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We construct realizations for the 2-toroidal Lie algebra associated with the
Lie algebra A1 using vertex operators based on bosonic fields. In particu-
lar our construction realizes higher-level representations of the 2-toroidal
algebra for any given pair of levels(k0, k1) with k0 6= 0. We also construct a
smaller module of level(k0, 0) for the toroidal algebra from the Fock space
using certain screening vertex operator, and this later representation gener-
alizes the higher-level construction of the affine Lie algebrâsl2.

1. Introduction

Toroidal Lie algebras are a natural generalization of the affine Kac–Moody alge-
bras introduced by Moody, Rao and Yokonuma [Moody et al. 1990]. LetA =

C[s, s−1, t, t−1
] be the ring of Laurent polynomials in commuting variables. By

definition a 2-toroidal Lie algebra is a perfect central extension of the iterated loop
algebrag⊗ A, whereg is a finite-dimensional simple Lie algebra overC.

Let �A/d A be the Kähler differentials ofA modulo the exact forms. The uni-
versal central extension of the iterated loop algebra is given by

T(g)= (g⊗ A)⊕�A/d A.

Any 2-toroidal Lie algebra is a homomorphic image of this toroidal Lie algebra.
The center ofT(g) is �A/d A, which is a infinite-dimensional vector space. The
Laurent polynomial ringA induces a naturalZ2-gradation onT(g). For the center
we have�A/d A=

⊕
σ∈Z2 Z(g)σ , with dimZσ =1 if σ 6= (0,0) and 2 ifσ = (0,0).

We denote byc0 andc1 the two standard degree-zero central elements in the toroidal
Lie algebraT(g). A module ofT(g) is called a level-(k0, k1)module if the standard
center(c0, c1) acts as(k0, k1) for some complex numbersk0 andk1. Here we study
the level-(k0, k1) modules fork0 6= 0.
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In various constructions of the affine Lie algebrâsl2 the free field represen-
tation is of particular use in its applications. Wakimoto [1986] and Feigen and
Frenkel [1988] first gave a general construction for the general case, and later
Nemenschansky [1989] gave an invariant form in the special case. Though the two
forms can be interchanged by a nontrivial map, we realized that the later form is
better for our purpose in the toroidal cases. The operators in question have the
form eA(B+C), whereA, B,C are generating functions of the scaled Heisenberg
operators. One of the nice things is that all root generators in the toroidal alge-
bra associated with the Lie algebrasl2 can be represented by this type of vertex
operators. In our construction we have fully used this simplicity and make all
calculations in a uniform manner.

As we mentioned earlier, toroidal algebras are generalizations of finite-dimen-
sional Lie algebras, like affine Lie algebras. This similarity is constantly kept in
mind as we study their structure and representation theory. Some other basic refer-
ences related to our work include [Berman and Billig 1999; Eswara Rao and Moody
1994; Fabbri and Moody 1994; Larsson 1999; Moody et al. 1990; Tan 1999]. Our
aim in this paper is to give a higher-level representation for the simplest nontrivial
example: the 2-toroidal Lie algebra. Our construction generalizes previous work
on higher-level representations of the affine Lie algebraŝl2.

In Section 2 we define the toroidal Lie algebra and state the MRY-presentation
[Moody et al. 1990] of the toroidal algebra in terms of generators and relations.
The algebra structure is expressed in terms of formal power series identities. We
also state some results in this section to be used later. In Section 3 we start with a
finite-rank lattice with a symmetric bilinear form and define a Fock space and some
vertex operators, which in turn give representations of the toroidal Lie algebra of
type A1, and also a level-(k0,0)module withk0 6=0 for the double affine algebra of
type A1. In Section 4 we study the structure of the Fock space for the toroidal Lie
algebra by using certain screening vertex operators, thus generalizing the higher-
level representation of the affine algebraŝl2 to the toroidal Lie algebra.

2. Toroidal Lie algebras

Let sl2 be the 3-dimensional simple Lie algebra over the complex numbers and

A = C[s, s−1, t, t−1
]

the ring of Laurent polynomials in commuting variables. We consider the iterated
loop algebra

g = sl2 ⊗ A.

A toroidal Lie algebra of typeA1 is a perfect central extension of the iterated loop
algebrag, which is often an infinite-dimensional central extension. Let�A be the
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A-module of differentials with differential mappingd : A →�A, such that

d( f1 f2)= (d f1) f2 + f1(d f2) for all f1, f2 in A.

Let :�A →�A/d A be the canonical linear map for whichd f = 0 for all f ∈ A.
Endow the vector space

T(A1) := (sl2 ⊗ A)⊕�A/d A

with the bracket operation defined by

[x ⊗ f1, y ⊗ f2] = [x, y] ⊗ f1 f2 + (x, y) f2d f1,

for x, y ∈ sl2, f1, f2 ∈ A, where( · , · ) is the trace form and�A/d A is central.
From [Moody et al. 1990] we know thatT(A1) is a perfect Lie algebra and is
the universal central extension of the iterated loop algebrasl2 ⊗ A. Therefore any
toroidal Lie algebra of typeA1 is a homomorphic image ofT(A1). The gradation
of the polynomial ringA gives a naturalZ2-gradation to the toroidal Lie algebra

T(A1) :=

⊕
σ∈Z2

T(A1)σ ,

whereT(A1)σ is spanned byx ⊗ sm0tm1, sm0tm1s−1ds andsm0tm1t−1dt for σ =

(m0,m1) ∈ Z2 and x ∈ sl2. The conditiond f = 0 for all f ∈ A implies that
m0sm0tm1s−1ds+m1sm0tm1t−1dt = 0 for all m0,m1 ∈ Z. Therefore the dimension
of T(A1)σ is 4 if σ 6= (0,0) and 5 if σ = (0,0). In particular,T(A1)(0,0) is
spanned byx ⊗ 1 for x ∈ sl2, and central elementss−1ds, t−1dt. We denote these
two degree-zero central elements byc0 andc1.

The most interesting quotient algebra of the toroidal Lie algebraT(A1) is the
double affine algebra denoted byT0(A1), that is, the toroidal Lie algebra of typeA1

with a two-dimensional center. The double affine algebra is the quotient ofT(A1)

modulo all the central elements with degree other than zero. In fact,T0(A1) has
the realization

T0(A1)= (sl2 ⊗ A)⊕ Cc0 ⊕ Cc1

with the Lie product

[x ⊗ f1, y ⊗ f2] = [x, y] ⊗ f1 f2 +8( f2∂s f1)c0 +8( f2∂t f1)c1

for all x, y ∈ sl2 and f1, f2 ∈ A, where8 is the linear functional onA defined by

8(sktm)=

{
0, if (k,m) 6= (0,0)
1, if (k,m)= (0,0)

for all k,m ∈ Z.
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Definition 2.1. If M is a module for a toroidal Lie algebra of typeA1, we callM a
level-(k0, k1) module for some complex numbersk0, k1 if the degree-zero central
elementsc0, c1 act onM as constantsk0, k1.

In this paper we give a concrete construction for a level-(k0, k1) module with
k0 6= 0 for the toroidal Lie algebraT(A1) and for the double affine algebraT0(A1).

Let {x±, h} be the standard basis ofsl2. Also let (ai j )2×2 be the generalized
Cartan matrix of the affine algebraA(1)1 and

Q := Zα0 + Zα1

its root lattice. The toroidal Lie algebraT(A1) has a presentation [Moody et al.
1990] with generators/c, αi (k) andxk(±αi ), for k∈Z andi =0,1, and the following
relations, fork,m ∈ Z andi, j = 0,1:

(R0)
[
/c, αi (k)

]
= 0 =

[
/c, xk(±αi )

]
;

(R1)
[
αi (k), α j (m)

]
= kai j δk+m,0 /c;

(R2)
[
αi (k), xm(±α j )

]
= ±ai j xk+m(±α j );

(R3)
[
xk(αi ), xm(−α j )

]
= −δi j

{
αi (k + m)+ kδk+m,0 /c

}
;

(R4)
[
xk(αi ), xm(αi )

]
= 0 =

[
xk(−αi ), xm(−αi )

]
;

(adx0(αi ))
3 xm(α j )= 0 if i 6= j ; (adx0(−αi ))

3 xm(−α j )= 0 if i 6= j .

The Lie algebra isomorphismψ between the two presentations ofT(A1) is given by

/c 7→ s−1ds,

xm(±α1) 7→ ±x± ⊗ sm,

xm(±α0) 7→ ±x∓ ⊗ smt±1,

α1(k) 7→ h ⊗ sk,

α0(k) 7→ −h ⊗ sk
+ skt−1dt.

Therefore, the degree-zero central elements arec0 = /c andc1 = δ(0), where
δ = α0 + α1 is the null root inQ. We will identify the two presentations of the
toroidal Lie algebraT(A1) via this isomorphismψ .

Following [Moody et al. 1990], we introduce aZ × Q-gradation onT(A1) by
assigning deg/c= (0,0), degαi (k)= (k,0), degxk(±αi )= (k,±αi ), with i = 0,1
and k ∈ Z. We denote byTαk the subspace ofT(A1) spanned by the elements
with degree(k, α) for k ∈ Z, α ∈ Q. Then, under the isomorphismψ , we have
ψ−1(skt−1dt)= δ(k) ∈ T0

k andψ−1(skt r s−1ds) ∈ T r δ
k .
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Let z, w, z1, z2, . . . be formal variables. We define formal power series with
coefficients from the toroidal Lie algebraT(A1):

αi (z)=

∑
n∈Z

αi (n)z
−n−1,

x(±αi , z)=

∑
n∈Z

xn(±αi )z
−n−1,

for i = 0,1. Then the Lie algebra structure ofT(A1) can be expressed in terms of
the following power series identities:

(R0′)
[
/c, αi (z)

]
= 0 =

[
/c, x(±αi , z)

]
;

(R1′)
[
αi (z), α j (w)

]
= ai j z−1∂wδ(

w
z ) /c;

(R2′)
[
αi (z), x(±α j , w)

]
= ±ai j x(±α j , w)z−1δ(wz );

(R3′)
[
x(αi , z), x(−α j , w)

]
= −δi j

{
αi (w)z−1δ(wz )+ z−1∂wδ(

w
z ) /c

}
;

(R4′)
[
x(αi , z), x(αi , w)

]
= 0 =

[
x(−αi , z), x(−αi , w)

]
;

(adx(αi , z1))(adx(αi , z2))(adx(αi , z3))x(α j , z4)= 0 if i 6= j ;

(adx(−αi , z1))(adx(−αi , z2))(adx(−αi , z3))x(−α j , z4)= 0 if i 6= j .

Finally, we recall a result from [Moody et al. 1990] that will be used in the next
section.

Proposition 2.2. SupposeL is a Lie algebra overC graded byZ ⊗ Q, andφ :

T(A1)→ L is a surjective graded homomorphism of Lie algebras such that

(i) φ is injective on Tαn for all n ∈ Z and real rootα,

(ii) φ(δ(k)) 6= 0 for all k andφ|Cδ(0)+C /c is injective, and

(iii) for all nonzero integers k,m,

φ
(
[xm(α1 + kδ), x0(−α1)] − [x0(α1 + kδ), xm(−α1)]

)
6= 0,

φ
(
[x1(α1 + kδ), x−1(−α1)] − [x−1(α1 + kδ), x1(−α1)]

)
6= 0.

Thenφ is an isomorphism, where xm(±α1 + kδ) := ψ−1(±x± ⊗ smtk).

Proposition 2.3. SupposeL is a Lie algebra overC graded byZ ⊗ Q, andφ :

T(A1)→ L is a surjective graded homomorphism of Lie algebras such that

(i) φ is injective on Tαn for all n ∈ Z and real rootα,

(ii) φ(δ(k))= 0 for all k 6= 0 andφ|Cδ(0)+C /c is injective, and

(iii) for all nonzero integers k,m,

φ
(
[xm(α1 + kδ), x0(−α1)] − [x0(α1 + kδ), xm(−α1)]

)
= 0,

φ
(
[x1(α1 + kδ), x−1(−α1)] − [x−1(α1 + kδ), x1(−α1)]

)
= 0,
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ThenL is isomorphic to the double affine algebra T0(A1).

Proof. We only need to show that the set of nonzero-degree central elements of the
toroidal Lie algebraT(A1) is in the kernel ofφ. Indeed, under the isomorphismψ
of the toroidal Lie algebras, we see thatδ(k)= ψ−1(skt−1dt) and[

xm(α1 + kδ), x0(−α1)
]
−

[
x0(α1 + kδ), xm(−α1)

]
= −mψ−1(smtks−1ds),[

x1(α1 + kδ), x−1(−α1)
]
−

[
x−1(α1 + kδ), x1(−α1)

]
= −2ψ−1(tks−1ds),

but, from [Moody et al. 1990], the elementssptqs−1ds, spt−1dt ands−1ds for
(p,q)∈ Z×(Z\{0}) form a basis of the center for the toroidal Lie algebraT(A1).
The assumption implies that the nonzero-degree central elementsψ−1(sptqs−1ds)
andψ−1(sqt−1dt) are in the kernel of the homomorphismφ for

(p,q) ∈ Z × (Z \ {0}). �

3. Representations of the toroidal algebra

In this section we give two bosonic realizations for the toroidal Lie algebraT(A1).
Let k0 be a fixed complex number withk0 6= 0, and0 a finite rank lattice with a
symmetricC-valuedZ-bilinear form ( · , · ). We extend the form to aC-bilinear
form on the vector spaceH = C ⊗Z 0. Let 00 be a fixed integral sublattice of0.
We define

0?0 = {α ∈ H ; (α, 00)⊂ Z}.

Then00 ⊂ 0?0. Let
H = 〈h(n), /c|h ∈ H,n ∈ Z〉,

with H = C ⊗Z 0, be the affinization of the vector spaceH , defined with the Lie
product

[α(m), β(n)] = m(α, β)δm+n,0 /c

for m,n ∈ Z, α, β ∈ 0, and/c central. We define the Fock space

V := C[0?0] ⊗ S(H−),

whereS(H−) is the symmetric algebra onH−
:= 〈h(n) | n< 0〉, and

C[0?0] =

⊕
α∈0?0

Ceα

is the group algebra on the additive subgroup0?0 of the vector spaceH . ThenV
has a natural module structure for the Lie algebraH and the group algebraC[0?0]

with the actions defined by making/c act ask0, h(−n) act as multiplication, and
h(n) act as a partial differential operator, forn> 0, h ∈ H , so that

[α(m), β(n)] = mk0(α, β)δm+n,0
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for all α, β ∈ H andm,n ∈ Z. Moreoverα(0) acts as a partial differential operator
onC[0?0] for which [α(0),eβ]= (α, β)eβ . Thereforeα(0).β= (α, β) for α, β ∈ H .

With a formal variablez, andα, β ∈ H , we define fields

α(z)=

∑
n∈Z

α(n)z−n−1,

α(z)+ =

∑
n<0

α(n)z−n−1,

β(z)= β +β(0) logz−

∑
n6=0

β(n)

n
z−n,

β(z)+ = β −

∑
n<0

β(n)

n
z−n.

It is easy to see that∂zβ(z)= β(z) and∂zβ(z)+ = β(z)+. For

A, B ∈ {α(z), β(z) | α, β ∈ H},

we define〈A, B〉 = [A, B+]. Then it is easy to show (see [Frenkel et al. 1988])
that〈α(z), β(w)〉 = (α, β) log(z−w) for α, β ∈ H , which then implies

〈α(z), β(w)〉 = (α, β)(z−w)−1,

〈α(z), β(w)〉 = −(α, β)(z−w)−1,

〈α(z), β(w)〉 = (α, β)(z−w)−2,

where the formal power series inz andw are understood to be expanded in the
second variablew.

Define the usual normal ordering : : as in [Frenkel et al. 1988]. Then we have
for α ∈ H

:α(z)β(w): = α(z)β(w)− 〈α(z), β(w)〉,

and, forα ∈ 00,

:eα(z) : = eαzα(0) exp

(
−

∑
n<0

α(n)

n
z−n

)
exp

(
−

∑
n>0

α(n)

n
z−n

)
.

It is clear that the vertex operators:eα(z) : , for α ∈ 00, can be formally expanded
as a power series inz for which the coefficients are well defined operators acting
on the Fock spaceV .

We will need the following result in the study of the bosonic realizations for the
toroidal Lie algebraT(A1); see [Jing and Lyerly 1999].
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Lemma 3.1. Let Pi (z), Qi (w), for i = 1,2, be fields such that the contractions
〈Pi , Q j 〉 commute with all fields Pi (z), Qi (w). Then

:eP1 P2: :e
Q1 Q2: = :eP1 P2eQ1 Q2:e

〈P1,Q1〉 + :eP1 P2eQ1 :e〈P1,Q1〉〈P1,Q2〉

+:eP1eQ1 Q2:e
〈P1,Q1〉〈P2,Q1〉 + :eP1eQ1 :e〈P1,Q1〉(〈P2,Q2〉 + 〈P1,Q2〉〈P2,Q1〉).

Forα, β ∈ 01, we have, from [Frenkel et al. 1988], the identity

:eα(z) : :eβ(w) : = :eα(z)eβ(w) :(z−w)(α,β).

Inductively one can show, forβ1, . . . , βk ∈ 00, the following Wick theorem

:eβ1(z1) : · · · :eβk(zk) : = :eβ1(z1) · · · eβk(zk) :

∏
i< j

(zi − z j )
(βi ,β j ).

Corollary 3.2. For α, β ∈ 00 andγ, τ ∈ H, suppose(α, β)= 0. Then[
:eα(z)γ (z): , :eβ(w)τ(w):

]
= :e(α+β)(z)A(z):z−1δ

(
w

z

)
+B :e(α+β)(z)

:z−1∂wδ
(
w

z

)
,

where A= (γ, β)τ − (α, τ )γ − Bβ ∈ H and B= (γ, τ )− (α, τ )(γ, β) ∈ C.

To give our first representation of the toroidal Lie algebraT(A1) we consider
the lattice

0 :=
1

k0
(Za0 ⊕ Za1 ⊕ Zb⊕ Zr ),

with a symmetric bilinear form determined by

(b,b)= −2k0, (r, r )= 2(k0 + 2), (ai ,a j )= k0ai j for i, j = 0,1,

the others being zero. Let00 =
1
k0
(Z(a0 − b)+ Z(a1 + b)), which is clearly an

integral sublattice of0. On the corresponding Fock spaceV := C[0?0] ⊗ S(H−),
we define vertex operators

X0(±α1, z)=
1
2 :e±

1
k0
(a1+b)(z)

(b(z)∓ r (z)):

X0(±α0, z)=
1
2 :e±

1
k0
(a0−b)(z)

(b(z)± r (z)): ,

whereα0, α1 are the simple roots of the affine Lie algebraA(1)1 .

Theorem 3.3.Let k0 be any nonzero complex number. Then on the Fock space V
we have a representation for the toroidal Lie algebra T(A1). The homomorphism
is given by/c 7→ k0, αi (z) 7→ ai (z), x(±αi , z) 7→ X0(±αi , z), for i = 0,1.

Proof. We first write the vertex operators in the form

X0(±αi , z)=
1
2 :e±

1
k0
(ai −εi b)(z)(b(z)± εi r (z)): ,
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whereεi = (−1)i for i = 0,1. We will now show that the operatorsai (z) and
X0(±αi , z) satisfy the relations (R0′)–(R4′) of the toroidal Lie algebraT(A1). In
fact, (R0′) and (R1′) are obvious. For (R2′) we have

[ai (z), X0(±α j , w)] =
1
2[ :ai (z): , :e±

1
k0
(a j −ε j b)(z)(b(z)± ε j r (z)): ]

=
1
2 :e±

1
k0
(a j −ε j b)(z)A(z):z−1δ

(
w

z

)
,

whereA = (ai ,±
1
k0
(a j − ε j b))(b± ε j r )= ±ai j (b± ε j r ). Therefore

[ai (z), X0(±α j , w)] = ±
1
2ai j :e±

1
k0
(a j −ε j b)(z)(b(z)± ε j r (z)):z

−1δ
(
w

z

)
= ±ai j X0(±α j , z)z

−1δ
(
w

z

)
,

which is the required relation. To prove relation (R3′) we have

[X0(αi , z), X0(α j , w)]

=
1
4

[
:e

1
k0
(ai −εi b)(z)(b(z)+ εi r (z)): , :e−

1
k0
(a j −ε j b)(w)(b(w)− ε j r (w)):

]
=

1
4

(
:e

1
k0
(ai −a j −εi b+ε j b)(z)A(z):z−1δ

(
w
z

)
+ B :e

1
k0
(ai −a j −εi b+ε j b)(z)

:z−1∂wδ
(
w
z

))
,

where, by applying Corollary 3.2,

B = (b+ εi r,b− ε j r )−
(

ai −εi b
k0

,b− ε j r
)(

b+ εi r,−
a j −ε j b

k0

)
= −2k0 − 2εi ε j k0,

A =

(
b+ εi r,−

a j −ε j b
k0

)
(b− ε j r )

−

(
ai −εi b

k0
,b− ε j r

)
(b+ εi r )−

(
−2k0 − 2εi ε j k0

)(
−

a j −ε j b
k0

)
= −2(1+ εi ε j )a j .

Therefore, we get

[X0(αi , z), X0(−α j , w)] = −
1
2(1+ εi ε j )

(
:e

1
k0
(ai −a j −εi b+ε j b)(z)a j (z):z

−1δ
(
w
z

)
+ k0 :e

1
k0
(ai −a j −εi b+ε j b)(z)

:z−1∂wδ
(
w
z

))
= −δi j

(
a j (z)z

−1δ
(
w
z

)
+ k0z−1∂wδ

(
w
z

))
,

as required.
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(R4′) contains two types of relations. We give only the proof for the “positive”
case. The “negative” case can be proved similarly.

[X0(αi , z), X0(α j , w)]

=
1
4

[
:e

1
k0
(ai −εi b)(z)(b(z)+ εi r (z)): , :e

1
k0
(a j −ε j b)(w)(b(w)+ ε j r (w)):

]
=

1

4

(
:e

1
k0
(ai +a j −εi b−ε j b)(z)A(z):z−1δ

(
w
z

)
+ B :e

1
k0
(ai +a j −εi b−ε j b)(z)

:z−1∂wδ
(
w
z

))
,

where, by applying Corollary 3.2,

B = (b+ εi r,b+ ε j r )−
(

ai −εi b
k0

,b+ ε j r
)(

b+ εi r,
a j −ε j b

k0

)
= 2k0(εi ε j − 1),

A =

(
b+ εi r,

a j −ε j b
k0

)
(b+ ε j r )

−

(
ai −εi b

k0
,b+ ε j r

)(
b+ εi r

)
− 2k0(εi ε j − 1)

(a j −ε j b
k0

)
= 2(1− εi ε j )a j .

Therefore[X0(αi , z), X0(αi , w)] = 0 and, fori 6= j ,

[X0(αi , z), X0(α j , w)]

= :e
1
k0
(ai +a j )(z)a j (z):z

−1δ
(
w

z

)
− k0 :e

1
k0
(ai +a j )(z)

:z−1∂wδ
(
w

z

)
.

Clearly, for i 6= j , the vertex operatorX0(αi , z) commutes with

:e
1
k0
(ai +a j )(z)

: .

Therefore to complete the proof of relation (R4′) we only need to show the identity

(1)
[
X0(αi , z1), [X0(αi , z2), :e

1
k0
(ai +a j )(z3)a j (z3): ]

]
= 0

for i 6= j . Indeed,[
X0(αi , z), :e

1
k0
(ai +a j )(w)a j (w):

]
=

1
2

[
:e

1
k0
(ai −εi b)(z)(b+ εi r )(z): , :e

1
k0
(ai +a j )(w)a j (w):

]
=

1
2

(
:e

1
k0
(2ai +a j −εi b)(z)A(z):z−1δ

(
w
z

)
+ B :e

1
k0
(2ai +a j −εi b)(z)

:z−1∂wδ
(
w
z

))
,

where, by applying Corollary 3.2,

B = (b+ εi r,a j )−
(

ai −εi b
k0

,a j

)(
b+ εi r,

ai +a j

k0

)
= 0

and

A =

(
b+ εi r,

ai +a j

k0

)
a j −

(
ai −εi b

k0
,a j

)
(b+ εi r )= 2(b+ εi r );
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that is[
X0(αi , z), :e

1
k0
(ai +a j )(w)a j (w):

]
= :e

1
k0
(2ai +a j −εi b)(z)(b+ εi r ):z

−1δ
(
w

z

)
.

Therefore (1) is reduced to the identity[
X0(αi , z), :e

1
k0
(2ai +a j −εi b)(w)(b+ εi r )(w):

]
= 0

for i 6= j . The left side is equal to

1
2

[
:e

1
k0
(ai −εi b)(z)(b+ εi r )(z): , :e

1
k0
(2ai +a j −εi b)(w)(b+ εi r )(w):

]
=

1
2

(
:e

1
k0
(3ai +a j −2εi b)(z)A(z):z−1δ

(
w
z

)
+ B :e

1
k0
(3ai +a j −2εi b)(z)

:z−1∂wδ
(
w
z

))
,

where, by applying Corollary 3.2,

B = (b+ εi r,b+ εi r )−
(

ai −εi b
k0

,b+ εi r
)(

b+ εi r,
2ai +a j −εi b

k0

)
= 0

and

A =

(
b+ εi r,

2ai +a j −εi b
k0

)
(b+ εi r )−

(
ai −εi b

k0
,b+ εi r

)
(b+ εi r )= 0,

giving the desired identity. �

From the construction of the representation for the toroidal Lie algebra given
in the previous theorem, it is easy to see that the operatorsα1(k)+ α0(k) act on
the Fock spaceV trivially for all positive integersk, which in turn implies that
the central elementsψ(δ(k)) act as the zero operator fork > 0. Therefore the
representation is not faithful. Indeed, the quotient spaceV(0) of the Fock space

C[0∗

0] ⊗ S(H−)

defines a representation for the double affine Lie algebraT0(A1), which is isomor-
phic to the Lie algebraT(A1) modulo all central elements of degree other then
zero (see Section 2).

Corollary 3.4. The vector space V(0) is endowed with a representation of the
double affine Lie algebra T0(A1) with level-(k0,0), under the formula given before
Theorem 3.3.

We will study this module structure again in the next section.

To give a faithful representation of the toroidal Lie algebra, we consider the
rank-six lattice

0 :=
1

k0
(Za0 ⊕ Za1 ⊕ Zb⊕ Zc⊕ Zd)⊕

1

k0 + 2
Zr,
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with the symmetric bilinear form determined by

(b,b)=−2k0, (r, r )=2(k0+2), (c,d)=k0, (ai ,a j )=k0ai j for i, j = 0,1,

all others being zero. Then

00 :=
1

k0
Z(a0 − b)+

1

k0
Z(a1 + b)+

1

k0
Zc

is clearly an integral sublattice of0. Let0?0 be the corresponding additive subgroup
of H = C ⊗Z 0, andV the corresponding Fock space.

We also modify the vertex operators from the previous theorem to the form

X(±α1, z)=
1
2 :e±

1
k0
(a1+b)(z)

(b(z)∓ r (z)): ,

X(±α0, z)=
1
2 :e±

1
k0
(a0−b+c)(z)

(b(z)± r (z)): .

Theorem 3.5.The coefficient operators of the vertex operators ai (z), X(±αi , z),
for i = 0,1, acting on the Fock space V , generate a Lie algebraL(A1) isomorphic
to the toroidal Lie algebra T(A1), the isomorphism begin given by the linear map
φ defined by

/c 7→ k0,

α1(z) 7→ a1(z),

α0(z) 7→ a0(z)+ c(z),

x(±αi , z) 7→ X(±αi , z) for i = 0,1.

Therefore, on the Fock space V , we have a faithful representation of the toroidal
Lie algebra T(A1).

Proof. We first need to show that the surjective mappingφ defines a Lie algebra
homomorphism fromT(A1) to L(A1). It suffices to show that the vertex operators
ai (z), X(±αi , z) satisfy the corresponding power series identities (R0′)–(R4′). The
argument is just as in the proof of Theorem 3.3, and we omit it for brevity’s sake.

We next use Proposition 2.2 to show that the mappingφ is indeed an injective
homomorphism. Forα = µ1a0 +µ2a1 +µ3b+µ4c ∈ 0?0 with µi ∈

1
k0

Z, let

eα ⊗ λ1(−n1) · · · λk(−nk) ∈ V.

We define aZ × Q-gradation on the Fock spaceV by setting

deg
(
eα ⊗ λ1(−n1) · · · λk(−nk)

)
= (n1 + · · · + nk, k0µ1α0 + k0µ2α1).

With this gradation, the operatora(n), for a ∈ H , is a homogeneous operator of
degree(−n,0). Moreover, if the vertex operatorX(±αi , z) is formally expanded
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into power series as

X(±αi , z)=

∑
m∈Z

Xm(±αi )z
−m−1,

the coefficient operatorXm(±αi ) is a homogeneous operator of degree(−m,±αi ).
Thus the mapφ is a (Z×Q)-graded Lie algebra homomorphism. To finish the
proof of this theorem, we need only show thatφ satisfies the three conditions of
Proposition 2.2.

Recall the notationxm(±α1 + kδ) = ψ−1(±smtk
⊗ x±), whereδ = α0 + α1 is

the null root inQ. Let

x(α, z)=

∑
m∈Z

xm(α)z
−m−1 for α = ±α1 + kδ.

Then it is easy to show thatφ : x(α, z) 7→ X(α, z), whereα = ±α1 + kδ, and

X(±α1 + kδ, z)=
1
2 :e±

1
k0
(a1+b+k(a0+a1)+kc)(z)

(b(z)∓ r (z)): .

Applying Corollary 3.2 again we have[
X(α1 + kδ, z), X(−α1 − kδ,w)

]
= −k0z−1∂wδ

(
w

z

)
− (a1 + k(a0 + a1)+ kc)(z)z−1δ

(
w

z

)
.

This gives[
Xm(α1 + kδ), X−m(−α1 − kδ)

]
= −a1(0)− k(a0 + a1)(0)− kc(0)− mk0,

which is clearly a nonzero operator for anym, k∈Z. Thusφ is injective on the one-
dimensional subspaceTαm = Cxm(α) for any real rootα = ±α1 +kδ andk,m ∈ Z.
Moreover,

φ(δ(k))= a0(k)+ a1(k)+ c(k)

is also a nonzero operator, andφ is clearly injective onCδ(0)+ C /c.
Finally, we need to show that, form, k 6= 0,

(2)

[
Xm(α1 + kδ), X0(−α1)

]
−

[
X0(α1 + kδ), Xm(−α1)

]
6= 0,[

X1(α1 + kδ), X−1(−α1)
]
−

[
X−1(α1 + kδ), X1(−α1)

]
6= 0.

By Corollary 3.2,[
X(α1 + kδ, z), X(−α1, w)

]
+

[
X(−α1, z), X(α1 + kδ,w)

]
= −2k0 :e

1
k0
(ka0+ka1+kc)(z)

:z−1∂wδ
(
w

z

)
+ k :e

1
k0
(ka0+ka1+kc)(z)

(a0(z)+ a1(z)+ c(z)):z−1δ
(
w

z

)
,
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which gives[
X(α1 + kδ, z), X0(−α1)

]
−

[
X0(α1 + kδ), X(−α1, z)

]
= k :e

1
k 0(ka0+ka1+kc)(z)(a0(z)+ a1(z)+ c(z)): .

To see that the coefficient ofz−m−1 in the expression on the right is nonzero for
m 6= 0, we notice that[
:e

1
k0
(ka0+ka1+kc)(z)

(a0(z)+ a1(z)+ c(z)): , :e−
1
k0
(ka0+ka1+kc)(z)d(z):

]
= k0z−1∂wδ

(
w

z

)
.

The coefficient ofz−m−1 on the right-hand side of the previous identity isk0mwm−1,
which is nonzero wheneverm 6= 0. This proves the first line in (2), while the
second can be proved by a similar argument which is omitted here. Thereforeφ is
an isomorphism of Lie algebras. �

Corollary 3.6. For any fixed k1 ∈ Z, define

V(k1)= ek1d+00 ⊗ S(H−).

Then the vector space V(k1) is endowed with a representation of the toroidal Lie
algebra T(A1) with level-(k0, k1).

4. Module structure

We now define a smaller module from our Fock space representation via the so-
called screening operator. We will only consider the case whenc = 0.

For given j0, j1, l1, l2 ∈ C with j0 + j1 ∈ Zk0
2 , set

v j0, j1,l1,l2 : = ej0
a0
k0 ej1

a1
k0 el1

b
k0 e−l2

r
k0+2 .

We define the Fock spaceF j0, j1,l1,l2 to be the spaceS(H−)v j0, j1,l1,l2. Then the
vertex operatorsX(±αi , z) are well defined onF j0, j1,l1,l2, provided that 2( j1 − l1)
and 2( j0 + l1) are integers. It is clear that the vertex operators satisfy

X(±α0, z) : F j0, j1,l1,l2 −→ F j0±1, j1,l1∓1,l2,

X(±α1, z) : F j0, j1,l1,l2 −→ F j0, j1±1,l1±1,l2.

Introduce a screening operatorS0: F j0, j1,l1,l2 → F
j0, j1,l1+

k0
2 ,l2+

k0+2
2

by setting

S(z)= :e
1
2(b(z)−r (z))

: =

∑
n

Snz−n−1.

This is well defined provided thatl1 − l2 ∈ Z.
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Proposition 4.1.

{X(α1, z), S(w)} =
∂

∂w

(
:e

1
k0
,(a1+b)(w)+ 1

2(b−r )(w)
:

1

z−w

)
,

{X(−α1, z), S(w)} = 0,

{X(−α0, z), S(w)} = 0,

{X(α0, z), S(w)} =
∂

∂w

(
:e

1
k0
(a0+b)(w)+ 1

2(b−r )(w)
:

1

z−w

)
.

Proof. Let

φ(α1, z)= φ(−α0, z) :=
1
2 :e

1
k0

b(z)
(b(z)− r (z)): ,

φ(α0, z)= φ(−α1, z) :=
1
2 :e−

1
k0

b(z)
(b(z)+ r (z)):

be the parafermions. It follows from Lemma 3.1 that

φ(α1, z)S(w)

∼
1
2 :e

1
k0

b(z)
(b− r )(z)e

1
2(b−r )(w)

:
1

z−w
+

1
2 :e

1
k0

b(z)+ 1
2(b−r )(w)

:
2

(z−w)2

∼
∂

∂w

(
:e

1
k0

b(w)+ 1
2(b−r )(w)

:
1

z−w

)
. �

Let d be the zero mode ofS(z): d =
∫

S(z)dz. It is easy to check that the
anticommutator{S(z), S(z)} = 0, thusd gives rise to a complex of vector spaces:

· · · −→ F
j0, j1,l1−

k0
2 ,l2−

k0+2
2

−→ F j0, j1,l1,l2 −→

F
j0, j1,l1+

k0
2 ,l2+

k0+2
2

−→ F j0, j1,l1+k0,l2+k0+2 −→ · · ·

We can define the restrictedT(A)-submodule using Proposition 4.1. Givenl we
define aT(A)-submodule

Fl =

⊕
j1∈l+Z, j0∈−l+Z

ker
(
d : F j0, j1, j1,l → F

j0, j1, j1+
k0
2 ,l+

k0+2
2

)
.

Theorem 4.2. The operator d commutes or anticommutes with elements of the
toroidal algebra T(A1) and d2

= 0. Moreover we have the long exact sequence

0 −→ Fl −→

⊕
j0, j1

F j0, j1, j1,l −→

⊕
j0, j1

F
j0, j1, j1+

k0
2 ,l+

k0+2
2

−→

⊕
j0, j1

F j0, j1, j1+k0,l+k0+2 −→ · · · ,

where the maps from
⊕

j0, j1 F j0, j1, j1,l onward are
⊕

d and the summations run
through j0 ∈ −l + Z and j1 ∈ l + Z.
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Proof. We introduce the operatorS?(z)= e−
1
2(b(z)−r (z))

=
∑

n S∗
nz−n, and setd? =

S?0. It is easy to see that{S(z), S?(w)} = 1. Hencedd?+d?d = 1, and we already
knew thatd2

= 0. Thus the following long sequence of vector spaces is exact:

0 → kerF j0, j1, j1,l
d → F j0, j1, j1,l → F

j0, j1, j1+
k0
2 ,l+

k0+2
2

→ F j0, j1, j1+k0,l+k0+2 → · · · .

Taking the direct sum we obtain Theorem 4.2. �

Sincea0(n)+ a1(n) acts trivially we can modulo the relation and define

F̃l = Fl/(a0(n)+ a1(n); −n ∈ N);

then it is also aT(A1)-module and the results in Proposition 4.1 obviously hold
for the moduleF̃l . If we further moduloa1(0)+ a0(0) we will obtain the Verma
module for the affine Lie algebra generically.

Using the exact sequence we can compute the character for the moduleF̃l as
follows.

Theorem 4.3.The character of the T(A1)-moduleF̃l is given by

ch(F̃l )=

∞∑
s=0

(−1)s
∑

α∈Q e−l r
k0+2+s(

k0+2
2 r +

k0
2 b)eα∏

(e−δ1)
∏
(e−δb)

∏
(e−δr )

where ∏
(x)=

∏
m>0

(1− xm) and Q =
1

k0
(Zα1 + Zb). �
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