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THE KERNEL OF Burau (4) ⊗ Z p IS ALL PSEUDO-ANOSOV

SANG JIN LEE AND WON TAEK SONG

The kernel of Burau(4)⊗Z p, the reduced Burau representation with coeffi-
cients inZ p of the 4-braid group B4, consists only of pseudo-Anosov braids.

1. Introduction

Given two pseudo-Anosov homeomorphisms with distinct invariant measured fo-
liations, some powers of their isotopy classes generate a rank two free subgroup
of the mapping class group of the surface [Long 1986]. This construction gives an
example of all pseudo-Anosov subgroup of the mapping class group. A positive
answer is given in [Whittlesey 2000] to the natural question of the existence of all
pseudo-Anosovnormalsubgroups by showing that the Brunnian mapping classes
on a sphere with at least five punctures are neither periodic nor reducible. Not every
Brunniann-braid maps to a Brunnian mapping class on an(n+1)-punctured sphere.
One can however show that a nontrivial Brunniann-braid should be pseudo-Anosov
for n ≥ 3, by adapting the arguments in [Whittlesey 2000].

In this note we show that the kernel of Burau(4)⊗Zp, the reduced Burau repre-
sentation with coefficients inZp of the 4-braid groupB4, consists only of pseudo-
Anosov braids. Our result also implies that the kernel of Burau(4), if nontrivial, is
all pseudo-Anosov. By [Cooper and Long 1997; 1998], Burau(4)⊗Zp for p= 2, 3
is not faithful. It is straightforward to check that there exist non-Brunnian braids in
the kernels, hence giving new examples of all pseudo-Anosov normal subgroups
of B4 that are not contained in the example of Whittlesey.

For the proof, assume that we are given a nontrivial 4-braid that is not pseudo-
Anosov. If it is periodic, it is conjugate to a rigid rotation [Brouwer 1919], whose
Burau action is clearly nontrivial. If it is reducible, then in many ways it is similar to
a 3-braid so that its Burau action is fairly predictable, for which case an automaton
that records the polynomial degrees suffices to prove faithfulness. Our argument is
similar to that of the ping-pong lemma. We construct an automaton whose states
are disjoint subsets ofZp[t, t−1

]
3 and whose arrows are braid actions that map the

subsets into the subsets.
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For braids with more than four strands, this approach immediately faces obsta-
cles. Since Burau(4) ⊗ Z2 is not faithful, the kernel of Burau(5) ⊗ Z2 contains
reducible braids. Taking other representations or taking intersection with other
subgroups to get rid of such reducible braids then makes the proof more difficult.

We remark that the present result is a byproduct of working on the faithfulness
question of Burau(4) [Moody 1991; 1993; Long and Paton 1993; Bigelow 1999].

2. No periodic or reducible braids

The n-braid groupBn consists of the mapping classes on then-punctured disk.
The center ofBn is the infinite cyclic group generated by the Dehn twist along
the boundary. A braid is calledperiodic if some of its powers are contained in the
center. A braid is calledreducibleif it is represented by a disk homeomorphism
that fixes a collection of disjoint essential curves. If a braid is neither periodic
nor reducible, the Nielsen–Thurston classification of surface homeomorphisms
[Thurston 1988; Fathi et al. 1979] implies that it is represented by a pseudo-Anosov
homeomorphism. Such a braid is calledpseudo-Anosov. A subgroup ofBn is called
all pseudo-Anosovif its nontrivial elements are all pseudo-Anosov.

Then-braid groupBn has the presentation

Bn =

〈
σ1, . . . , σn−1

∣∣∣∣ σi σ j = σ j σi , |i − j | ≥ 2
σi σ j σi = σ j σi σ j , |i − j | = 1

〉
The reduced Burau representation

ρn = Burau(n) : Bn → GLn−1(Z[t, t−1
])

is defined by the action on the first homology of the cyclic cover of the punctured
disk. For the purpose of this note, it suffices to defineρ4 by the three matrices

ρ4(σ1) =

−t 0 0
1 1 0
0 0 1

 , ρ4(σ2) =

1 t 0
0 −t 0
0 1 1

 , ρ4(σ3) =

1 0 0
0 1 t
0 0 −t

 .

We use the convention thatB4 acts onZ[t, t−1
]
3 from the right. We denote by

v ∗ρ β, or more simply byv ∗ β, the matrix multiplicationvρ(β) for a row vector
v, a representationρ and a braidβ. For example,( f, g, h)∗ρ4 σ1 = (−t f +g, g, h)

for f, g, h ∈ Z[t, t−1
].

Theorem 1. The kernel of(ρ4 ⊗ Zp) : B4 → GL3(Zp[t, t−1
]) for p ≥ 2 does not

contain a nontrivial periodic or reducible braid. In particular ifρ4 ⊗ Zp is not
faithful, its kernel is an all pseudo-Anosov normal subgroup of B4.

The proof will involve several lemmas.

Lemma 2. ρn ⊗ Zp is faithful for periodic braids.
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Proof. If β ∈ Bn is a periodicn-braid, then it is represented by a rigid rotation on
the punctured disk [Brouwer 1919] so that it is conjugate to(σn−1 · · · σ2σ1)

k or to
(σn−1 · · · σ2σ1σ1)

k for somek ∈ Z. Since det
(
(ρn ⊗Zp)(β)

)
= (−t)e(β), where the

exponent sume(β) is k(n − 1) or kn, we see that ifβ is in the kernel ofρn ⊗ Zp,
thenk = 0 andβ is trivial. �

Let 13 = σ1σ2σ1 ∈ B3 and14 = σ1σ2σ1σ3σ2σ1 ∈ B4 be the square roots of
the generator of the center ofB3 and B4, respectively. For a Laurent polynomial
f (t) =

∑
m amtm, define degf = max{m : am 6= 0}. By convention we define

deg f = −∞ if f = 0.

Lemma 3. ρ3 ⊗ Zp is faithful.

Proof. Let ρ = ρ3⊗Zp be the reduced Burau representation ofB3 with coefficients
in Zp. It is given by the matrices

ρ(σ1) =

(
−t 0

1 1

)
, ρ(σ2) =

(
1 t
0 −t

)
.

Suppose thatρ(β) is trivial for some nontrivial 3-braidβ. By Lemma 2, it is
either reducible or pseudo-Anosov. Ifβ is reducible, it is conjugate to12m

3 σ k
1

for some integersk andm, which is an arbitrary 3-braid with an invariant curve
standardly embedded in the disk enclosing the first two punctures as inFigure 1,
right. Sinceρ(β) is trivial,

ρ(12m
3 σ k

1 ) = t3m
(

(−t)k 0
∗ 1

)
must be the identity matrix. Som=0 andk=0 henceβ is trivial, which contradicts
the assumption.

If β is pseudo-Anosov, it is conjugate toP(σ−1
1 , σ2)1

2k
3 whereP is a positive

word on two letters [Murasugi 1974; Song et al. 2002]. By taking inverse or
conjugation by13 if necessary, we can assume thatP(σ−1

1 , σ2) starts withσ2.
In other words,β or β−1 is conjugate toα = σ2Q(σ−1

1 , σ2)1
2k
3 for some positive

word Q. Theρ-actions ofσ−1
1 , σ2 and12

3 on Zp[t, t−1
]
2 are given as follows: for

v = ( f, g) ∈ Zp[t, t−1
]
2,

v ∗σ−1
1 = (−t−1( f − g), g), v ∗σ2 = ( f, t ( f − g)) and v ∗12

3 = (t3 f, t3g).

Consider the subsetV0 =
{
( f, g) ∈ Zp[t, t−1

]
2
| deg f < degg

}
. It is easy to check

that V0 is invariant under the action ofσ−1
1 , σ2 and12

3. Let v0 = (1, 0). Then
v0 ∗σ2 = (1, t) ∈ V0, so thatv0 ∗α = (1, t) ∗ Q(σ−1

1 , σ2)1
2k
3 ∈ V0. Sincev0 6∈ V0,

we havev0∗α 6= v0, which contradicts the assumption thatβ is in the kernel ofρ.
�
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Figure 1. Up to homeomorphisms on a 4-punctured disk, there
are only two essential curves.

Proof ofTheorem 1. Let ρ = ρ4 ⊗ Zp be the reduced Burau representation ofB4

with coefficients inZp. Assumeρ(β) is trivial for some nontrivial 4-braidβ ∈ B4.
The braidβ is either reducible or pseudo-Anosov byLemma 2. We need to show
thatβ is not reducible.

Suppose thatβ is reducible. By taking some power ofβ if necessary, we may
assume thatβ is represented by a homeomorphism that fixes an essential simple
closed curveC. By applying a conjugation by a braid that sendsC to one of the
curves inFigure 1, we assume thatC is one of the two standardly embedded curves
and the homeomorphism representingβ fixesC.

Let C be the curve enclosing the first three punctures asFigure 1, left. Thenβ

can be written asβ = 12m
4 W(σ1, σ2) for an integerm and a wordW on two letters.

Observing that theρ-action by a 3-braid leaves the third coordinate invariant, i.e.,
( f, g, h) ∗ W(σ1, σ2) = ( f1, g1, h), we have(0, 0, 1) ∗ β = ( f, g, t4m) for some
f, g ∈ Zp[t, t−1

]. Sinceρ(β) is trivial, we obtainm = 0, which in turn implies
thatβ is in 〈σ1, σ2〉 = B3 ⊂ B4. The faithfulness ofρ3 ⊗ Zp by Lemma 3leads to
a contradiction.

Now assume thatC contains the first two punctures asFigure 1, right. The 4-
braids represented by homeomorphisms that fixC form a subgroup ofB4 generated
by σ1, x = σ2σ

2
1 σ2 andy = σ3. Sinceσ1 commutes with bothx andy, we write

β = σ k
1 W(x, y)

for an integerk and a wordW on two letters.
By using the relationsxyxy= yxyx, (xyxy)σ 2

1 = 12
4 and thatxyxycommutes

with x, y andσ1, we rewriteβ into another form by which we will track(0, 0, 1)∗β.
By replacingx−1 with (yxy)(xyxy)−1 and y−1 with (xyx)(xyxy)−1 and then

collecting (xyxy)±1 to the left, we haveW(x, y) = (xyxy)mP(x, y) for some
integerm and a positive wordP on two letters. We can assume that we have moved
(xyxy) to the left as many as possible so that neitherxyxynor yxyx occurs inP
as a subword. We have

β = σ k
1 (xyxy)mP(x, y) = 12m

4 σ k−2m
1 P(x, y).

We claim thatP contains bothx andy as a subword. IfP does not containy,
i.e., P = xl for somel ≥ 0, thenβ = 12m

4 σ k−2m
1 xl

= 12m
4 σ k−2m

1 (σ2σ
2
1 σ2)

l fixes
the curve inFigure 1, left. By the previous argumentβ is trivial. If P does not
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containx, i.e., P = yl for somel ≥ 0, thenβ = 12m
4 σ k−2m

1 yl . From the equalities

(0, 0, 1) ∗ β = (0, 0, (−t)4m+l ), (1, 0, 0) ∗ β = ((−t)4m+(k−2m), 0, 0),

we deducel =−4m andk =−2m. The exponent sume(β)= 12m+(k−2m)+l =

4m should equal zero sinceρ(β) is trivial. Therefore we havem= l = k =0, which
implies thatβ is trivial.

Next, sincex andy both commute withσ1 and12
4, by applying a conjugation we

may assume thatP starts withy and ends withx. In Figure 2, left, we construct an
automaton that accepts a positive word inx, y without any occurrence ofxyxyand
yxyx. Arbitrary paths following the arrows give words accepted by the automaton.
Now we have

β = 12m
4 σ k−2m

1 Q(x, y, xy, yx, yxy, xyx)

for some positive wordQ accepted by the automaton inFigure 2, left. Note that
Q starts with one ofy, yxy, yx and ends with one ofx, xyx, yx. In other words,
Q is represented by a path starting at the stateY and ending at the stateX.

We replacexyx by y−1(xyxy), yxyby x−1(xyxy) and then collect all(xyxy)’s
to the left to obtain

β = 1
2m1
4 σ

k1
1 Q(x, y, xy, yx, x−1, y−1)

for somek1 andm1.

Consider the subsets ofZp[t, t−1
]
3 given by

VX = {( f, g, h) ∈ Zp[t, t−1
]
3
| degg > deg f, degg ≥ degh},

VY = {( f, g, h) ∈ Zp[t, t−1
]
3
| degh > deg f, degh > degg}.

y

x

yx xy

xyx

yxy

X

Y

y

x

yx xy

y−1

x−1

X

Y

Figure 2. Left: an automaton that accepts exactly those words not
containingxyxyor yxyx. Right: see next page.
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The ρ-action of each arrow of the automaton inFigure 2, right, is given as
follows. Letv = ( f, g, h) ∈ Zp[t, t−1

]
3 be an arbitrary vector.

v ∗ x =
(
t f + (t2

− t)g+ (1− t)h, t3g+ (1− t2)h, h
)
,

v ∗ y =
(

f, g, tg− th
)
,

v ∗ (xy) =
(
t f + (t2

− t)g+ (1− t)h, t3g+ (1− t2)h, t4g− t3h
)
,

v ∗ (yx) =
(
t f + (t2

− t)h, tg+ (t3
− t)h, tg− th

)
,

v ∗ x−1
=

(
t−1 f + (t−3

− t−2)g+ (t−2
− t−3)h, t−3g+ (t−2

− t−3)h, h
)
,

v ∗ y−1
=

(
f, g, g− t−1h

)
.

Then it is routine to check from these formulae that

VX ∗ x ⊂ VX,

VY ∗ y ⊂ VY,

VX ∗ y−1
⊂ VX,

VY ∗ x−1
⊂ VY,

VX ∗ (xy) ⊂ VY,

VY ∗ (yx) ⊂ VX.

These relations are compatible with the automaton inFigure 2, right. If a path
starts atY and ends atX then theρ-action of its braid word mapsVY into VX. So
we haveVY ∗ Q ⊂ VX for Q = Q(x, y, xy, yx, x−1, y−1).

Since(0, 0, t4m1) ∈ VY, we have

(0, 0, 1) ∗ β = (0, 0, 1) ∗ 1
2m1
4 σ

k1
1 Q

= (0, 0, t4m1) ∗ σ
k1
1 Q

= (0, 0, t4m1) ∗ Q,

which lies inVX. Since(0, 0, 1)∈ VY andVX∩VY =∅, the condition(0, 0, 1)∗β ∈

VX implies thatρ(β) is nontrivial. �

We remark that the group generated byx and y is the Artin group of Coxeter
type B2 and thatxyxy= yxyx is the defining relation of the subgroup generated
by x andy. So the subgroup generated byx, y andσ1 is the direct product of the
infinite cyclic subgroup generated byσ1 and the subgroup generated byx andy.

Figure 3. The braidσ−1
1 σ 3

2 σ1σ3σ
−3
2 σ−1

3 , whose fourth power is
in the kernel of Burau(4) ⊗ Z2.
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Figure 4. A braid in the kernel of Burau(4) ⊗ Z3.

3. Non-Brunnian elements

Cooper and Long [1997] obtained a presentation of the image ofρ4 ⊗ Z2. As a
corollary,ρ4⊗Z2 is not faithful. The same authors computed in [Cooper and Long
1998] a presentation of a group containing the image ofρ4 ⊗ Z3 as a finite index
subgroup and gave a nontrivial braid in the kernel explicitly. In this section we
show that the examples of Cooper and Long are not Brunnian.

Let αk = (σ−1
1 σ k

2 σ1σ3σ
−k
2 σ−1

3 )4 for k 6= 0. (SeeFigure 3for the expression in
parentheses, withk = 3.) The braidαk comes from the fourth relation of [Cooper
and Long 1997, Theorem 1.4] and is in the kernel ofβ4 ⊗ Z2. αk is not Brunnian
because we obtainσ 4k

1 by forgetting the second and the fourth strands.
Now let α be the braid

σ 2
2 σ1σ

−2
2 σ−2

3 σ2σ
−3
1 σ−1

2 σ3σ
−1
2 σ1σ

2
2 σ−2

3 σ−1
1 σ−2

2

· σ1σ
−2
2 σ1σ3σ

−1
2 σ3σ

3
2 σ1σ

−1
2 σ3σ

−1
2 σ1σ

−2
2 σ1σ

2
3 σ2σ

−1
3 ,

as inFigure 4. It is conjugate to the braid given by [Cooper and Long 1998] as a
nontrivial element of ker Burau(4)⊗Z3. It is easy to see thatα is not Brunnian. If
we forget the fourth strand fromα asFigure 5, we get a nontrivial 3-braid

α′
= σ 2

2 σ1σ
−1
2 σ−3

1 σ−1
2 σ 2

1 σ−2
2 σ−2

1 σ 3
2 σ−1

1 σ2σ
−1
1 σ 2

2

= (σ2σ
−1
1 σ2σ

−1
1 σ 2

2 )31−2
3 .

?

Figure 5. Forgetting the fourth strand.
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