Pacific

Journal of

Mathematics

TRANSVERSAL HOLOMORPHIC SECTIONS AND
LOCALIZATION OF ANALYTIC TORSIONS
Huitao Feng and Xiaonan Ma

TRANSVERSAL HOLOMORPHIC SECTIONS AND LOCALIZATION OF ANALYTIC TORSIONS

Huitao Feng and Xiaonan Ma

Abstract

We prove a Bott-type residue formula twisted by $\wedge\left(\mathbb{V}^{*}\right)$ with a holomorphic vector bundle \mathbb{V}, and relate certain analytic torsions on the total manifold to the analytic torsions on the zero set of a holomorphic section of \mathbb{V}.

Introduction

Beasley and Witten [2003], studying half-linear models, have described a compactification on any Calabi-Yau threefold Y that is a complete intersection in a compact toric variety X. In particular, a remarkable cancellation involving the instanton effect [Beasley and Witten 2003, (1.3)], involving certain determinants of the $\bar{\partial}$-operator, was derived directly from a residue theorem. One would like to understand its implications in mathematics, for example in Gromov-Witten theory. Bershadsky, Cecotti, Ooguri and Vafa [Bershadsky et al. 1993; 1994] predicted that the analytic torsion of Ray-Singer will play a role regarding the genus-1 GromovWitten invariant. Thus we naturally try to understand the results about analytic torsion first.

As an application of [Bismut and Lebeau 1991] and the localization formula (1-3) in this paper, we were able to relate certain analytic torsions on the total manifold with the zero set of a holomorphic transversal section of \mathbb{V}, generalizing [Bismut 2004, Theorem 6.6] and [Zhang n.d.] with $\mathbb{V}=T X$ therein. We expect our formula will be useful for understanding [Beasley and Witten 2003, (1.3)] from a mathematical point of view.

This paper is organized as follows. In Section 1 we prove a Bott-type residue formula. In Section 2 we get a localization formula for Quillen metrics. In Section 3 we get a localization formula for analytic torsions under extra conditions. In Section 4, for the reader's convenience, we write down six intermediate results, corresponding to [Bismut and Lebeau 1991, Theorems 6.4-6.9].

[^0]
1. A Bott-type residue formula

In this section, along the lines of [Bismut 1986, §1], we give a Bott-type residue formula (1-3) by assuming that the holomorphic section is transversal; compare to [Beasley and Witten 2003, (2.32), (2.34)].

Let X be a compact complex manifold with $\operatorname{dim} X=n$ and let \mathbb{V} be a holomorphic vector bundle on X with $\operatorname{dim} \mathbb{V}=l$. We assume that the line bundles $\operatorname{det} T X$ and det \mathbb{V} are holomorphically isomorphic. We fix a holomorphic isomorphism $\phi: \operatorname{det} \mathbb{V}^{*} \simeq \operatorname{det} T^{*} X$, which is clearly unique up to a constant. Thus ϕ defines a map from the \mathbb{Z}_{2}-graded tensor product $\wedge\left(\overline{T^{*} X}\right) \widehat{\otimes} \wedge\left(\mathbb{V}^{*}\right)$ to $\wedge\left(\overline{T^{*} X}\right) \widehat{\otimes} \wedge^{\max }\left(T^{*} X\right) \subset$ $\wedge\left(T_{\mathbb{R}}^{*} X\right) \otimes_{\mathbb{R}} \mathbb{C}$. We can define the integral of an element α of $\Omega\left(X, \wedge\left(\mathbb{V}^{*}\right)\right)$, the set of smooth sections of $\wedge\left(\overline{T^{*} X}\right) \widehat{\otimes} \wedge\left(\mathbb{V}^{*}\right)$ on X, by

$$
\int_{X} \alpha=\int_{X} \phi(\alpha) .
$$

Let v be a holomorphic section of \mathbb{V} on X. Assume that v vanishes on a complex manifold $Y \subset X$. Then $\left.\nabla v\right|_{Y}:\left.\left.T X\right|_{Y} \rightarrow \mathbb{V}\right|_{Y}$ mapping U to $\nabla_{U} v$ does not depend on the choice of a connection ∇ on \mathbb{V}, and $\left.\nabla_{U} v\right|_{Y}=0$ for $U \in T Y$. Let N be the normal bundle to Y in X. Assume also that $\left.\nabla v\right|_{Y}:\left.N \rightarrow \mathbb{V}\right|_{Y}$ is injective, and there is a holomorphic vector subbundle \mathbb{V}_{1} on Y such that

$$
\begin{equation*}
\mathbb{V}_{Y}=\left.\mathbb{V}_{1} \oplus \operatorname{Im} \nabla v\right|_{Y} \tag{1-1}
\end{equation*}
$$

Let $P^{\mathbb{V}}$ and $P^{\operatorname{Im} \nabla v}$ be the natural projections from \mathbb{V} onto \mathbb{V}_{1} and $\left.\operatorname{Im} \nabla v\right|_{Y}$.
Let $i(v)$ be the standard contraction operator acting on $\wedge\left(\mathbb{V}^{*}\right)$. A natural question, posed in [Beasley and Witten 2003, §2], is how to express $\int_{X} \alpha$ using the local data near the zero set Y of v for a ($\bar{\partial}^{X}+i(v)$)-closed form α, that is, a form satisfying $\left(\bar{\partial}^{X}+i(v)\right) \alpha=0$.

First we recall an idea due to Bismut [Bismut 1986]; see also [Zhang 1990].
Proposition 1.1. Let $\alpha \in \Omega\left(X, \wedge\left(\mathbb{V}^{*}\right)\right)$ be $a\left(\bar{\partial}^{X}+i(v)\right)$-closed form. Then

$$
\int_{X} \alpha=\int_{X} e^{-\left(\bar{\partial}^{X}+i(v)\right) \omega / t} \alpha \quad \text { for any } \omega \in \Omega\left(X, \wedge\left(\mathbb{V}^{*}\right)\right) \text { and } t>0
$$

Proof. For any $\omega \in \Omega\left(X, \wedge\left(\mathbb{V}^{*}\right)\right)$

$$
\begin{equation*}
\int_{X} \bar{\partial}^{X} \omega=\int_{X} \phi\left(\bar{\partial}^{X} \omega\right)=\int_{X} \bar{\partial}^{X} \phi(\omega)=\int_{X} d \phi(\omega)=0 . \tag{1-2}
\end{equation*}
$$

From $\left(\bar{\partial}^{X}+i(v)\right)^{2}=0$ and $\left(\bar{\partial}^{X}+i(v)\right) \alpha=0$, we have

$$
\frac{\partial}{\partial s} \int_{X} e^{-s\left(\bar{\partial}^{X}+i(v)\right) \omega} \alpha=-\int_{X}\left(\bar{\partial}^{X}+i(v)\right)\left(\omega e^{-s\left(\bar{\partial}^{X}+i(v)\right) \omega} \alpha\right)=0
$$

and the desired equality follows.

Recall that $\left.\nabla v\right|_{Y}:\left.N \rightarrow \operatorname{Im} \nabla v\right|_{Y}$ is an isomorphism that induces isomorphisms of holomorphic line bundles $\phi_{N}=\left(\left.\operatorname{det} \nabla v\right|_{Y}\right)^{*}: \operatorname{det}\left(\left.\operatorname{Im} \nabla v\right|_{Y}\right)^{*} \rightarrow \operatorname{det} N^{*}$ and $\phi_{Y}=\left.\phi\right|_{Y} /\left(\left(\left.\operatorname{det} \nabla v\right|_{Y}\right)^{*}\right): \operatorname{det} \mathbb{V}_{1}^{*} \rightarrow \operatorname{det} T^{*} Y$. These two isomorphisms make the integral \int_{N} along the normal bundle N and \int_{Y} well defined.

Let $h^{\mathbb{V}}$ be a Hermitian metric on \mathbb{V} such that \mathbb{V}_{1} and $\left.\operatorname{Im} \nabla v\right|_{Y}$ are orthogonal on Y. Let g_{1}^{N} be a Hermitian metric on N such that $\nabla .\left.v\right|_{Y}:\left.N \rightarrow \operatorname{Im} \nabla v\right|_{Y}$ is an isometry. Let $R^{\mathbb{V}}$ be the curvature of the holomorphic Hermitian connection $\nabla^{\mathbb{V}}$ on $\left(\mathbb{V}, h^{\mathbb{V}}\right)$. Let $j: Y \rightarrow X$ be the natural embedding, and $\left\{Y_{j}\right\}_{j}$ the connected components of Y. On Y, define

$$
R_{v}^{\mathbb{V}}=-(\nabla \cdot v)^{-1} P^{\operatorname{Im} \nabla v} R^{\mathbb{V}}\left(\cdot, j_{*} \cdot\right) P^{\mathbb{V}_{1}} \cdot \in \overline{T^{*} Y} \widehat{\otimes} \mathbb{V}_{1}^{*} \otimes \operatorname{End} N .
$$

$R_{v}^{\mathbb{V}}$ is well defined since $P^{\operatorname{Im} \nabla v} R^{\mathbb{V}}\left(j_{*} \cdot, j_{*} \cdot\right) P^{\mathbb{V}}=0$. Thus, for $U \in T Y, W \in \mathbb{V}_{1}$, $u_{1}, u_{2} \in N$,

$$
\left\langle R_{v}^{\mathbb{V}}(\bar{U}, W) u_{1},\left.u_{2}\right|_{g_{1}^{N}}=-\left\langle R^{\mathbb{V}}\left(u_{1}, \bar{U}\right) W, \nabla_{u_{2}} v\right\rangle=\left\langle W, R^{\mathbb{V}}\left(\overline{u_{1}}, U\right) \nabla_{u_{2}} v\right\rangle .\right.
$$

Certainly $\operatorname{det}_{N}\left(\left(1+R_{v}^{\mathbb{V}}\right) / 2 \pi i\right)$ is $\bar{\partial}^{Y}$-closed.
The following result verifies a formula of Beasley and Whitney [2003, (2.32), (2.34)] and generalizes corresponding results in [Zhang 1990], [Liu 1995] and [Bott 1967].
Theorem 1.2. For any $\left(\bar{\partial}^{X}+i(v)\right)$-closed form $\alpha \in \Omega\left(X, \wedge\left(\mathbb{V}^{*}\right)\right)$,

$$
\begin{equation*}
\int_{X} \alpha=\sum_{j} \int_{Y_{j}} \frac{(-1)^{(l-n)\left(n-\operatorname{dim} Y_{j}\right)} \alpha}{\operatorname{det}_{N}\left(\left(1+R_{v}^{\mathbb{V}}\right) /(-2 \pi i)\right)} \tag{1-3}
\end{equation*}
$$

Proof. Set

$$
S=\langle\cdot, v\rangle_{h \vee} \in C^{\infty}\left(X, \mathbb{V}^{*}\right)
$$

By Proposition 1.1, for any $t \in] 0,+\infty[$,

$$
\begin{equation*}
\int_{X} \alpha=\int_{X} e^{-\frac{1}{2 t}\left(\bar{\partial}^{X}+i(v)\right) S} \alpha=\int_{X} e^{-\frac{1}{2 t}\left(\bar{\partial}^{X} S+|v|^{2}\right)} \alpha \tag{1-4}
\end{equation*}
$$

Thus, as $t \rightarrow 0$, the integral $\int_{X} \alpha$ is asymptotically equal to $\int_{\mathscr{U}} e^{-\frac{1}{2 t}\left(\bar{\partial}^{x} S+|v|^{2}\right)} \alpha$ for any neighborhood U of Y.

Take $y \in Y$. Since Y is a complex submanifold, we can find holomorphic coordinates $\left\{z_{i}\right\}_{i=1}^{n}$ of a neighborhood U of y such that y corresponds to 0 and $\left\{\left(\partial / \partial z_{i}\right)(0)\right\}_{i=m+1}^{n}$ is an orthonormal basis of $\left(N, g_{1}^{N}\right)$, and, moreover,

$$
U \cap Y=\left\{p \in U, z_{m+1}(p)=\cdots=z_{n}(p)=0\right\} .
$$

Let $\left\{\mu_{k}\right\}_{k=1}^{l^{\prime}}$ and $\left\{\mu_{k}\right\}_{k=l^{\prime}+1}^{l}$ be holomorphic frames for \mathbb{V}_{1} and $\left.\operatorname{Im} \nabla v\right|_{Y}$ on $U \cap Y$, with

$$
\nabla_{\partial / \partial z_{k}(0)}^{\mathbb{V}} v=\mu_{k}(0) \quad \text { for } l^{\prime}+1 \leq k \leq l,
$$

and for $z^{\prime}=\left(z_{1}, \ldots, z_{m}\right), z^{\prime \prime}=\left(z_{m+1}, \ldots, z_{n}\right), z=\left(z^{\prime}, z^{\prime \prime}\right)$, define $\mu_{k}(z)$ by parallel transport of $\mu_{k}\left(z^{\prime}, 0\right)$ with respect to $\nabla^{\mathbb{V}}$ along the curve $u \mapsto\left(z^{\prime}, u z^{\prime \prime}\right)$. Identify \mathbb{V}_{z} with $\mathbb{V}_{\left(z^{\prime}, 0\right)}$ by identifying $\mu_{k}(z)$ with $\mu_{k}\left(z^{\prime}, 0\right)$. Denote by $W_{y}(\varepsilon)$ the ε-neighborhood of y in the normal space N. Then
(1-5) $\int_{Y \cap U} \int_{W_{y}(\varepsilon)} e^{-\frac{1}{2 t}\left(\bar{\partial}^{X} S+|v|^{2}\right)} \alpha$

$$
=\int_{Y \cap U} \int_{z \in W_{y}(\varepsilon / \sqrt{t})} e^{-\frac{1}{2 t}\left(|v(\sqrt{t} z)|^{2}+\left(\bar{\partial}^{X} S\right)(\sqrt{t} z)\right)} t^{n-m} \alpha(y, \sqrt{t} z)
$$

Define $z=\sum_{j} z_{j}\left(\partial / \partial z_{j}\right)$ and $\bar{z}=\sum_{j} \bar{z}_{j}\left(\partial / \partial \bar{z}_{j}\right)$. The tautological vector field is $Z=z+\bar{z}$. Then, for $z \in N_{y}$,

$$
\frac{1}{2 t}|v(\sqrt{t} z)|^{2}=\frac{1}{2}\left|\nabla_{z}^{\mathbb{V}} v\right|^{2}+O(\sqrt{t})=\frac{1}{2}|z|^{2}+O(\sqrt{t})
$$

and

$$
\bar{\partial}^{X} S=\sum_{k=1}^{l}\left\langle\mu_{k}, \nabla^{\mathbb{V}} v\right\rangle \mu^{k}
$$

From now on, set $z=\left(0, z^{\prime \prime}\right)$ and $Z=z+\bar{z}$. Since $\nabla_{Z}^{\mathbb{V}} \mu_{k}(0)=0$, we know that (1-6) $\frac{1}{2 t} \bar{\partial}^{X} S(\sqrt{t} z)$

$$
\begin{aligned}
& =\frac{1}{2 t} \sum_{k=1}^{l}\left\langle\mu_{k}, \nabla_{\cdot}^{\mathbb{V}} v\right\rangle(\sqrt{t} z) \mu^{k}(0) \\
& =\frac{1}{2 t} \sum_{k=1}^{l}\left(\left\langle\mu_{k}, \nabla^{\mathbb{V}} v\right\rangle(0)+\sqrt{t}\left\langle\mu_{k}, \nabla_{Z}^{\mathbb{V}} \nabla^{\mathbb{V}} v\right\rangle(0)\right. \\
& \left.\quad \quad+\frac{t}{2}\left(\left\langle\nabla_{Z}^{\mathbb{V}} \nabla_{Z}^{\mathbb{V}} \mu_{k}, \nabla_{\cdot}^{\mathbb{V}} v\right\rangle+\left\langle\mu_{k}, \nabla_{Z}^{\mathbb{V}} \nabla_{Z}^{\mathbb{V}} \nabla^{\mathbb{V}} v\right\rangle\right)(0)+O\left(t^{3 / 2}\right)\right) \mu^{k}(0)
\end{aligned}
$$

Because of the factor t^{n-m} in (1-5), it should be clear that in the limit, only those monomials in the vertical form

$$
d \bar{z}_{m+1} \wedge \cdots \wedge d \bar{z}_{n} \widehat{\otimes} \mu^{l^{\prime}+1} \wedge \cdots \wedge \mu^{l}
$$

whose weight is exactly t^{m-n} should be kept. Now,

$$
\begin{aligned}
\nabla_{Z}^{\mathbb{V}} \nabla_{\partial / \partial z_{j}}^{\mathbb{V}} v & =R^{\mathbb{V}}\left(Z, \frac{\partial}{\partial z_{j}}\right) v+\nabla_{\partial / \partial z_{j}}^{\mathbb{V}} \nabla_{Z}^{\mathbb{V}} v-1_{[m, n]}(j) \nabla_{\partial / \partial z_{j}}^{\mathbb{V}} v, \\
\nabla_{\bar{z}}^{\mathbb{V}} \nabla_{\partial / \partial z_{j}}^{\mathbb{V}} v(0) & =R^{\mathbb{V}}\left(\bar{z}, \frac{\partial}{\partial z_{j}}\right) v+\nabla_{\partial / \partial z_{j}}^{\mathbb{V}} \nabla_{\bar{z}}^{\mathbb{V}} v=0,
\end{aligned}
$$

where $1_{[m, n]}$ is the characteristic function of the interval $[m, n]$. Note that $\nabla^{\vee}=$ $\nabla^{\mathbb{V}_{1}} \oplus \nabla^{\operatorname{Im} \nabla v}$ on Y and that

$$
\left\langle\mu_{k}, \nabla_{z}^{\mathbb{V}} \nabla_{\partial / \partial z_{j}}^{\mathbb{V}} v\right\rangle(0)=0 \quad \text { for } 1 \leq j \leq m, 1 \leq k \leq l^{\prime}
$$

It follows that in the expression

$$
\frac{1}{2 \sqrt{t}}\left\langle\mu_{k}, \nabla_{Z}^{\mathbb{V}} \nabla^{\mathbb{V}} v\right\rangle(0) \mu^{k}(0)
$$

a nonzero contribution can only appear in the term

$$
\begin{equation*}
\frac{1}{2 \sqrt{ } t}\left(\sum_{j=1}^{m} \sum_{k=l^{\prime}+1}^{l}+\sum_{j=m+1}^{n} \sum_{k=1}^{l^{\prime}}\right)\left\langle\mu_{k}, \nabla_{z}^{\mathbb{V}} \nabla_{\partial / \partial z_{j}}^{\mathbb{V}} v\right\rangle(0) d \bar{z}^{j} \otimes \mu^{k}(0) \tag{1-7}
\end{equation*}
$$

Similarly, in the last term of (1-6), the only term with a nonzero contribution is

$$
\frac{1}{4} \sum_{j=1}^{m} \sum_{k=1}^{l^{\prime}}\left(\left\langle\nabla_{Z}^{\mathbb{V}} \nabla_{Z}^{\mathbb{V}} \mu_{k}, \nabla_{\partial / \partial z_{j}}^{\mathbb{V}} v\right\rangle(0)+\left\langle\mu_{k}, \nabla_{Z}^{\mathbb{V}} \nabla_{Z}^{\mathbb{V}} \nabla_{\partial / \partial z_{j}}^{\mathbb{V}} v\right\rangle(0)\right) d \bar{z}^{j} \otimes \mu^{k}(0)
$$

But for $1 \leq j \leq m$, both $\nabla_{\partial / \partial z_{j}}^{\mathbb{V}} v(0)$ and $\nabla_{\partial / \partial z_{j}}^{\mathbb{V}} \nabla_{\bar{z}}^{\mathbb{V}} \nabla_{z}^{\mathbb{V}} v(0)=\nabla_{\partial / \partial z_{j}}^{\mathbb{V}}\left(R^{\mathbb{V}}(\bar{z}, z) v\right)(0)$ vanish, since $v=0$ on Y. Thus, for $1 \leq j \leq m$,

$$
\nabla_{Z}^{\mathbb{V}} \nabla_{Z}^{\mathbb{V}} \nabla_{\partial / \partial z_{j}}^{\mathbb{V}} v(0)=2 R^{\mathbb{V}}\left(\bar{z}, \frac{\partial}{\partial z_{j}}\right) \nabla_{z}^{\mathbb{V}} v(0)+\nabla_{\partial / \partial z_{j}}^{\mathbb{V}} \nabla_{z}^{\mathbb{V}} \nabla_{z}^{\mathbb{V}} v(0)
$$

By the preceding discussion, as $t \rightarrow 0$, in (1-5), we should replace $\frac{1}{2 t} \bar{\partial}^{X} S(y, \sqrt{t} z)$ by the 2 -form

$$
\begin{aligned}
& \frac{1}{2} \sum_{k=1}^{l}\left\langle\mu_{k}, \nabla \nabla . v\right\rangle(0) \mu^{k}(0)+\sqrt{t} \times \text { expression (1-7) } \\
& \quad+\frac{1}{2} \sum_{j=1}^{m} \sum_{k=1}^{l^{\prime}}\left\langle\mu_{k}, R^{\mathbb{V}}\left(\bar{z}, \frac{\partial}{\partial z_{j}}\right) \nabla_{z}^{\mathbb{V}} v+\nabla_{\partial / \partial z_{j}}^{\mathbb{V}} \nabla_{z}^{\mathbb{V}} \nabla_{z}^{\mathbb{V}} v\right\rangle(0) d \bar{z}^{j} \otimes \mu^{k}(0) .
\end{aligned}
$$

Set $\beta_{Y}=d \bar{z}_{1} \cdots d \bar{z}_{m} \wedge \mu^{1}(0) \cdots \mu^{l^{\prime}}(0), \beta_{N}=d \bar{z}_{m+1} \cdots d \bar{z}_{n} \wedge \mu^{l^{\prime}+1}(0) \cdots \mu^{l}(0)$, $\phi\left(\mu^{1}(0) \cdots \mu^{l}(0)\right)=f d z_{1} \cdots d z_{n}$. Then

$$
\phi_{Y}\left(\mu^{1}(0) \cdots \mu^{l^{\prime}}(0)\right) \phi_{N}\left(\mu^{l^{\prime}+1}(0) \cdots \mu^{l}(0)\right)=f d z_{1} \cdots d z_{n}
$$

Thus

$$
\begin{aligned}
\phi\left(\beta_{Y} \wedge \beta_{N}\right) & =(-1)^{l^{\prime}(n-m)} f d \bar{z}_{1} \cdots d \bar{z}_{n} \wedge d z_{1} \cdots d z_{n} \\
& =(-1)^{\left(l^{\prime}-m\right)(n-m)} \phi_{Y}\left(\beta_{Y}\right) \phi_{N}\left(\beta_{N}\right)
\end{aligned}
$$

Now, observing that $\int_{\mathbb{C}} \bar{z}^{i} e^{-|z|^{2}} d z d \bar{z}=0$ for $i>0$ and that $\nabla^{\vee} v:\left(N, g_{1}^{N}\right) \rightarrow$ $\left(\operatorname{Im} \nabla v, h^{\operatorname{Im} \nabla v}\right)$ is an isometry and $l-l^{\prime}=n-m$, we find that the limit of (1-4)
as $t \rightarrow 0$ is the sum over j of

$$
\begin{aligned}
(1-8) \int_{Y_{j}}(-1)^{(l-n)(n-m)} j^{*} \alpha \int_{N} \exp & \left(-\frac{1}{2} \sum_{k=1}^{l}\left\langle\mu_{k}, \nabla^{\mathbb{V}} v\right\rangle(0) \mu^{k}(0)\right. \\
& \left.-\frac{1}{2}\left\langle\cdot, P^{\mathbb{V}_{1}} R^{\mathbb{V}}\left(\bar{z}, j_{*} \cdot\right) \nabla_{z}^{\mathbb{V}} v\right\rangle(0)-\frac{1}{2}\left|\nabla_{z}^{\mathbb{V}} v\right|^{2}\right) .
\end{aligned}
$$

The second integrand in this expression can be rewritten as

$$
\begin{aligned}
& \exp \left(-\frac{1}{2} \sum_{i=1}^{n-m} d \bar{z}_{m+i} \wedge \mu^{l^{\prime}+i}(0)+\frac{1}{2}\left\langle R^{\mathbb{V}}\left(z, j_{*} \cdot\right) P^{\mathbb{V}_{1}} \cdot, \nabla_{z}^{\mathbb{V}} v\right\rangle(0)-\frac{1}{2}|z|^{2}\right) \\
& \quad=\exp \left(\frac{1}{2}\left\langle\left(\nabla^{\mathbb{V}} v\right)^{-1} R^{\mathbb{V}}\left(z, j_{*} \cdot\right) P^{\mathbb{V}_{1}} \cdot, z\right\rangle-\frac{1}{2}|z|^{2}\right)\left(\frac{1}{2}\right)^{l-l^{\prime}} d z_{m+1} d \bar{z}_{m+1} \cdots d z_{n} d \bar{z}_{n}
\end{aligned}
$$

Thus the expression in (1-8) is equal to

$$
\int_{Y_{j}} \frac{(-1)^{(l-n)(n-m)} \alpha}{\operatorname{det}_{N}\left(\left(1+R_{v}^{\mathbb{V}}\right) /(-2 \pi i)\right)}
$$

which leads to (1-3).

2. Localization of Quillen metrics via a transversal section

Let X be a compact complex manifold of dimension n. Let \mathbb{V} and ξ be holomorphic vector bundles on X with $\operatorname{dim} \mathbb{V}=m$, and let v be a holomorphic section of \mathbb{V}. Assume that v vanishes on a complex manifold $Y \subset X$ and satisfies (1-1). Then we have a complex of holomorphic vector bundles on X,

$$
\begin{equation*}
0 \rightarrow \bigwedge^{m}\left(\mathbb{V}^{*}\right) \xrightarrow{i(v)} \bigwedge^{m-1}\left(\mathbb{V}^{*}\right) \xrightarrow{i(v)} \cdots \xrightarrow{i(v)} \bigwedge^{1}\left(\mathbb{V}^{*}\right) \xrightarrow{i(v)} \bigwedge^{0}\left(\mathbb{V}^{*}\right) \rightarrow 0 . \tag{2-1}
\end{equation*}
$$

Let $\left(\Omega\left(X, \wedge\left(\mathbb{V}^{*}\right) \otimes \xi\right), \bar{\partial}^{X}\right)$ be the Dolbeault complex associated to the holomorphic vector bundle $\wedge\left(\mathbb{V}^{*}\right) \otimes \xi$. Let $\mathscr{H}_{v}\left(X, \wedge\left(\mathbb{V}^{*}\right) \otimes \xi\right)$ be the hypercohomologies of the bicomplex $\left(\Omega\left(X, \wedge\left(\mathbb{V}^{*}\right) \otimes \xi\right), \bar{\partial}^{X}, i(v)\right)$. Let $j: Y \rightarrow X$ be the obvious embedding. Now the pullback map j^{*} induces naturally a map of complexes

$$
\begin{equation*}
j^{*}:\left(\Omega\left(X, \wedge\left(\mathbb{V}^{*}\right) \otimes \xi\right), \bar{\partial}^{X}+i(v)\right) \rightarrow\left(\Omega\left(Y, \wedge\left(\mathbb{V}_{1}^{*}\right) \otimes \xi\right), \bar{\partial}^{Y}\right) \tag{2-2}
\end{equation*}
$$

Theorem 2.1. The map j^{*} is a quasi-isomorphism of complexes. In particular, j^{*} induces an isomorphism

$$
\begin{equation*}
\mathscr{H}_{v}\left(X, \wedge\left(\mathbb{V}^{*}\right) \otimes \xi\right) \simeq H\left(Y, \wedge\left(\mathbb{V}_{1}^{*}\right) \otimes \xi\right) \tag{2-3}
\end{equation*}
$$

Proof. In [Feng 2003] there is an analytic proof of this theorem when $\mathbb{V}=T X$. There we used the twisted vector bundle $\wedge\left(T^{*} X\right)$ and here $\wedge\left(\mathbb{V}^{*}\right)$ takes its place; the proof works just the same. For an algebraic proof, we can modify the proof of [Bismut 2004, Theorem 5.1].

Let N^{X}, N_{H}^{X} be the number operators on $\Lambda\left(T^{*} X\right), \wedge\left(\mathbb{V}^{*}\right)$ corresponding to multiplication by p on $\wedge^{p}\left(T^{*} X\right), \wedge^{p}\left(\mathbb{V}^{*}\right)$; do the same replacing X by Y and \mathbb{V}^{*} by \mathbb{V}_{1}^{*}. Then $N^{X}-N_{H}^{X}$ and $N^{Y}-N_{H}^{Y}$ define \mathbb{Z}-gradings on $\Omega\left(X, \wedge\left(\mathbb{V}^{*}\right) \otimes \xi\right)$ and $\Omega\left(Y, \wedge\left(\mathbb{V}_{1}^{*}\right) \otimes \xi\right)$, which in turn induce \mathbb{Z}-gradings on $\mathscr{H}_{v}\left(X, \wedge\left(\mathbb{V}^{*}\right) \otimes \xi\right)$ and $H\left(Y, \wedge\left(\mathbb{V}_{1}^{*}\right) \otimes \xi\right)$, respectively. The isomorphism j^{*} preserves these \mathbb{Z}-gradings.

From [Bismut and Lebeau 1991, (1.24)], we define the complex lines $\lambda_{v}\left(\mathbb{V}^{*}\right)$ and $\lambda\left(\mathbb{V}_{1}^{*}\right)$ by

$$
\begin{aligned}
\lambda_{v}\left(\mathbb{V}^{*}\right) & =\bigotimes_{p=-m}^{n}\left(\operatorname{det} \mathscr{H}_{v}^{p}\left(X, \wedge\left(\mathbb{V}^{*}\right) \otimes \xi\right)\right)^{(-1)^{p+1}}, \\
\lambda\left(\mathbb{V}_{1}^{*}\right) & =\bigotimes_{p=0}^{n} \bigotimes_{q=0}^{m}\left(\operatorname{det} H^{p}\left(Y, \wedge^{q}\left(\mathbb{V}_{1}^{*}\right) \otimes \xi\right)\right)^{(-1)^{p+q+1}}
\end{aligned}
$$

By (2-3), we have a canonical isomorphism of complex lines

$$
\lambda_{v}\left(\mathbb{V}^{*}\right) \simeq \lambda\left(\mathbb{V}_{1}^{*}\right) .
$$

Let ρ be the nonzero section of $\lambda\left(\mathbb{V}_{1}^{*}\right)^{-1} \otimes \lambda_{v}\left(\mathbb{V}^{*}\right)$ associated with this canonical isomorphism.

Let $g^{T X}$ be a Kähler metric on $T X$. We identify N with the bundle orthogonal to $T Y$ in $\left.T X\right|_{Y}$. Let $g^{T Y}$ and g^{N} be the metrics on $T Y$ and N induced by $g^{T X}$. Let h^{ξ} be a Hermitian metric on ξ. Let $h^{\mathbb{V}}$ be a metric on \mathbb{V} such that \mathbb{V}_{1} and $\left.\operatorname{Im} \nabla v\right|_{Y}$ are orthogonal on Y and $\left.\nabla v\right|_{Y}:\left.N \rightarrow \operatorname{Im} \nabla v\right|_{Y}$ is an isometry.

Let $d v_{X}$ be the Riemannian volume form on $\left(X, g^{T X}\right)$. Let $\langle\cdot, \cdot\rangle_{0}$ be the metric on $\wedge\left(\overline{T^{*} X}\right) \widehat{\otimes} \wedge\left(\mathbb{V}^{*}\right) \otimes \xi$ induced by $g^{T X}, h^{\mathbb{V}}, h^{\xi}$. The Hermitian product on $\Omega\left(X, \wedge\left(\mathbb{V}^{*}\right) \otimes \xi\right)$ is defined by

$$
\begin{equation*}
\left\langle\alpha, \alpha^{\prime}\right\rangle=\frac{1}{(2 \pi)^{n}} \int_{X}\left\langle\alpha, \alpha^{\prime}\right\rangle_{0} d v_{X} \quad \text { for } \alpha, \alpha^{\prime} \in \Omega\left(X, \wedge\left(\mathbb{V}^{*}\right) \otimes \xi\right) \tag{2-4}
\end{equation*}
$$

Let $\bar{\partial}^{X *}$ and $v^{*} \wedge=i(v)^{*}$ be the adjoint of $\bar{\partial}^{X}$ and $i(v)$ with respect to $\langle\cdot, \cdot\rangle$. Set

$$
V=i(v)+i(v)^{*}, \quad D^{X}=\bar{\partial}^{X}+\bar{\partial}^{X *}
$$

By Hodge theory,

$$
\begin{equation*}
\mathscr{H}_{v}\left(X, \wedge\left(\mathbb{V}^{*}\right) \otimes \xi\right) \simeq \operatorname{Ker}\left(D^{X}+V\right) \tag{2-5}
\end{equation*}
$$

Denote by P be the operator of orthogonal projection from $\Omega\left(X, \wedge\left(\mathbb{V}^{*}\right) \otimes \xi\right)$ onto $\operatorname{ker}\left(D^{X}+V\right)$ and set $P^{\perp}=1-P$. Let $h^{\mathscr{H}_{v}}$ be the L^{2}-metric on $\mathscr{H}_{v}\left(X, \wedge\left(\mathbb{V}^{*}\right) \otimes\right.$ ξ) induced by the L^{2}-product (2-4) via the isomorphism (2-5). Define in the same way a Hermitian product on $\Omega\left(Y, \wedge\left(\mathbb{V}_{1}^{*}\right) \otimes \xi\right)$ associated to $g^{T Y}, h^{\mathbb{V}_{1}}, h^{\xi}$. Let $\bar{\partial}^{Y *}$ be the adjoint of $\bar{\partial}^{Y}$, and $h^{H\left(Y, \wedge\left(\mathbb{V}_{1}^{*}\right) \otimes \xi\right)}$ the corresponding L^{2}-metric on
$H\left(Y, \wedge\left(\mathbb{V}_{1}^{*}\right) \otimes \xi\right)$. Set

$$
D^{Y}=\bar{\partial}^{Y}+\bar{\partial}^{Y *}
$$

Let Q be the orthogonal projection operator from $\Omega\left(Y, \wedge\left(\mathbb{V}_{1}^{*}\right) \otimes \xi\right)$ on $\operatorname{Ker} D^{Y}$, and $Q^{\perp}=1-Q$. Let $|\cdot|_{\lambda_{v}\left(\mathbb{V}^{*}\right)}$ and $|\cdot|_{\lambda\left(\mathbb{V}^{*}\right)}$ be the L^{2}-metrics on $\lambda_{v}\left(\mathbb{V}^{*}\right)$ and $\lambda\left(\mathbb{V}^{*}\right)$ induced by $h^{\mathscr{L _ { v }}}$ and $h^{H\left(Y, \wedge\left(\mathbb{V}_{1}^{*}\right) \otimes \xi\right)}$. Following [Bismut and Lebeau 1991, (1.49)], let

$$
\theta_{v}^{X}(s)=-\operatorname{Tr}_{s}\left(\left(N^{X}-N_{H}^{X}\right)\left(\left(D^{X}+V\right)^{2}\right)^{-s} P^{\perp}\right)
$$

Then $\theta_{v}^{X}(s)$ extends to a meromorphic function of $s \in \mathbb{C}$, which is holomorphic at $s=0$.

The Quillen metric $\|\cdot\|_{\lambda_{v}\left(\mathbb{V}^{*}\right)}$ on the line $\lambda_{v}\left(\mathbb{V}^{*}\right)$ is defined by

$$
\|\cdot\|_{\lambda_{v}\left(\mathbb{V}^{*}\right)}=\left.|\cdot|\right|_{\lambda_{v}\left(\mathbb{V}^{*}\right)} \exp \left(-\frac{1}{2} \frac{\partial \theta_{v}^{X}}{\partial s}(0)\right) .
$$

In the same way, the function

$$
\theta^{Y}(s)=-\operatorname{Tr}_{s}\left(\left(N^{Y}-N_{H}^{Y}\right)\left(D^{Y, 2}\right)^{-s} Q^{\perp}\right)
$$

extends to a meromorphic function of $s \in \mathbb{C}$, holomorphic at $s=0$. The Quillen metric $\|\cdot\|_{\lambda\left(\mathbb{V}_{1}^{*}\right)}$ on the line $\lambda\left(\mathbb{V}_{1}^{*}\right)$ is defined by

$$
\|\cdot\|_{\lambda\left(\mathbb{V}_{1}^{*}\right)}=|\cdot|_{\lambda\left(\mathbb{V}_{1}^{*}\right)} \exp \left(-\frac{1}{2} \frac{\partial \theta^{Y}}{\partial s}(0)\right) .
$$

Let $\|\cdot\|_{\lambda\left(\mathbb{V}_{1}^{*}\right)^{-1} \otimes \lambda_{v}\left(\mathbb{V}^{*}\right)}$ be the Quillen metric on $\lambda\left(\mathbb{V}_{1}^{*}\right)^{-1} \otimes \lambda_{v}\left(\mathbb{V}^{*}\right)$ induced by $\|\cdot\|_{\lambda_{v}\left(\mathbb{V}^{*}\right)}$ and $\|\cdot\|_{\lambda\left(\mathbb{V}_{1}^{*}\right)}$ as in [Bismut and Lebeau 1991, §1e].

The purpose of this section is to give a formula for $\|\rho\|_{\lambda\left(\mathbb{V}_{1}^{*}\right)^{-1} \otimes \lambda_{v}\left(\mathbb{V}^{*}\right)}^{2}$. Now we introduce some notations.

For a holomorphic Hermitian vector bundle $\left(E, h^{E}\right)$ on X, we denote by $\operatorname{Td}(E)$, $\operatorname{ch}(E), c_{\max }(E)$ the Todd class, Chern character, and top Chern class of E, and by $\operatorname{Td}\left(E, h^{E}\right), \operatorname{ch}\left(E, h^{E}\right), c_{\max }\left(E, h^{E}\right)$ the Chern-Weil representatives of $\operatorname{Td}(E)$, $\operatorname{ch}(E), c_{\max }(E)$ with respect to the holomorphic Hermitian connection ∇^{E} on $\left(E, h^{E}\right)$.

Let δ_{Y} be the current of integration on Y. By [Bismut 1992, Theorem 3.6], a current $\tilde{c}_{\text {max }}\left(\mathbb{V}, h^{\mathbb{V}}\right)$ on X is well defined by the holomorphic section v (which induces an embedding $v: X \rightarrow \mathbb{V}$), and this current satisfies

$$
\begin{equation*}
\frac{\bar{\partial} \partial}{2 \pi i} \tilde{c}_{\max }\left(\mathbb{V}, h^{\mathbb{V}}\right)=c_{\max }\left(\mathbb{V}_{1}, h^{\mathbb{V}}\right) \delta_{Y}-c_{\max }\left(\mathbb{V}, h^{\mathbb{V}}\right) \tag{2-6}
\end{equation*}
$$

Let $\widetilde{\operatorname{Td}}\left(T Y, T X, g^{\left.T X\right|_{Y}}\right)$ be the Bott-Chern current on Y associated to the exact sequence

$$
\begin{equation*}
\left.0 \rightarrow T Y \rightarrow T X\right|_{Y} \rightarrow N \rightarrow 0 \tag{2-7}
\end{equation*}
$$

constructed in [Bismut et al. 1988a, §1f], which satisfies

$$
\frac{\bar{\partial} \partial}{2 \pi i} \widetilde{\operatorname{Td}}\left(T Y, T X, g^{\left.T X\right|_{Y}}\right)=\operatorname{Td}\left(\left.T X\right|_{Y}, g^{\left.T X\right|_{Y}}\right)-\operatorname{Td}\left(T Y, g^{T Y}\right) \operatorname{Td}\left(N, g^{N}\right)
$$

Finally, let $R(x)$ be the power series introduced in [Gillet and Soulé 1991], which is such that if $\zeta(s)$ is the Riemann zeta function, then

$$
R(x)=\sum_{\substack{n \geq 1 \\ n \text { odd }}}\left(\sum_{j=1}^{n} \frac{1}{j} \zeta(-n)+2 \frac{\partial \zeta}{\partial s}(-n)\right) \frac{x^{n}}{n!}
$$

We identify R with the corresponding additive genus. We also set

$$
\operatorname{ch}\left(\bigwedge^{*}\left(\mathbb{V}_{1}^{*}\right)\right)=\sum_{i}(-1)^{i} \operatorname{ch}\left(\bigwedge^{i}\left(\mathbb{V}_{1}^{*}\right)\right)
$$

and denote by $\operatorname{ch}\left(\wedge^{*}\left(\mathbb{V}_{1}^{*}\right), h^{\left.\wedge^{*}\left(\mathbb{V}_{1}^{*}\right)\right) \text { its Chern-Weil representative. }}\right.$
Theorem 2.2. The Quillen metric $\|\rho\|_{\lambda\left(\mathbb{V}_{1}^{*}\right)^{-1} \otimes \lambda_{v}\left(\mathbb{V}^{*}\right)}^{2}$ is given by the exponential of

$$
\begin{aligned}
(2-8)- & \int_{X} \operatorname{Td}\left(T X, g^{T X}\right) \operatorname{Td}^{-1}\left(\mathbb{V}, h^{\mathbb{V}}\right) \tilde{c}_{\max }\left(\mathbb{V}, h^{\mathbb{V}}\right) \operatorname{ch}\left(\xi, h^{\xi}\right) \\
& +\int_{Y} \operatorname{Td}^{-1}\left(N, g^{N}\right) \widetilde{\operatorname{Td}}\left(T Y,\left.T X\right|_{Y}, g^{\left.T X\right|_{Y}}\right) \operatorname{ch}\left(\wedge^{*}\left(\mathbb{V}_{1}^{*}\right), h^{\left.\wedge^{*}\left(\mathbb{V}_{1}^{*}\right)\right) \operatorname{ch}\left(\xi, h^{\xi}\right)}\right. \\
& -\int_{Y} \operatorname{Td}(T Y) R(N) \operatorname{ch}\left(\wedge^{*}\left(\mathbb{V}_{1}^{*}\right)\right) \operatorname{ch}(\xi) .
\end{aligned}
$$

Proof. Set

$$
\begin{equation*}
T\left(\wedge\left(\mathbb{V}^{*}\right), h^{\wedge\left(\mathbb{V}^{*}\right)}\right)=\operatorname{Td}^{-1}\left(\mathbb{V}, h^{\mathbb{V}}\right) \tilde{c}_{\max }\left(\mathbb{V}, h^{\mathbb{V}}\right) \tag{2-9}
\end{equation*}
$$

By the same argument as in [Bismut et al. 1990, Theorem 3.17], the current

$$
T\left(\wedge\left(\mathbb{V}^{*}\right), h^{\wedge\left(\mathbb{V}^{*}\right)}\right)
$$

is exactly the current on X associated to (2-1) (evaluated modulo irrelevant ∂ or $\bar{\partial}$ coboundaries).

Now, from the choice of our metric $h^{\mathbb{V}}$, the analogue of [Bismut and Lebeau 1991, Definition 1.21, assumption (A)] is satisfied for the complex (2-1). Then we verify that as far as local index theoretic computations are concerned, the situation is exactly the same as in [Bismut and Lebeau 1991]. Because of the quasi-isomorphism of Theorem 2.1, there are no "small" eigenvalues of the operator $D+T V$ when $T \rightarrow+\infty$. In Section 3, we write down the intermediate results corresponding to [Bismut and Lebeau 1991, §6c]. Comparing to [Bismut and Lebeau 1991, $\S \S 6 \mathrm{c}-6 \mathrm{e}]$, the proof of Theorem 2.2 is complete.

Remark 2.3. Assume that Y consists only discrete points; then $l \geq n$ and the last two terms of $(2-8)$ are zero. In this case, if $n=l$, then $(2-1)$ is a resolution of $j_{*}\left(\mathbb{O}_{Y}\right)$ and Theorem 2.2 is a direct consequence of [Bismut and Lebeau 1991, Theorem 0.1]. By [Bismut 1992, Theorem 3.2, Definition 3.5], $\tilde{c}_{\max }\left(\mathbb{V}, h^{\mathbb{V}}\right)$ is zero if $l>n+1$.

3. L^{2} metrics on $H_{v}\left(X, \wedge\left(\mathbb{V}^{*}\right)\right)$ and localization

We keep the assumptions and notations of Section 2.
Let $g^{T X}$ be a Kähler metric on $T X$, and let $g^{T Y}, g^{N}$ be the metrics on $T Y, N$ induced by $g^{T X}$. Let $h^{\mathbb{V}}$ be a metric on \mathbb{V} such that \mathbb{V}_{1} and $\left.\operatorname{Im} \nabla v\right|_{Y}$ are orthogonal on Y and $\left.\nabla v\right|_{Y}:\left.\left(N, g^{N}\right) \rightarrow \operatorname{Im} \nabla v\right|_{Y}$ is an isometry.

Let $\phi_{1}: \operatorname{det} \mathbb{V}_{1}^{*} \rightarrow \operatorname{det} T^{*} Y$ be a nonzero holomorphic section. Let $h_{1}^{\mathbb{V}}$ be a metric on \mathbb{V} such that on Y, \mathbb{V}_{1} and $\left.\operatorname{Im} \nabla v\right|_{Y}$ are orthogonal and

$$
|\phi|_{\operatorname{det} \mathbb{V} \otimes \operatorname{det} T^{*} X, 1}=\left|\phi_{1}\right|_{\operatorname{det}} \mathbb{V}_{1} \otimes \operatorname{det} T^{*} Y, 1=1,
$$

where $|\cdot|_{\operatorname{det} \mathbb{V} \otimes \operatorname{det} T^{*} X, 1}$ and $|\cdot|_{\operatorname{det} \mathbb{V}_{1} \otimes \operatorname{det} T^{*} Y, 1}$ are the norms on the holomorphic line bundles $\operatorname{det} \mathbb{V} \otimes \operatorname{det} T^{*} X$ and det $\mathbb{V}_{1} \otimes \operatorname{det} T^{*} Y$ induced by $h_{1}^{\mathbb{V}}$ and $g^{T X}$.

We will add a subscript 1 to denote the objects induced by $h_{1}^{\mathbb{V}}$. For

$$
\beta \in \wedge^{p}\left(\overline{T^{*} X}\right) \widehat{\otimes} \wedge^{q}\left(\mathbb{V}^{*}\right)
$$

we define $* \mathbb{\mathbb { V } , 1} \beta \in \wedge^{n-p}\left(\overline{T^{*} X}\right) \widehat{\otimes} \bigwedge^{l-q}\left(\mathbb{V}^{*}\right)$ by

$$
\langle\alpha, \beta\rangle_{1} \phi^{-1}\left(d v_{X}\right)=\alpha \wedge * \vee, 1 \beta
$$

It's useful to write down a local expression for $* \mathbb{\mathbb { } , 1}$. if $\left\{w^{i}\right\}_{i=1}^{n}$ and $\left\{\mu^{i}\right\}_{i=1}^{l}$, are orthonormal bases of $T^{*} X$ and $\left(\mathbb{V}^{*}, h_{1}^{\mathbb{V}}\right)$, then

$$
d v_{X}=(-1)^{n(n+1) / 2}(\sqrt{-1})^{n} \bar{w}^{1} \wedge \cdots \wedge \bar{w}^{n} \widehat{\otimes} w^{1} \wedge \cdots \wedge w^{n}
$$

and $\phi^{-1}\left(w^{1} \wedge \cdots \wedge w^{n}\right)=f \mu^{1} \wedge \cdots \wedge \mu^{l}$ with $|f|=1$. If

$$
\beta=\bar{w}^{1} \wedge \cdots \wedge \bar{w}^{p} \widehat{\otimes} \mu^{1} \wedge \cdots \wedge \mu^{q}
$$

then

$$
*_{\mathbb{V}, 1} \beta=(-1)^{(n-p) q+n(n+1) / 2}(\sqrt{-1})^{n} f \bar{w}^{p+1} \wedge \cdots \wedge \bar{w}^{n} \widehat{\otimes} \mu^{q+1} \wedge \cdots \wedge \mu^{l}
$$

Thus $* \mathbb{V}, 1 * \mathbb{\mathbb { } , 1} \beta=(-1)^{(p+q)(n+l+1)} \beta$, for any $\beta \in \wedge^{p}\left(\overline{T^{*} X}\right) \widehat{\otimes} \wedge^{q}\left(\mathbb{V}^{*}\right)$. Combining this with (1-2), we find that

$$
\bar{\partial}^{X *} \beta=(-1)^{p+q+1} *_{\mathbb{\vee}, 1}^{-1} \bar{\partial}^{X} *_{\mathbb{\vee}, 1} \beta, \quad(i(v))^{*} \beta=(-1)^{p+q+1} *_{\mathbb{V}, 1}^{-1} i(v) *_{\mathbb{\vee}, 1} \beta .
$$

Thus the antilinear map $*_{\mathbb{V}, 1}$ is an isometry from $\left(\mathscr{H}_{v}\left(X, \wedge\left(\mathbb{V}^{*}\right)\right), h_{1}^{\mathscr{L}_{v}}\right)$ to itself.

The bilinear form

$$
\begin{equation*}
\alpha, \beta \in \mathscr{H}_{v}\left(X, \wedge\left(\mathbb{V}^{*}\right)\right) \mapsto \frac{1}{(2 \pi)^{n}} \int_{X} \alpha \wedge \beta \tag{3-1}
\end{equation*}
$$

is nondegenerate; indeed, $\alpha \in \mathscr{H}_{v}\left(X, \wedge\left(\mathbb{V}^{*}\right)\right)$ implies $* \mathbb{V}, 1 \alpha \in \mathscr{H}_{v}\left(X, \wedge\left(\mathbb{V}^{*}\right)\right)$, so $\alpha \neq 0$ implies

$$
\int_{X} \alpha \wedge * \mathbb{\mathbb { V } , 1} \alpha>0
$$

Thus the metric $|\cdot|_{\lambda_{v}(\mathbb{V}), 1}$ on $\lambda_{v}\left(\mathbb{V}^{*}\right)$ only depends on the nondegenerate bilinear form (3-1) on $\mathscr{H}_{v}\left(X, \wedge\left(\mathbb{V}^{*}\right)\right)$, which is metric-independent.

Recall the definition of $\left.\operatorname{det} \nabla v\right|_{Y}$ from Section 1. Now,

$$
\frac{\left.\phi\right|_{Y} /\left(\left(\left.\operatorname{det} \nabla v\right|_{Y}\right)^{*}\right)}{\phi_{1}}
$$

is a holomorphic function on Y. Since Y is compact, this function is locally constant. Then we have the following extension of [Bismut 2004, Theorem 5.7].

Theorem 3.1.

(3-2) $\log \left(|\rho|_{\lambda\left(\mathbb{V}_{1}^{*}\right)^{-1} \otimes \lambda_{v}\left(\mathbb{V}^{*}\right), 1}\right)^{2}=\int_{Y} \operatorname{Td}(T Y) \operatorname{ch}\left(\wedge\left(\mathbb{V}_{1}^{*}\right)\right) \log \left|\frac{\left.\phi\right|_{Y} /\left(\left(\left.\operatorname{det} \nabla v\right|_{Y}\right)^{*}\right)}{\phi_{1}}\right|$.
Proof. We use ϕ_{1} to define the integral $\int_{Y} \gamma$ for $\gamma \in H\left(Y, \wedge\left(\mathbb{V}_{1}^{*}\right)\right)$. Since

$$
\left|\phi_{1}\right|_{\operatorname{det} \mathbb{V}_{1} \otimes \operatorname{det} T^{*} Y, 1}=1
$$

following the same considerations as above, we find that the antilinear operator $* \mathbb{V}_{1}, 1$ maps $H\left(Y, \wedge\left(\mathbb{V}_{1}^{*}\right)\right)$ into itself isometrically. Therefore, to evaluate the lefthand side of (3-2), we only need to compare the bilinear forms (3-1) with

$$
a, b \in H\left(Y, \wedge\left(\mathbb{V}_{1}^{*}\right)\right) \mapsto \frac{1}{(2 \pi)^{m}} \int_{Y} a \wedge b
$$

Let $A_{v} \in \operatorname{End}^{\text {even }} H\left(Y, \wedge\left(\mathbb{V}_{1}^{*}\right)\right)$ be given by

$$
\begin{equation*}
a \rightarrow \frac{(-1)^{(l-n)(n-m)} a}{(2 \pi)^{n-m} \operatorname{det}_{N}\left(\left(1+R_{v}^{\mathbb{V}}\right) /(-2 \pi i)\right)} \frac{\left.\phi\right|_{Y} /\left(\left(\left.\operatorname{det} \nabla v\right|_{Y}\right)^{*}\right)}{\phi_{1}} . \tag{3-3}
\end{equation*}
$$

Set

$$
\operatorname{det} A_{v}=\frac{\left.\operatorname{det} A_{v}\right|_{H^{\text {even }}\left(Y, \wedge\left(\mathbb{V}_{1}^{*}\right)\right)}}{\left.\operatorname{det} A_{v}\right|_{H^{\text {odd }}\left(Y, \wedge\left(\mathbb{V}_{1}^{*}\right)\right)}}
$$

then

$$
\left(|\rho|_{\lambda\left(\mathbb{V}_{1}^{*}\right)^{-1} \otimes \lambda_{v}\left(\mathbb{V}^{*}\right), 1}\right)^{2}=\left|\operatorname{det} A_{v}\right|
$$

Now, A_{v} is a degree-increasing operator in $H\left(Y, \wedge\left(\mathbb{V}_{1}^{*}\right)\right)$. Therefore it acts like a triangular matrix whose diagonal part is just multiplication by the locally constant
function $\frac{\left.\phi\right|_{Y} /\left(\left(\left.\operatorname{det} \nabla v\right|_{Y}\right)^{*}\right)}{\phi_{1}}$. Using (3-3), we get

$$
\operatorname{det} A_{v}=\left(\frac{\left.\phi\right|_{Y} /\left(\left(\left.\operatorname{det} \nabla v\right|_{Y}\right)^{*}\right)}{\phi_{1}}\right)^{\chi\left(Y, \wedge\left(\mathbb{V}_{1}^{*}\right)\right)}
$$

But $\chi\left(Y, \wedge\left(\mathbb{V}_{1}^{*}\right)\right)=\int_{Y} \operatorname{Td}(T Y) \operatorname{ch}\left(\wedge\left(\mathbb{V}_{1}^{*}\right)\right)$; thus we get (3-2).
Let g_{1}^{N} be the metric on N such that $\left.\nabla v\right|_{Y}:\left(N, g_{1}^{N}\right) \rightarrow\left(\operatorname{Im}(\nabla v), h_{1}^{\operatorname{Im}(\nabla v)}\right)$ is an isometry. Let $\widetilde{\mathrm{d}}^{-1}\left(N, g^{N}, g_{1}^{N}\right)$ be the Bott-Chern class constructed in [Bismut et al. 1988a, §1f] such that

$$
\frac{\bar{\partial} \partial}{2 \pi i} \mathrm{~T}^{-1}\left(N, g^{N}, g_{1}^{N}\right)=\operatorname{Td}^{-1}\left(N, g_{1}^{N}\right)-\operatorname{Td}^{-1}\left(N, g^{N}\right)
$$

Finally, we can compute the analytic torsion on the total manifold via the zero set of a transversal section v.
Theorem 3.2. If $h_{1}^{\mathbb{V}_{1}}=h^{\mathbb{V}_{1}}$ on Y, then

$$
\left.\begin{array}{c}
(3-4)-\frac{\partial \theta_{v, 1}^{X}}{\partial s}(0)+\frac{\partial \theta^{Y}}{\partial s}(0)=-\int_{X} \operatorname{Td}\left(T X, g^{T X}\right) \operatorname{Td}^{-1}\left(\mathbb{V}, h_{1}^{\mathbb{V}}\right) \tilde{c}_{\max }\left(\mathbb{V}, h_{1}^{\mathbb{V}}\right) \\
\quad+\int_{Y}\left(\operatorname{Td}^{-1}\left(N, g^{N}\right) \widetilde{\operatorname{Td}}\left(T Y,\left.T X\right|_{Y}, g^{\left.T X\right|_{Y}}\right)\right. \\
\left.+\operatorname{Td}\left(T X, g^{T X}\right){\widetilde{d^{-1}}}^{-1}\left(N, g^{N}, g_{1}^{N}\right)\right) \operatorname{ch}\left(\wedge^{*}\left(\mathbb{V}_{1}^{*}\right), h^{\wedge *}\left(\mathbb{V}_{1}^{*}\right)\right.
\end{array}\right) .
$$

Proof. Since $h_{1}^{\mathbb{V}_{1}}=h^{\mathbb{V}_{1}}$, we have $|\cdot|_{\lambda\left(\mathbb{V}_{1}^{*}\right)}=|\cdot|_{\lambda\left(\mathbb{V}_{1}^{*}\right), 1}$ and $\|\cdot\|_{\lambda\left(\mathbb{V}_{1}^{*}\right)}=\|\cdot\|_{\lambda\left(\mathbb{V}_{1}^{*}\right), 1}$. Let $\tilde{\operatorname{ch}}\left(\wedge\left(\mathbb{V}^{*}\right), h_{1}^{\wedge\left(\mathbb{V}^{*}\right)}, h^{\wedge\left(\mathbb{V}^{*}\right)}\right)$ be the Bott-Chern class constructed in [Bismut et al. 1988a, §1f], so that

$$
\frac{\bar{\partial} \partial}{2 \pi i} \widetilde{\operatorname{ch}}\left(\wedge\left(\mathbb{V}^{*}\right), h_{1}^{\wedge\left(\mathbb{V}^{*}\right)}, h^{\wedge\left(\mathbb{V}^{*}\right)}\right)=\operatorname{ch}\left(\wedge\left(\mathbb{V}^{*}\right), h^{\wedge\left(\mathbb{V}^{*}\right)}\right)-\operatorname{ch}\left(\wedge\left(\mathbb{V}^{*}\right), h_{1}^{\wedge\left(\mathbb{V}^{*}\right)}\right)
$$

Then by the anomaly formula [Bismut et al. 1988b, Theorem 1.23],

$$
\log \left(\frac{\|\cdot\|_{\lambda_{v}\left(\mathbb{V}^{*}\right)}^{2}}{\|\cdot\|_{\lambda_{v}\left(\mathbb{V}^{*}\right), 1}^{2}}\right)=\int_{X} \operatorname{Td}\left(T X, g^{T X}\right) \widetilde{\operatorname{ch}}\left(\wedge\left(\mathbb{V}^{*}\right), h_{1}^{\wedge\left(\mathbb{V}^{*}\right)}, h^{\wedge\left(\mathbb{V}^{*}\right)}\right)
$$

By [Bismut et al. 1990, Theorem 2.5],
(3-5) $\quad T\left(\wedge\left(\mathbb{V}^{*}\right), h^{\wedge\left(\mathbb{V}^{*}\right)}\right)-T\left(\wedge\left(\mathbb{V}^{*}\right), h_{1}^{\wedge\left(\mathbb{V}^{*}\right)}\right)$

$$
=\operatorname{ch}\left(\wedge^{*}\left(\mathbb{V}_{1}^{*}\right), h^{\wedge^{*}\left(\mathbb{V}_{1}^{*}\right)}\right) \widetilde{\mathrm{d}}^{-1}\left(N, g_{1}^{N}, g^{N}\right) \delta_{Y}-\widetilde{\operatorname{ch}}\left(\wedge\left(\mathbb{V}^{*}\right), h_{1}^{\wedge\left(\mathbb{V}^{*}\right)}, h^{\wedge\left(\mathbb{V}^{*}\right)}\right)
$$

By (2-9), Theorems 2.2 and 3.1, and the preceding equations, the proof of Theorem 3.2 is complete.

Remark 3.3. If Y consists only of discrete points and $n=l$, then $\phi_{1}=$ Id. In this case let $g^{\operatorname{det} N}$ and $g_{1}^{\operatorname{det} N}$ be the metrics on $\operatorname{det} N=\operatorname{det} T X$ induced by g^{N} and g_{1}^{N}. By Remark 2.3 and Theorem 3.2,

$$
\begin{aligned}
-\frac{\partial \theta_{v, 1}^{X}}{\partial s}(0)=-\int_{X} \operatorname{Td}\left(T X, g^{T X}\right) & \operatorname{Td}^{-1}\left(\mathbb{V}, h_{1}^{\mathbb{V}}\right) \tilde{c}_{\max }\left(\mathbb{V}, h_{1}^{\mathbb{V}}\right) \\
& +\sum_{p \in Y}\left(\frac{1}{2} \log \left(g^{\operatorname{det} N} / g_{1}^{\operatorname{det} N}\right)-\log \left|\phi /\left(\left.\operatorname{det} \nabla v\right|_{Y}\right)^{*}\right|\right)
\end{aligned}
$$

Remark 3.4. If $\mathbb{V}=T X$ and v is a holomorphic Killing vector field, (3-4) is a special case of [Bismut 1992, Theorems 6.2 and 7.7]. In this case, $h_{1}^{\mathbb{V}}=g^{T X}$, and on Y, we have a holomorphic and orthogonal splitting $\left.T X\right|_{Y}=T Y \oplus N$. Thus $\widetilde{\operatorname{Td}}\left(T Y,\left.T X\right|_{Y}, g^{\left.T X\right|_{Y}}\right)=0$. To compute $\widetilde{\mathrm{Td}}^{-1}\left(N, g^{N}, g_{1}^{N}\right)$, note that $g_{1}^{N}=$ $g^{N}((\nabla v) \cdot,(\nabla v) \cdot)$, as $A=(\nabla v)^{*}(\nabla v)$ is positive and self-adjoint; thus $(A)^{s}$ is well defined for $s \in[0,1]$. Taking $g_{s}^{N}=g^{N}\left((A)^{s} ., \cdot\right)$, we obtain by [Bismut et al. 1988a, Theorem 1.30]

$$
\widetilde{\operatorname{Td}}^{-1}\left(N, g^{N}, g_{1}^{N}\right)=\int_{0}^{1}\left\langle\left(\mathrm{Td}^{-1}\right)^{\prime}\left(N, g_{s}^{N}\right), \log A\right\rangle d s
$$

But ∇v is holomorphic, so the curvature R_{s}^{N} associated to the holomorphic connection on $\left(N, g_{s}^{N}\right)$ is $R_{s}^{N}=R^{N}$ for $s \in[0,1]$. Thus

$$
\begin{equation*}
\widetilde{\mathrm{d}}^{-1}\left(N, g^{N}, g_{1}^{N}\right)=\left\langle\left(\operatorname{Td}^{-1}\right)^{\prime}\left(N, g^{N}\right), \log A\right\rangle \tag{3-6}
\end{equation*}
$$

Now

$$
\begin{equation*}
\operatorname{Td}\left(T X, g^{T X}\right) T\left(\wedge\left(T^{*} X\right), h^{\wedge\left(T^{*} X\right)}\right)=\tilde{c}_{\max }\left(T X, g^{T X}\right) \tag{3-7}
\end{equation*}
$$

is an $(n-1, n-1)$-form on X.
In this case, we get easily the special case of [Bismut 2004, Theorem 4.15] directly from [Ray and Singer 1973] by using Poincaré duality:

$$
\begin{equation*}
\frac{\partial \theta^{Y}}{\partial s}(0)=0 \tag{3-8}
\end{equation*}
$$

From (3-4), (3-6), (3-7), and the vanishing of the constant terms of $R(N)$ and $\frac{\mathrm{Td}^{\prime}}{\mathrm{Td}}\left(N, g^{N}\right)-\frac{1}{2}$, we get

$$
\begin{equation*}
-\frac{\partial \theta_{v, 1}^{X}}{\partial s}(0)=\int_{Y} c_{\max }(T Y)\left(R(N)-\left\langle\frac{\mathrm{Td}^{\prime}}{\mathrm{Td}}\left(N, g^{N}\right)-\frac{1}{2}, \log A\right\rangle\right)=0 \tag{3-9}
\end{equation*}
$$

4. Appendix: six intermediate results

In this section, to help readers understand how to obtain Theorem 2.2, we write down the corresponding intermediate results from [Bismut and Lebeau 1991, Theorems 6.4-6.9].

Let $\nabla^{\wedge\left(\mathbb{V}^{*}\right)}$ be the connection on $\wedge\left(\mathbb{V}^{*}\right)$ induced by $\nabla^{\mathbb{V}^{*}}$. Set $C_{u}=\nabla^{\wedge\left(\mathbb{V}^{*}\right)}+$ $\sqrt{u} V$. Let $\mathscr{B}_{T^{2}}^{2}$ and $\operatorname{Tr}_{s}\left(N_{H}^{Y} \exp \left(-\mathscr{P}_{T^{2}}^{2}\right)\right)$ be the operator and the generalized trace associated to the complex (2-7) as in [Bismut and Lebeau 1991, §5]. Let Φ be the homomorphism from $\bigwedge^{\text {even }}\left(T_{\mathbb{R}}^{*} X\right)$ into itself which to $\alpha \in \Lambda^{2 p}\left(T_{\mathbb{R}}^{*} X\right)$ associates $(2 \pi i)^{-p} \alpha$.

Theorem 4.1. For any $u_{0}>0$, there exists $C>0$ such that for $u \geq u_{0}, T \geq 1$,

$$
\begin{array}{r}
\left|\operatorname{Tr}_{s}\left(N_{H}^{X} e^{-u\left(D^{X}+T V\right)^{2}}\right)-\operatorname{Tr}_{s}\left(\left(\frac{1}{2} \operatorname{dim} N+N_{H}^{Y}\right) e^{-u D^{Y, 2}}\right)\right| \leq \frac{C}{\sqrt{T}} \\
\left|\operatorname{Tr}_{s}\left(\left(N^{X}-N_{H}^{X}\right) e^{-u\left(D^{X}+T V\right)^{2}}\right)-\operatorname{Tr}_{s}\left(\left(N^{Y}-N_{H}^{Y}\right) e^{-u D^{Y, 2}}\right)\right| \leq \frac{C}{\sqrt{T}} .
\end{array}
$$

Theorem 4.2. Let \tilde{P}_{T} be the orthogonal projection operator from $\Omega\left(X, \wedge\left(\mathbb{V}^{*}\right) \otimes \xi\right)$ to $\operatorname{Ker}\left(D^{X}+T V\right)$. There exist $c>0$ and $C>0$ such that, for any $u \geq 1$ and $T \geq 1$,

$$
\left|\operatorname{Tr}_{s}\left(\left(N^{X}-N_{H}^{X}\right) e^{-u\left(D^{X}+T V\right)^{2}}\right)-\operatorname{Tr}_{s}\left(\left(N^{X}-N_{H}^{X}\right) \tilde{P}_{T}\right)\right| \leq c e^{-C u}
$$

Theorem 4.3. There exist $C>0$ and $\gamma \in] 0,1]$ such that, for any $u \in] 0,1]$ and $0 \leq T \leq 1 / u$,

$$
\left|\operatorname{Tr}_{s}\left(N_{H}^{X} e^{-\left(u D^{X}+T V\right)^{2}}\right)-\int_{X} \operatorname{Td}\left(T X, g^{T X}\right) \Phi \operatorname{Tr}_{s}\left(N_{H}^{X} e^{-C_{T^{2}}^{2}}\right)\right| \leq C(u(1+T))^{\gamma}
$$

There exists a constant $C^{\prime}>0$ such that for $\left.\left.u \in\right] 0,1\right]$ and $0 \leq T \leq 1$,

$$
\left|\operatorname{Tr}_{s}\left(N_{H}^{X} e^{-\left(u D^{X}+T V\right)^{2}}\right)-\operatorname{Tr}_{s}\left(N_{H}^{X} e^{-\left(u D^{X}\right)^{2}}\right)\right| \leq C^{\prime} T
$$

Theorem 4.4. For any $T>0$,
$\lim _{u \rightarrow 0} \operatorname{Tr}_{s}\left(N_{H}^{X} e^{-\left(u D^{X}+(T / u) V\right)^{2}}\right)=\int_{Y} \Phi \operatorname{Tr}_{s}\left(N_{H}^{Y} e^{-\mathscr{F}_{T^{2}}^{2}}\right) \operatorname{ch}\left(\wedge\left(\mathbb{V}_{1}^{*}\right), h^{\wedge\left(\mathbb{V}_{1}^{*}\right)}\right) \operatorname{ch}\left(\xi, h^{\xi}\right)$.
Theorem 4.5. There exist $C>0$ and $\delta \in] 0,1]$ such that, for any $u \in] 0,1]$ and $T \geq 1$,

$$
\left|\operatorname{Tr}_{s}\left(N_{H}^{X} e^{-\left(u D^{X}+(T / u) V\right)^{2}}\right)-\operatorname{Tr}_{s}\left(\left(\frac{1}{2} \operatorname{dim} N+N_{H}^{Y}\right) e^{-u D^{Y, 2}}\right)\right| \leq \frac{C}{T^{\delta}}
$$

Let $|\cdot|_{\lambda_{v}\left(\mathbb{V}^{*}\right), T}^{2}$ be the L^{2}-metric on $\lambda_{v}\left(\mathbb{V}^{*}\right)$ induced by $g^{T X}, T^{2} h^{\mathbb{V}}$ as in (2-5).

Theorem 4.6. As $T \rightarrow+\infty$,
$\log \left(\frac{|\cdot|_{\lambda_{v}\left(\mathbb{V}^{*}\right), T}^{2}}{|\cdot|_{\lambda_{v}\left(\mathbb{V}^{*}\right)}^{2}}\right)$

$$
=-\log |\rho|_{\lambda\left(\mathbb{V}_{1}^{*}\right)^{-1} \otimes \lambda_{v}\left(\mathbb{V}^{*}\right)}^{2}+\operatorname{Tr}_{s}\left(\left(\operatorname{dim} N+2 N_{H}^{Y}\right) Q\right) \log T+O\left(\frac{1}{T}\right)
$$

Acknowledgements

Feng thanks Jean-Pierre Bourguignon and the IHES, where part of this research was performed, for their hospitality. Thanks also to K. Liu for drawing our attention to [Beasley and Witten 2003].

References

[Beasley and Witten 2003] C. Beasley and E. Witten, "Residues and world-sheet instantons", 2003. hep-th/0304115
[Bershadsky et al. 1993] M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, "Holomorphic anomalies in topological field theories", Nuclear Phys. B 405:2-3 (1993), 279-304. MR 94j:81254 Zbl 1039.81550
[Bershadsky et al. 1994] M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, "Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes", Comm. Math. Phys. 165:2 (1994), 311-427. MR 95f:32029 Zbl 0815.53082
[Bismut 1986] J.-M. Bismut, "Localization formulas, superconnections, and the index theorem for families", Comm. Math. Phys. 103:1 (1986), 127-166. MR 87f:58147 Zbl 0602.58042
[Bismut 1992] J.-M. Bismut, "Bott-Chern currents, excess normal bundles and the Chern character", Geom. Funct. Anal. 2:3 (1992), 285-340. MR 94a:58206 Zbl 0776.32007
[Bismut 2004] J.-M. Bismut, "Holomorphic and de Rham torsion", Compos. Math. 140:5 (2004), 1302-1356. MR 2081158 Zbl 02110378
[Bismut and Lebeau 1991] J.-M. Bismut and G. Lebeau, "Complex immersions and Quillen metrics", Inst. Hautes Études Sci. Publ. Math. 74 (1991), 1-297. MR 94a:58205 Zbl 0784.32010
[Bismut et al. 1988a] J.-M. Bismut, H. Gillet, and C. Soulé, "Analytic torsion and holomorphic determinant bundles, I: Bott-Chern forms and analytic torsion", Comm. Math. Phys. 115:1 (1988), 49-78. MR 89g:58192a Zbl 0651.32017
[Bismut et al. 1988b] J.-M. Bismut, H. Gillet, and C. Soulé, "Analytic torsion and holomorphic determinant bundles, III: Quillen metrics on holomorphic determinants", Comm. Math. Phys. 115:2 (1988), 301-351. MR 89g:58192c Zbl 0651.32017
[Bismut et al. 1990] J.-M. Bismut, H. Gillet, and C. Soulé, "Complex immersions and Arakelov geometry", pp. 249-331 in The Grothendieck Festschrift, vol. I, Progr. Math. 86, Birkhäuser, Boston, 1990. MR 92a:14019 Zbl 0744.14015
[Bott 1967] R. Bott, "A residue formula for holomorphic vector-fields", J. Differential Geometry 1 (1967), 311-330. MR 38 \#730 Zbl 0179.28801
[Feng 2003] H. Feng, "Holomorphic equivariant cohomology via a transversal holomorphic vector field", Internat. J. Math. 14:5 (2003), 499-514. MR 2004j:32022 Zbl 1050.32013
[Gillet and Soulé 1991] H. Gillet and C. Soulé, "Analytic torsion and the arithmetic Todd genus", Topology 30:1 (1991), 21-54. MR 92d:14015 Zbl 0787.14005
[Liu 1995] K. Liu, "Holomorphic equivariant cohomology", Math. Ann. 303:1 (1995), 125-148. MR 97f:32041 Zbl 0835.14006
[Ray and Singer 1973] D. B. Ray and I. M. Singer, "Analytic torsion for complex manifolds", Ann. of Math. (2) 98 (1973), 154-177. MR 52 \#4344 Zbl 0267.32014
[Zhang 1990] W. Zhang, "A remark on a residue formula of Bott", Acta Math. Sinica (N.S.) 6:4 (1990), 306-314. MR 91j:58153 Zbl 0738.32007
[Zhang n.d.] W. Zhang, "Equivariant Dolbeault complex and total Quillen metrics", preprint.
Received July 25, 2003. Revised February 13, 2004.
Huitao Feng
College of Mathematical Sciences
Nankai University
300071, TiANJIN
China
fht@nankai.edu.cn

Xiaonan Ma
Centre de Mathématiques
UMR 7640 DU CNRS
ÉCOLE Polytechnique
91128 Palaiseau Cedex
France
ma@math.polytechnique.fr

[^0]: MSC2000: 58J52, 32L10, 58J20, 32C35, 57R20.
 Keywords: analytic torsion, characteristic classes, characteristic numbers, residue formula.
 Feng was partially supported by the NNSF of China (10271059).

