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Let #%" be the class of torsion-free, discrete groups that contain a normal,
at most n-step, nilpotent subgroup of finite index. We give sufficient condi-
tions for the fundamental group of a fibration F - T — B, with base B an
infra-nilmanifold, to belong to 4%". Manifolds of this kind may, for exam-
ple, appear as thin ends of nonpositively curved manifolds. We prove that if,
in addition, we require that T be K&hler, then T possesses a flat Riemannian
metric and the fundamental group 1 (T) is necessarily a Bieberbach group.
Further, we prove that a torsion-free, virtually polycyclic group that can be
realised as the fundamental group of a compact, Kahler kK, 1)-manifold
is necessarily Bieberbach.

1. Introduction

Torsion-free, discrete, cocompact subgroups of the group of affine motid&% of
were first studied by Bieberbach in 1912, and more recently by Charlap; they are
calledBieberbach groupsThey correspond precisely to the fundamental groups
of compact manifolds endowed with a flat Riemannian me@icdrlap 1965 and
such manifolds are finitely covered by flat toBigberbach 191]1

L. Auslander 1960 and Lee and Raymondl8] turned their attention to
almost-Bieberbach groupghat is, torsion-free, discrete, cocompact subgroups
of GxC, with C a maximal, compact subgroup of A@tfor G a simply con-
nected, nilpotent Lie group. They succeeded in generalising much of Bieberbach’
work. Malcev’'s equivalencelP49 shows that torsion-free, finitely generated,
nilpotent groups correspond precisely to the fundamental group#no@nifolds
that is, compact manifolds of the forfl = G/N, whereG is a simply con-
nected, nilpotent Lie group, and a discrete subgrouplheorem 3.Zhows that
almost-Bieberbach groups correspondirifra-nilmanifolds compact manifolds
of the formG/T" with G as above and’ a discrete subgroup d&xC, where
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C is a maximal compact subgroup of ABt We denote by{d%" the class of
almost-Bieberbach groups whose maximal, normal, nilpotent subgroup is at mos
n-step nilpotent. We shall say that a groD@dmits am-step almost-Bieberbach
structure if and only ifl’ € J4%" and its maximal normal nilpotent subgroup is
n-step nilpotent.

(We know from [Gromov 198] and [Wolf 1968 that, among finitely generated
groups, virtually nilpotent groups are precisely those groups that have polynomia
growth. For details and precise definitions, see those workSitsr 1981.)

We employ algebraic methods to study closed manifolds that fibre over infra-
nilmanifolds. If F — T — B is such a fibration, wherg, T andB are all acyclic,
the long homotopy exact sequence reduces to a group extension of the form

l1— m(F) — 7(T) — m(B) — 1

Manifolds of this type appear as thin ends of geometrically finite hyperbolic man-
ifolds, which are an interesting subclass of nonpositively curved manifolds. More
specifically, Apanasov and Xid997 proved that ifl" C #,xU (n—1) is a torsion-
free discrete group acting on the Heisenberg gfifip= C"1 x R, the orbit space
76,/ T is a Heisenberg manifold of zero Euler characteristic and a vector bundle
over a compact manifold. Further, this compact manifold is finitely covered by
a nilmanifold which is either a torus or a torus bundle over a torus. This gener-
alises earlier results on almost flat manifolds concerning latticé&, isaU (n — 1)
[Gromov 1978 Buser and Karcher 1981

As mentioned above, groups ##" correspond to infra-nilmanifolds. I18ec-
tion 2 we study extensions of the form

1—G—T —K—1,

with K € %", to provide sufficient conditions under whi¢hbelongs tas{%".

In particular, Proposition 2.2guarantees the existence of an almost-Bieberbach
structure orl” providedG is a normal subgroup df in a precise wayProposition
2.4does the same providéallies in %" and the action oK on G respects some
suitable minimal conditions.

In Section 3we use the Johnson—Rees characterisation of fundamental group.
of flat, K&hler Dohnson and Rees 199&nd projective Johnson 1990mani-
folds, and apply the Benson—Gordon theordi®dq for the existence of a Kéhler
structure on a compact nilmanifold to show,Tiheorem 3.3that the existence of
a Kahler structure on a special fibration as above implies the existence of a fla
Riemann metric of¥. In particular, ind4%", the classes of fundamental groups
of Kéhler and projective manifolds coincide, as showrCirollary 3.4 Further,
as a consequence of the Lefschetz hyperplane theorem and Bertini's theorem, th
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is a subclass of the class of fundamental groups of compact, closed, nonsingulz
projective surfaces.

Finally, in Section 4 we use a structure theorem concerning virtually polycyclic
groups, proved inlpekimpe and Igodt 1994together with the results irArapura
and Nori 1999, to prove, inTheorem 4.2that a torsion-free, virtually polycyclic
group can be realised as the fundamental group of(a, K)-compact, Kahler
manifold if and only if it is Bieberbach of a special kind, namely, its operator
homomorphism is essentially complex.

2. Group extensions

A group N is said to benilpotentif its upper central series
I1=Ng< N =Z(N) < Np < ---,

defined byN;1/N; = Z(N/N;), is finite. If n is the smallest integer such that
Nn =N, thenN is said to ban-step nilpotentWe shall say that a finitely generated,
torsion-free grouf” admits an i-step)almost-Bieberbachroup structure if it can

be written as an extension of a finitely generatedstep) nilpotent groufN by a
finite group®. Notice that, given such a torsion-free, finitely generated, nilpotent
group, its quotientdN; 1 1/N; are of a special form, namel; ;1/N; = 7ii.

Lemma 2.1.LetI fit in an extension
0—7"—r-L6—51,

where the torsion-free group G has an n-step nilpatermal subgroup N of
finite index andZ™ a trivial N-module Thenl” € 4&"*.

Proof. Let G be defined by the extension
1—N—G— & —1,

with N n-step nilpotent® finite and¢ : ® — OutN the operator homomorphism.
ConsiderT := p~1(N). Then the extension

(2-1) 0— 7" T -5 N—1

is central, which implies thaFl is at most(n+1)-step nilpotent. The proof is
completed by the observation tHat= p~*(N) <" andI'/T = (I'/Z™M) /(T /Z™) =
G/N = @. Notice thatl is torsion-free since so a@" andG. O

We now turn our attention to the fibre of the fibratiBn— T — B to prove the
following:
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Proposition 2.2.LetT" be a torsion-free extension
(2-2) 1—>K—>F—p>G—>1

of a finitely generated group K by a group G admitting an n-step nilpotémost-
Bieberbach structure such thén c is finite where ¢c: I' — Aut K denotes the
conjugation mapThenI” € B+,

Proof. SinceG admits am-step almost-Bieberbach structure there is a short exact
sequence

1—N—G—d—1

whereN is n-step nilpotent® is finite, andg : ® — OutN is the operator homo-
morphism. Letl" := p~1(N). ThenT fits in a short exact sequence

1— K —1 - N—1,

where we denote by the restriction of the conjugation map I' — AutK to I".
Let I := Ker¢, which is nonempty sincE is infinite. Then the extension

1—-TINK—T— p)—1

is central, withp(I") < N, and therefore itself nilpotent. This means titan K
is a finitely generated, torsion-free, abelian group &nié at most(n+1)-step
nilpotent. The proof is completed by observing that the normal subgroopl®
has finite index iri", since Im¢ is finite. O

The group AuK, for K a Bieberbach group, is not necessarily finite. For an
example, seeGharlap 1986p. 219]. It does, then, make sense to check what
happens if the fibre admits anstep almost-Bieberbach structure. But first:

Proposition 2.3.LetI" be a torsion-free extension
1—sK-—>I 572" 50

of a Bieberbach group K by a free abelian group of ranlsach thaz™ C Z(I"),
whereZ™ is the translation subgroup of K and(E) the center off’. ThenI €
AR2.

Proof. First observe tha¥™ <1 T, sinceZ™ < Z(I'). We therefore have a short
exact sequence

(2-3) 1—s K/Z™ — /7" 2 7" 0

whereK /Z™ is isomorphic toF, the finite holonomy group oK. We distinguish
two cases:
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(i) Assume tha{2—3)is a central extension. Then chod®e= (Z"~* x kZ) < Z"
of indexk = |F|, with |F| the exponent of. LetI'" := p~%(Q). ThenI" fitsin a
short exact sequence

1—>F—>F’—p>Q—>O

that splits as a direct product. By constructibh= (F x Q) <«I"'/Z™ is of finite
index. Letq : ' — I'/Z™ be the identification map. The free abelian graQp
imbeds as a normal subgroupBf< I'/Z™ and so also, because ABtx Q) =
Aut F x Aut Q, as a normal subgroup 8/Z™. LetI" :=q~1(Q) andl" :=q~(I");
thenQ =TI'/Z™ andF x Q =[/Z™. SinceQ < Z", it acts onZ™ in the same way
asZ", namely trivially. Sdl" is 2-step nilpotent normal ifi. One can further check
that its index|{["/I"| in T is finite, becaus¢l’/T"| = |[/T'| - |T'/T| = |Z"/ Q| - |F]|.
This completes the proof in this case.

(i) Assume that the sequen¢®-3)is not central, and lat: I"'/Z™ — Aut F be the
conjugation map. SincE is finite andl’/Z™ infinite, the kernel ot is nontrivial.
Letl :=Kerc<T'/Z™ letF := FNT, and letQ := p(I"). Then the extension

1—F—IT—Q—0
with Q < Z" (so thatQ = 7* for somep < n) belongs to the previous case. The

result now follows, sinc& has finite index irnr". O

Proposition 2.4.LetT" be a torsion-free extension
(2-4) 1— K —T -5 G6—1,

where K and G admit m-step and n-step almost-Bieberbach structessec-
tively. If Z(L/L;) € Z(T'/L;), where{L;}; is the upper central series of an m-step
nilpotent normal subgroup L of finite index in KhenI™ € A%,

Proof. We first check inductively that; < T". This is clear foii = 1. Assume it is
true fori and letqg; : L — L/L; be the identification map, where

Lir1=q""(Z(L/L)).

sothatlLi1/L; = Z(L/L;j). ThenLj1/Li < Z(T/L;) andLj 1 <T. The rest of
the proof also follows by induction, first am and then om. The groupG is of
the form

1—N—G—&—1,

whereN is n-step nilpotent and finite. By lettingl™ := p~1(N) we get a sequence

1—K-——N—1
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The casen = n = 1 follows from Proposition 2.3 Assuming the theorem is true
for somem andn = 1, we shall show it is true fom+ 1 andn = 1. If K is of the
form

l1—L—K-—F—1,

whereL is m-step nilpotent andF finite, considerL; = Z(L). The conditions of
the theorem ensure thay = Z(L) = Z” < T for some positive integep. This
gives a short exact sequence

1— K/2° — 1')7° — 7" —> 0,

with v > 0. Then{L;/L1}; is the upper central series bf L1 andI’/Z* admits an
(n+1)-step almost-Bieberbach structure by the induction hypothEsits into a
central short exact sequence

0— 272 —T —T/7°r — 1.

Lemma 2.1now applies to prove that, and thereford, admit an(n+2)-step
almost-Bieberbach structure. Now assume the theorem is true fan atidn
up to a certain value. We complete the proof by showing it holds fomadind
n+ 1. If {N;}; is the upper central series of sorfre+1)-step nilpotentN, define
I := p~1(Np). ThenT fits in

1—K—IT—N,—1

and admits ar{n+m)-step almost-Bieberbach structure. Also there is a positive
integeru such that the sequence

1——>TF—>I-—>T/[27¢0—0

is exact. The induction argument on the fibre implies that 4%"t™*, and so
I e AR too. O

3. Almost-Bieberbach groups and Kahler structures

Let AutG denote the group of automorphisms of a simply connected Lie group
G. We shall be concerned with discrete subgrolipsf Aut G that act properly
discontinuously orG.

A groupT is said to becrystallographidf it is a cocompact, discrete subgroup of
R"x O(n) C Aff (R™), whereO(n) is the maximal compact subgroup of Gi,. R)
and Aff(R") is the group of Euclidean motions &". It is a Bieberbachcrys-
tallographic group if it is torsion-free as well. Bieberbach groups are precisely
the fundamental groups of compact, complete Riemannian manifolds that are fla
(locally isometric to Euclidean space), as first provedBieperbach 1911 An
alternative characterisation of flat Riemannian manifolds is that in such manifolds,
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transition maps can be extended to elemen®f O(n). Charlap 1965 classi-
fied these manifolds, up to connection-preserving diffeomorphisms, by associating
to a manifoldM a short exact sequence

1—A—G—d—1

in which the holonomy grou@ of M is finite andA = 7" is the translation sub-
group ofI' = r1(M), a torsion-free, discrete, cocompact subgrougdt O(n) C
Aff (R").

More generally, ifG is a simply connected, nilpotent Lie group, we consider
a maximal compact subgroup C AutG. A cocompact, discrete subgrotipof
G x C is called analmost-crystallographigroup, and if torsion-free it is called
almost-BieberbachThe quotienG/ I is called arinfra-nilmanifold, and if" € G
it is a nilmanifold

Most of Bieberbach'’s work has been generalised to the nilpotent cageisa |
lander 196Dand [Lee and Raymond 1985

Theorem 3.1 (Auslander). LetI" € G x AutG be an almost-crystallographic
group, where G is a connectedsimply connectednilpotent Lie group Then
('NG) «T is a cocompact lattice in GandI"/(I"' N G) is finite

Parts of the statement of the following theorem can already be fourldem [
and Raymond 1985We simplify the proof.

Theorem 3.2.T is almost-crystallographic if and only if it is of the form
1—N—-T —&—1,

with N finitely generatedorsion-free maximal nilpotentand @ finite.

Proof. If ' € Gx AutG is an almost-Bieberbach groupheorem 3.1says that

N =TI"NG is a maximal nilpotent, normal subgrouplobf finite index, and finitely
generated because it is a discrete subgroup of the nilpotent @otip prove the
converse, given an extension like the one in the statement of the theorem, witt
abstract kernep : ® — OutN, consider the extension of the Malcev completion
N of N,

1—N—ST)— & —1,

with abstract kernely : ® % OutN — Outy. The claim is that there is exactly
one extension of" by ®, namelyN — N> @, whereys : ® — Aut N is a lifting
morphism ofyr.

Since Z(N) is a vector space and is finite, H3(®, Z(N\)) vanishes and by
[Mac Lane 1963 Theorem 8.7] the abstract kerri@, N, ¢/] has an extension.
Furthermore, flac Lane 1963 Theorem 8.8] says that this extension is unique



318 NICKOLAS J. MICHELACAKIS

because the séi?(®, Z(N\')) parametrizing all congruence classes of such exten-
sions is null, for the same reason. So we know that there is precisely one extensio
N> I = @. If we can further show that has a lifting morphismy : & — Aut .\,
thenl' = N>t . To this end, we apply induction on the nilpotency classotf

N'is 1-step nilpotent thel = Z(N) and the result is obvious. K is c-step nilpo-
tent, consider the inverse image under the natural projecticAut ' — OQutN

of the finite groupy,(®). This gives birth to a short exact sequence fhr->

q (Y (@) = Y (P) with InnN = N/Z(N) fulfilling the induction hypothesis.
We can thus find a splitting morphissn ¥ (¥) — g~ (v (®)) < Aut.N. But now,

so ¢ is the lifting we were looking for, completing the proof. We thus have the
commutative diagram

1— N — I' — & — 1

I

1— N — NAxDdP — & — 1

The mapy, with j(n, g) = (1(n), g), embedd" as a discrete, cocompact subgroup
of the disconnected Lie grouf(I'), proving the theorem. a

Given a short exact sequengé” — I' — & with operator homomorphism
¢ : ® — AutZ?", we say¢ is essentially compleif there is acomplex structure
for the ®-moduleZ?" ® R, that is, a map € Endgj¢)(Z>" ® R) such that? = —1.
In other wordsg : ® — Aut Z?" is essentially complex if Inp € GL¢ (Z"QR)"),
with

GLc((Z* ®R)') := {m e GLr(Z*" ® R) such thatmt = tm)}.

Theorem 3.3.LetI" be the torsion-free extension
1—N—T —&—1,

where N is a torsion-fredinitely generated maximal nilpotent group addis a
finite group Then there is a compact Kahler(K, 1)-manifold M if and only if
N = 72" and the operator homomorphisgn: ® — Aut N is essentially complex

Proof. By Theorem 3.2here is a connected, simply connected Lie gr@ipuch
thatT' is a torsion-free, discrete, cocompact subgrougoef Aut G. SinceM is

a K(T", 1)-manifold, its universal covering is homeomorphically equivalenGto
andM = G/T'. The hypotheses oN say thatG containsN < I'" as a discrete
cocompact subgroup. TheM = G/N is a compact KN, 1)-niimanifold that
coversM in a finite, unramified way. Because the Kahler condition is local, the
fact thatM admits a Kahler structure implies thtalso admits a Kahler structure.
The Benson-Gordon theorem says that this can happen oNIy&ifz?", forcing
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the finite coverM of M to be holomorphically equivalent to the complex torus
C"/7?". The converse is settled bydhnson and Rees 199lheorem 3.1]. O

Let By be the class of groups that can be realised as fundamental groups o
compact, Kéhler manifolds whose underlying Riemannian structure is flat, and
By C By the subclass consisting of groups that can be realised as fundamente
groups of complex projective varieties. Léthy denote the class of groups that
can be realised as fundamental groups of compact nilmanifolds; that is, compac
manifolds of the formG/T", whereG is a simply connected, nilpotent Lie group
andT" a discrete subgroup admitting a Kéhler structure, andii@t C A%y be
the subclass consisting of groups that can be realised as fundamental groups
complex projective nilvarieties.

Corollary 3.4. (1) ARy = By = By = ARBg.

(2) Every group ind%y is the fundamental group of a smoptempactcomplex
algebraic surface

Proof. (1) The first equality follows directly fronTheorem 3.3and PJohnson and
Rees 1991Theorem 3.1]. The second iddhnson 1990Corollary 4.3], while the
third stems from the first two together with the inclusid®s C 4By;.

(2) If M is a smooth projective manifold, then by Bertini’s theorem there is a
smooth hyperplane sectiov,_1). By the Lefschetz hyperplane theoremilnor
1963, m (M, M—1y) =0forl <n, soM andM,_1), have isomorphic fundamental
groups ifn > 3. a

We now combindProposition 2.2Proposition 2.4andTheorem 3.3

Theorem 3.5.1f the Kahler manifold T is the total space of a fibratior-FT — B
over an infra-nilmanifold B with aspherical fibre F and if the short exact sequence

1— m(F) — m(T) — m1(B) — 1

of their respective fundamental groups satisfies the conditions of &theosition
2.2or Proposition 2.4then T admits a flat Riemannian metric

4. Virtually polycyclic groups and Kéahler rigidity

An affinely flatmanifold is ann-manifold endowed with an atlas whose transition
maps can be extended to elements of(Rff) = R"xGL(n, R). A torsion-free
group I' is virtually polycyclicif it has a subgroud’y of finite index which is
polycyclic, that is, one that admits a finite composition sefig2o I'1 2 ', 2

- D Ty =1 such thatl; /41 = Z for all i. The numbem is an invariant,
called therank of I". Groups ind%" are obviously virtually polycyclic. Auslander
[1964 has conjectured that the fundamental group of a compact, complete, affinely
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flat manifold has to be virtually polycyclic. MilnolP77 has shown that torsion-
free, virtually polycyclic groups can be realised as fundamental groups of complete
affinely flat manifolds. On the other hand, Johnsb®7q has proved that torsion-
free, virtually polycyclic groups can be realised as fundamental groups of compac
K(m, 1)-manifolds. However, contrary to the Bieberbach case, Bent®&] has
given an example of a 10-step nilpotent group of rank 11, proving that it is not
always possible to do both!

If T is a virtually polycyclic group, théitting group of I, denoted Fittl"), is
the unique maximal normal subgrouplIof TheclosureFitt(T") of the Fitting group
of a groupr" is the maximal normal subgroup Bfcontaining Fit{l") as a normal
subgroup of finite index. The basic propertyFift(I") is that it leaves the quotient
I /Fitt(T") with no finite, normal subgroup in it—in other wordamost-torsion-
free. In [Dekimpe and Igodt 1994t is proved that ifI" is a finitely generated
virtually nilpotent group therd” is almost-torsion-free if and only iFitt(I") is
almost-crystallographic.

If N is a torsion-free, finitely generated;step nilpotent group, then to any
extension
NesT 5 Q

with abstract kernely : Q — OutN we can inductively associatemorphisms
¥ 0 Q — Aut(Niy1/Np), whereNi1/N; = Z(N/N;). Now if g € T is such
that p(q) has finite order inQ, and(g, N) is nilpotent, thenp(q) € ; Ker ;.
Conversely, ifg € T is such thatp(q) € (] Ker i, then(q, N) is nilpotent inT".

We shall use the following lemma, which is half @¢kimpe and Igodt 1994
Theorem 2.2]. For completeness, we write a proof here.

Lemma 4.1. LetT" be a virtually polycyclic group If T is almost-torsion-freg
Fitt(I") is torsion-free maximal nilpotent if.

Proof. Sincerl is polycyclic-by-finite, FittT") is finitely generated nilpotent. There-
fore its torsion set is a finite characteristic subgroup of Fittand thus normal in
", and hence trivial sincE is almost torsion-free. Sa; fits in an extension

(4-1) 1— FittM) — [ -5 Q — 1

with Fitt(T") torsion-free and) abelian-by-finite, saypA— Q L F. Now letgel
be such thalN := (q, Fitt(I")) is nilpotent, and look ap(N). If p(N)NA#£{1} then
p~1(p(N) N A) is normal inT" since(p(N) N A) < A is nilpotent as a subgroup
of N. Thus, p~1(p(N) N A) C Fitt(l") and p(N) N A = {1}, a contradiction.
We deduce thap(N) = j(p(N)) € F, and hence thap(q) is of finite order in
Q. The discussion preceding the theorem shows thg) € (NJ(¥i) N p(N),
whereys; are the morphisms associated with-1), which is a finite group since
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F is finite; thereforeq € Fitt(I"). But sincel” is almost torsion-freeFitt(I") is
almost crystallographic and FiEitt(I")) = Fitt(I") is maximal nilpotent irFitt(T"),
implying q € Fitt(T"), a contradiction. O

Theorem 4.2. LetT" be a torsion-fregvirtually polycyclic group ThenI” can be
realised as the fundamental group of &# 1) compact Kahler manifold if and
only if " is Bieberbach with essentially complex operator homomorphism

Proof. The converse is the second halfieorem 3.3 For the direct statement,
observe that sincE is torsion-free, it is almost-torsion-free. Thus,lbymma 4.1
Fitt(I") is torsion-free maximal nilpotent ifi, andT" fits in a short exact sequence
of the form

1— FittM) — T -5 Q — 1,

whereQ is abelian-by-finite. SincE is Kahler, by Arapura and Nori 1999there
exists a nilpotent subgroup C T of finite index. BUtA is necessarily contained in
Fitt(T"), so Q is finite, andTheorem 3.3ompletes the proof wittN = Fitt(I"). O

Provided that the Auslander conjecture is trleeorem 4.2vould immediately
imply:
Conjecture 4.3.1f a Kéhler manifold T is the total space of a fibration&+T — B

where both the base B and the fibre F are infra-nilmanifolthen T admits a
Riemann flat structure
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