andM2 yields

(18) M1u(P) ≤
u(x)

xn
≤ M2u(P) for all x ∈ C( 1

16, T).

Let E(T) =
{
x : |x − T |n−1 < 1

16, 0 < xn < 1
2

}
; if x ∈ E(T) \ C( 1

16, T) then
|x − P|/xn ≤ 16 and

u(P)e−16
≤ u(x) ≤ u(P)e16.

Then (18), with newM1 andM2, implies that

M1u(P) ≤
u(x)

xn
≤ M2u(P) for all x ∈ E(T),

sinceC( 1
16, T) ⊂ E(T). From this we get

M1u(P)xn(J(r )) ≤ M(r ) ≤ M2u(P)xn(J(r )),
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sinceJ(r ) ∈ L(r )∩ E(J ′(r ), 0). Dividing by u(P) we see thatxn(J(r )) ≥ 1/M2.
We argue similarly for dist(J(r ), H(1)), and (16) follows. Note that by the Har-
nack inequality,M(r ) = u(J(r )) ≤ e(r +1)/K u(J(0)) = e(r +1)/K M(0). HenceM(r )

cannot grow faster than the exponential rate.

Step 2.We now show thatM(r ) is at least of the orderr c logr , for larger and for
somec > 0. We work withue(x); for r > 0, let T(r ) denote the line throughJ(r )

parallel to thexn-axis. Clearly,

sup
{x:|x′|n−1<r }

ue(x) = M(r ) and inf
{x:|x′|n−1<r }

ue(x) = −M(r ).

Let F(r ) =
(
J ′(r ), 2− xn(J(r ))

)
. Thenu(F(r )) = −M(r ), sinceue arises from

the odd reflection ofu aboutxn = 1. Note that|J(r ) − F(r )| ≤ 2(1 − K ) = δ.
SinceM(2r )−ue(x) ≥ 0 in {x : |x′

|n−1 < 2r }, applying the Harnack inequality to
ue(J(r )) andue(F(r )), we see thatM(2r ) − M(r ) ≥ e−δ/r

(
M(2r ) + M(r )

)
, and

hence that

(19) M(2r ) ≥
eδ/r

+ 1

eδ/r − 1
M(r ) for r > 0.

We employ iteration noticing that(eδ/r
+ 1)/(eδ/r

− 1) ↑ ∞ asr increases. Let
ξ > 0, selectR= R(ξ) > 0 such that(eδ/r

+1)/(eδ/r
−1) > ξ for all r > R. Then

(19) implies thatM(2mR) ≥ ξmM(R) and M(r ) ≥ (r/R)logξ/ log 2M(R)/ξ . Also
M(2m+1δ)≥ M(2mδ)(e1/2m

+1)/(e1/2m
−1). TakeN large, so thate1/2k

−1≤ 2/2k

for k ≥ N. Starting an iteration fromN, we get

M(2m+1δ) ≥

( m∏
k=N

(
1+

2

e1/2k
− 1

))
M(2Nδ) ≥

( m∏
k=N

(1+ 2k)

)
M(2Nδ)

=

( m∏
k=N

2k
)( m∏

k=N

(1+ 2−k)

)
M(2Nδ) ≥ C(N)2m2/2M(2Nδ).

SinceM(r ) is increasing, the right side is of the orderr c logr , for some universal
c > 0.
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