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CONVEXITY OF THE FIGURE EIGHT SOLUTION TO THE
THREE-BODY PROBLEM

ToOSHIAKI FUJIWARA AND RICHARD MONTGOMERY

The Newtonian three-body problem with equal masses has a remarkable
solution where the bodies chase each other around a planar curve having
the qualitative shape and symmetries of a figure eight. Here we prove that
each lobe of this curve is convex.

1. Introduction

The figure eight is a recently discovered periodic solution to the Newtonian three-
body problem in which three equal masses traverse a single closed planar cur
in the form of an 8 Figure ). See Moore 1993 Chenciner and Montgomery
2000. The curve has one self-intersection, the origin, which divides it into two
symmetric lobes. InChenciner and Montgomery 200 was proved that each
lobe is star-shaped. Here we prove the lobes are convex. (A computer proof base
on interval arithmetic appears iKfipela and Zglicziyski 2003.)

Theorem 1. Each lobe of the eight solution is a convex curve

In the final section we describe how the theorem generalizes to prove the con
vexity of eights for many three-body potentials besides Newton'’s.

2. Preliminaries

We present a number of properties of the eight establishéghiarjciner and Mont-
gomery 200D and three assertions relating mechanics and plane geometry. The
convexity proof relies on these properties and assertions.

Center of Mass.Write qy(t), gz2(t), gz(t) for the location of the three masses in
the plane at timé. At each timet we haveq (t) + gz (t) + gs(t) = 0.
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Symmetry. Write Ry (X, y) = (—X, y) for the reflection about thg axis. Then the
eight solution enjoys the following symmetries:

(qu(t), G2(1), ga(®) = (Ry(as(t — 7)), Ry(qu(t — 3T)). Ry(a(t — 3T))).
(qu(t), Go(t), Gs(t)) = (—au(—t), —gs(—t), —ga(—1)).

The right-hand side of these equations defines transformat@mmdo on the space
of all T-periodic loops. These transformations generate an action of the dihedra
group

De={s,0]s°=1, 0%2=1, so =057},

the symmetry group of a regular hexagon, which is consequently a symmetry grouj
of the eight.

Invariance undes? € Dg implies that(s*(qy, gz, 02)) (t) = (du(t), Ga(t), gs(t)).
Settingg = q; this last equation reads

1) Q) =qt), b)) =qt+3T), gt)=q(t+35T).

A choreographys a three-body solution satisfyirfd). The curveq(t) is the curve
of the eight whose lobes are the subjecTbtorem 1

The Dg-invariance of the figure eight implies that it is completely determined
by the three arcsy([— 2T, 01), g2([—+5T. 01), as([—5T. 0]) swept out by the
three masses over the time inter‘{/alllzT, 0]. To proveTheorem lit is enough
to prove that the curvatures of these three arcs are never(@égth the exception
of the pointq; (0), the self-intersection point of the eight, which is taken to be the
origin).

A configuration(qs, gz, gz) satisfyinga: + g2 + g3 = 0 is called arEuler con-
figurationif one of theq; vanishes. Then necessarily the other two maggegk
are of the fornt, —¢, so that the entire configuratidqy, gz, g3) is collinear with
mass at the origin located at the midpoint of the segment defined by the other two
masseg andk. Upon translating time if necessary, and relabeling the masses, we
can insist that at time O the configuration is an Euler configuration with mass 1 at
the origin and 3 in the first quadrant, as indicatedrigure 1 At the initial time
t = —%ZT the three masses form an isosceles triangle, with mass 2 at the verte:
and lying on the negative-axis.

The eight minimizes the usual action of mechanics (integral of the kinetic minus
potential energy) among all-periodic loops enjoyindg symmetry. Equivalently
[Chenciner and Montgomery 200he path(ql(t), O(t), Q3(t)) of the eight over
the fundamental time interve[l—lizT, 0] minimizes the action among all paths
starting at time—lizT in an isosceles configuration with 2 being the vertex and
ending at time O in an Euler configuration with 1 being the origin. An impor-
tant consequence of minimization, proved @henciner and Montgomery 2000
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Figure 1. The eight. The labelsgland L represent the location
of mass 1 at = —%ZT andt = 0, and likewise for 2 and 3.

pp. 896—-897], is that there are no times in the fundamental domain besides th
endpoints at which the configuration is either collinear or isosceles. It follows that,
forallt e (—5T,0),

2 Mz <ri2 <rz3
and
(3) QAGR=0A0G=03A0 <0,

whererjj = |g — q;| is the distance between massemd | and we write
X, ¥Y)A(U,v)=Xv—Yyu
for planar vectorgx, y) and (u, v). We call equation2) the distance ordering

inequality

Initial and final velocities. At the Euler timet = 0O, the velocities of 2 and 3 are
antiparallel to the velocity of 1 and half its size. S&gure 1 This follows from

the action minimization of the eight. At the isosceles time—llzT, the velocity

of 2 is vertical, pointing down, and the velocities of 1 and 3 are such that their
tangent lines pass through 2. This follows from the three-tangents theorem and th
angular momentum property, both of which are described below.

Angular momentum and star-shapednes¥Vrite
£ =qjAq;

for the angular momentum of thieth particle. Action minimization of the eight
implies that its total angular momentum is zero:

l1+4€2+4¢3=0
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of the eight. Newton’s equations imply (seéhenciner and Montgomery 2000

p. 896])
. 1 1
b= (—3 - T)(Ql A 02)
rs >

for all time. Upon taking account the distance inequalityand(3) we find that
{3 < 0 on the arc 3. Similarly,

i1 >0, iy >0, i3 < 0.

We use the notationsIo indicate body 1 at the starting tinte= —%ZT, etc. By
the symmetryf,, = ¢3, = —2¢, < 0. (The inequalitieg;, < 0 and¢y, = 0 are
consistent witt/; > 0.) Also (5, > 0 andé, > 0 imply ¢, = —¢3, > 0. (SeeFigure
2.) Therefore over the interiqr—lizT, 0) of our fundamental domain we have

{1 <0, o >0, 3 < 0.

More generally, set
{=qA(g
asq varies over the eight. It follows that on the right lobex 0) we have

L <0 forx=>D0.

(SeeFigure 2)
A curve in the plane is calledtar-shapedwith respect to the origin if every
ray from the origin intersects the curve at most once. For a smooth curve, this is
equivalent to the assertion that, when written in polar coordinatés(gs 0 (t)),
the functiond (t) is strictly monotone and does not vary by more than Since
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¢ =r?0 the star-shapedness of a curve (such as one lobe of the eight) which lie:
in the half-planex > 0 is thus equivalent té # 0.

The three-tangents theorenilhe following theorem can be found ifrjjiwara
et al. 2003, where it was used to establish the existence of a choreographic three
body lemniscate for a non-Newtonian potential.

Theorem 2(Three tangentsl.et (qx (1), gz(t), gs(t)) be three planar curves whose
total linear and total angular momentum are zerbhen the three instantaneous
tangent lines to these three curves are coincident—they all three intersect in the
same(time-dependenfpoint or are parallel

Proof. Fix the timet. Becausej; + g2 + ¢z = 0, translating all thej; in the same
fixed direction does not change the condition of having zero angular momentum
So, without loss of generality, we can choose the origin to be the point of inter-
section of the tangent lines tp andq, at timet. Because the poirgy(t) lies
along the line through the origin in the directida we haveqi(t) A gi(t) = 0.
Similarly gz2(t) A G2(t) = 0. But the total angular momentum is zero so we must
havegs(t) A gs(t) = 0 which asserts that the line tangent to the curvesaftt also
passes through the origin. O

The proof also works for unequal massag m,, mz. Simply use the correct
mass-weighted formulae for linear and angular momentum.

The splitting lemma. We will use the following splitting lemma in several places
in the proof. A line in the plane divides the plane into three pieces: two open
half-planes and the line itself. We say that a point B&sctly on one sidef the

line if it lies in one of the open half-planes. We say that this Bpétsthe points

A and B of the plane if the two points lie in opposite open half-planes.

Lemma 1. Let (qu(t), ga2(t), g3(t)) be a planar solution to Newton's three-body
equation with attractived,/r potential Suppose that at time the arc q(t) of mass

i has an inflection point and nonzero speddhen the tangent liné to this arc at
time t. must eithei(A) split the other two masses @.) and c(t,) or (B) all three
masses must lie on this tangent line

Proof. Suppose, to the contrary, that either bafkt,) andagk(t,) lie strictly on one

side of¢, or that one lies ol while the other lies strictly on one side. According to
Newton’s equations the acceleratigt,) is a linear combination afj (t..) —qj (t.)
andagy (t.) —q; (t,) and the coefficients of this linear combination are positive. Thus,
translating¢ and the configuration of masses back to the origin by subtracting
gi (t.), we see that this acceleration lies strictly on one side of the line through
0 spanned by the velocity (t,). Consequently, the acceleration and velocity of
qgi (t) arelinearly independenatt,. But the condition of being an inflection point

is precisely that the acceleration and velocity be linearly dependent. O
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The same proof works if the Newtonian potentia[i<j mym; /rj; is replaced
by any potentiaV =} ; _; f(rij), wheredf/dr > 0.

A Convexity Proposition.A parametrizatiort of a curveC is nondengeneraté
the derivativedC(t)/dt is never zero. A smooth, possibly self-intersecting curve
is calledlocally convexf its curvature never vanishes.

Proposition. Let C be a smooth locally convex planar curve parametrized by a
nondegenerate parameteritet £(t) be the tangentto C at @). Let m be a line
not intersecting C Let P(t) be the point of intersection @{t) and m Then Rt)
moves on the line m always in the same direcgtionall t such that Rt) is finite

Proof. We can takem to be they-axis. If C is parametrized byx(t), y(t)), the
line £(t) is given by {(x(t), y(t)) + A(X(), ¥(t)) : € R}, and it intersectsn at
P(t) = (0, p(t)), where

__X®y®) - ymx)
B X(t) '
Differentiation and the definition of the curvatureyield

d_p_ v3X

dt = 2"
wherev = /X2 + y2 is the curve’s speed. The factarsx, « are never zero by
assumption (in the case afbecauseC avoidsm); therefore they have constant
sign. Thusdp/dt has constant sign wherever defined. O

3. To each mass its own quadrant

A crucial ingredient in the proof ofheorem lis that each mass “stays in its own
guadrant” during the time interv&l—lizT, 0). Initially 3 is in the first quadrant,
1is in the fourth, and 2 is on the-axis between the second and third quadrants,
moving into the third. Hence, for a short time interval £ T, —5T +¢), mass 3
lies in the first quadrant, 1 in the fourth, and 2 in the third.

Lemma 2. Over the time interva{—lizT, 0) body1 lies in the fourth quadrant
body?2 lies in the third and body3 lies in the first

Proof. Suppose one of the masses leaves its initial quadrant before time 0. It mus
exit along the boundary of this quadrant. It cannot exit through the origin, as this
would imply an Euler configuration and the only Euler configuration occurs at the
endpoint of the interval.

We argue individually that each mass cannot be the first to exit. Suppose tha
2 exits first (perhaps simultaneously with another). It cannot leave crossing the
x-axis, as this would contradict star-shapedness of the lobe it lies on. Neither cau
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it exit through they-axis, for then itsx-coordinate would be zero, and, because
collinearity of the three masses is excluded, at least one of 1 and 3 would not b
exiting at the same time and so would have a positieordinate. Thus the sum

of the x-coordinates of the masses would be positive, contradicting that the cente
of mass is at the origin.

Mass 1 cannot leave first. For it cannot leave througtxtais, as this would
again contradict star-shapedness. It cannot leave througjrdiis as this would
violate the distance orderimgs <12 <3 guaranteed bg?2). To see this violation,
write the exit point for mass 1 &9, y1), with y; < 0. Then the other masses must
be at(—x, y») and(x, y3) with x > 0 (since the configuration cannot be collinear)
andy, <0, y3 > 0. We haveZ, = x2+ (ys — y1)? andrZ, = x2 + (y, — y1)2. But
y3 >0, 0> yq, Vo, andy; + ¥o+ y3 =0, so

Y3 — Y1 =—2y1— Y2 =2|y1|l + |¥2l,

while |y2 — y1| < |y2| +|yal, SO that(ys — y1)? > (y2 — y2)? andryz > 12, contra-
dicting the distance ordering.

Mass 3 cannot leave first. It cannot exit acrossxfaxis, for if it did the center
of mass of the system would have a negativeoordinate. It cannot leave across
the y-axis, for this would contradict star-shapedness. O

4. Proof of Theorem 1

We refer to the arc swept out by massluring the the time interva[l—lizT, O] as
arc j, and writex; for its curvature. We must show that < 0 with x; < O for
t #£ 0, thatk, > 0 and thatcz < 0.

Convexity of arc 1. We begin by showing thak > 0 along arc 1. Since each mass
stays in its own quadrant, we haye— y; > 0; moreoverri3 < ri» by (2). Thus

V1= (Y3 —Y0)/T+ (Y2 — y0) /1,
> (V3= YD)/TH+ (Y2 — Y1) /T3

Next we show that; > 0 along the arc. From the fact thi > 0, it suffices
to show thaty; > O at the initial point of arc 1, the isosceles point. By the three-
tangents theorem and the fact tliat< O it follows that at the isosceles poigt
points fromq; to the vertexy,, so thaty; > O.

We have seen thdf < 0 while ¢, > 0 along the arc. Combining these inequali-
ties, we see that y1 — 11 > 0 holds along the arc. On the other hand, expanding
the angular momentum, we gétys — €191 = (X121 — ya%a) Y1 — (Xay1 — yaiX) ¥1 =
y1(X1¥1 — Y1¥1) = yrvik. Thusyivdis > 0. Sincey; < 0, v1 > 0 we havec; < 0.
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Figure 3. Region for bodies 1 and 3.

Convexity of arc 2. Assume, by way of contradiction, that there exists an inflection
pointk,; = 0 on arc 2. Let be the last inflection point on arc 2—the one whose
timet is closest to 0. From the initial conditionstat —1i2T, 0 described above
we also know thak, > 0 at the points 2and 2. By continuity,x> > 0 near both
of these points. Thekr, > 0 on the arc frona to 2.

We already know that arc 1 is convex; (< 0) and we also know that body
3 moves in the first quadrant. It follows that bodies 1 and 3 must lie within the
shaded region in thEigure 3

Consider the Gauss map (hodograph) of arc 2. This is the map that assigns to
point of arc 2 the unit tangent to arc@/|q2|, at that point.

By Newton’s equation and the fact that— X, andxs — X, are positive we have
X> > 0 on the entire arc 2. Since = 0 at 2, this implies thatt, > 0 on the
open arc of 2, from 2to 2, and so in particulak, > 0 ata. Sincek, > 0 on the
arca — 2, the vectong,/|g>| must approachfrom the pointa monotonically
counterclockwise. Therefore the pomties on the arc between the pointsahd
2¢ on the right half of the circle as shown in the Gauss ntégure 4.

2e
2, @&

Figure 4. Gauss map of the unit tangent vectpy|dy|.
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But then the tangent line to arc 2 atcannot split the points 1 and 3, which,
according to the splitting lemma¢mma 3, contradicts the assumption threats
an inflection point.

Thus we have proved that arc 2 has no inflection points, tha is, 0.

Convexity of arc 3.Assume, by way of contradiction, that there are inflection
points on arc 3. Leb be the first such point, the one for which the titris closest

to —%ZT. Then, by the splitting lemma_émma 3, the tangent line to arc 3 &t
must split bodies 1 and 2. In order to do that, the line must have passed earlie
through either body 1 or body 2. We argue that both passings are impossible.

The tangent line to arc 3 cannot pass through body 1. For, by the three-tanger
theorem, at the instant this happened, the tangent line from the body 2 would als
pass through the body 1. We have already proveddhatO on the arc 2. Thus the
tangent line from the body 2 never pass through the body 1 in this interval. (See
Figures3 and4.) This is a contradiction.

The tangent line to arc 3 cannot pass through body 2. For if it did, by the
three-tangents theorenfiitf{eorem 2, the tangent line to 1's curve would also pass
through body 2 at the same instant. To see that this latter passing is impossible
start by joining the endpoints 2nd 2 of arc 2 by a straight linen (seeFigure 5.

Arc 2 lies completely on one side of this line, by convexity.

3
S 3

25

Figure 5. Line m and tangent lines to arc 1 a& —lizT andt =0.
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We now apply thé>ropositioron page276to our situation. At the final points1
and 2, the tangents to 1 and 2 are parallel, so the intersectiomvaith 1's tangent
lies in the massless quadrant 0, y > 0. At the initial points the intersection
point of m and arc 1's tangent is;2We claim that for—lizT <t < 0 the moving
intersection point of 1's tangent wittm always lies in the empty quadrant. This
follows from the convexity of 1 and 2: the tangent at 1 rotates clockwise, while
m stays fixed. When 1 finally reaches the endpoinitd tangent is parallel to
2¢'s, which in turn lies ‘earlier’ on the clockface tham(by 2’s convexity). So 1's
tangent can never have been tangemhtand hence the intersection point remains
finite, in the empty quadrant.

Now recall that we are trying to show that the tangent to 1 cannot pass througt
point 2. To do so it would have to cross linebetween 2 and 2, which is in the
guadrant of arc 2, and hence it is impossible that this tangent passes through 2.

Therefore, we have proved that there is no inflection point on the arc 3. In other
word, k3 < 0 on the arc 3.

Putting together the convexity of all three arcs we obtain Theorem 1.

5. Convexity for other potentials

Theorem 1holds for the figure eight solution of other potentials. Indeed, our proof
only depended on the properties of the eight listed in Section 2 and a monotonicit
property of the Newtonian potential discussed below.

To be precise, we need to define what we mean by an eight. Let

V =V(ri, 23, ra1)

be a three-body potential depending only on the interparticle distancesd
invariant under interchange of the masses. Then the symmetry @ewb the
eight acts on solutions to the corresponding Newton equation, taking solutions tc
solutions, and so we can speak@§-invariant solutions

A planar solution to the Newton’s equation fdris called aneight solutionif

(i) itis invariant under thdg symmetries,

(i) on the interior of each fundamental domgmzT, (m+ 1)L T), for m =
0, +1, £2, ..., the configuration is never collinear and never isosceles, and

(i) the solution has no collisions.

Such a solution will necessarily be a planar choreography({9em page272),
and so the three masses travel a single planar curve. Con@jtiomplies that the
center of mass is 0 and that the angular momentum is zero. If, in addition, our
potentialV has the form
V=Y fip,

i<j
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where
(iv) df/dr > 0O (attractive two-body potential) and
(v) g(r) :=r~tdf/dr is a strictly monotone decreasing functionrof

then all properties and inequalities used in this paper hold.

Indeed, return to the starting point, the distance ordering inequ@jty At
t = —%ZT we haver,sz =rip, and att = 0 we haverjo; =r3; < roz3 = 2rio. By
property (ii), the possible distance orderings on the time inte(vafizT, O) are
r31 <rip <r30rris <rag <rp3 Consider the equation fdx,

€1=(9(r20) — 9(r3n) (G2 A Ga),

for a monotone decreasing functigiir). We havel; > 0 for the first ordering
and{; < 0 for the second ordering. But, sinée < 0 att = —-5T and¢, = 0 at

t =0, the value of; must be positive. So we must have the first ordering, namely,
equation(2). Then all equalities and inequalities in this paper hold. Thus:

Theorem 3.Let V be a three-body potential of the forma/ ; _; f (rij) where f
satisfieq(iv) and (v) above and admitting an eight solution as defined [@y-(iii)
above Then each lobe of this eight for V is convex

The theorem begs the question, do eight solutions exist for any potentials beside
Newton’s? Recall fromChenciner and Montgomery 2000p. 896-897] that if a
solution that satisfie§) and(ii) is known to minimize the action associateduo
among all paths satisfyin@), and if that solution is not identically collinear, then
automatically the solution satisfié§). The power law potentials

Va= @ tr8+r3+rd),

for a < —2 admit such collision-free action minimizing solutions, and consequently
they admit eight solutions. Moreover, the proof &fenciner and Montgomery
20040, specific toa = —1, is based on strict inequalities, and hence is valid for a
range of exponents1l—e1 < a < —14 ¢ for €1, €2 positive numbers. Numerical
evidence presented i€henciner et al. 20Q3uggests that eights exist for all power
lawsV,, wherea < 0. (These eights are dynamically stable only in a neighborhood
of the Newtonian potentiad = —1.)

Corollary. For the power law potentials Mwvith a < —2 or with a in some open
interval about—1, there exist eight solutions and each lobe of these eight solutions
is convex

6. Unicity

Showing the unicity of the Newtonian eight remains an open prob{@nefciner
2003. Our work here drastically reduces the candidate eights, and hence the scop
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of nonunicity, to those eights with convex lobes. It might allow a handhold towards
surmounting the unicity problem. If our reader will allow us to fantasize in this
direction, imagine two distinct Newtonian eights, both enjoyingdsymmetry,

(ii) the same period, and (iii) having the same minimum value for the action. Con-
nect these two eights by a family of eights having (i) and (ii), and having convex
lobes. Apply the min-max procedure to extract out of such a family a third eight
that is variationally unstable, meaning that the Hessian of the action there has
negative direction. Now establish a contradiction between the existence of the
negative mode and the convexity of the lobe of this third eight. Such a program,
or a similar one, could conceivably lead to a proof of unicity of the eight.
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Note added in proof

For the power law potentialg,, Barutello, Ferrario and TerracirBfrutello et al.
2004 have proved existence of eights for alk 0; see the proof following Propo-
sition (4.15) on p. 19. Montgomer004 has proved the uniqueness of the eight
fora=-2.
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