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We derive upper bounds for the spectral radius of then x n Hilbert matrix.
The key idea is to write the Hilbert matrix as integral operator with positive
kernel function and then to use a Wielandt-type min-max principle for the
spectral radius. Choosing special trial functions yields a new bound that
improves the best bound known heretofore.

1. Introduction

The spectral asymptotics of the Hilbert matrix has attracted a lot of interest concern
ing both the lowest and the largest eigenvalue. Here we shall focus on the spectr:
radius p, of then x n Hilbert matrix for which we shall prove, particularly, the
bound

(1) Pn < 2w arcsini with  wp:=2 ((n_!)z>1/2n neN

n=o W e (2n)! ’ '
This improves, at least for large valuesmgfCassels’ bound, given ifb) below,
which is the best hitherto known. Numerical computations sugges{ihét ac-
tually better for alln exceptn =1, 2.

We base the proof dfl) upon relating the Hilbert matrix to an integral operator

Hn whose spectral radius can be expressed by a min-max principle for operator
having positive kernel functions:

(2) on= Iinf sup M

peM 0<x<1 <P(X)
whereM is some set of appropriate trial functions. For the sake of completeness
we shall proveg2) without recourse to the general theory. In the matrix case the
above min-max principle is due to Wielandt9b(Q and related to the enclosure
result of Collatz 1943. It has been generalized in many directions; $&efdland
199Q Marek 1966 Schaefer 1984 for example.
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To derive estimates we pick(x) := (1—x)” in (2), with -1 < y < 0. We
restrict ourselves to the cage= —%, for which the calculations are manageable,
and obtain(1).

Hilbert was the first one to investigate spectral properties of the matrix named
after him. In his lectures he showed his double series theorem stating, thiatys
finite asn — oo; this was first published by WeylP0§ (see also\iener 191().

The concrete inequality

3 pn =T

is due to Schur1911]. This is the optimal constant that does not depend on the
dimensionn. However, if we do want the bound to dependroit is possible to
strengthern(3). Frazer 1944 obtained

4) pngnsin% forn> 2,

by refining a method of Fejér and RiesiAR1], which they used to prove what is
now called the Fejér—Riesz inequality for analytic functions. Equdddwas later
rediscovered by Hsiand 57 and Yahya 1965, and was eventually improved by
Cassels1949 to

(5) on < 2arctarv2n.

Finally, it might be instructive to look at the asymptotic expansioppfThe first
asymptotic result was obtained by Taussk§49 by computing the quadratic form
with special trial vectors having componegis= 1/vk; it was

1
The exact asymptotic behaviour
5
b4 Inlnn
i o)
Pn=T 2In2n+ In®n

was determined by de Bruijn and Wilt§63, who compared the matrix operator
with an integral operator whose spectral asymptotics can be derived from genere
results of Widom 1959 (see also\Widom 196]).

2. Estimates for the spectral radius

We start by relating the Hilbert matrix

©) A= (151 o
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to the integral operata, : C[0, 1] — CJO0, 1] having the kernel function

—(xy)”
] —
(7) Kn(xy) := E(xy) Toxy

Forn = oo this operator was used by Magnd$®5p( to study the spectrum of the in-
finite Hilbert matrix. We letH, act onC[0, 1] because we want to have sufficiently
many trial functions at hand. As we hopéd,;, has (almost) the same spectrum as
An. In particular, they have the same spectral radius, henceforth denojgd by

Lemma 1. Let C[O, 1] be equipped with the usual maximum norithen H, :
C[0, 1] — CJ0, 1] is a bounded linear operator The respective spectra of the
Hilbert matrix A, and the integral operator Kare the same apart frofd. Their
common spectral radius, can be expressed by

(8) pn= inf sup m, where M:= {gp € L[0,1]| ¢ > 0, % e C[0, 11}.

peM O<x<1 §0(X
Proof. It is clear from the definition andl7) that H, is linear and bounded. Also
(7) shows thaH,, hasn-dimensional range spanned by the monomi&|sor k =
0,...,n—1, which implies that the spectrum &f,, consists only of eigenvalues.
To eachc € C" we associate. € C[0, 1] in the natural way:

n—-1

(9) c=(C...,Ch1) €C" «— (pc(x)=chxJ.
j=0

The statement on the spectra then follows from

1n-1

(Hago) (00 = / Z(xy)J chy dy
— Z CkXJf yH—kdy Z Zj+k+1

j,k=0 j=0

Note thatH, must have a kernel anél, does not.

To prove Formuld8) we recall from the Perron—Frobenius Theorem that, since
An has positive entriesp, is an eigenvalue oA, and hence oH,. Let v be
the corresponding eigenfunction. Writing down the eigenvalue equatiandod
dividing by ¢ € M yields

v(X) /1 Kn(xy ey V)
0

ey Y o0 o) @
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This shows that /¢ € C[0, 1] is an eigenfunction of the operatbik, , with kernel

(y)
Knp(XY) = Kn(X y)‘”(—y)
whencepn < p(Hn ), the spectral radius dfl, ,. Sincep(Hn ) < ||Hn¢llc We

conclude that
1

pn < Hngllooc = sup Kn,p(Xy) dy
O<x<1J0

where we have used(x) > 0, Kn(xy) > 0, and thusKp ,(xy) > 0. To show
equality in(8) we once again invoke the Perron—Frobenius Theorem, according
to which the eigenvector of, belonging top, can be chosen to have positive
components, whence we can, {8, likewise choose the eigenfunctian> 0. In
particular,v € M. O

We usd_emma 1to estimate the spectral radius from above by cleverly choosing
trial functions in(8):

_(Hp)x) 1 P1—(xy)"
(10) rx) = 200 _w(X)/o 1-xy p(y)dy forneN.

To get an idea of what the/s should look like we cast, into a form more amenable
to further investigation. The crucial point is to evaluate the integral

1 yn
300 i= [T semay.

We start by differentiating with respect to
1 n+1 1 n
o= Y _1 y _1
1) Jx= A (1_Xy)2¢)(y)dy— X /0 i Xy)zw(y) dy = Jn().

The explicitly written integral on the right can also be produced by integration
by parts, which we perform in such a way thatl) is omitted because our trial
functions will have a singularity at = 1.:

n

1
1 nyp(y)]

1
f(y 1)( Z'ynxy (lffy)z)w(ywrl

Ih(X) = |:(y -1

¥ (y))dy
1 n

_ B B y

= 5@ +nhea00—n k00 + 0= [ = Luay

+ Jn(X) + Jn(x),
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with 8, := 8n 0 the Kronecker delta and

1 n
= L y _ /
oo = [ -y may.

Hence we can eliminate the integral in question frdrh):

on 1
(12) Jn(X) = m(

To eliminate the annoying,_; we observe that

- 1
8n9(0) +NJh_1(X) —NJ(X) + Jn(X)) — ().

1 yn 1 1 1 n1
Jn(X):/O 1_Xy¢(y)dy=;Jn1(X)—;/0 Y e(y) dy,

and therewith(12) becomes

, _ 8n I’l+1 Kn ~
13 J00 = 7T 500 = T h00+ S T h )
where we have put
1
(14) Ko :=0, Kn i= n/ y"lo(y)dy forneN.
0
We are going to express
n
1 O] =
(15) n(X) 2 Jn(X)
by dint of (13) through a differential equation:
. (p/(x) N an—l Xn )
(X)) =— X In(X) + ——In(X) + —— I (X
n(X) 220%) n(X) 200 h(X) 200 h(X)
(‘”/(X) " 1) n0 + 0t (5p(©) )
= - - —_—— —_—— Kn).
o0 T x) T @000 T @mxp00 M T
At this point we fix our trial functiorp in such a way that
(16) (1—X)¢'(X) = —yp(x),

that is,(x) = (1—x)? with somey € R to be specified later, wherekls becomes
a multiple of J,, and we arrive at a differential equation fdg:

) 1 xn-1
(17) P, (X) = —(J/+1);q>n(x)+m (6n+«n) .
This is equivalent to
X"ty
XM Pp(x)) = —————(8n +n),

(1— X)L
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which we can solve immediately fab,:

Sn+kn [* §n+y

(18) On(X) = X, =gty

d¢ forneNg.

In particular, we can now see thatmust satisfy—1 < y < 0 in order to yield well
defined integrals and to hayes M in (8). We summarize our calculations.

Theorem 2. The spectral radiugy, of the nx n Hilbert matrix A, as in(6) can be
estimated by

. 1 X 1—kpg"
I SN = e
where
n!
(20) Kn:(n—a)(n—l—oz)---(l—a) forneN.
Proof. Puta := —y and use in turn the min-max princip{8) and the definitions

of r, and®, as in(10) and(15), with ¢ being chosen according {@6) to obtain

pn < inf sup ra(x) = inf  sup (Po(x) — Pn(x)).
O<a<1 O<x<1 O<a<1 O0<x<1
Then(19) follows directly from the representatiq8) of @,.
For ¢ as in(16) the integral in(14) is Euler’s beta function. Hence,

annB(n,l—a)z%

wherefrom we deducg0). O

The optimal way to derive bounds @R would be to determine the maximum
of the functionr,, exactly. Unfortunately, this turns out to be rather complicated,
and we content ourselves with narrowing the region where the maximum must lie

Corollary 3. The spectral radiug,, of the nxn Hilbert matrix A, can be estimated
by
1/n

1/kn
(21) on < _inf g fl=e)/n /
0

O<a<1

1

g

which in the case = 1 specializes to

1 » (nn2\ 7"
(22) on < 2wp arcsmw—n with wy, := Kn/ =2 (w) .
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Proof. When 1— «né" < 0 the functionr, is decreasing, whence the maximum
must lie in the interval0, xo] for Xo the unique zero of the integrand (h9):

1—knx) =0, ie, xo=1/k}".
We conclude

Sup rn(X) = sup r(x) < sup Po(X) = Po(Xo)
O<x<1 0<X<Xg 0<X=<Xo

because th@,(x) are nonnegative andlg increases.
Fora = % thew, are easily obtained frorf22) and(20) and the integral irf21)
can be evaluated by the change of varialjless. a

Finally, we shall check that our estimgt2?) is indeed better tha(b). Using
some familiar formulae for arctan and arcsin we obtain

o1 o1 o1
arctanv/2n — wy, arcsin— = arctanv/2n — arcsin— — (wp — 1) arcsin—

Wn Wn Wn
1
> arctanv/2n — arctan——— — = (wn — 1)
JwZ—-1 2

VOWED-1 7
—Z(wn—=1).
JwZ—1++2n 2

Now the asymptotics of the middle binomial coefficient yields

\/ﬁ l/2n
wn~2( ) ~nY*"  asn — oo,

= arctan

4n
which implies immediately lim., -, wy = 1, and further
n(wn — 1) ~n(n¥* — 1) =n@Ee™"/*" —1) ~ 1Inn asn — oo.

Therefore, for large,
V2n(w2-1)—1 . 1./2n(w2 —1) . 1\/71
= —vwn—1
JwZ—1+v2n 4 Jan —4Y "

Noting arctarx > cx for smallx with some constant > 0 and using the mono-
tonicity of arctan we conclude

1 c
arctanv/2n — wy, arcsin— > Z‘/w” —1- %(wn ~1)>0

Wn

for large values oh. With some care it should be possible to show the statement
for smaller values o, too.
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3. Remarks

We suggest some topics that might be worth further investigation.

(1) In order to derive fronTheorem 2a bound that can be computed more or less
explicitly we did not determine irf19) the maximum of the function, exactly.
Thus, the first possibility to strength€p?) is to study the maximum af,.

(2) Also for computational reasons we fixed the expomeﬂt% in (21). However,
numerical computations suggest that % is generally not the optimal choice and
that other values af give much more accurate estimates. According to a theorem
of Ceby3ev the integral if21) can be evaluated for any-fe < 1 in closed form by
means of elementary functions. It is not clear whether these elementary function:
allow for an efficient minimizing procedure.

(3) A vaguer idea is to pick other trial functions théih— x)~. Our method will
work as long as we arrive at a differential equationdgras in(17).

(4) Since Wielandt's min-max principle is accompanied by a max-min principle,
one can also think of deriving lower bounds for the spectral radius in which case;
however, completely different trial functions are needed.
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