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THE KERNEL OF Burau (4) ® Zp IS ALL PSEUDO-ANOSQOV

SANG JIN LEE AND WON TAEK SONG

The kernel of Burau(4) ® Z, the reduced Burau representation with coeffi-
cients inZ , of the 4-braid group Bs, consists only of pseudo-Anosov braids.

1. Introduction

Given two pseudo-Anosov homeomorphisms with distinct invariant measured fo-
liations, some powers of their isotopy classes generate a rank two free subgroup
of the mapping class group of the surface [Long 1986]. This construction gives an
example of all pseudo-Anosov subgroup of the mapping class group. A positive
answer is given in [Whittlesey 2000] to the natural question of the existence of all
pseudo-Anosowiormal subgroups by showing that the Brunnian mapping classes
on a sphere with at least five punctures are neither periodic nor reducible. Not every
Brunniann-braid maps to a Brunnian mapping class oriran1)-punctured sphere.

One can however show that a nontrivial Brunniahraid should be pseudo-Anosov

for n > 3, by adapting the arguments in [Whittlesey 2000].

In this note we show that the kernel of Butdu® 7, the reduced Burau repre-
sentation with coefficients i, of the 4-braid grouB,, consists only of pseudo-
Anosov braids. Our result also implies that the kernel of Bi#auf nontrivial, is
all pseudo-Anosov. By [Cooper and Long 1997; 1998], B#a® Z, for p=2, 3
is not faithful. It is straightforward to check that there exist non-Brunnian braids in
the kernels, hence giving new examples of all pseudo-Anosov normal subgroups
of B4 that are not contained in the example of Whittlesey.

For the proof, assume that we are given a nontrivial 4-braid that is not pseudo-
Anosov. Ifitis periodic, it is conjugate to a rigid rotation [Brouwer 1919], whose
Burau action is clearly nontrivial. Ifitis reducible, then in many ways it is similar to
a 3-braid so that its Burau action is fairly predictable, for which case an automaton
that records the polynomial degrees suffices to prove faithfulness. Our argument is
similar to that of the ping-pong lemma. We construct an automaton whose states
are disjoint subsets dfp|t, t—11% and whose arrows are braid actions that map the
subsets into the subsets.
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For braids with more than four strands, this approach immediately faces obsta-
cles. Since Bura4) ® Z» is not faithful, the kernel of Burai®) ® 7, contains
reducible braids. Taking other representations or taking intersection with other
subgroups to get rid of such reducible braids then makes the proof more difficult.

We remark that the present result is a byproduct of working on the faithfulness
question of Bura@) [Moody 1991; 1993; Long and Paton 1993; Bigelow 1999].

2. No periodic or reducible braids

The n-braid groupB, consists of the mapping classes on thpunctured disk.
The center ofB, is the infinite cyclic group generated by the Dehn twist along
the boundary. A braid is callggeriodicif some of its powers are contained in the
center. A braid is callededucibleif it is represented by a disk homeomorphism
that fixes a collection of disjoint essential curves. If a braid is neither periodic
nor reducible, the Nielsen—Thurston classification of surface homeomorphisms
[Thurston 1988; Fathi et al. 1979] implies that it is represented by a pseudo-Anosov
homeomorphism. Such a braid is calfekudo-Anoso\A subgroup ofB, is called
all pseudo-Anosoif its nontrivial elements are all pseudo-Anosov.

Then-braid groupB, has the presentation

oioi =0ojoi, |i—]j|>2
Bn:<01,...,on_1 oy =ojoi, li—jlz2 >
oiojoj =ojojoj, |Ii—]j|=1
The reduced Burau representation
on = Buraun) : B, — GL,_1(Z[t, t™1])

is defined by the action on the first homology of the cyclic cover of the punctured
disk. For the purpose of this note, it suffices to defidy the three matrices

-t 0O 1 t O 1 0 O
palcr)=| 1 1 0O}, p4c2)=|0 -t O}, psa(03)=|0 1 't
0 01 0O 1 1 0 0 —t

We use the convention th& acts onZ[t, t=1]® from the right. We denote by
v, B, or more simply by % 8, the matrix multiplicatiorwp (8) for a row vector
v, arepresentatiop and a braigs. For example( f, g, h)x,,01 = (—-tf 4+g, g, h)
for f,g,hez[t, t71].

Theorem 1. The kernel of ps ® Zp) : B4 — GL3(Zplt, t~1]) for p > 2 does not
contain a nontrivial periodic or reducible braid. In particular s ® Z is not
faithful, its kernel is an all pseudo-Anosov normal subgroup of B

The proof will involve several lemmas.

Lemma 2. pn ® Z,, is faithful for periodic braids.
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Proof. If g € B, is a periodicn-braid, then it is represented by a rigid rotation on
the punctured disk [Brouwer 1919] so that it is conjugatéotp.s - - - 0201)% or to
(on_1- - - 020101) for somek € Z. Since def(pn ® Zp)(B)) = (—1)*P), where the
exponent sune(B) is k(n — 1) or kn, we see that if§ is in the kernel ofon ® Zp,
thenk = 0 and§g is trivial. O

Let A3 = 010201 € B3 and A4 = 010201030201 € Bs be the square roots of
the generator of the center 8 and By, respectively. For a Laurent polynomial
f(t) = > ,amt™, define degf = maxm : an # 0}. By convention we define
degf = —o0if f =0.

Lemma 3. p3 ® Z, is faithful.

Proof. Let p = p3®Z, be the reduced Burau representatioBgivith coefficients
in Zy. Itis given by the matrices

p(al)=(_tl 2) ,0(02)=<é _E)

Suppose thap(8) is trivial for some nontrivial 3-braigs. By Lemma 2, it is
either reducible or pseudo-Anosov. fgfis reducible, it is conjugate ta%ma{‘
for some integer& andm, which is an arbitrary 3-braid with an invariant curve
standardly embedded in the disk enclosing the first two punctures as in Figure 1,
right. Sincep () is trivial,

m m( (DK 0
peagraly o (7 1)

must be the identity matrix. Sn=0 andk =0 hences is trivial, which contradicts
the assumption.

If B is pseudo-Anosoy, it is conjugate RJ(ol‘l, az)Ag" whereP is a positive
word on two letters [Murasugi 1974; Song et al. 2002]. By taking inverse or
conjugation byAg if necessary, we can assume thio,; 1 ov) starts withoo.

In other wordsg or 1 is conjugate tar = on(al‘l, oz)Ag" for some positive
word Q. Thep-actions ofafl, o2 andA% onZplt, t~1]2 are given as follows: for
v=(f,g) e Zplt, t71]?,

vko t=(—t7X(f —0),09), vxop=(f,t(f—g) and vxAZ= (31, t3g).

Consider the subs#t = {(f, g) € Z,[t, t71]1?|degf < degg}. Itis easy to check
that Vp is invariant under the action Qf{l, o and A%. Letvg = (1,0). Then
Vo*k 02 = (1, t) € Vo, SO thatvo *o = (1, 1) * Q(Ul_l, O'z)Aék e V. Sincevo g Vo,
we havevg * o # vg, which contradicts the assumption tigais in the kernel ofp.
O
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o

Figure 1. Up to homeomorphisms on a 4-punctured disk, there
are only two essential curves.

Proof of Theorem 1Let p = p4 ® Z be the reduced Burau representatiorBgf
with coefficients inZ,. Assumeo(p) is trivial for some nontrivial 4-braig € By.

The braidg is either reducible or pseudo-Anosov by Lemma 2. We need to show
that 8 is not reducible.

Suppose thas is reducible. By taking some power gfif necessary, we may
assume thag is represented by a homeomorphism that fixes an essential simple
closed curveC. By applying a conjugation by a braid that ser@@iso one of the
curves in Figure 1, we assume ti@ais one of the two standardly embedded curves
and the homeomorphism representhjixesC.

Let C be the curve enclosing the first three punctures as Figure 1, left. Ahen
can be written ag = AimW(al, o») for an integem and a wordW on two letters.
Observing that the-action by a 3-braid leaves the third coordinate invariant, i.e.,
(f, g, h) * W(o1, 02) = (f1, g1, h), we have(0, 0, 1) x 8 = (f, g, t*™) for some
f,g e Zplt, t~1]. Sincep(p) is trivial, we obtainm = 0, which in turn implies
that 8 is in (o1, 02) = B3 C Bs. The faithfulness ops ® Z, by Lemma 3 leads to
a contradiction.

Now assume that contains the first two punctures as Figure 1, right. The 4-
braids represented by homeomorphisms that fimrm a subgroup oB,4 generated
by o1, X = 0201202 andy = o3. Sinceo; commutes with botkx andy, we write

B =afW(X,y)

for an integeik and a wordW on two letters.

By using the relationgyxy= yxyx (xyxyo?= A2 and thatxyxycommutes
with X, y andoq, we rewrites into another form by which we will tractO, 0, 1)x 8.

By replacingx—! with (yxy)(xyxy~* andy~1 with (xyx)(xyxy~! and then
collecting (xyxy*! to the left, we haveW(x, y) = (xyxy)"P(x, y) for some
integerm and a positive wordP on two letters. We can assume that we have moved
(xyxy to the left as many as possible so that neitkggxy nor yxyxoccurs inP
as a subword. We have

B = ok (xyxyMP(x, y) = AZMgk2Mp(x, y).

We claim thatP contains bothx andy as a subword. IP does not contaity,
i.e., P =x for somel > 0, theng = AZMok2Mx! = AZMGK=2M(0y520,)! fixes
the curve in Figure 1, left. By the previous argumgnis trivial. If P does not
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contain, i.e., P =y for somel > 0, theng = A2"s£~2My!. From the equalities
(0,0,1) ¥ = (0,0, (=)™, (1,0,00%p = (—t)™+&=2M 0, 0),

we deducé = —4m andk = —2m. The exponent sum(8) = 12m+ (k—2m)+I| =
4m should equal zero singg(B) is trivial. Therefore we haven=| =k =0, which
implies thatg is trivial.

Next, sincex andy both commute witle; andA2, by applying a conjugation we
may assume tha starts withy and ends wittx. In Figure 2, left, we construct an
automaton that accepts a positive wordjry without any occurrence ofyxyand

yxyx Arbitrary paths following the arrows give words accepted by the automaton.
Now we have

B = A2"aXT2MQ(X, Y, XY, YX, YXY, XYX)
for some positive word) accepted by the automaton in Figure 2, left. Note that

Q starts with one ofy, yxy, yx and ends with one of, xyx, yx. In other words,
Q is represented by a path starting at the s¥atnd ending at the staté.

We replacexyx by y=1(xyxy), yxyby x~1(xyxy) and then collect alxyxy)’s
to the left to obtain

B = Aol Q(x, y, xy, yx, x 1 y Y
for somek; andm;.
Consider the subsets @f[t, t~]3 given by

Vx = {(f, g, h) € Zp[t,t 7113 | degg > degf, degg > degh},
W = {(f,g,h) € Zp[t,t 7113 | degh > degf, degh > degg).

X XyX X y1

y yxy y x~1

Figure 2. Left: an automaton that accepts exactly those words not
containingxyxyor yxyx Right: see next page.
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The p-action of each arrow of the automaton in Figure 2, right, is given as
follows. Letv = (f, g, h) € Z,[t, t~1]3 be an arbitrary vector.

vix = (tf + 2 =g+ @ —vh, t3g+ @ —-tDh, h),
v*y:(f, g, tg—th),
v (Xy) = (tf + (t? = t)g+ (1 —t)h, t3g+ (1 —tHh, t*g—t>h),
vk (yx) = (tf + 2= vh, tg+ (> —vh, tg—th),
vax t= (T + -t A)g+ t2—t5h, t3g+ t"2-t~3h, h),
v*y_lz(f, g, g—t_lh).

Then it is routine to check from these formulae that

VX CVx, Vxxy 1cVx, Vxx(Xy)cCW,
WxyCWy, Wxx1cVy, Vyx(yx) C Vx.
These relations are compatible with the automaton in Figure 2, right. If a path
starts atY and ends aX then thep-action of its braid word map¥®y into Vx. So
we haveVy x Q C Vx for Q = Q(x, y, Xy, yx, x 1, y™1).
Since(0, 0, t*™) e Vi, we have
(0,0, 1)% 8 =(0,0,1) x A2™sl1Q
=(0,0,t"™) x0f1Q
=(0,0,t*™) x Q,

which lies inVx. Since(0, 0, 1) € Vy andVxNVy = &, the condition(0, 0, 1)«
Vyx implies thatp (8) is nontrivial. O

We remark that the group generated>bwandy is the Artin group of Coxeter
type B, and thatxyxy= yxyxis the defining relation of the subgroup generated
by x andy. So the subgroup generated kyy ando is the direct product of the
infinite cyclic subgroup generated by and the subgroup generated:oandy.

NS~
}%\JJ\L

Figure 3. The braido; ‘0301030, %05 t, whose fourth power is
in the kernel of Bura@) ® Z».
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Figure 4. A braid in the kernel of Burai) ® Zs.

3. Non-Brunnian elements

Cooper and Long [1997] obtained a presentation of the image &f Z». As a
corollary, p4®Z, is not faithful. The same authors computed in [Cooper and Long
1998] a presentation of a group containing the imagp,a Z3 as a finite index
subgroup and gave a nontrivial braid in the kernel explicitly. In this section we
show that the examples of Cooper and Long are not Brunnian.

Let ak = (o1 toko1030, a5 1)* for k # 0. (See Figure 3 for the expression in
parentheses, witk = 3.) The braidwx comes from the fourth relation of [Cooper
and Long 1997, Theorem 1.4] and is in the kerneBp® Z,. ay is not Brunnian
because we obtaidﬂfk by forgetting the second and the fourth strands.

Now leta be the braid

2 -2 _—2 -3 _-1 -1 2 -2 _—-1_-2

1010, 2010302_ 1030230102_ 10302_ 10102_ 20103?0203_ 1,
as in Figure 4. It is conjugate to the braid given by [Cooper and Long 1998] as a

nontrivial element of ker Burad) ® Z3. It is easy to see that is not Brunnian. If
we forget the fourth strand from as Figure 5, we get a nontrivial 3-braid

o = 0220102_ 101_ 302_ 101202_ 201_ 202301_ 10201_ 1022

—1_ -1 _2\3,-2
= (020, 0204 "05)"A3".

ol N AT - O\
id\xww\f\,\/%
|

%Xmﬁ/ ‘7\\/\@\’/9 //\

Figure 5. Forgetting the fourth strand.




310 SANG JIN LEE AND WON TAEK SONG

References

[Bigelow 1999] S. Bigelow, “The Burau representation is not faithful foe= 5", Geom. Topol3
(1999), 397-404. MR 2001j:20055 Zbl 0942.20017

[Brouwer 1919] L. E. J. Brouwer, “Uber die periodischen Transformationen der Kugédith. Ann.
80(1919), 39-41. JFM 47.0527.01

[Cooper and Long 1997D. Cooper and D. D. Long, “A presentation for the image of B@a®
Z5", Invent. Math.127.3 (1997), 535-570. MR 97m:20050 Zbl 0913.57009

[Cooper and Long 1998P. Cooper and D. D. Long, “On the Burau representation modulo a small
prime”, pp. 127-138 ifThe Epstein birthday schrifGeom. Topol. Monogil, Geom. Topol. Publ.,
Coventry, 1998. MR 99k:20077 Zbl 0923.20030

[Fathi et al. 1979]A. Fathi, F. Laudenbach, and V. Poénafuavaux de Thurston sur les surfaces
Astérisqueb6, Société Math. de France, Paris, 1979. MR 82m:57003 Zbl 0731.57001

[Long 1986] D. D. Long, “A note on the normal subgroups of mapping class grougath. Proc.
Cambridge Philos. So@9:1 (1986), 79-87. MR 87¢:57009 Zbl 0584.57008

[Long and Paton 1993p. D. Long and M. Paton, “The Burau representation is not faithful for
n > 6", Topology32:2 (1993), 439-447. MR 94¢:20071 Zbl 0810.57004

[Moody 1991] J. A. Moody, “The Burau representation of the braid gr@&pis unfaithful for large
n”, Bull. Amer. Math. SoqN.S) 25:2 (1991), 379-384. MR 92b:20041 Zbl 0751.57005

[Moody 1993] J. A. Moody, “The faithfulness question for the Burau representatiBrdc. Amer.
Math. Soc1192 (1993), 671-679. MR 93k:57019 Zbl 0796.57004

[Murasugi 1974]K. Murasugi, On closed3-braids Memoirs Amer. Math. Socl51, American
Mathematical Society, Providence, 1974. MR 50 #8496 Zbl 0327.55001

[Song et al. 2002]W. T. Song, K. H. Ko, and J. E. Los, “Entropies of braidg’,Knot Theory
Ramificationsl 1:4 (2002), 647—666. MR 1 915 500 Zbl 1010.57004

[Thurston 1988]W. P. Thurston, “On the geometry and dynamics of diffeomorphisms of surfaces”,
Bull. Amer. Math. SoqN.S) 19:2 (1988), 417-431. MR 89k:57023 Zbl 0674.57008

[Whittlesey 2000] K. Whittlesey, “Normal all pseudo-Anosov subgroups of mapping class groups”,
Geom. Topol4 (2000), 293—-307. MR 2001j:57022 Zbl 0962.57007

Received March 24, 2004. Revised June 6, 2004.

SANG JIN LEE

DEPARTMENT OFMATHEMATICS
KONKUK UNIVERSITY
GWANGJIN-GU, SEOUL 143-701
KOREA

sangjin@konkuk.ac.kr

WON TAEK SONG

SCHOOL OF MATHEMATICS

KOREA INSTITUTE FORADVANCED STUDY
207-43 GHEONGNYANGNI 2-DONG
DONGDAEMUN-GU, SEOUL 130-722
KOREA

cape@kias.re.kr



