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We derive upper bounds for the spectral radius of then× n Hilbert matrix.
The key idea is to write the Hilbert matrix as integral operator with positive
kernel function and then to use a Wielandt-type min-max principle for the
spectral radius. Choosing special trial functions yields a new bound that
improves the best bound known heretofore.

1. Introduction

The spectral asymptotics of the Hilbert matrix has attracted a lot of interest concern-
ing both the lowest and the largest eigenvalue. Here we shall focus on the spectral
radiusρn of the n× n Hilbert matrix for which we shall prove, particularly, the
bound

(1) ρn ≤ 2wn arcsin
1

wn
with wn := 2

(
(n!)2

(2n)!

)1/2n

, n ∈ N.

This improves, at least for large values ofn, Cassels’ bound, given in (5) below,
which is the best hitherto known. Numerical computations suggest that (1) is ac-
tually better for alln exceptn= 1, 2.

We base the proof of (1) upon relating the Hilbert matrix to an integral operator
Hn whose spectral radius can be expressed by a min-max principle for operators
having positive kernel functions:

(2) ρn = inf
ϕ∈M

sup
0<x<1

(Hnϕ)(x)

ϕ(x)

whereM is some set of appropriate trial functions. For the sake of completeness
we shall prove (2) without recourse to the general theory. In the matrix case the
above min-max principle is due to Wielandt [1950] and related to the enclosure
result of Collatz [1942]. It has been generalized in many directions; see [Friedland
1990; Marek 1966; Schaefer 1984], for example.
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To derive estimates we pickϕ(x) := (1−x)γ in (2), with −1 < γ < 0. We
restrict ourselves to the caseγ = −1

2, for which the calculations are manageable,
and obtain (1).

Hilbert was the first one to investigate spectral properties of the matrix named
after him. In his lectures he showed his double series theorem stating thatρn stays
finite asn→∞; this was first published by Weyl [1908] (see also [Wiener 1910]).
The concrete inequality

(3) ρn ≤ π

is due to Schur [1911]. This is the optimal constant that does not depend on the
dimensionn. However, if we do want the bound to depend onn it is possible to
strengthen (3). Frazer [1946] obtained

(4) ρn ≤ n sin
π

n
for n≥ 2,

by refining a method of Fejér and Riesz [1921], which they used to prove what is
now called the Fejér–Riesz inequality for analytic functions. Equation (4) was later
rediscovered by Hsiang [1957] and Yahya [1965], and was eventually improved by
Cassels [1948] to

(5) ρn ≤ 2 arctan
√

2n.

Finally, it might be instructive to look at the asymptotic expansion ofρn. The first
asymptotic result was obtained by Taussky [1949] by computing the quadratic form
with special trial vectors having componentsck := 1/

√
k; it was

ρn = π +O
( 1

ln n

)
.

The exact asymptotic behaviour

ρn = π −
π5

2 ln2 n
+O

( ln ln n
ln3 n

)
was determined by de Bruijn and Wilf [1962], who compared the matrix operator
with an integral operator whose spectral asymptotics can be derived from general
results of Widom [1958] (see also [Widom 1961]).

2. Estimates for the spectral radius

We start by relating the Hilbert matrix

(6) An :=

( 1
j+k+1

)
j,k=0,...,n−1
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to the integral operatorHn : C[0, 1] → C[0, 1] having the kernel function

(7) Kn(xy) :=
n−1∑
j=0

(xy) j
=

1− (xy)n

1− xy
.

Forn=∞ this operator was used by Magnus [1950] to study the spectrum of the in-
finite Hilbert matrix. We letHn act onC[0, 1] because we want to have sufficiently
many trial functions at hand. As we hoped,Hn has (almost) the same spectrum as
An. In particular, they have the same spectral radius, henceforth denoted byρn.

Lemma 1. Let C[0, 1] be equipped with the usual maximum norm. Then Hn :

C[0, 1] → C[0, 1] is a bounded linear operator. The respective spectra of the
Hilbert matrix An and the integral operator Hn are the same apart from0. Their
common spectral radiusρn can be expressed by

(8) ρn= inf
ϕ∈M

sup
0<x<1

(Hnϕ)(x)

ϕ(x)
, where M:=

{
ϕ ∈ L1

[0, 1]
∣∣ ϕ > 0, 1

ϕ
∈C[0, 1]

}
.

Proof. It is clear from the definition and (7) thatHn is linear and bounded. Also
(7) shows thatHn hasn-dimensional range spanned by the monomialsxk, for k=
0, . . . , n− 1, which implies that the spectrum ofHn consists only of eigenvalues.
To eachc∈ Cn we associateϕc ∈ C[0, 1] in the natural way:

(9) c= (c0, . . . , cn−1) ∈ Cn
←→ ϕc(x)=

n−1∑
j=0

c j x
j .

The statement on the spectra then follows from

(Hnϕc)(x)=

∫ 1

0

n−1∑
j=0

(xy) j
n−1∑
k=0

ckyk dy

=

n−1∑
j,k=0

ckx j
∫ 1

0
y j+k dy=

n−1∑
j=0

x j
n−1∑
k=0

1

j + k+1
ck.

Note thatHn must have a kernel andAn does not.
To prove Formula (8) we recall from the Perron–Frobenius Theorem that, since

An has positive entries,ρn is an eigenvalue ofAn and hence ofHn. Let v be
the corresponding eigenfunction. Writing down the eigenvalue equation forv and
dividing by ϕ ∈ M yields

ρn
v(x)

ϕ(x)
=

∫ 1

0
Kn(xy)

ϕ(y)

ϕ(x)

v(y)

ϕ(y)
dy.
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This shows thatv/ϕ ∈C[0, 1] is an eigenfunction of the operatorHn,ϕ with kernel

Kn,ϕ(xy) := Kn(xy)
ϕ(y)

ϕ(x)
,

whenceρn ≤ ρ(Hn,ϕ), the spectral radius ofHn,ϕ. Sinceρ(Hn,ϕ) ≤ ‖Hn,ϕ‖∞ we
conclude that

ρn ≤ ‖Hn,ϕ‖∞ = sup
0<x<1

∫ 1

0
Kn,ϕ(xy) dy

where we have usedϕ(x) > 0, Kn(xy) ≥ 0, and thusKn,ϕ(xy) ≥ 0. To show
equality in (8) we once again invoke the Perron–Frobenius Theorem, according
to which the eigenvector ofAn belonging toρn can be chosen to have positive
components, whence we can, via (9), likewise choose the eigenfunctionv > 0. In
particular,v ∈ M . �

We use Lemma 1 to estimate the spectral radius from above by cleverly choosing
trial functions in (8):

(10) rn(x) :=
(Hnϕ)(x)

ϕ(x)
=

1

ϕ(x)

∫ 1

0

1− (xy)n

1− xy
ϕ(y) dy for n ∈ N.

To get an idea of what theϕ’s should look like we castrn into a form more amenable
to further investigation. The crucial point is to evaluate the integral

Jn(x) :=

∫ 1

0

yn

1− xy
ϕ(y) dy.

We start by differentiating with respect tox:

(11) J ′n(x)=

∫ 1

0

yn+1

(1− xy)2
ϕ(y) dy=

1

x

∫ 1

0

yn

(1− xy)2
ϕ(y) dy−

1

x
Jn(x).

The explicitly written integral on the right can also be produced by integration
by parts, which we perform in such a way thatϕ(1) is omitted because our trial
functions will have a singularity atx = 1:

Jn(x)=

[
(y−1)

yn

1− xy
ϕ(y)

]1

0

−

∫ 1

0
(y−1)

((
nyn−1

1−xy
+

xyn

(1−xy)2

)
ϕ(y)+

yn

1− xy
ϕ′(y)

)
dy

= δnϕ(0)+n Jn−1(x)−n Jn(x)+ (x−1)

∫ 1

0

yn

(1− xy)2
ϕ(y) dy

+ Jn(x)+ J̃n(x),
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with δn := δn,0 the Kronecker delta and

J̃n(x) :=

∫ 1

0

yn

1− xy
(1− y)ϕ′(y) dy.

Hence we can eliminate the integral in question from (11):

(12) J ′n(x)=
1

x(1− x)

(
δnϕ(0)+n Jn−1(x)−n Jn(x)+ J̃n(x)

)
−

1

x
Jn(x).

To eliminate the annoyingJn−1 we observe that

Jn(x)=

∫ 1

0

yn

1− xy
ϕ(y) dy=

1

x
Jn−1(x)−

1

x

∫ 1

0
yn−1ϕ(y) dy,

and therewith (12) becomes

(13) J ′n(x)=
δn

x(1− x)
ϕ(0)−

n+1

x
Jn(x)+

κn

x(1− x)
+

1

x(1− x)
J̃n(x)

where we have put

(14) κ0 := 0, κn := n
∫ 1

0
yn−1ϕ(y) dy for n ∈ N.

We are going to express

(15) 8n(x) :=
xn

ϕ(x)
Jn(x)

by dint of (13) through a differential equation:

8′n(x)=−
ϕ′(x)

ϕ2(x)
xn Jn(x)+

nxn−1

ϕ(x)
Jn(x)+

xn

ϕ(x)
J ′n(x)

=−

(
ϕ′(x)

ϕ(x)
+

1

x

)
8n(x)+

xn−1

(1−x)ϕ(x)
J̃n(x)+

xn−1

(1−x)ϕ(x)
(δnϕ(0)+κn).

At this point we fix our trial functionϕ in such a way that

(16) (1− x)ϕ′(x)=−γ ϕ(x),

that is,ϕ(x)= (1−x)γ with someγ ∈R to be specified later, wherebỹJn becomes
a multiple of Jn, and we arrive at a differential equation for8n:

(17) 8′n(x)=−(γ +1)
1

x
8n(x)+

xn−1

(1− x)1+γ
(δn+ κn) .

This is equivalent to

(x1+γ 8n(x))′ =
xn+γ

(1− x)1+γ
(δn+ κn),
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which we can solve immediately for8n:

(18) 8n(x)=
δn+ κn

x1+γ

∫ x

0

ξn+γ

(1− ξ)1+γ
dξ for n ∈ N0.

In particular, we can now see thatγ must satisfy−1< γ < 0 in order to yield well
defined integrals and to haveϕ ∈ M in (8). We summarize our calculations.

Theorem 2.The spectral radiusρn of the n×n Hilbert matrix An as in(6) can be
estimated by

(19) ρn ≤ inf
0<α<1

sup
0<x<1

1

x1−α

∫ x

0

1− κnξ
n

ξα(1− ξ)1−α
dξ,

where

(20) κn =
n!

(n−α)(n−1−α) · · · (1−α)
for n ∈ N.

Proof. Putα := −γ and use in turn the min-max principle (8) and the definitions
of rn and8n as in (10) and (15), withϕ being chosen according to (16) to obtain

ρn ≤ inf
0<α<1

sup
0<x<1

rn(x)= inf
0<α<1

sup
0<x<1

(
80(x)−8n(x)

)
.

Then (19) follows directly from the representation (18) of8n.
For ϕ as in (16) the integral in (14) is Euler’s beta function. Hence,

κn = nB(n, 1−α)=
n0(n)0(1−α)

0(n+1−α)

wherefrom we deduce (20). �

The optimal way to derive bounds onρn would be to determine the maximum
of the functionrn exactly. Unfortunately, this turns out to be rather complicated,
and we content ourselves with narrowing the region where the maximum must lie.

Corollary 3. The spectral radiusρn of the n×n Hilbert matrix An can be estimated
by

(21) ρn ≤ inf
0<α<1

κ(1−α)/n
n

∫ 1/κ
1/n
n

0

1

ξα(1− ξ)1−α
dξ,

which in the caseα = 1
2 specializes to

(22) ρn ≤ 2wn arcsin
1

wn
with wn := κ1/2n

n = 2

(
(n!)2

(2n)!

)1/2n

.
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Proof. When 1− κnξ
n
≤ 0 the functionrn is decreasing, whence the maximum

must lie in the interval[0, x0] for x0 the unique zero of the integrand in (19):

1− κnxn
0 = 0, i.e., x0= 1/κ1/n

n .

We conclude

sup
0<x<1

rn(x)= sup
0<x≤x0

rn(x)≤ sup
0<x≤x0

80(x)=80(x0)

because the8n(x) are nonnegative and80 increases.
Forα = 1

2 thewn are easily obtained from (22) and (20) and the integral in (21)
can be evaluated by the change of variablesξ = s2. �

Finally, we shall check that our estimate (22) is indeed better than (5). Using
some familiar formulae for arctan and arcsin we obtain

arctan
√

2n−wn arcsin
1

wn
= arctan

√
2n−arcsin

1

wn
− (wn−1) arcsin

1

wn

≥ arctan
√

2n−arctan
1√

w2
n−1

−
π

2
(wn−1)

= arctan

√
2n(w2

n−1)−1√
w2

n−1+
√

2n
−

π

2
(wn−1).

Now the asymptotics of the middle binomial coefficient yields

wn ∼ 2

(√
πn

4n

)1/2n

∼ n1/4n asn→∞,

which implies immediately limn→∞wn = 1, and further

n(wn−1)∼ n(n1/4n
−1)= n(e(ln n)/4n

−1)∼ 1
4 ln n asn→∞.

Therefore, for largen,√
2n(w2

n−1)−1√
w2

n−1+
√

2n
≥

1

4

√
2n(w2

n−1)
√

2n
≥

1

4

√
wn−1.

Noting arctanx ≥ cx for small x with some constantc > 0 and using the mono-
tonicity of arctan we conclude

arctan
√

2n−wn arcsin
1

wn
≥

c

4

√
wn−1−

π

2
(wn−1) > 0

for large values ofn. With some care it should be possible to show the statement
for smaller values ofn, too.
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3. Remarks

We suggest some topics that might be worth further investigation.

(1) In order to derive from Theorem 2 a bound that can be computed more or less
explicitly we did not determine in (19) the maximum of the functionrn exactly.
Thus, the first possibility to strengthen (22) is to study the maximum ofrn.

(2) Also for computational reasons we fixed the exponentα= 1
2 in (21). However,

numerical computations suggest thatα= 1
2 is generally not the optimal choice and

that other values ofα give much more accurate estimates. According to a theorem
of Čebyšev the integral in (21) can be evaluated for any 0<α <1 in closed form by
means of elementary functions. It is not clear whether these elementary functions
allow for an efficient minimizing procedure.

(3) A vaguer idea is to pick other trial functions than(1− x)−α. Our method will
work as long as we arrive at a differential equation for8n as in (17).

(4) Since Wielandt’s min-max principle is accompanied by a max-min principle,
one can also think of deriving lower bounds for the spectral radius in which case;
however, completely different trial functions are needed.
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