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ON THE BEHAVIOUR OF o0c0-HARMONIC FUNCTIONS ON
SOME SPECIAL UNBOUNDED DOMAINS

TILAK BHATTACHARYA

We study nonnegativeoo-harmonic functions defined on unbounded do-
mains, in particular the half-space and the exterior of the unit closed ball.
We prove that if such a function u vanishes continuously on the boundary
then in the first caseu is affine, and in the second case is radial and linear.
We also discuss growth rates in an infinite strip.

1. Introduction and statements of results

We study nonnegativeo-harmonic functions on unbounded domains with special
geometry, in particular the half-space and the exterior of the unit closed ball. We
consider functions that vanish on the boundaries while their behaviour at infinity is
left unspecified. One may view this work as a step towards understanding the kind
of growth rates possible for infinity-harmonic functions on unbounded domains.
An analogous result appears in [Crandall et al. 2001], where it is shown that an
oo-harmonic function bounded below by a plane is affine. This is related to the
conjecture that globally Lipschitx-harmonic functions oR" are affine; however
we do not attempt to prove this. The restriction on the sign plays a strong role in
this work and has been critical in obtaining estimates for growth rates. It is unclear
what happens if this restriction is removed.

Let u = u(x) be anco-harmonic function defined on a (possibly unbounded)
domain2 c R", for n > 2. That is,u solves

au du 9%

—_— =0 forxe®
= 0Xj 0Xj 0Xj0X;]
i,j=1

AsoU(X) =

in the viscosity sense. We refer to [Bhattacharya 2002; 2004, Crandall and Evans
2001; Crandall et al. 1992; 2001] for definitions. For the most part we assume that
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u(x) > 0 for x € , that the boundarg 2 is smooth, and that is continuous up
to 9Q2. Let O denote the origin ifR", and forx = (X1, X2, ..., X,) € R", set

X = Xl %

Theorem 1.1(The infinite half-space)Let 2 = {x € R" : x, > 0} be the infinite
half-space Suppose (x) > 0 is co-harmonic inQ2 and vanishes continuously on
the hyperplangx, = 0}. Then either x) = 0 for all x € 2, or there exists a
positive constant K> 0 such that yx) = Kx, for all x € Q.

In this case, the sign restriction leads to linear growth rate.iifhis also holds
when € is the exterior of a ball. In both cases, linear growth rate implies global
Lipschitz continuity. The truth of the conjecture mentioned earlier would then
imply Theorem 1.1. Solutions with unrestricted sign may have faster growth rates
as demonstrated by the well known example

4/3 4/3

ux, y) = x|~ =1y

onR?, in the half planes bounded tyy| = |y|. Itis not clear whether a growth rate
faster thang is possible in general, or whether the imposition of a growth rate of
2 would imply thatu is of this type.

Let B(1, O) be the unit open ball iiR", centered a®, and let2 =R"\ B(1, O),
whereB(1, O) denotes the closure @& (1, O).

Theorem 1.2(The exterior of a ball).Let u> 0 be co-harmonic inQ. Suppose
that u vanishes continuously @B(1, O). Then either gx) = O for all x € 2, or
there exists a positive constant K such thatu= K (|]x| — 1) for all x € €.

While solutions are globally Lipschitz continuous, Theorem 1.2 would not fol-
low from the conjecture mentioned earlier. It is unclear if a faster growth rate is
possible when the sign restriction is removed. It would also be interesting to know
if Theorems 1.1 and 1.2 would follow for solutions with unrestricted sign but with
linear growth rate.

We also discuss the case of the infinite sfpip: 0 < X, < 1} and show that
any nontrivial solutionu(r) grows faster than any integral power of wherer
is the distance from th&,-axis. However, it is not clear if nontrivial solutions
exist (see Section 5). In this work, we make considerable use of the properties
proven in [Bhattacharya 2002; 2004; Crandall et al. 2001]. The devices mostly used
are monotonicity, the Harnack inequality, comparison, cone comparison and the
boundary Harnack inequality for flat boundaries. For discussion see [Bhattacharya
2002; Crandall et al. 2001]. Also see [Aronsson et al. 2004; Bhattacharya et al.
1989] for more information of the origins of such questions and issues related to
oo-harmonic functions.
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We have divided our work as follows. In Section 2, we introduce notations
needed in our work, and recall some preliminary results abodtarmonic func-
tions. We prove Theorem 1.1 in Section 3, and the proof of Theorem 1.2 appears
in Section 4. Finally, in Section 5, we present a short discussion in the case of the
infinite strip.

2. Notations and Preliminaries

Let O be the origin inR", let U denote the closure of a setin R", and leté,
be the unit vector parallel to the positivg-axis. LetB(r, P) denote the open
ball in R" with centerP and radiug > 0, let Q(r, P) denote the intersection
QN B(, P), leta(r, P) bedQ N B(r, P) and letE(r, P) be dB(r, P) N Q. For
A=(Aq, Az, Az, ..., An) eR" letxn(A) = An, let A= (Aq, Ag, As, ..., An_1),

let
IP—Qln-1=1/ X1 (F—Qi)?

and, fort e R, let A+1t&, = (A, A, +1). For P € R", let C(r, P) denote the
cylinder{x e R": P, < X, < Py+2r, [X—P|n_1 <r}. ThusC(r, P) has length
and radiug, and its axis is parallel to the,-axis. LetF (r, P) denote the flat face
{Xx € R": X, = Py, [X—P|n_1<r} of C(r, P) which lies in the hyperplang, = P,.
We study the problem

AxU(X) =0 forxeQ,
ux)=0 forxeoaQ.

We assume thati(x) > 0 for x € @ unless otherwise stated, and tld&2 will
be smooth andi continuous up td<2. It is well known thatu is locally Lips-
chitz continuous if2 (see [Bhattacharya 2002; Crandall et al. 2001; Jensen 1993;
Lindgvist and Manfredi 1995]) and has the cone comparison property, and we
make considerable use of these facts throughout this work. We now list a set of
facts aboubo-harmonic functions.

We use the following version of the Harnack inequality [Bhattacharya 2002;
2004; Lindgvist and Manfredi 1995]: let> 0 beco-harmonic in2, and let§ > 0
be such that the s&2; = {x € Q : dist(x, dQ2) > §} is not empty. IfP and Q
are points in2s and the segmer® Q c ;, thenu(P) > e 'P~Q13y(Q). If P is
joined to Q by a smooth path if;, with arc lengtH (P, Q) then

1) u(P) > e PRy (Q).

Monotonicity plays a crucial role here [Bhattacharya 2002, Lemma 3.6; 2004,
Lemma 3]. Letu > 0 be co-harmonic inQ2, andB(r, z) ¢ Q. Forx € B(r, 2),
defined(x) =r — |x — z| =dist(x, dB(r, 2)); if 7is a unit vectorand &s<t <r,
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then

(2)

u@ u®@ - uz+sn) _ u(z+sn) - uz+tn)  u(z+tn)

r d " dz+sp) r—s ~— r—t  d@z+ty)’
We will need a different version of (2). We take= 0 ond<2, and forz € R" we
defineM (r, 2) = supy .z U(X) = SUR g .z U(X).

Lemma 2.1. Let u> 0 be co-harmonic in®2 and u;o = 0; suppose z R", and
r > 0is such that2(r, z) is not emptyLet x, y € Q(r, z) be on the same radial line
through z with [x—z| < |y—z| <r, and suppose that®™) <+ (M (r, 2—I)|x—2z|/r
for somele R, and all xe Q(r, z). Then

M(r,z) -1 - M(r, z) — u(x) - M(r, z)—u(y)'

r r—|x—zf - r—ly—z

If z € Q this holds with @z) in place of |

Proof. Fix x € @, setB(r, X, 2) = B(r — |[x—2z|, x) andO(x, z,r) = B(r, X, 2N Q.
Forw € O(x, z,r) define

(M(r, 2) —u(x)|w —X]|

w(w) = Uu(xX) + P

Thenu < w on dB(r, X, 2) N Q anddQ N B(r, X, ), andu(x) = w(X). By com-
parisonu < w in O(X, z,r) [Barles and Busca 2001; Bhattacharya 2002; Crandall
et al. 2001; Jensen 1993]. Note thHatx, z,r) c Q(r, z). The first inequality
follows trivially, and the second follows by taking =y. Let z €  and define
(M(r, 2) —u(2))|x —Z|
r
in Q(r, z). By comparisonu(x) < v(x) in (r, z) and the claim follows. O

v(X) =Uu(2) +

We recall the boundary Harnack inequality [Bhattacharya 2002]. RLetR"
ands > 0. Suppose thati;, u, > 0 are oo-harmonic inC(8s, P), and vanish
continuously onF(8s, P). Then there exist constani$; and M5, independent of
s andu;, such that for alk € C(s, P),

1U1(Z) < u1(x) - M2U1_(Z),

u2(2) = uz2(X) u2(2)
wherez = (P’, P,+2s). We now assume th&t is unbounded and show that non-
constanbo-harmonic functions, with unrestricted sign, have at least linear growth.
If u> 0 and has linear growth i® then Lemma 2.3 implies global Lipschitz
continuity.

®3)

Lemma 2.2.Let u beco-harmonic in2 such that Yy = 0. Fix ze R"and t> 0,
and define = dist(z, 2). Then
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(i) M(r,2) isconvexingforallr >§, and
(i) M(r.2)> M5, 2)+ (M(t. 2) — M, z))(%) forr >t > .

Proof. Setp(x) = |x — z| and choose&, b andc such thatt < a < c < b. As the
intersectiom B(a, z) N 92 is not empty, by the maximum principle,

0<M(a, 2 <M(,2) <MD, 2.

Definev(x) = M(a, z) + (M(b, 2) — M(a, z))(,o(x) —a)/(b—a) = 0 for all x
in Q(b, 2) \ Q(a, z). Clearly,u < v ondB(a, 2z N and ondB(b, z) N 2, and
u=0<vondaN(B(b, 2)\ B(a, 2)). By the cone comparisom,(x) < v(x) for
all x e Q(b, 2)\ Q(a, 2). Hence

sup u(x) =M(c,2) <M(a,2)+ (M, 2)—M(@, 2)(c—a)/(b—a),

[X—z|=cC
and convexity follows. Sinc(aM (r,2)—M(a, z))/(r —a) increases asincreases,

selectinga = § andr >t > §, a simple rearrangement yields part (ii). Note that
M(@$,2)=0if ze R"\ @, andM (8, 2) = M(0,2) = u(2) if ze Q. O

Lemma 2.3. Let u> 0 be oco-harmonic inQ2 and uo = 0. If, for some ze Q,
some C> 0and some & 0, M(r, z) <Cr forallr > a, then u is globally Lipschitz
continuous ire2, with Lipschitz constant C

Proof. Fix X, y € Q. Forp > 0, letv(w) = u(x)+ (M (p, X) —u(x)) (jw — x|/p) in
Q(p, X). Thenu<v=M(p, X),ondB(p, X)NQ. Also,u=0<vondQNB(p, X)
andu(x) = v(x). By comparisonu < v in Q(p, X). By the maximum principle,
M(p,X) <M(p+|x—12,2) <C(p+|x—12]). Setw =y andp > |[x — Y|, then

uly) —u) _ Mdp, x) —u(x)

IX—=yl P
Motix=2,2-ux) _ <1+ Ix—2z| U(X)>.
P P P
The claim follows by lettingp — oc. g

3. The infinite half-space

Here 2 c R" is the half-spacéd = {x € R" : x5 > 0} and Hy is the hyperplane
Xn = 0. Alsou > 0 is co-harmonic inH and vanishes continuously dty. By the
Harnack inequalityu > 0 in H. We will prove thatu(x) = Cx, in H for some
C > 0. This will be the consequence of several lemmas.FFaiR", it follows that
a(r, P)=9QNB(r, P)=HoNB(r, P)andE(r, P)=3B(r, P)NQ=3B(r, P)NnH.
ThusaQ(r, P)=0a(r, PYUE(r, P). If Q(r, P) is not empty, then by the maximum
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principle

(4) M(r, P) = sup u(X) = sup u(x) = sup u(x) > 0.

Q. P) IQ(r,P) E(.P)
If P e H, thenM(0, P) = u(P). We introduce some additional notation. For
Se Hy, let

TS ={X:X=(S, ..., S-1.1) =(S,t) fort>0)

be the straight ray i, starting atS and parallel to thex,-axis. Setu(S+t) =
u(S+1tg,) fort > 0, and letB(9, S+ ) be the ball of radiu® > 0 centered at
S+ 68,.

Lemma 3.1. Let u > 0 be co-harmonic in H such that jy, = 0, and let »% > 0.
Then for every & Hp

(i) u(S+xn)/xnis decreasing in xandlimy 4o U(S+Xn)/Xn = L(S, 00) < o0,
(i) O <limy, 0 U(S+Xn)/Xn = L(S, 0) < o0, and
(i) 0<L(S,00)<L(S0).
Moreover there is a positive number L such that$, co) = L for all S € Ho.

Proof. Let Se Hyp and, forx, > 0, consider the balB = B(X,, S+Xn). If0 < yh <X
thenS+y, andS+x, liein T(S). Also y, =dist(S+Yyy, 0 B) andx, =dist(x,, 9 B).
Monotonicity (2) implies thati(S+Xn) /Xn < U(S+Yn)/Yn. Thus the first assertion
follows and implies the second. Except for the finiteness ¢, 0), the third
assertion follows from the first two. To show thiatS, 0) is finite, consider the
functionv(x) = M(1, S)|x — S in (1, S). Clearlyv(x) > u(x) ond2(1, S). By
comparisonu(x) <v(x) in (1, S) andu(S+xn) <M (1, S)x, for0<x, <1. Thus
0<L(S0) <M(1 9 < oco. We now show that thé& (S, co) are all equal. Take
Xn > | S|, thenS+x, € B(Xn, O+Xpn) and distS+x,, dB(Xn, O+Xn)) =Xn—|S|. By
(2), U(O + Xn)/%n < U(S+ Xn)/(Xn — |S]). ThenL (O, co) < L(S, o0) by letting
Xn — oo. Switch S with O to get equality. We employ the boundary Harnack
inequality (3) to show thalt > 0. We selecti;(x) = u(x) andux(x) = x,. For all

s > 0, the cylinderC(8s, O) is contained inH; (3) then implies that

O + 2sé O + 2sé
1U( + %)SU(X)SMZU( + 2s€n)
2s Xn 2s

Takes > 0 large and fixt € (0, s). The preceding inequalities yield, faRe= O+t&,,
O + 2s§ O +18 O + 2s8
u(O +2sé)) _ u(O+1én) < lim Mzu( er Sén)

M

forall x e C(s, O).

MiL = lim My =

S—00 2s t S—00

Lettingt — 0O, it follows M1L < L (O, 0) < M»L. Itis clear that this estimate holds
for everySe H. O

= MsL.
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Remark 3.2. Lemma 3.1 implies thaM; L < b = sups.y, L(S, 0) < MaL < oo.
By the first part of Lemma 3.1, we have<OLx, < u(x) < bx, for x € H.

This remark and Lemma 2.3 imply thais globally Lipschitz continuous i .
Thus there exist& > 0, independent of, y € H, such that

(5) lu(x) —u(y)| < K|x =yl for x,y € H.

We now studyu on infinite strips inH. Fora > 0, defineH, = {x : x, = a},
H(@) ={x:0< xn < a}, anddH (a) = HoU H,. Define

(6) pn(@) =supy ux) >0 and F(a)=supy ux) > 0.

By Remark 3.2 and (5)4(a) is bounded, andF (a) is bounded and increasing.
Lemma 3.3.Let u> Obe asin Lemma 3.1f u(a) and F(a) are as defined ili6),
n@ =F@ and w(@) = Aa,

whereA = (1) and a> O is arbitrary.

Proof. By the Harnack inequality (1) (a) cannot be attained in the interior of
H(a). If F(a) > u(a), then there is a sequenfn}_; such that O< xn(Pm) <a
for all m, |Pn| — oo andu(Py) — F(a) > u(@). We argue by contradiction.
For eachm, let Qm = (P, @) € Ha, thenu(Qm) < u(a). By (5), we see that
U(Pm) — (@) < u(Pm) —u(Qm) < K (a—xn(Pm)) for all m. Thus, for largem,

U(Pm —U(Qm _ 3 F@ —p(@ _

> — A>0.
K 4 K

(7 a—Xn(Pm) >

For0<6 <1, letRn(0) = (P, a—0A) € Ha_ya C H(a). From (5), we see that
u(Pm) < Kxn(Pr) and so, for alim,

(8) ? < Iilzn inf X (Px) < limsupxp(Py) <a— A < Xp(Rn(0)) =a—0A.
— 0 k—o0

Fix 6; then (7) and (8) imply that, for largm,
0<Xn(Pm) =a—A<xn(Rn()) =a—0A,
fim sup| P — R«(0)| = fim sup(Xn(Re(8)) — xn(P0) < (@—6A) — F(@)/K,
and

min(dist(Pm, H (a)), dist(Rm(9), 8H (2))) > min(@ A, F(a)/K) = B > 0.
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By applying the Harnack inequality to the functioix) = F(a) — u(x), we now
see that

0= lim (F(a)—u(Pm))
. exp(-((a-@A)B— F(a)/K)

Thusu(Rn(0)) — F(a) asm — oco. We show that this, together with (5), leads to
a contradiction. LeX»(0) = (Rn(9)’, @); then (7) holds. That is, for larga,

U(Rm(0)) —u(Xm(6)) - 3F@-—un@ _
K —4 K N

) lim (F(@) —u(Rm(9))) = 0.

0A=a—Xn(Rn()) = A=>0.

ThusF (@) = u(a).

We now prove thatt(a) = Aa. Letb > a; we show tha(a)/a > u(b)/b. By
the first part of Lemma 3.1y(S+ aé,)/a > u(S+ bé,)/b for all S€ Hyo. Now
take the supremum of both sides. We claim théh) is convex ina. Let Se Hg
and, for 0O<s <t, setr = (s+1t)/2. Consider

IXx—§| —s
- >

_07
t—s

Us,t(X) = (S) + (1 (t) — ()
forall x e Q(t, 9\ Q(s, S). Using the equalityF (a) = u(a) and the cone compar-
ison we see that < vs; in Q(t, S)\ (s, S). Now we takex = S+r &, to see that
[ (r) = SUPscpy, U(S+T &) < 3(1(s) + p(t)). Convexity follows. Since.(0) =0,
we see thati(a)/a is both increasing and decreasing as a functioam-efin other
words, it is constant. O

Proof of Theorem 1.1t is clear that Theorem 1.1 would follow if we could show
that A = L. For Q € Hp andr > 0, setPqo(r) = (Q',r). For0< e < A, let
Q= Q(e) € Hp be such thati(Pg(;)(1)) > A —e = u(1) —e. We fixe andQ, and
suppress the argumentBy Lemma 3.1(i) we hava(Pg(1)) < u(Q +Xn)/Xn for
0<Xn <1. Thus

9 U(Po(%n)) =Uu(Q+Xn) = (A —¢&)Xn for 0 <xn <1

SinceM (0, Q) = 0, Lemma 2.2(i) and equation (4) imply thkt(r, Q)/r is in-
creasing. From (9)

(10) M@, Q) >u(Po(l)) >A—¢ and M(r,Q)>(A—g)r forr>1

Forr >0, definet =t(e,r)byut)=At=(A—e)r. LetT =T(r, ) €dB(r, Q) be
such thau(T) = M(r, Q). By Lemma 3.3 and (10u(x) < w(t) for all x € H(t);
moreover

(11) TedB(r, QN{x:x,>t} and xn(T)zt=<1—%)r,
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Let Y = Y (e, Q) be the interior of the cone with verteq, axis parallel tog, and
half-angled = 0(e, Q) = cos (1 —&/A). Clearly (11) implies thaT lies in the
intersectionY N3 B(r, Q). Since the pointPq(r) andT lie ondB(r, Q), the arc
length of Po(r)T, along a great circle, is at mogt. The distance tdHy is at
leastt. Applying the Harnack inequality (1) to(Pq(r)) andu(T) = M(r, Q),
and using (10), we see that for- 1,

Y1—-e/A
U(Po(r)) = exp(— = IM (T, Q) = exp(—%) (A—er,
and so
- 1 _
L = lim M = lim m 2exp<_M) (A —¢).
rfoo r rtoo r 1—¢/A

Since this holds for al# > 0, it follows thatL > A andu(x) = Ax, for x, > 0. [

4. The exterior of a ball

Let @ = R"\ B(1, O), and assume that > 0 andu|;o = 0. We prove that
u=K(x|—1) for someK > 0. Forr > 1 set

pu(r) = supu(x) = sup  u(x,
|X|=r B(r,0)\B(1,0)

m(r) = inf u(x) > 0.
[x|=r

(On the first line we have used the maximum principle.) Clear{yt) = m(1) =0.

Let S™1 be the unit sphere ifR", and fort > 1 andw € ™1 setA(t, w) =

utw)/(t —1).

Lemma 4.1.Let u> 0 beoco-harmonic inR" \ B(1, O) and U,g1.0) = 0. Let ,

m andA be as defined abov@hen

() u(tw)/(t—1) decreases ast increasemdlim;_, ., U(tw)/(t—1)=L(w) >0

forall w e S"1;

(i) w@) =ut)/t—1foralt >1,and L(w) < u(2) forall w € S™1;

(iii) m(t)/(t — 1) decreases as t increasemnd L(w) > lim_ o mt)/(t —1) >
e "2 >0, foral we S

(iv) there exists K> 0 such thatif min(ty,to) > 4, maxty,tz) < 10 min(ty,tz), and
o = c0S w1, wy) for wy, wr € 1, then

|A(t1, 1) — A(t2, w2)| < K (% +a).
-

Proof. Parts (i), (i) and (iii) follow from (2) and are interrelated. kixe S"~1; for
t> 1, consider the baB(t—1, tw). If 1 <s <t then dis{sw, dB(t—1, tw)) =s—1,
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and (2) impliesu(sw)/(s—1) > u(tw)/(t—1). ThusL (w) > 0 exists (for positivity
see patrt (iii)). Taking the supremum oveion both sides, we see thaft) /(t — 1)
decreases asincreases. Similarlym(t)/(t — 1) decreases asincreases. By
Lemma 2.2,u(t) is convex int > 1 and sincew(l) = 0, u(t)/(t — 1) increases
ast increases. Thug(t) is linear int — 1 and part (ii) follows. LetP(t), Q(t)
9B(t, O) be such that(P(t)) = u(t) andu(Q(t)) = m(t). The arc length of
P(t)Q(t) along a great circle does not exceetd and dis{P (t) Q(t), B(1, 0)) =

t — 1. Applying the Harnack inequality (1),

ut) L MO _ UQO)  UPO) o=ty _ ) gp( L),

t—1 —t-1  t-1 — t-1 t—1 t—1

Part (iii) follows by lettingt — co. To see (iv), fixw1s andw, in -1 and let
0 <o =cos Hw1, wp) < 7. Take minty, tp) > 4 andt; <t, < 10t;. The distance
from tiw; to thw; is estimated by going fromw; to tiw, along a great circle, and
then fromtiw, to tows. Settingd = |t1 — to| + ti andd = t; — 1 (the distance
to the boundary), the Harnack inequality implié@;w1) < €/9u(towy). Setd =
max(u(tiw1), U(taws)); then, for someK; = K1(1(2)) > 0 andK = K (u(2)) > 0,

_ U(tiw1)(tz —t1)  U(tiw1) — U(towy)
(ti—D(t2—-1) th—1
[to —tq] eh/d —

< (2 J
< u(2 b1 + —

lto—t1] 8 Itz — ]
<K -]1<K )
- 1(tz—l—i_d - tp—1 te
which proves part (iv). g

Remark 4.2. From Lemma 4.1, ilL =inf .g-1L(w), thenL < u(x)/(]x] = 1) <
w(2) forall x € Q. Also |L(w1) — L(w2)| < u(2)(e* — 1) < Clwr — wo|.

A(ty, w1) — A(tz, w2)

Remark 4.3. As in Section 3, there is a ray through on whichw(t) is attained
for everyt > 1. To see this, leP(t) € dB(t, O) be such that(P(t)) = w(t),

and letw(t) = P(t)/|P(t)|. SinceS™1is compact, there is a sequentglm_;

so thatty 4 00, w(tm) — wo, andby = cos L {(w (tm), wg) — 0 asm 1 co. Setting
Qm = tmwo, the Harnack inequality (1) and Lemma 4.1 imply that

. U(P(tm)) _ u(Qm) _ u(P(tm)) —Omtm . —Omtm
M= T Tl © el exp(tm——1>_“(2) eXp(tm—l)

for all m. Clearly L (wg) = 1 (2) and the claim follows.

We now prove thati(tw) = L(w)(t — 1) for all w € S and allt > 1 (see
Lemma 4.5). This depends on a comparison result, Lemma 4.4, invalvargl
a scaled version ofi, and uses the fact that th&(t, w), for different values of
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w, are comparable at large valuestofNow some notation for Lemma 4.4: fix
P € 9B(1, 0). Forw € S™1, let Ry = Ry(w) be the ray{O + sw, s > 0}, and
R, = Ry(w) be the ray{ P + sw, s > 0}; also setQ = Q(w) = O+ w € dB(1, O).
Forxe Q,leto=w(X) = (X—P)/|x—P|, thenx = P+ |x— P|w(X) € Ry(w(X)).
We definey = y(X, P) = Q(w (X)) + (X — P), so]y— Q| = |[x — P|. We scalex as
follows: ford > 1, setxyg = X9 (P) = P+6(Xx—P) andyy = Y5 (X, P) = Q+6(x—P).
Theny, yy € Ri(w (X)) andx, Xy € Ra(w (X)), andy — X =Yy — Xg = Q — P; thus
ly = X| = |yg — Xg| < 2. Now setuy(X) = Ug(X, P) = u(xg) = u(P +6(x — P)).
Clearly for fixedP andé > 0, ug(x) is oco-harmonic.

Lemmad4.4.Letu>0beasinLemma4.1 and®3B(1, O). For9 > 1and xe Q,
letw(X), Ry, Ro, Q, X9, and y be as defined abov&et y (X) = Uy (X, P) =u(Xp);
if 1 <s<#6,theny(X) >sux) forall x € Q. Then y(x) > 6u(x) forall x € Q.

Proof. This is done in four steps. FiR andd > 1. We show that there exists> 1
such thatuy (X) > su(x) for all x € 9B(r, O) andr > p. Comparison will then
imply the lemma.

Step 1: Properties ofu Clearly the set
Zy={x:Up(x) =0} ={|x—(1—-1/6)P| =1/6}

lies in B(1, O). Thusuy(x) > 0 0ondB(1, O). Since|Q| = |P| =1, we have

(@) 0|x —P|—1<|x| <0|x—P|+1,

(b) |yy| =0|x—P|+1, and

€ Ix—=P][-1=<x|<[x—=P[+1.

Thus distyy, aB(1, O)) = |ys| — 1 =~ dist(xy, dB(1, O)) = |X9| — 1 when|x] is
large. From (@), (b) and the Harnack inequality,

1Yo — Xo|
01x — P]

u(Ys) exp(— ) = Up(X) =U(Xg) = U(Yp) exp(M)

01X — P| —2

Fix w and seleck, xg € Ryx(w), andy, yy € Ri(w). Divide by |ys| — 1 and note
that (a), (b), (c) and Lemma 4.1 imply that
u(x)

. Up(X)
(12) xI—IIQO |X|_1_9L(a)) and I|m —l X1 = L(w),

since|yy — Xg| = |P — Q|. The second conclusion follows by working similarly
with u, x andy.

Step 2.Fix 1 <s < 6 and lete; > 0 andez > 0 be such that; +e2 < L(0 —5),
whereL =inf, L(w). ThendL (o) —e1 > SL(w) + &> for all w € S, From (12)
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there is a0 = p(e1, €2, S, w) > 0, such that for alk € Ry(w) with |X| > p,

Ug (X) Su(x)
OL(w) — sL .
|X|—1> (w) —e1>SL(w)+ 62 > X1

(13)

In Step 3, we show that there i9auch that (13) holds independently of the choice
of we 1,

Step 3.We first show that there is@> 0 such that the first inequality in (13) holds
for all w. Recall thatv = w(v) = (v— P)/|v— P| for v € dB(r, O). We prove that
the quantity

Ug (v)

D 97r7 b 9y =
( v, w, E1) =1

— (OL(w) —€1)

is continuous inw and positive for large, for all v € dB(r, O). Letw; € S™1
and letx lie in Ra(w1) N dB(r, O), with r > 20; takew, close tow; and let
Zlie in Ra(w2) N9B(r, O). By Remark 4.2 |L(w2) — L(w1)]| is small. Clearly,
max(|z— P, |x— P|) <r +1. Noting thatzy = P+6(z— P) andx, = P+0(x— P),
we see thatzy — Xg| = 0|X — z| < 6(r + 5)«, wherea = cos (w1, wo). From (a)
and (c) in Step 1, we see that, for lange

O —1) ~max(|xe| —1, 2] — 1) = min(|xe| — 1, [25| = 1) = 6(r —1).

By the Harnack inequalityy (z) = u(zy) > up(x) exp(—a(r +5)/(r —1)). Thus
Up (X) < Ug(2)€2>/19, By Remark 4.2y, (v) = u(vg) < u(2)(Jvg| — 1). Thus (12)
yields

|Up(X) —Up(2)| _ SUAU(X), Up(2))
[X] —1 - [X] —1

(14) (€*/19 1) <012 (e2*/19 - 1).

This and Remark 4.2 yield, for son@> 0 independent of,
(15) D@, 1, X, w1, 1) — DB, 1, Z, w2, £1)| < Chax

for x, ze 9B(r, O) andr > 20. Fixw;, and letp be such thaD (@, r, X, w1, €1) >
%81 forall r > p andx € Ry(w1) NaB(r, O). By (15), in a fixed smalky-
neighborhood, positivity oD persists. The conclusion follows by the compactness
of "1,

We now discuss the second inequality in (12). ket Ry(w1) N dB(r, O) and
Z e Ry(wp) NAB(r, O) with « small. Clearly

[UX) —u2| < max(u(x), u(z))e(r+5)a/(|r—1).
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Applying Remark 4.2, Lemma 4.1 and selecting p to be large, we see that
su(x su(z
SL(a)l)-i-Sz—L — [ sL(w2) +e2— 2
x| —1 |z| — 1

= U —u@)
- X —1

+5|L(w1) — L(wp)]| < sp(2(€* — 1) + Ksa.

We again use the compactnessdf?.

Step 4.From Step 1y > 0=suondB(1, O). From Step 3, witle1 ande, as in
Step 2, and for alt > p(e1, €2), we see thatly > suin 3B(r, O). By comparison,
Uy > suin B(p, O)\ B(1, O). This holds in all of2, and for all 1< s < 6. Thus
Uy (X) > Ou(x) for all x € Q. O

Next we show that Lemma 4.4 implies thats linear along rays throug®.

Lemma 4.5.For everyw € S"1 let T(w) be the ray{ O +sw:s> 0}, and let P=
O+w. Letd > 1,and letu and W be asin Lemma 4.4rhen ux) = L(w)(|X]| — 1)
forall x € T(w) N Q2.

Proof. Fix x, y € T(w)NQ with [x— P| < |y— P|, and defin@ = |y— P|/|x— P]|.
Theny = P +6(x — P) = Xy, and sauy(X) = U(Xy) = u(y). By Lemma 4.4,

ly —P| u(y) u(x)
u(x), hence > .
IX — P ly—P| = [x=P|

uy) =uxg) = 6u(x) =

Since|x—P|=|x|—1andly—P|=]|y|—1, Lemma 4.1(i) implies equality in these
equations. Sincg andy are arbitraryu(z) = L(w)(|z| — 1) forall ze T(w). O

We setQ; = {x € Q : u(x) < a} for a > 0 and show, using Lemma 4.5, that
B(1, O) U, is convex. Fow € S™1(0) andt > 1, setQ = Q(t, w) = O +tw.
Define the hyperplanél; = Hi(w) = {X : (x — Q, w) = 0}, and the half-planes
H = Hf(w) = {x: (x—Q,) >0} andH; = H; () = {X: (Xx— Q, w) < 0}.
ThenB(1, O) C H{ (w). Fora > 0, lett(a) = t(a, w) = 1+ a/L(w), and let
Qa = Qa(w) = O +t(@)w.

Lemma 4.6.For a > 0, let S@) = 2, U B(1, O). Then
(i) u(x) > L(w)({(X,w) —1) > L(w)(t — 1) for all x € H{ (w),

(i) S@) =(\yes1 Hy @) (@) and H ) (w) is a supporting hyperplane to(&) at
Qa, and OQ, L Hyayw), for all € S1. Clearly, S(a) is convex

Proof. By Lemma 4.5u(Q) = L(w)(|Q| — 1) for all w € S™1. Also, Q, lies in
Ht(a) (), andu(Qa) = a. To prove part (i), seR(w) = {O + sw, s > 0} and let
r >t. Fix x € Hr (w) C H{ (w), and choosé® e R(w), with |P| large, such that



250 TILAK BHATTACHARYA

|[P|—1> |P—x]|. Thenx lies in B(|P|—1, P), and by applying monotonicity (2)
along the rayP x, we see that

L(@)=u(P)/(IP|-1) = \FJETOOU(X)/GPl —1-[x=P)=u()/(r -1

for P € R(w). Sincer = (x, w) > t, part (i) follows. We now prove part (ii). Fix
w. Then, by Lemma 4.5)(tw) <u(Qa) =awhenever <t <t(a)=1+a/L(w).
If A@@) =, cg1{tw:1 <t <t(@}, thenu(x) < afor all x € A(a). We show
that 2, = A(a@). Clearly, A(a) C Q4, SO suppos& ¢ A(a), and setw = x/|X|.
Thenx = sw for somes > t(a, w), andx € Hi@a)(w) U HtJ{a)(a)). By part (i),
u(x) > a and henceA(a) = Q5. Also A(a) N (Hta)(w) U HtJ(ra) (w)) =@ for all w,
implying thatA(a) C Hia (@). Asx ¢ A(@) implies thatx ¢ () for somew,
A@ =, (Hia \ B(1, 0)). By part (i), d A(@) N Hy(a) (@) = Qa(w). ThusS(a)
is convex andS(a) = |, {Qa(@)} = U, {(1+a/L(w))w}. Clearly Hy ) is the
supporting hyperplane at eve@Y, € dS(a). By the definition ofHy 4 it follows
that O Qa(w) L Hi(a(w) for all w € ™1, O

We now show that Lemma 4.6 implies thaj is a ball.

Proof of Theorem 1.4 et F : Rt x ™1 — R" by F(a, w) = O+ (1+a/L (0))w.
Then by Lemmas 4.1 and 4.6, far> 0 fixed, F is a bijective Lipschitz map, and
F(S" 1) = 8Qa. ThusdQ, is connected ané(w) 1 Hta)(w). Letwr, w2 € -1
thenQ1 = Qa(w1) and Q2 = Qa(wy) lie on 0Q,. Let IT be the two-dimensional
plane containingO, w; andw,, andC be dB(1, O) N I1. Note thatQ; and Q;
lie in 1. Letz(s) € aB(1, O) NII be a smooth parametrization Gf such that
7(0) = w1 and (1) = wo. The curves(s) = F(z(s)) = (1 + a/L(r(s)))r(s)
in TT N 9, is Lipschitz continuous irs, ando (0) = Q1 ando (1) = Q». Let
S € [0, 1] be a point of differentiability ofo(s). Call £(s) = Hi@)(7(S)); by
Lemma 4.6,X(s) is the supporting hyperplane aisy). Furthermore X (s) is
perpendicular ta (), ando (S) € Hy (@) (T (S0)) NI for all s. Sinces is a point of
differentiability, a simple argument shows thetsy) lies in X (s9) N I1, and hence
0(sp) L o'(s). Thus|o(s)|' = 0. Since this holds for almost evesye [0, 1],
Lipschitz continuity implies thatQ»| = |6 (1)| = |o(S)| = |0 (0)| = |Q1|. Thus2,
is a ball andL (w) = C for all w € S"~1. The remainder of the proof follows from
Lemma 4.5. Il

5. The infinite strip {0 < X, < 1}

Let ©Q be the infinite strip{X : 0 < X5 < 1}, let H(0) = {x : X5 = 0}, and let
H(1) = {x : X, = 1}. We assume that is co-harmonic, thaiu > 0 in €, and
that u vanishes continuously ol (0) and H(1). Forr > 0, defineD(r) to be
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{X:|X'|nz1 <T, 0< Xy < 1}, wherex’ = (Xg, X2, ..., Xa—1) and

! _ 2
|X|n—1_ | 1X|

SetM(r) = supy, U(X), with the understanding thafl (0) = sup,/_gng U(X).
We setL(r) = {x € D(r) : |X'| =1,0 < x5 < 1}, the lateral boundary of the
cylinder D(r). By the maximum principleM (r) is attained only orL(r). Let
J(r)eL(r)besuchthamM(r)=u(J(r)). LetC(r, P) denote the truncated cylinder
{X:|X' —P/|n_1 <1, Py < Xy < Py+2r}. The functionue is the extension ofi to
all of R" defined as follows. Set

u(x’, Xn) for 0<x,<1,

Ue(X', Xp) =
el ) {—u(x’,—xn) for —1 < x, <0,

and extend periodically with period 2. Them is co-harmonic inR"; see [Bhat-
tacharya 2002].

Step 1.We first observe that there exists a universal condtast0 such that
(16) min(X,(J(r)), 1—xn(J(r))) > K forallr > 0.

Let T =T() € L(r) n H(0) and consider the cyIindefr?(z, T) C Q. Since
Xn(T)=0andu > 0in C(z, T) the boundary Harnack inequality (3) wish= -
Up=u,Up =Xy andz=T + & = (T', }) yields

u@ _u u(z)

17 M; M forall x e C(&, T).
(17) 1/8— . < >1/8 orallx e C(. T)

16’

Let P = (T, l) Since|z — P|/z, = 3, the Harnack inequality implies that
u(z)e 2 < u(P) < u(2)ed. Thus (17) with new constantd, and M5 yields

(18) ( )

for all x € C(z5, T).

Let E(T) = {X : [Xx — Tln-1 < 15, 0 < Xn < 3}; if x € E(T)\ C(55, T) then
X — P|/xn < 16 and
u(P)e 16 < u(x) < u(P)et®.

Then (18), with newM; and M, implies that
u(x)

n

Miu(P) < < Mou(P) forall x e E(T),

sinceC (s, T) C E(T). From this we get

M1u(P)Xa(J(r)) = M(r) < Mau(P)xa (J (1)),
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sinceJ(r) e L(r)NE(J'(r), 0). Dividing by u(P) we see thak,(J(r)) > 1/ M.
We argue similarly for digtJ(r), H(1)), and (16) follows. Note that by the Har-
nack inequalityM (r) = u(J(r)) < e *9/KyJ(0)) = e +*D/K M (0). HenceM (r)
cannot grow faster than the exponential rate.

Step 2.We now show thaM (r) is at least of the order'°9", for larger and for
somec > 0. We work withue(x); forr > 0, letT (r) denote the line throughi(r)
parallel to thex,-axis. Clearly,

SUp  Ue(X) = M(r) and inf  Ue(X) = —M(r).

{X:|X'[n—1<r} {X: X [n—1<r

Let F(r) = (J'(r), 2— xa(J(r))). Thenu(F(r)) = —M(r), sinceue arises from
the odd reflection ofi aboutx, = 1. Note that|J(r) — F(r)| < 2(1 - K) = 3.
SinceM(2r) — ue(X) = 0in {x : [X'|n_1 < 2r}, applying the Harnack inequality to
Ue(J(r)) andue(F(r)), we see thaM(2r) — M(r) > e~/ (M(2r) + M(r)), and
hence that

e +1
(29) M(Zr)zmM(r) forr > 0.

We employ iteration noticing thag®" + 1)/(¢/" — 1) 1 oo asr increases. Let
£ >0, selectR = R(&) > 0 such thate’’" +1)/(e”/" —1) > & forallr > R. Then
(19) implies thatM (2™R) > £™M(R) andM(r) > (r/R)'°9¢/1092M(R) /£. Also
M (2M+1s) > M (2Ms)(eV/2" +1)/(e/2" —1). TakeN large, so thae/? —1 < 2/2k
for k > N. Starting an iteration fronN, we get

M (2™ 1g) > ( I (1+ el/sz_l)) M(2Ns) > ( [Ja+ 2k)) M (2N )

k=N k=N
= ( [ 2k)( [Ta+ z—k)) M(2Y8) = C(N)2™/2M (2N5).
k=N k=N

SinceM(r) is increasing, the right side is of the ordé!°9", for some universal
c> 0.
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