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We construct realizations for the 2-toroidal Lie algebra associated with the
Lie algebra A; using vertex operators based on bosonic fields. In particu-
lar our construction realizes higher-level representations of the 2-toroidal
algebra for any given pair of levels(kg, ki) with ko # 0. We also construct a
smaller module of level(kg, 0) for the toroidal algebra from the Fock space

using certain screening vertex operator, and this later representation gener-
alizes the higher-level construction of the affine Lie algebrglg.

1. Introduction

Toroidal Lie algebras are a natural generalization of the affine Kac—Moody alge-
bras introduced by Moody, Rao and Yokonuma [Moody et al. 1990]. A et
C[s, s7%, t,t71] be the ring of Laurent polynomials in commuting variables. By
definition a 2-toroidal Lie algebra is a perfect central extension of the iterated loop
algebrag ® A, whereg is a finite-dimensional simple Lie algebra over

Let 2a/d A be the Kahler differentials oA modulo the exact forms. The uni-
versal central extension of the iterated loop algebra is given by

T =@SA &Q2a/dA

Any 2-toroidal Lie algebra is a homomorphic image of this toroidal Lie algebra.
The center ofT (g) is Qa/d A, which is a infinite-dimensional vector space. The
Laurent polynomial ringA induces a naturat?-gradation o (g). For the center

we have2a/d A=, 72 %(g)o, Withdim%, =1if o # (0, 0) and 2 ifo = (0, 0).

We denote bygg andc; the two standard degree-zero central elements in the toroidal
Lie algebrarl (g). A module ofT (g) is called a levelkp, k1) module if the standard
center(cy, ¢1) acts agko, k1) for some complex numbekg andk;. Here we study

the level{kp, k1) modules forkg £ 0.
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In various constructions of the affine Lie algeliﬁa the free field represen-
tation is of particular use in its applications. Wakimoto [1986] and Feigen and
Frenkel [1988] first gave a general construction for the general case, and later
Nemenschansky [1989] gave an invariant form in the special case. Though the two
forms can be interchanged by a nontrivial map, we realized that the later form is
better for our purpose in the toroidal cases. The operators in question have the
form eA(B+C), whereA, B, C are generating functions of the scaled Heisenberg
operators. One of the nice things is that all root generators in the toroidal alge-
bra associated with the Lie algebs& can be represented by this type of vertex
operators. In our construction we have fully used this simplicity and make all
calculations in a uniform manner.

As we mentioned earlier, toroidal algebras are generalizations of finite-dimen-
sional Lie algebras, like affine Lie algebras. This similarity is constantly kept in
mind as we study their structure and representation theory. Some other basic refer-
ences related to our work include [Berman and Billig 1999; Eswara Rao and Moody
1994; Fabbri and Moody 1994; Larsson 1999; Moody et al. 1990; Tan 1999]. Our
aim in this paper is to give a higher-level representation for the simplest nontrivial
example: the 2-toroidal Lie algebra. Our construction generalizes previous work
on higher-level representations of the affine Lie algeftsa

In Section 2 we define the toroidal Lie algebra and state the MRY-presentation
[Moody et al. 1990] of the toroidal algebra in terms of generators and relations.
The algebra structure is expressed in terms of formal power series identities. We
also state some results in this section to be used later. In Section 3 we start with a
finite-rank lattice with a symmetric bilinear form and define a Fock space and some
vertex operators, which in turn give representations of the toroidal Lie algebra of
type A1, and also a levelky, 0) module withky # O for the double affine algebra of
type A;z. In Section 4 we study the structure of the Fock space for the toroidal Lie
algebra by using certain screening vertex operators, thus generalizing the higher-
level representation of the affine aIgebAtQto the toroidal Lie algebra.

2. Toroidal Lie algebras
Let sl, be the 3-dimensional simple Lie algebra over the complex numbers and
A=C[s,s 1 t,t71]

the ring of Laurent polynomials in commuting variables. We consider the iterated
loop algebra

g=sbL®A.
A toroidal Lie algebra of type\; is a perfect central extension of the iterated loop
algebrag, which is often an infinite-dimensional central extension. @tbe the
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A-module of differentials with differential mappirdy: A — Qa, such that
d( f]_ fz) = (d fl) f2 + fl(d fz) for all fl, f2 in A

Let—:Qa — Qa/d Abe the canonical linear map for whidf =0 for all f € A.
Endow the vector space

T(AD :=(sL®A) DQa/dA
with the bracket operation defined by
[X® f1,y® fal =[x, yI1® f1f2+ (X, y) fad 1,

for x,y € slp, f1, f2 € A, where(-, -) is the trace form an@2a/d A is central.
From [Moody et al. 1990] we know tha (A;) is a perfect Lie algebra and is
the universal central extension of the iterated loop algebr® A. Therefore any
toroidal Lie algebra of typé\; is a homomorphic image af (A;). The gradation
of the polynomial ringA gives a natura??-gradation to the toroidal Lie algebra

T(A) = EP T (A,

oeZ?

whereT (A1), is spanned byx @ s™t™, smotMs—1ds andsMetMt—1dt for o =
(Mo, M) € Z? and x € sl,. The conditiondf = 0 for all f € A implies that
MpsMotMs—1ds+m;sMet™t—1dt =0 for all mg, m; € Z. Therefore the dimension
of T(A1)s is 4 if o # (0,0) and 5 ifo = (0,0). In particular, T (A1)0,0) IS
spanned bk ® 1 for x € slp, and central elements1ds, t-1dt. We denote these
two degree-zero central elementsdgyandc;.

The most interesting quotient algebra of the toroidal Lie algdhra,) is the
double affine algebra denoted iy( A1), that is, the toroidal Lie algebra of typgg
with a two-dimensional center. The double affine algebra is the quotientA{)
modulo all the central elements with degree other than zero. InTach;) has
the realization

To(A) = (s2®@ A) & Cco® Ccr
with the Lie product
(X® f1, y® fal = [X, YI® f1 f2 + @ (f20s f1)co + D (f20; fr)cs
for all x, y e sl, and fq, f, € A, where® is the linear functional oA defined by

0, if (k,m)# (0, 0)

Kemy
(D(St)_{l, if (k. m) = (0,0)

for all k, me Z.
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Definition 2.1. If M is a module for a toroidal Lie algebra of typga, we callM a
level-(ko, k1) module for some complex numbeksg, k; if the degree-zero central
elementgy, ¢, act onM as constantkg, k.

In this paper we give a concrete construction for a l€kglk;) module with
ko # O for the toroidal Lie algebra (A1) and for the double affine algebTa(A;).

Let {x+, h} be the standard basis ef. Also let (gj)2.2 be the generalized
Cartan matrix of the affine algebr” and

Q:=Zag+ Zaz

its root lattice. The toroidal Lie algebr&(A1) has a presentation [Moody et al.
1990] with generatons, «j (K) andxy(+¢;), forke Z andi =0, 1, and the following
relations, fork, me Z andi, j =0, 1:

(RO) [¢. i (K)] = 0= [¢, xu(Fai)];

(R1) [ai(k), orj (M)] = k&j Sic+m, 08

(R2) [ (K), Xm(£aj) ]| = £aij Xcrm(Eet));

(R3) [Xk(ei), Xm(—ej)] = =8ij {ai (K + M) + KSkym,0¢};
(R4) [Xu(ati), Xm(ei)] = 0= [X(—ati), Xm(—cxi)];

(@dxo(@ ) xm(aj) = 0if i # j; (@dxo(—ei))* Xm(—atj) =0 if i # |.
The Lie algebra isomorphisih between the two presentationsiofA;) is given by

¢— s—1ds,

Xm(Eop) = XL @™,
X () > X5 @ STt
a1(K) — h® s,

ao(K) > —h ® s + skt—1dt.

Therefore, the degree-zero central elementscgre ¢ andc; = §(0), where
8 = ap + a1 is the null root inQ. We will identify the two presentations of the
toroidal Lie algebral (A1) via this isomorphismy .

Following [Moody et al. 1990], we introduce&A x Q-gradation onT (A;) by
assigning deg = (0, 0), dege; (k) = (k, 0), degxk(£aj) = (K, £«j), withi =0, 1
andk € Z. We denote byl the subspace of (A;) spanned by the elements
with degree(k, o) for k € Z, « € Q. Then, under the isomorphisih, we have
YLkt -1dt) = 8(k) € T2 andy ~1(skt"s~1ds) € T°.
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Let z, w, 73, 25, ... be formal variables. We define formal power series with
coefficients from the toroidal Lie algebfia(A;):

@ (=) ai(mz ",

neZ

X(£0i,2) =) Xn(+ai)z ",

nezZ

fori =0, 1. Then the Lie algebra structure ©f A;) can be expressed in terms of
the following power series identities:

(RO) [¢, 2i(2)] =0=¢, X(Fai, 2)];

(RY) [« (D), aj(w)] = aijZ 13,8 (2)¢;

(R2) [« (2), x(Faj, w)] = L&y X(Faj, w)z 16 (L);

(R3) [x(ai, 2), X(—aj, w)| = =8ij {oi (w)z716(%) + 210,86 (£)¢} ;
(R4) [x(ai, 2), X(eti, w) ] = 0= [X(—ati, 2), X(—ati, w)];

— /e

(adx (i, z1)) (@dx(w, 22)) (@dX (i, Z3)) X(aj, Z4) =0 if i # |;
(@dx(—ai, 1)) (@dX(—ai, 22)) (@AX(—ai, Z3)) X(—aj, 24) =0 if i # j.

Finally, we recall a result from [Moody et al. 1990] that will be used in the next
section.

Proposition 2.2. Supposé€f is a Lie algebra ovelC graded byZ ® Q, and¢ :
T (A1) — £ is a surjective graded homomorphism of Lie algebras such that

(i) ¢ isinjective on T for all n € Z and real roote,
(i) ¢(8(k)) #Ofor all k ande|cs0)+c¢ IS injective, and
(iii) for all nonzero integers km,
¢ ([Xm(a1 + k), Xo(—a1)] — [Xo(es + K8), Xm(—a1)]) # O,
o ([x1(1 +K8), X_1(—a1)] — [X_1(1 +K8), X1 (—a1)]) #O.
Theng is an isomorphism, whergxX=ta1 + ké) := ¥ ~1(£x4 @ s™tK).

Proposition 2.3. Suppos€f is a Lie algebra ovelC graded byZ ® Q, and¢
T (A1) — £ is a surjective graded homomorphism of Lie algebras such that

(i) ¢ isinjective on F for all n € Z and real roote,
(i) ¢(8(k)) =0forall k #0andg|cs)+c¢ is injective, and
(iii) for all nonzero integers km,
¢ ([Xm(oa + k&), Xo(—a1)] — [Xo(a1 + K8), Xm(—a1)]) =0,
o ([X1 (1 +K8), X_1(—a1)] — [X_1(a1 +k8), X1 (—a1)]) =0,
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ThenZ is isomorphic to the double affine algebra(A;).

Proof. We only need to show that the set of nonzero-degree central elements of the
toroidal Lie algebrdl (A1) is in the kernel ofp. Indeed, under the isomorphisgn
of the toroidal Lie algebras, we see tldgk) = v —1(skt—1dt) and

[Xm(et1 + k&), Xo(—a1) ] — [Xo(et1 +K8), Xm(—a)] = —my ~H(sMtks—1ds),
[X1(1 +K8), X_1(—a1)| — [X_1(o1 + k&), X (—a1)] = —2¢ L (tks~1ds),

but, from [Moody et al. 1990], the elemend8tds—1ds, sPt—1dt ands—1ds for
(p, ) € Z x (Z\ {0}) form a basis of the center for the toroidal Lie algebrad;).
The assumption implies that the nonzero-degree central elemehtsPtds—1ds)
andy ~1(sdt—1dt) are in the kernel of the homomorphisprfor

(P, @) € Zx (Z\{0}). O

3. Representations of the toroidal algebra

In this section we give two bosonic realizations for the toroidal Lie alg@ljrs; ).
Let ko be a fixed complex number witky # 0, andT" a finite rank lattice with a
symmetricC-valuedZ-bilinear form (-, -). We extend the form to &-bilinear
form on the vector spacd = C ®7 I'. Let T’y be a fixed integral sublattice &f.
We define

I'g={a e H; (a,Ip) CZ}.
ThenI'g C I'y. Let

#=(h(n),¢lhe H,ne 7),
with H = C ®7 T, be the affinization of the vector spatk defined with the Lie
product

[a(m), B(M] = m(«, B)dm+n.of

form,neZ, a, B €T, and¢ central. We define the Fock space

V :=C[I3l® S(#7),
whereS(# ™) is the symmetric algebra dffi— := (h(n) | n < 0), and
cirgl = € ce
aely

is the group algebra on the additive subgrdifpof the vector spacéi. ThenV
has a natural module structure for the Lie alge#frand the group algebr@[I";]
with the actions defined by makingact askg, h(—n) act as multiplication, and
h(n) act as a partial differential operator, for- 0, h € H, so that

[ee(m), B(M)] = mko(et, B)dmi+n,0
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forall «, B € H andm, n € Z. Moreoverx (0) acts as a partial differential operator
onC[I'§] for which [« (0), ] = («, B)€’. Thereforax(0).8 = («, B) fora, B € H.
With a formal variablez, ande, 8 € H, we define fields

(@) =) amz ",

nezZ
@)y =) amz "
n<0
B =p+p0logz—3 Lo
n#0 n
5. — g5 PO
B, =4 ZO ="

Itis easy to see that,8(z) = f(2) andd,B(2), = B(2). For
A, Be{a(2).B(2) |a. B cH}

we define(A, B) = [A, B.]. Then it is easy to show (see [Frenkel et al. 1988])

that («(2), B(w)) = (o, B) log(z— w) for a, B € H, which then implies

(@(2), Bw)) = (o, B)(z—w) ™,

(@(2), Bw)) = —(e, BY(Z—w) ™ *,

(@(2), Bw)) = (@, Bz —w) 2,
where the formal power series mandw are understood to be expanded in the
second variabley.

Define the usual normal ordering : : as in [Frenkel et al. 1988]. Then we have
fore e H

a(2p(w): =a(2)p(w) - (a(2), B(w)),

and, fora € Iy,

n<0 n>0

It is clear that the vertex operatore*?:, for « € I'g, can be formally expanded
as a power series infor which the coefficients are well defined operators acting
on the Fock spac¥.

We will need the following result in the study of the bosonic realizations for the
toroidal Lie algebrdl (A;1); see [Jing and Lyerly 1999].



292 NAIHUAN JING, KAILASH MISRA AND SHAOBIN TAN

Lemma 3.1. Let R(2), Qi (w), for i = 1, 2, be fields such that the contractions
(P, Q) commute with all fieldsilz), Qj (w). Then

-et Py: :te Q2: = -ePt Pzte sze“Dl*Q” + -eM P28Q1:G<P1’Ql> (P1,Q2)
+:e71eR1Qq:el™ W (Py, Q) + :ee: el (P, Q) + (Pr, Q2) (P2 Qu)).

Fora, B € I'1, we have, from [Frenkel et al. 1988], the identity
@, P, :e‘x@e%:(z— w)@P),
Inductively one can show, fg#y, ..., Bk € I'g, the following Wick theorem

P = P @ T — ) B,

i<]j

Corollary 3.2. For «, B e Tgandy, t € H, supposéc, 8) = 0. Then

[Py @t (w):]= PP ARz (L )+ B2 71,5( )
. = 2 45(%)+B: : 2).

where A= (y, )t — (o, 1)y — BB e Hand B=(y, 1) — («, T)(y, B) € C.
To give our first representation of the toroidal Lie algebrgd;) we consider
the lattice
1
.= E(Zao@Zal@Zb@Zr),

with a symmetric bilinear form determined by

the others being zero. Léty = %(Z(ao —b) + Z(a; + b)), which is clearly an
integral sublattice of*. On the corresponding Fock spa¢e= C[I'g] ® S(# ™),
we define vertex operators

L
Xo(a1, 2) = §:6" 0 @D (hz) 1 (2)):
1

Xo(tao. ) = 3:656@ PP (b)) £1(2)):,

whereag, a1 are the simple roots of the affine Lie algem%).

Theorem 3.3. Let ky be any nonzero complex number. Then on the Fock space V
we have a representation for the toroidal Lie algebréAL). The homomorphism
is given byt — ko, ¢ (2) — & (2), X(£aj, 2) — Xo(+qj, 2), fori =0, 1.

Proof. We first write the vertex operators in the form

Xo(ei, 2) = 1:e56@ PPz Lgr(2)):,
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where¢; = (—=1)' for i = 0,1. We will now show that the operatoes(z) and
Xo(+£aj, 2) satisfy the relations (RP-(R4) of the toroidal Lie algebrd (Az). In
fact, (R0) and (R1) are obvious. For (R2we have

La@——b®@
[a (2). Xo(Eej, w)] = 3[:a(2):, :€ o A~ (bz) £ jr (2)):]
_ 1. @ —€b@ 1o (W
=5:€ A(2):z 8(2),
whereA = (a;, £&(aj —€jb))(b+¢jr) = +a (b £ ¢jr). Therefore
[ @), Xo(ke;, w)] = +3a; €@ TP (b2) £ ¢r (2)):27%5 (2 )
— 1A A le (W
= %aj Xo(da;, 27 15( %),
which is the required relation. To prove relation (R&8e have

[Xo(ai, 2), Xo(aj, w)]
= 6@ DD pz) 4 r(2):, e @O ) —ejrw)):]

=%(:eko(a‘ HAPHD@ A (2): 7715 (2) 4+ Brefo B f'b“Jb)(Z):z*lawa(g)),

where, by applying Corollary 3.2,

B:(b—i—éil’,b—éjr)_(ai _Eib,b_ejI’)(b‘i‘eir,—aj ;O€jb>

ko
= —2ko — 2¢i€jko,
A=(b+ar, —aj_e]b)(b—fjf)
B (a Eoeib’ b—e,-r>(b+€ir)— (_2k0—2€i€jko><_aj ;Oéjb)
= —2(1+¢€j¢€j)a.

Therefore, we get

1 o & bhic b))
[Xo(ai,Z),Xo(—ou',w)]=—%(1+eiej)(:e%(a‘ 3 —aib+eiD)(@)

1o _a _¢ X
+koek0(ai a;j €Ib+€]b)(z):z—law8(%))

= —8ij (aj@Z 8(%) +koz 10u8(%)) .

aj(2):2715(2)

as required.
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(R4) contains two types of relations. We give only the proof for the “positive”
case. The “negative” case can be proved similarly.

[Xo(ati, 2), Xo(aj, w)]

= 1[:e5® PP (b(g) +air (2)): . 6@ T (bw) + €1 (w)):]

= %1 (:e%("’" +8j—€ib=¢;b)@) A2):Z2715(%) + B :efo @3~ b_éjb)(z):z‘lawé(%) ,
where, by applying Corollary 3.2,

ai—E'b a—eib
B:(b+eir,b—|—6jr)—(T',b+6jr)<b+eir, 1) ):2ko(€i€j—1),
A=<b+eir, aj_ejb)(b—l—ej-r)

a—eib aj—ejb

—( kol ,b+6jr)(b+€ir)—2ko(€i€j—1)( Jkoj )

=2(1—¢€¢€j)a;.

Thereforel Xo(«i, 2), Xo(aj, w)] = 0 and, fori # j,
[Xo(ai, 2), Xo(aj, w)]
= :eémaj (Z):Z‘%(%) — m:e%m:z—lawa(%).
Clearly, fori # j, the vertex operatoXg(«j, Z) commutes with
o@D

Therefore to complete the proof of relation (R&e only need to show the identity
1) [ Xo(ai, z1), [Xo(i, 22), IG%M(ZB)G\J‘ (23):]]=0
fori # j. Indeed,
[Xo(ei. 2), :efe @)W, ()]

= 1@ DD (b aryz):, @ W ()]

= 3(seo PP A Ay 75 (4) + Brefe P 20y 5(ny),
where, by applying Corollary 3.2,

B=(b+er, a)) — (a; ;;ib,aj><b+eir, ai—kzaj> =0

and

A= (b+eir, ai:Oaj )aj - (ai ;oéib,aj>(b+eir) =2(b+e€r);
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that is
[Xo(ozi, 2). :e%(maj)(w)aj (w):] _ :e%(Zai‘FajiGib)(Z)(b_i_Eir):z—15<ﬂ>.
z
Therefore (1) is reduced to the identity

[Xo(ei. 2). el PFA=ADW (4 ¢ py(1y):] =0

fori # j. The left side is equal to
%[:e%mm(b—l-eir)(z): , :e%(za‘+aj_eib)(lu)(b+eir)(w):]

=3 (:eﬁmA(z):z‘lcs(%) + B:e%m:z‘lawé(%)) :
where, by applying Corollary 3.2,

ai—Eib
ko

2a; +aj —€; b)

Ko =0

B=(b+eir,b+eir)—( ,b+eir>(b—|—eir,

and

A= (b—l—eir, Zai+aTj_Eib)(b—l—eir)— (a'_Tf'b b+6ir>(b+€ir) =0,

giving the desired identity. d

From the construction of the representation for the toroidal Lie algebra given
in the previous theorem, it is easy to see that the operatd@ks + a(k) act on
the Fock spac#/ trivially for all positive integersk, which in turn implies that
the central elementg (5(k)) act as the zero operator f&r> 0. Therefore the
representation is not faithful. Indeed, the quotient spa¢® of the Fock space

ClCal @ S(¥™)

defines a representation for the double affine Lie alg&pfA1), which is isomor-
phic to the Lie algebra (A;) modulo all central elements of degree other then
zero (see Section 2).

Corollary 3.4. The vector space ¥0) is endowed with a representation of the
double affine Lie algebraglA;) with level{kg, 0), under the formula given before
Theorem 3.3.

We will study this module structure again in the next section.

To give a faithful representation of the toroidal Lie algebra, we consider the
rank-six lattice

1
= E(Zaoe]aZaleBZbEBZceBZd)@ Zr,

ko + 2
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with the symmetric bilinear form determined by

(b’ b)=_2k05 (r7r)=2(k0+2)9 (C7 d)=k09 (alva])zkoau fori7 J =O, 19

all others being zero. Then

Fo = = 7(a—b) + —Z(ag +b) + —7c
0= 7~ - AC —
ko ko ko
is clearly an integral sublattice &f. LetI'j be the corresponding additive subgroup
of H=C®z T, andV the corresponding Fock space.
We also modify the vertex operators from the previous theorem to the form

X (*e1, 2) = 1:e6 @D (bz) 21 (2)):,
X (£ao, 2) = 1.6 6@ OD ) L1 (z)): .

Theorem 3.5. The coefficient operators of the vertex operatqiga X (+«;, 2),
fori =0, 1, acting on the Fock space V, generate a Lie algeb(&) isomorphic
to the toroidal Lie algebra TA1), the isomorphism begin given by the linear map
¢ defined by
¢ Ko,
a1(2) — a1(2),
a0(2) — a(2) +¢(2),
X(£aj, 2) = X(Faj,z) fori =0, 1

Therefore, on the Fock space V, we have a faithful representation of the toroidal
Lie algebra T(Ay).

Proof. We first need to show that the surjective mappindefines a Lie algebra
homomorphism fronT (A1) to £(A1). It suffices to show that the vertex operators
a (2), X(+q;, z) satisfy the corresponding power series identitiesYRR4). The
argument is just as in the proof of Theorem 3.3, and we omit it for brevity's sake.
We next use Proposition 2.2 to show that the mapyirg indeed an injective
homomorphism. Fos = 1180 + 1081 + p13b + pac € T with i € k—loz, let

€ ®@A1(—Ng)--- A(—ng) € V.
We define & x Q-gradation on the Fock spateby setting
deg€” @ A1(—N1) - - Ak(—NK)) = (N1 + - - - + N, Kopaao + Kopeoars).

With this gradation, the operatai(n), for a € H, is a homogeneous operator of
degree(—n, 0). Moreover, if the vertex operatof (+«;, 2) is formally expanded
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into power series as

X(@ei,2) =) Xm(Fa)z ™,
meZ

the coefficient operatoX,,(+«;) is a homogeneous operator of degfeen, +«;).
Thus the mapp is a (Zx Q)-graded Lie algebra homomorphism. To finish the
proof of this theorem, we need only show tlgasatisfies the three conditions of
Proposition 2.2.

Recall the notationm (a1 + k8) = ¥~ 1(£s™K @ x4), wheres = ap + a1 is
the null root inQ. Let

X(e,2) =Y Xm(@)z ™ fora = ta; +ks.

meZ

Then it is easy to show théh: x(«, 2) — X(«, 2), wherea = +a1 + ks, and

X (day + ks, 2) = 115 B OH@ITOD 1 ) o 7))
Applying Corollary 3.2 again we have
[X(a1+Kk8, 2), X(—a1 — ks, w)]
= —koz 10,6( %) — (@1 +Kk(ao +an) +koj@7 25(2).
This gives
[Xm(@1+k8), X_m(—a1 —k8)] = —a1(0) — k(@ + a1)(0) — kc(0) — mk,

which is clearly a nonzero operator for amyk € Z. Thusg is injective on the one-
dimensional subspack; = Cxm(«) for any real rootr = a1 + ks andk, me Z.
Moreover,

¢ (8(K)) = ao(k) +a1(k) +c(k)

is also a nonzero operator, apds clearly injective orCs(0) + C¢.
Finally, we need to show that, fon, k # 0,

[ Xm(aa +k8), Xo(—a1)] — [Xo(err +ké), Xm(—a1)] # 0,
[X1(o1 +k8), X_1(—a1)] — [X_1(e1 + k), X1(—a1)] # 0.
By Corollary 3.2,

)

[X(al +ké, 2), X(—a1, w)] + [X(—al, 2), X (a1 +K$, w)]
& (kag+ka+kO) (@) , _—1 w
. ak .
= —2kg:eh :Z 8w8(z>

[
+k:efo *@HkaKO@D o) Lo (7) +c(2)): 2718 (%)
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which gives
[X(a1+K8, 2), Xo(—a1)] — [Xo(a1 + ké), X(—z1, 2)]
= k:eio(@HaHOD (g0(7) 1 24(2) + c(2)): .

To see that the coefficient @™ in the expression on the right is nonzero for
m £ 0, we notice that

1 Kao+kai+ko)(2) _ 1 ke 1k
[ ek (kag+ka;+ko)(2) ko (kao+ka1+kC)(2)d (2): ]

(a0(2) +a1(2) +¢c(2)):, :e
— koz L9,8( L
=Koz 3w5( z)'

The coefficient oz~™~1 on the right-hand side of the previous identitkignw ™1,
which is nonzero wheneven # 0. This proves the first line in (2), while the
second can be proved by a similar argument which is omitted here. Thegeifore
an isomorphism of Lie algebras. a

Corollary 3.6. For any fixed k € Z, define
V(ky) =190 @ 5(37).
Then the vector space(¥) is endowed with a representation of the toroidal Lie

algebra T(Az) with level{(ko, k1).

4. Module structure

We now define a smaller module from our Fock space representation via the so-
called screening operator. We will only consider the case veher.
For given o, j1, 11,12 € C with jo+ j1 € 2%, set

ind &4, b r
. jor2 Jips l1x —lort—
Vijo,jwlyl: =€ e logttoe “kotz,

We define the Fock spadg;, j,,, to be the spac&(#~)vj, j,i1..1,. Then the
vertex operatorX (+«;, z) are well defined orfj, j, 1,1,, provided that 2j; — 1)
and 2 jo +11) are integers. It is clear that the vertex operators satisfy

X(£ao, 2): Fio,]1,|1,|2 ? F]oil,h,ll?lJz’
X(xa1, 2) : Fjg i1, — Fjo ji£1li+1,05-

Introduce a screening operat§y: Fj; j, 1,1, = Fjo,j1,|1+%,lz+¥ by setting
S( ) ‘ez (b(Z) r(Z)) Z S’]Z_n 1

This is well defined provided thét — 1, € Z.
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Proposition 4.1.

I (. & @b +ib-nw, 1
X ,Z), = -eko’ 2 : ,
{X(a1, 2), S(w)} ™ (

Z—w

{X(=a1,2), S(w)} =0,
{x(_O[O’ 2)7 S(w)} = 09

ad 1 (a0+b 1p_ 1
X (0. 2), S(w)} = - (:ek0<ao+ )w)+1( r)(w):_> '

Z—w
Proof. Let

Plar.2) = $(~a0.2) = 3:65"7 (0@ 1 @):,

$(@0.2) = p(~a1.2) == 3:e " P (b(@) +1(D):

be the parafermions. It follows from Lemma 3.1 that

¢ (a1, 2)S(w)
1 T . 1 1 1 p_ 2
1..b@ Lib—r)w). 1. i-b@+35b-r)(w)
~ 5:ek b—r)(z)ez i —— 4+ z:eko 2 —
5 ( )(2) w2 Z—w)?
3( Lbw)+ib-nw), 1 ) 0

~ —| :eb :
Jw Z—w

Let d be the zero mode 08(z): d = [ S(z)dz It is easy to check that the
anticommutatof S(z), S(2)} = 0, thusd gives rise to a complex of vector spaces:

ko

o sz —> Fi i
jo, ja.li—2 1= %= jo.jvlulz =

ijhJH%Jﬁ% > Fio.julitkolotkot2 = =+

We can define the restrictéld( A)-submodule using Proposition 4.1. Givewe
define aT (A)-submodule

R = @ ker(d: Fio.jvninl = Fjo,jl,j1+k70,l+¥>'
j1€l+2Z, joe—1+2

Theorem 4.2. The operator d commutes or anticommutes with elements of the
toroidal algebra T(A;) and & = 0. Moreover we have the long exact sequence

O FI @ Fj07j1ajl,| ? @ Fjo,jl,j1+%,|+kL;2

jO#jl jOle
@ Fio.j1 jitkol+kot2 —> =+,
jo,J1
where the maps fror®),, ;, Fjo.j,. s onward aregdd and the summations run
through e —l+Zand j el +Z.
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Proof. We introduce the operat@*(z) = e~ 2(@—1@) — Y, Sz " and set* =
S Itis easy to see thdS(z), S*(w)} = 1. Hencedd* 4+ d*d = 1, and we already
knew thatd? = 0. Thus the following long sequence of vector spaces is exact:

0~ kerFio-leil-' d— Fiojujul = Fjo,j1,11+k7°,l+k°—;2 = Fio,ju,jutko+kot2 = - -
Taking the direct sum we obtain Theorem 4.2. d
Sinceag(n) 4+ a1(n) acts trivially we can modulo the relation and define
R = Fi/(ao(n) +a1(n); —n € N);

then it is also al (A1)-module and the results in Proposition 4.1 obviously hold
for the moduleF,. If we further moduloa; (0) + ag(0) we will obtain the Verma
module for the affine Lie algebra generically.

Using the exact sequence we can compute the character for the nigdage
follows.

Theorem 4.3.The character of the (I'Al)—moduleﬁ is given by

r kot+2,. , ko
Zaeée—lmﬁ(%w?b)ea
[1(e=%) [T(e=%) [T(e~?)

ch(F) =) (-1)°
s=0

where

_ 1
H(x):rl:lo(l—xm) and Q:E(ZaHZb). O
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