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We give a method to explicitly determine the space of unramified Hilbert
cusp forms of weight two, together with the action of Hecke, over a totally
real number field of even degree and narrow class number one. In par-
ticular, one can determine the eigenforms in this space and compute their
Hecke eigenvalues to any reasonable degree. As an application we compute
this space of cusp forms forQ(

√
509), and determine each eigenform in

this space which has rational Hecke eigenvalues. We find that not all of
these forms arise via base change from classical forms. To each such eigen-
form f we attach an elliptic curve with good reduction everywhere whose
L -function agrees with that of f at every place.

1. Introduction

In general, finding unramified cuspidal representations for a given group is a dif-
ficult problem. If one tries to tackle this problem using the trace formula, for
example, one usually needs to shrink the discrete group and hence allow some
ramification. In this paper we are concerned with computing the space of unrami-
fied Hilbert cusp forms for a totally real field of even degree.

Let F be a totally real number field of narrow class number one and of even
degree overQ. In Section 2 we explain how, by results of Jacquet, Langlands and
Shimizu, the construction of the space of Hilbert cusp forms of weight 2 (i.e., of
weight (2, . . . ,2)) and full level for F can be done on the quaternion algebraB
over F that is ramified precisely at the infinite places ofF . In fact the space of
such cusp forms can be identified with a certain space of functions on the set of
equivalence classes of ideals for a maximal order inB.

In Sections 3 and 4 we extend the definition of2-series and Brandt matrices, as
found in [Pizer 1980a], to this case. We show that each simultaneous eigenvector
for the family of modified Brandt matrices corresponds to a Hilbert cusp form that is
an eigenvector for all the Hecke operators. In order to compute the Brandt matrices,
and hence the space of cusp forms, we need to be able to find representatives for
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334 JUDE SOCRATES AND DAVID WHITEHOUSE

all the ideal classes for a maximal order; we outline our strategy to find these
representatives in Section 5.

Next we specialize to the case of a real quadratic field of narrow class number
one. In Section 6, using a result of Pizer, we give an explicit formula for the type
number ofB and the class number of a maximal order inB. In Section 7 we give
defining relations for the quaternion algebraB over a real quadratic fieldQ(

√
m),

and whenm ≡ 5 mod 8 we give a maximal order in this algebra.
We now turn to our application to elliptic curves. To any Hilbert modular new-

form f over a totally real fieldF , having weight 2, leveln and rational Hecke
eigenvalues, one expects to be able to attach an elliptic curveE f that is defined
overF , has conductorn and whoseL-function agrees with that off at all places of
F . This is known ifF has odd degree overQ or if the automorphic representation
associated tof belongs to the discrete series at some finite place (see [Blasius
2004, 1.7.1]).

Conjecture 1.1. Let F be a totally real number field of even degree overQ. To
each unramified Hilbert modular eigenformf over F having weight2 and rational
Hecke eigenvalues one can attach an elliptic curve Ef defined over F with good
reduction everywhere, such that the L-functions of Ef and f agree at each place
of F.

When f is the base change of a classical modular form one can sometimes
attach an elliptic curve tof as in Conjecture 1.1; see [Shimura 1971, 7.7]. Also, by
[Blasius 2004], this conjecture is true under the hypothesis of the Hodge conjecture.
In this paper we establish this conjecture forF = Q(

√
509). The reason for this

choice of field is, as we shall see, that there exist eigenforms that do not arise
via base change from GL2(Q), nor are they CM forms sinceh+(F) = 1. To our
knowledge this provides the first verification of this conjecture in the case that not
all forms arise by base change; see [Blasius 2004, 1.7.3].

We now outline the verification of Conjecture 1.1 forF = Q(
√

509). In Sec-
tion 8 we give representatives for the ideal classes inB from which we are able
to compute the Brandt matrices and therefore the eigenvalues of the unramified
eigenforms of weight 2. We find that there are three eigenforms whose Hecke
eigenvalues all lie inQ. In Section 9 we give the equations for the three elliptic
curves overF that are attached to our three eigenforms. These elliptic curves
already exist in the literature [Cremona 1992; Pinch 1982].

In Section 10 we prove Conjecture 1.1 forQ(
√

509). One of our forms is a base
change of a classical form given in [Cremona 1992]. In this case one knows, by
work of Shimura, that an elliptic curve is attached to this form. Now we takef
to be one of the forms that is not a base change fromQ and we takeE to be the
elliptic curve (or its Galois conjugate) defined overF given in [Pinch 1982].
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By work of Taylor, building on work of Carayol and Wiles, and independently
by Blasius and Rogawski, there exists for each rational prime` an `-adic repre-
sentation

σ f ,` : Gal(F/F)→ GL2(Q`)

which is unramified outsidè. If p is a prime ofF not dividing ` and Frp is a
Frobenius element atp, we have Trσ f ,`(Frp) = a f (p), the eigenvalue off with
respect to thep-th Hecke operator, and detσ f ,`(Frp) = Np. Similarly, for each
rational primè we have a representation

σE,` : Gal(F/F)→ GL2(Q`)

given by the action of Galois on thè-adic Tate module ofE. SinceE has good re-
duction everywhere,σE,` is unramified outsidè and for each primep not dividing
`, we have TrσE,`(Frp)= aE(p) and detσE,`(Frp)= Np.

The verification of Conjecture 1.1 forf will therefore be complete if we can
show, for some primè, that these two representations are equivalent. For this we
take`= 2 and use a result of Faltings and Serre proved in [Livné 1987]. We cannot
apply this result directly since it requires the traces of all Frobenius elements to be
even, which is not the case here. So we begin by showing that the extensions ofF
cut out by the kernels of the mod 2 representations obtained from the eigenform
and the elliptic curve are the same. Having identified these extensions, we can
apply the theorem of Faltings and Serre to show that these two representations are
equivalent when restricted to this extension ofF . Using Frobenius reciprocity we
conclude that these representations of Gal(F/F) are equivalent.

This work was begun by the first author in his PhD thesis [Socrates 1993], which
gave a construction of the space of cusp forms for a real quadratic field of narrow
class number one. The cusp formf above and the elliptic curveE were shown
there to have the sameL-factors at all primes generated by a totally positive element
a + bθ with 1 ≤ a ≤ 64, whereθ =

1
2(1+

√
509).

This work was completed by the second author, who extended the methods of
[Socrates 1993] to any totally real field of narrow class number one with even de-
gree overQ, adapted the result of Faltings and Serre, and independently computed
the necessary eigenvalues given in Table 4.

2. Construction of the space of cusp forms

Throughout this paperF will be a totally real number field of narrow class number
one and of even degree overQ. We denote byR the ring of integers inF , by F+

the set of totally positive elements inF , and likewise forR+. We now explain how
one can construct the space of cusp forms forF of weight 2 and full level.
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Let B/F be the unique (up to isomorphism) quaternion algebra that is ramified
only at the infinite places ofF . We now give some definitions.

An R-lattice(or ideal) V in B is a finitely generatedR-submodule ofB such
that V ⊗R F ∼= B. An elementb ∈ B is integral (or an integer) if R[b] is an
R-lattice in B. An order in B is a ringO consisting of integers and containingR
such thatFO = B. A left ideal I for an orderO is an R-lattice for whichOI ⊂ I .
Two left O-ideals I1 and I2 are said to beright equivalentif I1 = I2b for some
b ∈ B×. Similarly, two ordersO1 andO2 areof the same typeif O1 = bO2b−1 for
someb∈ B×. The numberH of right equivalence classes of leftO-ideals is called
theclass number ofO and the numberT of type classes of maximal orders ofB is
called thetype number ofB. Both numbers are finite (for any orderO).

We now fix a maximal orderO in B. Let G = B× viewed as an algebraic group
over F . SinceB only ramifies at the infinite places ofF for each finite primep
we have

B ⊗F Fp
∼= M2(Fp).

Moreover we can choose these isomorphisms so as to give an isomorphism of
Op = O ⊗ Rp with M2(Rp). Clearly each of these isomorphisms gives rise to an
isomorphism ofG(Fp) with GL2(Fp) under whichO×

p corresponds to GL2(Rp).
We construct the double coset space

X = MG\G(A f
F )/G(F),

where A f
F is the ring of finite adèles andMG =

∏
p<∞

GL2(Rp) is a maximal

compact open subgroup ofG(A f
F ). We note thatMG, as a subgroup ofG(A f

F ),
depends on the choice ofO and hence so doesX. The setX can be identified
with the right equivalence classes of leftO-ideals in the following way. Given
(xp) ∈ G(A f

F ), consider the open compact subset
∏

p Opxp in B ⊗ A f
F . Taking

the intersection of
∏

p Opxp with B, embedded diagonally inB ⊗ A f
F , yields a left

O-ideal. Conversely, given a leftO-ideal I one recovers an element ofG(A f
F ) by

choosing, for each primep, a generator of the principal leftOp-idealOp I .
We denote byS the space

S= { f : X → C}/{ constant functions onX }.

There is a natural definition of Hecke operators on this space, as follows. Letπp

be a uniformizer forRp and letgp ∈ G(A f
F ) be such that thep-th component ofgp

is (
πp 0
0 1

)
and is the identity otherwise. Since GL2(Rp) is open and compact in GL2(Fp), we
haveMGgpMG =

∐n
i =1 MGgi . A classical result states that we can choose the set
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{gi } to be {(πp

α

0
1

)
: α ∈ R/p

} ⋃ {(1
0

0
πp

)}
.

Define, for f ∈ S andh ∈ G(A f
F ),(

Tp( f )
)
(h)=

n∑
i =1

f (gi h).

This gives a well-defined action onS, which is independent of the choices of the
gi and also ofπp.

Let S be theC-vector space of holomorphic Hilbert cusp forms overF of
weight 2 and full level. ThenS is a multiplicity-free direct sum of simultaneous 1-
dimensional Hecke eigenspaces. A similar decomposition holds forS. By [Gelbart
and Jacquet 1979], there is a Hecke-equivariant isomorphism betweenS andS.

Our goal now is to give a method to compute the action of the Hecke operators on
the spaceS. This will be done by constructing Brandt matricesB(ξ) and modified
Brandt matricesB′(ξ), which are families of rational matrices indexed byξ ∈ R+.
These are objects that were first defined overQ and later used to construct cusp
forms for congruence subgroups of SL2(Z).

3. 2-series of an ideal

The notion and construction of a2-series for an ideal in a quaternion algebra is
discussed in several papers, including [Pizer 1976; 1980a; 1980b; Gross 1987].
In this section we extend these definitions to ideals in a totally definite quaternion
algebraB defined overF .

Let J be an ideal in the totally definite quaternion algebraB. Let nr denote
the reduced norm fromB to F . The norm of any nonzero element inB is totally
positive. We denote by nr(J)+ a totally positive generator of nr(J), the fractional
ideal of F generated by the norms of the elements inJ. For anyβ ∈ J we define

NJ(β)= nr(β)/nr(J)+.

We define the2-series ofJ for τ ∈ HHom(F,R) by

2J(τ )=

∑
β∈J

exp(τNJ(β))=

∑
ξ∈R+

cξ,J exp(τξ),

wherecξ,J is the number of elementsβ in J with NJ(β)= ξ . This sum converges
since composingNJ with the trace map fromF to Q gives a positive definite
quadratic form onJ as aZ-lattice.

Proposition 3.1.The definition of cξ,J is independent of the choice ofnr(J)+.



338 JUDE SOCRATES AND DAVID WHITEHOUSE

Proof. Any two choices for nr(J)+ will differ by a totally positive unitv. Since
F has narrow class number one,v = u2 for some unitu. Thus multiplication by
u ∈ R× gives a bijection between the set of elements inJ of norm ξ nr(J)+ and
those of normξv nr(J)+. �

We note that ifJ ′
= γ1Jγ2 with γi ∈ B× the2-series ofJ andJ ′ are identical.

The proof in [Pizer 1980a, Proposition 2.17] holds in this case.
Suppose that we are given an idealJ in terms of a basis overR. We give an

effective algorithm to determine thecξ,J . Let {β1, . . . , β4} be a basis forJ over R
and let{ω1, . . . , ωn} be a basis forR overZ. We can writeβ ∈ J uniquely as

β =

4∑
i =1

n∑
j =1

xi j ω jβi

with xi j ∈ Z. ThenNJ(β) is a totally positive element ofR, providedβ 6= 0, and
composingNJ with the trace map fromF to Q gives a positive definite quadratic
form in the{xi j }. Therefore, given a basis of an idealJ and M ∈ R we can use
[Cohen 1993, Algorithm 2.7.7] to computecξ,J for all ξ ∈ R+ with Tr ξ ≤ M .

4. Brandt matrices and eigenforms

Brandt matrices were classically constructed from a complete set of representatives
of left O-ideal classes of an Eichler orderO of B′, a definite quaternion algebra over
Q with Ram(B′) = {∞, p}. For such aB′, [Pizer 1980a; 1980b] show that terms
appearing in a so-called Brandt matrix series are actually modular forms (forQ) of
a given weight and levelp. In this section we extend these definitions to a totally
definite quaternion algebraB defined overF . We then give an adelic construction
of the Brandt matrices and show that each eigenvector for the family of modified
Brandt matrices corresponds to a cusp form.

Let O be a maximal order inB and {I1, . . . , I H } a complete (ordered) set of
representatives of distinct leftO-ideal classes. For eachk let

Or (Ik)= {b ∈ B : Ikb ⊂ Ik}

denote the right order ofIk; this is another maximal order inB. The inverse ofIk

is defined by

I −1
k = {b ∈ B : IkbIk ⊂ Ik}.

Then, for eachk, the elementsI −1
k I1, . . . , I −1

k I H represent the leftOr (Ik)-ideal
classes.

In the notation of Section 3, let

ej = e(I j )= c1,Or (I j ),
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which is simply the number of elements of norm 1 in the orderOr (I j ). We define
bi, j (0)= 1/ej and forξ ∈ R+

bi, j (ξ)=
1

ej
cξ,I −1

j I i
,

which is 1/ej times the number of elements in the leftOr (I j )-ideal I −1
j I i of norm

ξ nr(I i )+/nr(I j )+. Now define theξ -th Brandt matrix forO by

B(ξ,O)= (bi, j (ξ)).

The construction ofB(ξ,O) is well defined up to conjugation by a permutation
matrix. Moreover, ifO′ is another maximal order, the matricesB(ξ,O) andB(ξ,O′)

are conjugate by a permutation matrix independent ofξ . In view of this, we shall
denote byB(ξ)= B(ξ,O) theξ -th Brandt matrix, for some fixed maximal orderO.

The following properties of the Brandt matrices are stated in [Pizer 1980a] and
proved there for quaternion algebras overQ. The proofs carry over for the Brandt
matrices defined above.

Theorem 4.1. (1) ej bi, j (ξ)= ei b j,i (ξ).

(2)
∑H

j =1 bi, j (ξ) is independent of i. Denote this value by b(ξ). Then b(ξ) is the
number of integral leftO ideals of normξ .

(3) The Brandt matrices generate a commutative semisimple ring.

Define theH × H matrix A by

A =


1 e1/e2 e1/e3 . . . e1/eH

1 −1 0 . . . 0
1 0 −1 . . . 0
...

...
...

. . .
...

1 0 0 0 −1

 .

Then forξ ∈ R+ or ξ = 0 we have

AB(ξ)A−1
=


b(ξ) 0 . . . 0

0
... B′(ξ)

0


This is proved in [Pizer 1980a], with the proof carrying over here. The submatrix
B′(ξ) will be called theξ -th modified Brandt matrix.

We now show that each simultaneous eigenvector for the family of modified
Brandt matrices corresponds to a cusp form. Shimizu [1965] constructed a rep-
resentation of the Hecke algebra acting on the space of automorphic forms, and
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in [Hijikata et al. 1989, Chapter 5] it is shown that this can be used to provide
another construction of Brandt matrices. We follow the discussion in this latter
source, simplifying it for the case that we are interested in.

Fix a maximal orderO in B. Let G be the multiplicative groupB×, viewed as an
algebraic group overF . Every leftO-ideal is of the formOã for someã ∈ G(AF ).
Let

U = U(O)= {ũ = (up) ∈ G(AF ) : up ∈ O×

p for all p<∞}.

Sinceα̃Uα̃−1 is commensurable withU for all α̃ ∈ G(AF ), we can define the usual
Hecke ringR(U,G(AF )); see [Shimura 1971]. Put

U(AF )= {ũ = (up) ∈ I F : up ∈ R×

p for all p<∞},

where I F is the group of idèles ofF . For ξ ∈ R+, denote byT (ξ) the element of
R(U,G(AF )) which is the sum of all double cosetsUãU such thatap ∈ Op for all
p<∞ and nr(ã) ∈ ξU(AF ).

Denote byM = M2(O) the space of continuousC-valued functionsf on G(AF ),
satisfying

f (uãb)= f (ã) for all u ∈ U, ã ∈ G(AF ), andb ∈ G(F).

We define a representation ofR(U,G(AF )) on M as follows. For

UyU ∈ R(U,G(AF )),

let UyU =
⋃

i Uyi be its decomposition into disjoint right cosets. Now write

ρ(UyU) f (ã)=

∑
i

f (yi ã)

and extendρ to R(U,G(AF )) by linearity. It is shown in [Hijikata et al. 1989,
p. 31] that this representation is independent of the choice of a maximal order, in
the sense that, ifO′ is another maximal order, there is an isomorphism between
R(U,G(AF )) and R(U′,G(AF )) preserving the Hecke operatorsT (ξ), and also
an isomorphismM2(O) andM2(O

′), such that the representation ofR(U,G(AF ))

on M2(O) induced by these isomorphisms is equivalent to the original representa-
tion of R(U,G(AF )) on M2(O).

If H is the class number ofO, we have

G(AF )=

H⋃
λ=1

Ux̃λG(F).

Note that theIλ = Ox̃λ give a complete set of representatives of leftO-ideal classes.
Since the elements ofM are determined by their values at thexλ, the map

(1) f 7→ ( f1, . . . , fH )
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gives an isomorphism ofM with CH
= C1 ⊕ · · · ⊕ CH , where eachCi is a copy

of C. We can use the isomorphism (1) to give a matrix representation forρ. For
ξ ∈ R+, let

B(ξ)= (ρi, j (ξ))i, j =1...H ,

where multiplication byρi, j (ξ) : C j → Ci is the composition of the injection of
C j into CH , the inverse of map (1),ρ(UξU), map (1), and the projection ofCH

into Ci . The following is proved in [Hijikata et al. 1989, Proposition 5.1], with the
proof carrying over here.

Proposition 4.2. The definition of B(ξ) yields the same matrix as the Brandt ma-
trices defined above, assuming that we use the same maximal orderO and set of
left O-ideal representatives Iλ.

We shall now make explicit the isomorphism as Hecke modules between the
spaces of Hilbert modular cusp forms andC-valued functions on the finite setX
modulo constant functions, which was mentioned in Section 2. We will follow the
construction of Hida [1988], which is also discussed in [Taylor 1989]. As before,
we shall be interested only in the weight 2, full level case.

Having fixed isomorphisms betweenG(Fp) and GL2(Fp) as in Section 2 we set

U = MG =

∏
p<∞

GL2(Rp),

an open subgroup of the finite part of the adelization ofO. Denote byS(U ) the
space ofC-valued functions onX, the set of right equivalence classes of leftO-
ideals. Via the identification ofX as a double coset space,S(U ) is just the space
M2(O) defined above. The Hecke action onS(U ) is that given in Section 2. Let
inv(U ) be the subspace ofS(U ) consisting of functions of the formf ◦ nr, where
nr is the reduced norm map

nr : G(A f
F )→ I f

F

and f is an appropriateC-valued function onI f
F , the finite idèles ofF . The map

nr, when restricted to the image ofB×, surjects into the totally positive elements
of F (this is the Theorem of Norms in [Vignéras 1980, p. 80]). Hence we can view
inv(U ) as consisting of functions of the form

G(A f
F )

nr
−→ I f

F −→ U(Rp)\ I f
F/F+

∼=
−→ Cl+(F)−→ C,

where Cl+(F) is the ray class group ofF . Since we are assuming thath+(F)= 1,
inv(U ) is the space of constant functions onX.

The Hecke operators certainly fix inv(U ). Thus, in order to examine the Hecke
action on the space of cusp forms, we must decomposeS(U ) into a direct sum of
inv(U ) and a spaceS2(U ) preserved by the Hecke algebra.
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We describe the Hecke action on inv(U ). Let Tp be thep-th Hecke operator
and f the function which is 1 on all elements ofX. In Section 2 we saw the
decomposition of ( ∏

p<∞

GL2(Rp)

)
gp

( ∏
p<∞

GL2(Rp)

)
into disjoint right cosets. Note, though, that in this decomposition we also obtain
exactly the elements inG(AF ) that yield, upon multiplying to the right ofO, the
set of integral leftO-ideals of normp. ThusTp( f ) is the function with constant
value equal to the number of such ideals.

We have seen that the matrixA transforms the Brandt matrices into two blocks
consisting of a 1× 1 cell containingb(ξ) and the modified Brandt matrixB′(ξ).
And in Theorem 4.1 we noted thatb(ξ) is precisely the number of integral left
O-ideals of normξ . Thus we have:

Proposition 4.3.Let {vi } be a basis forCH−1 consisting of eigenvectors for all the
modified Brandt matrices. Then eachvi corresponds to a(normalized) holomor-
phic Hilbert modular eigenformf i of weight2 and full level whose eigenvalue with
respect to thep-th Hecke operator is precisely the eigenvalue ofvi with respect to
B′(π), whereπ is a totally positive generator ofp.

To find a basis ofCH−1 of simultaneous eigenvectors for all the modified Brandt
matrices one computes the matricesB′(ξ), ordered by the trace ofξ , and succes-
sively decomposes the spaceCH−1 into simultaneous eigenspaces until one is left
with one-dimensional eigenspaces.

It is, of course, desirable to know which of these forms do not arise by base
change. Suppose thatF/Q is a cyclic extension with Galois groupG. ThenG acts
on the set of eigenforms via permutation of the primes ofF . And one knows that
a form does not arise by base change from an intermediate field if and only if its
Galois orbit has order equal to the degree of the extensionF/Q. Using this one can
then determine precisely which forms arise via base change once one has found
a basis ofCH−1 of simultaneous eigenvectors of theB′(ξ) using the procedure
described above. In the case thatF/Q is solvable there are added complications
to determining which forms don’t arise by base change coming from the existence
of Galois fixed Hecke characters that do not descend; see [Rajan 2002].

5. Finding type and ideal class representatives

In order to use Proposition 4.3 to compute the space of cusp forms we need to be
able to find representatives for the ideal classes of a maximal orderO in B. In this
section we give a strategy to find these representatives.
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We continue withB, the quaternion algebra overF ramified only at the infinite
places ofF , and we takeO to be a maximal order inB. It is easy to manufacture
ideals ofO when they are of a particular form. Letα ∈ B \ F . ThenK = F(α) is a
quadratic extension ofF contained inB. Let I be an ideal in the ring of integers
S of K . Then J = OI is a left ideal ofO. Moreover we have nr(J) = NK/F (I ),
since 1∈ O. Clearly, if I and I ′ are in the same ideal class inK then J andJ ′ are
in the same leftO-ideal class.

We will now see that to find representatives of leftO-ideal classes it suffices to
consider ideals of the formOI as in the construction above.

Proposition 5.1. Every leftO-ideal class of a maximal orderO contains an ideal
of the formOI , where I is an ideal in a field extension K= F(b) contained inB.

Proof. The leftO-ideal classes are in bijection with

X = MG\G(A f
F )/G(F),

as stated in Section 2. Since this is a finite set, there is a finite set of primesSsuch
that G(A f

F )= MG B×

S G(F), whereBS =
∏

p∈S Bp. Now

i S(B) := {(b, . . . , b) ∈ BS : b ∈ B}

is dense inBS; hencei S(B×) is dense inB×

S . SinceMG is open inG(A f
F )we have

by strong approximationG(A f
F )= MGi S(B×)G(F). Thus everyβ ∈ G(A f

F ) is of
the formβ = µi S(b)b0 for someµ ∈ MG andb, b0 ∈ B×. Under the local-global
correspondence, then, the leftO-ideal Oβ is in the same class asOi S(b), where
i S(b) can be viewed as a fractional ideal inF(b). �

We now outline the algorithm for finding representatives for leftO-ideal classes.

1. Determine the class numberH . (This can be done; see [Pizer 1973]. We will
make this explicit in the case of a quadratic field in Section 6 below.)

2. Initialize the list of representatives of leftO-ideal classes toL = {O}.

3. Find an elementα ∈ B such that the ring of integers ofK = F[α] is exactly
R[α].

4. Determineh = h(K ) and S = {I1 . . . Ih}, ideal representatives for the class
group ofK ,

OR

Generate a large listS= {I i } of prime ideals ofK .

5. Now, for I i ∈ S, do:

(a) Find a basis forJi = OI i .
(b) Determine ifJi is in the same class as any of the ideals inL obtained so

far. If not, addJ to L, and keep a note ofα and I i .
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6. Stop if H representatives have been found; otherwise resume from Step 3.

We would like to know how to determine if two leftO-ideals belong to different
ideal classes, which is step 5(b) of the algorithm. In Section 3 we saw that the
2-series gives a necessary test for two ideals to be in the same class. We now give
a necessary and sufficient condition for two ideals to be in the same class.

Proposition 5.2. Let I and J be leftO-ideals for an Eichler orderO. Then I
and J belong to the same left ideal class if and only if there is anα ∈ M = J I
(whereJ denotes the conjugate ideal of J) such thatnr(α)= nr(I )nr(J), i.e., with
NM(α)= 1.

This is proved in [Pizer 1980a], with the proof valid for any quaternion algebra
over a number field. To use this proposition we will need to construct a basis for
M , then compute the normalized normNM as in Section 3.

6. Computing T and H

We now specialize to the case of a real quadratic fieldF = Q(
√

m) of narrow class
number one. As is well known, this condition implies that eitherm = 2 or m is
prime and congruent to 1 mod 4. In this section we give an explicit formula for
the type number ofB and the class number of a maximal orderO in B. The most
important tool will be the main theorem in [Pizer 1973], which we restate here:

Theorem 6.1(Pizer).Let F be a totally real number field of degree n overQ, and
let R be its ring of integers. Let B be a positive definite quaternion algebra over
F . Let q1 be the product of the finite primes in F that ramify inB and q2 a finite
product of distinct finite primes of F such that(q1,q2)= 1. Then the type number
Tq1q2 of Eichler orders of level q1q2 in B is

(2) Tq1q2 =
1

2eh(F)

(
M +

1

2

∑
Sa∈C

Eq1q2(Sa)
h(Sa)

w(Sa)

)
,

where

• e is the number of primes dividing q1q2;

• M is Eichler’s mass, given by

M =
2h(F)ζF (2)disc(F)3/2

(2π)2n

∏
p |q1

(N(p)− 1)
∏
p |q2

(N(p)+ 1),

whereζF is the zeta function of F;

• h(Sa) is the ideal class number of locally principalSa-fractional ideals;

• w(Sa) is the index of the group of units of R in the group of units inSa;
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• Eq1q2(Sa)=
∏

p |q1

(
1−

{
Sa

p

}) ∏
p |q2

(
1+

{
Sa

p

})
;

• C is the collection of all orders defined by the following procedure:

1. Let e1, . . . ,es be a compete set of representatives of UmodU2, where U
are the units of R;

2. let d1, . . . ,dk be a complete set of integral ideal representatives of

E.Fr(F)2 mod(Pr(F)2),

where E is the subgroup ofFr(F) (the divisor group of F) generated by all
thep which divide q1q2, andPr(F) is the subgroup of principal divisors
of Fr(F).

3. Let n1, . . . ,nt be a set of all elements of R such that

(a) (n j )= d j ′ for some j′ with 1 ≤ j ′
≤ k, and

(b) (ni ) 6= (n j ) for i 6= j .

4. Consider the collection of all polynomials over R of the form

fµ,ρ,τ (x)= x2
− τx + nµeρ with 1 ≤ ρ ≤ s and1 ≤ µ≤ t ,

where

(a) fµ,ρ,τ is irreducible over F,
(b) F[x]/ fµ,ρ,τ (x) cannot be embedded in any F∞i , i = 1, . . . ,n,
(c) psp |τ for all p<∞, where sp =

[1
2vp(nµ)

]
(floor function), and

(d) if vp(nµ) is odd thenpsp+1
|τ .

5. Let a be a root of some fµ,ρ,τ and for each fµ,ρ,τ choose only one root.
Then C= {Sa : Sa is an order of F(a)} such that

(a) R[a] ⊂ Sa, and
(b) if p<∞ then aπ

−sp
p ∈ Sa,p, where sp =

[1
2vp(N(a))

]
.

We now use this theorem of Pizer to derive a more explicit formula for the
algebraB over any real quadratic field of narrow class number one.

Theorem 6.2.Let m≡ 1 mod 4be a positive squarefree number greater than5,set
F =Q(

√
m) and let R be the ring of integers in F. Assume that F has narrow class

number one. Let B be the totally definite quaternion algebra which is unramified
at all the finite primes of F. Then the type number T ofB is given by

T =
1

48m

m∑
u=1

( u

m

)
u2

+
1
8 h

(
Q(

√
−m)

)
+

1
6 h

(
Q(

√
−3m)

)
.
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For completeness we note that ifm= 5 the type number ofB is 1; see [Socrates
1993, Theorem 5.2].

Proof of Theorem 6.2.We proceed to determine the quantities in Theorem 6.1. We
haveh(F)= 1. SinceB is unramified at all finite primes,q1 = 1 and for maximal
ordersq2 = 1. Thuse= 0 and the two products in the definition of Eichler’s mass
M are both empty. Sincem ≡ 1 mod 4 we have discF = m and

M =
2ζF (2)m3/2

(2π)4
=

m3/2

8π4
ζF (2).

We shall further simplifyM by explicitly calculatingζF (2). Our method will
be that of [Leopoldt 1958], which uses generalized Bernoulli numbers; see also
[Neukirch 1999, Chapter VII]. Define then-th Bernoulli number,Bn, by

tet

et − 1
=

∑
n≥0

Bn
tn

n!
.

For a characterχ mod f , defineBn,χ by

f∑
u=1

χ(u)
teut

e f t − 1
=

∑
n≥0

Bn,χ
tn

n!
.

For F = Q(
√

m), with m> 0, define

Bn,F =

∏
χ

Bn,χ ,

where the product runs over the characters modd = |discF | = m that correspond
to characters of Gal(F/Q). Hence this product involves only the trivial character
andχ the Legendre symbol modm. ThusBn,F = BnBn,χ . In [Leopoldt 1958] it
is shown that

ζF (n)=
(2π)2n

√
d Bn,F

4dn(n!)2

if n is a positive even integer. ThusM =
1
48B2,χ , sinceB2 =

1
6. Now

B2,χ =
1

m

m∑
u=1

( u

m

)
u2

and hence

M =
1

48m

m∑
u=1

( u

m

)
u2.
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Now we proceed with the rest of the algorithm. The product defining

Eq1q2(Sa)= E1(Sa)

is also empty regardless ofSa, so E1(Sa)= 1. Equation (2) then becomes

T = M +
1

2

∑
Sa∈C

h(Sa)

w(Sa)
.

We now follow the algorithm to find the collectionC.

1. SinceU = 〈−1〉〈u〉, whereu is a fundamental unit ofF andU2
= 〈u2

〉, we get
s = 4, and a set of representatives forU modU2 is given by{±1,±u}.

2. Sinceq1q2 = 1 and Fr(F) = Pr(F), we havek = 1, E = (1) and {(1)} is a
complete set of representatives forE.Fr(F)2 mod Pr(F)2.

3. From step 2, we can taket = 1 andn = n1 = 1.

4. We shall call the polynomials obtained in this stepcontributing polynomials, and
denote this set by9. Sinceµ= 1= t andn = n1 = 1 we shall use the abbreviation

fρ,τ (x)= x2
− τx + eρ .

Sincevp(n) = 0 for anyvp, we havesp = 0 for every finitep, so condition 4(c) is
always satisfied by anyτ . Condition 4(d) is vacuous. Now we look at condition
4(b). SinceF is totally real this condition requires that the discriminant

1( fρ,τ )= τ2
− 4eρ

of fρ,τ be totally negative. But for anyτ , 1( f−1,τ ) and1( f−u,τ ) are always
positive, sinceu> 0. Hence we need only considerf1,τ and fu,τ . But NF/Q(u)=
−1 tells us thatσ(u) < 0, whereσ is the nontrivial element of Gal(F/Q). So
σ(τ)2 − 4σ(u) > 0 for anyτ . Thus onlyeρ = 1 remains. We further abbreviate

fτ (x)= x2
− τx + 1.

Our problem is therefore to find allτ = a + bθ ∈ R, whereθ =
1
2(1+

√
m), such

thatτ2
− 4< 0 andσ(τ)2 − 4< 0, i.e., such that

−2< a + bθ,a + b− bθ < 2.

Thus we see that we necessarily need−4<(2θ−1)b<4, which is−4<
√

mb<4.
Hence ifm> 16 thenb = 0 is the only possible value. In this case,τ = a = 0,±1.
Note that these three values yield a contributingfτ . On the other hand, ifm< 16
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the only possible value form is 13 and in this case we must haveb= 0 or±1. But
for b = 1 we must have

−5+
√

13

2
< a<

3−
√

13

2

and there are no such integersa. On the other hand ifb = −1 then we must have

−3+
√

13

2
< a<

5−
√

13

2

and again there are no such integers. Clearly condition 4(a), irreducibility, is sat-
isfied by all the fτ above since the roots are imaginary. We summarize step 4 in
the following result:

Lemma 6.3. Assume the hypotheses in Theorem 6.2. The only contributing poly-
nomials in9 are fτ with τ = 0,±1.

The roots of these polynomials and the fields they generate overQ(
√

m) are shown
below.

τ Rootsaτ , a′
τ of fτ F(aτ )

0 ζ4, ζ
3
4 Q(

√
m, ζ4)

1 ζ6, ζ
5
6 Q(

√
m, ζ6)

−1 ζ 2
6 , ζ

3
6 Q(

√
m, ζ6)

5. We proceed to the last step of the algorithm: finding the ordersSa. Condition
5(a) says thatR[aτ ] must be contained inSa. However, we find thatR[aτ ] is the
maximal order ofF(aτ ).

Lemma 6.4.Let m be as in Theorem 6.2, R the ring of integers ofQ(
√

m) and u a
fundamental unit in R.

(1) The ring of integers ofQ(
√

m, ζ4) is R[ζ4] and R[ζ4]
×

= 〈ζ4〉〈u〉.

(2) The ring of integers ofQ(
√

m, ζ6) is R[ζ6] and R[ζ6]
×

= 〈ζ6〉〈u〉.

Proof. (a) Let S denote the ring of integers inK = Q(
√

m, ζ4). Then by [Marcus
1977, Ex. 42, p. 51] we haveS= R[ζ4]. Now letα = ω1 +ω2ζ4 ∈ S. We compute

NK/Q(α)= NF/Q(ω1)
2
+ (ωσ1ω2)

2
+ (ω1ω

σ
2 )

2
+ NF/Q(ω2)

2

whereσ is the nontrivial element of Gal(F/Q). We deduce thatα is a unit if and
only if eitherω1 = 0 andNF/Q(ω2) = ±1 or ω2 = 0 andNF/Q(ω1) = ±1. The
result now follows.
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(b) Let S denote the ring of integers inK = Q(
√

m, ζ6). Then by [Marcus 1977,
Ex. 42, p. 51] we haveS= R[ζ6], since 3-m asQ(

√
m) has narrow class number

one. Letα = a + bθ + cζ6 + dθζ6 ∈ S, whereθ =
1
2(1+

√
m). We compute

16NK/Q(α)= NF/Q(ω1)
2
+ 3((ω1ω

σ
2 )

2
+ (ωσ1ω2)

2)+ 9NF/Q(ω2)
2,

whereω1 = 2a + c + (2b + d)θ , ω2 = c + dθ andσ is the nontrivial element
of Gal(F/Q). Assume thatα ∈ S×. Then we haveNF/Q(ω2) = 0 or ±1. If
NF/Q(ω2) = 0 thenα ∈ R×. Now assume thatNF/Q(ω2) = ±1. In this case
we must haveNF/Q(ω1) = ±1 sinceNF/Q(ω1) ≡ NF/Q(ω2) mod 2 rules out the
possibility thatNF/Q(ω1) = ±2. So we can writeω1 = ±ur andω2 = ±us. Now
α is a unit if and only if

16= 1+ 3
(
(ω1ω

σ
2 )

2
+ (ωσ1ω2)

2)
+ 9,

that is, if and only if 2= u2(r −s)
+ u−2(r −s). This is true if and only ifr = s. We

deduce that ifNF/Q(ω2)= ±1, thenα is a unit inS if and only if

α =
ω1 −ω2

2
+ω2ζ6 = ur ζ k

6

with k ∈ {1,2,4,5}. The result follows. �

Lemma 6.5.The set of orders C consists of the rings of integersS of the extensions
F(aτ ) where aτ is a chosen root of a contributing polynomial fτ as determined by
Lemma 6.3.

Proof. Only condition 5(b) needs to be verified. Our computations show that all of
the rootsaτ of fτ are roots of unity andNF(aτ )/F (aτ ) = 1. Thussp = 0 for every
p andaτ ∈ Saτ ,p is always satisfied. �

Hence, equation (2) becomes

T = M +
1

2

∑
Saτ ∈C

h(Saτ )

w(Saτ )
.

We now study the contributions from the biquadratic fieldsQ(
√

m,
√

−1) and
Q(

√
m,

√
−3) to this sum. For this we need the following result of Hasse [1952].

Proposition 6.6. Let m1,m2 be negative squarefree integers and set m0 = m1m2.
For each i we set Fi = Q(

√
mi ),wi the number of roots of unity in Fi , hi the order

of the class group of Fi . Let K = Q(
√

m1,
√

m2), h the order of the class group of
K ,w the number of roots of unity in K and u the fundamental unit in K. Let u0 be
the fundamental unit of F0. Then

h =
w

w1w2
h0h1h2

logu0

log |u|
.
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From this proposition we get:

(1) For Q(
√

m,
√

−1): Let m1 = −1, m2 = −m, m0 = m, K = Q(
√

−1,
√

−m).
Henceh0=1, by hypothesis. It is well known that the class group order ofQ(

√
−1)

is 1, and the only roots of unity are powers of
√

−1, i.e.,h1 = 1, w1 = 4. Also, the
only roots of unity inQ(

√
−m), with m 6= 1,3, are±1, sow2 = 2. Thenw = 4

andu0 = u. Thus we obtainh =
1
2h(

√
−m).

(2) ForQ(
√

m,
√

−3): Let m1 =−3,m2 =−3m,m0 =9m, K =Q(
√

−3,
√

−3m).
Similarly, it is know that the class group order ofQ(

√
−3) is 1, and the only roots

of unity are powers ofζ6, i.e., h1 = 1, w1 = 6. Then,w = 6 andu0 = u. Again
w2 = 2 and we obtainh =

1
2h(

√
−3m).

Next, [S×
: U ] = 2 and 3, respectively, forQ(

√
m,

√
−1) andQ(

√
m,

√
−3).

We can now finish proving Theorem 6.2. The fieldQ(
√

m,
√

−3) contributes twice
in the sum (forτ = 1,−1), so equation (2) becomes

T = M +
1

2

(
h
(
Q(

√
m,

√
−1)

)
2

+ 2
h
(
Q(

√
m,

√
−3)

)
3

)
= M +

1
8h

(
Q(

√
−m)

)
+

1
6h

(
Q(

√
−3m)

)
and this completes the proof of Theorem 6.2. �

We can also determineH . Following the proof of Theorem 6.1 given in [Pizer
1973], we see that

(3) Tq1q2 =
1

2eh(F)

(
Hq1q2 +

1

2

∑
Sa∈C2

Eq1q2(Sa)
h(Sa)

w(Sa)

)
,

whereC2 = C − C1 andC1 = {Sa ∈ C | (N(a)) = (1)}. That is,a is a root of
fµ,%,τ (x) with (nµ)= (1). From this we have:

Proposition 6.7.Let m be a positive squarefree integer, F = Q(
√

m), with h(F)=
1, and B the unique quaternion algebra withRam(B)= {∞1,∞2}. Then H= T .
Consequently, if I 1, . . . , I H is a complete set of representatives of distinct leftO-
ideal classes for a fixed maximal orderO, then the corresponding right orders
Or (I1), . . . ,Or (I H ) form a complete set of distinct representatives of maximal or-
ders of different types.

Proof. We haveh(F) = 1, q1 = q2 = 1, 2e
= 1 andnµ = n1 = 1 in the algorithm

to find C. ThusC2 = ∅. Substitute these in (3) to get the result. �
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7. The algebraB and a maximal order O

In this section we obtain defining relations forB, the positive definite quaternion
algebra overF = Q(

√
m) that is ramified precisely at the infinite places ofF . We

also find a basis overR for a maximal orderO in B whenm ≡ 5 mod 8.

Definition 7.1. Over a fieldK of characteristic not equal to two, let(a,b) for
a,b∈ K × denote the quaternion algebra overK with basis{1, i, j, k} and relations
k = i j , i 2

= a, j 2
= b andi j = − j i .

Proposition 7.2. Let m 6≡ 1 mod 8be a positive squarefree integer. Then B =

(−1,−1) is the unique quaternion algebra defined overQ(
√

m) that is ramified
precisely at the infinite places ofQ(

√
m).

Proof. It is clear thatB = (−1,−1) is positive definite. We shall show that at
every finite primep of F the algebraBp = B ⊗F Fp is the matrix algebra. LetB′

be the quaternion algebra overQ given by B′
= (−1,−1). Then B = B′

⊗Q F .
As is well known, Ram(B′)= {2,∞}. HenceB is split at every primep of F not
lying above 2. Sincem 6≡ 1 mod 8 there is only one prime inF above 2. But now
Ram(B) has even cardinality and contains the two infinite places ofF and hence
B must be unramified at the prime ofF above 2. �

In the case thatF = Q(
√

m) has narrow class number 1 andm ≡ 1 mod 8 one
can takeB′ to be the quaternion algebra overQ ramified precisely at{m,∞}. By
[Pizer 1980a, Proposition 5.1], one hasB′

= (−m,−q) whereq is a prime with
q ≡3 mod 4 and

(m
q

)
=−1. The same argument as above shows thatB = B′

⊗Q F .
We now give a maximal orderO in B whenm ≡ 5 mod 8.

Proposition 7.3. Let m ≡ 5 mod 8be a positive squarefree integer. Let F =

Q(
√

m) with ring of integers R= Z[θ ], whereθ =
1
2(1+

√
m). Let B = (−1,−1).

ThenO = R
[
δ1, δ2, j, k

]
is a maximal order inB, whereδ1 =

1
2(1+ i + j +k) and

δ2 =
1
2(i + θ j + (1+ θ)k).

Proof. It is clear thatO is a full lattice inB. It is simple, but tedious, to check that
O is a ring and that every element ofO is integral. Finally one can check thatO

is maximal by computing its discriminant. For all the details see [Socrates 1993,
Theorem 4.2]. �

8. Cusp form calculations

We now compute the space of cusp forms for the fieldF = Q(
√

509). From
Theorem 6.2 and Proposition 6.7 we compute that the class number forB is 24.
We will give representatives for each of the 24 ideal classes, which will then enable
us to compute the necessary Brandt matrices using the algorithm from Section 3.
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In the algorithm of Section 5, we first find suitableα. Theα that eventually led
us to distinct ideal classes werei together with

α1 =
1
2 + 5i +

1
2(1+ θ) j +

(
1−

1
2θ

)
k = δ1 + 9δ2 − 4θ j − (4+ 5θ)k(

nr(α1)= 90, k1 = −359, h(Q(
√

−359))= 19
)

and

α2 =
1
2 + (4−

1
2θ)i +2 j +

1
2(7+ θ)k = δ1 + (7− θ)δ2 + (65−3θ) j + (63−2θ)k(

nr(α2)= 96, k2 = −383, h(Q(
√

−383))= 17
)
.

Let K = F(αi ). Note thatR
[√

ki
]

has index 2 in the ring of integers ofK . We
setα′

i = 2αi − 1, which satisfiesx2
− ki = 0. SinceF has class number one, we

will be interested only in prime ideals ofF that split in K . If x2
− ki splits into

two distinct factors(x − β1)(x − β2) modulo the prime idealp = (a + bθ) of F ,
then as an ideal inK

p = (a+bθ, α′

i −β1)(a+bθ, α′

i −β2)

and it suffices to consider only one of the idealsI on the right, as they belong to
the sameK -ideal class. Moreover we have nr(OI )= (a + bθ).

Since the class number ofO is rather large, we first used the2-series ofOI
for various prime idealsI in the extensionsK = F(αi ) above. We computed the
2-series of these ideals up to 30+ 2θ . Using this method we found 23 of the 24
ideal classes. These ideals, together with the initial coefficients of their2-series,
are listed in the tables below.

After a lengthy search that did not yield another ideal with a distinct2-series,
we switched to using the necessary and sufficient conditions of Proposition 5.2.
Let I be an ideal inS, the ring of integers in someF(αi ). Assume that the initial
coefficients of the2-series ofOI are the same as those of one of the left ideals
above, sayJs. Construct a basis forI ′

= I −1Js and construct

NI ′(α)=91(X)+92(X)θ,

with 91 in Hermite normal form. Proposition 5.2 then says thatOI is actually in
a differentclass asJs if and only if a1,1, the leading term of91, is greater than 1.
(Note that 1+ bθ is totally positive if and only ifb = 0). Using this condition, we
quickly determined that we could takeJ24 = OI24 with

I24 =
(
46+5θ, 334−10i −(1+θ) j +(−2+θ)k

)
a prime ideal inF(α1) dividing 829.

Now that we have concrete representatives of left ideal classes, we are able to
construct explicitly the first few Brandt matricesB(ξ) and the modified Brandt
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matricesB′(ξ) using the algorithm [Cohen 1993, Algorithm 2.7.7] mentioned at
the end of Section 3. This involves computing the2-series of the 300 idealsJ−1

r Js,
r ≥ s, due to the symmetry properties in Theorem 4.1. We also computed the
characteristic polynomials of theB′(ξ) and factored them overQ. We found that
the characteristic polynomial ofB′(19+ θ) has three distinct rational roots and an
irreducible factor of degree 20. Hence, althoughC23 has a basis of eigenvectors
for all theB′(ξ), only three eigenvectors have eigenvalues that are all rational. The
three rational eigenvectors are

v1 = (0,0,0,0,1,0,−2,−1,1,1,0,−2,0,0,−3,1,0,0,0,−1,2,0,2),

v2 = (0,0,0,0,−1,0,2,1,−1,1,0,2,0,0,−2,−1,0,0,0,1,−2,0,3),

v3 = (45,45,25,60,23,40,34,27,18,28,30,19,35,20,31,28,20,
15,25,37,51,40,31).

We let f 1, f 2 and f 3 denote the forms corresponding to the vectorsv1, v2 andv3

by Proposition 4.3. The initial Fourier coefficients of these forms are tabulated in
Table 3. From this table we note thatf 1 = f σ2 , whereσ is the nontrivial element
of Gal(F/Q), while f 3 = f σ3 and hencef 3 is the base change of a classical form.
That none of these forms are CM forms follows from the following proposition.

Proposition 8.1.Let f be a Hilbert eigenform of full level for a totally real number
field F of narrow class number one. Then f is not a CM form.

Proof. Recall that f is a CM form if and only if there exists a quadratic character
ε corresponding to an imaginary quadratic extensionK/F such that f = f ⊗ ε.
So suppose we havef = f ⊗ ε for such a characterε. Let π denote the cuspidal
representation of GL2(AF ) corresponding toπ . Then we haveπ ∼= π ⊗ (ε ◦ det).
By a theorem of Labesse and Langlands [1979] we have an equality ofL-series
L(π, s)= L(χ, s) for some grössencharakterχ of K , and it is known that condπ =

NK/F (condχ)disc(K/F). Sinceπ is assumed to be unramified it follows that
K/F is an unramified extension. But this is impossible sinceF has narrow class
number one. �

9. The elliptic curves

In this section we give equations for the elliptic curves that we will show are at-
tached to the formsf 1, f 2 and f 3 of the previous section.

Let E3 be the elliptic curve given by the Weierstrass equation

y2
+ (1+ θ)xy+ (1+ θ)y

= x3
+ (−4051846+ 343985θ)x + 4312534180− 366073300θ.
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This curve is found in [Cremona 1992] and is aQ-curve (that is, it is isogenous
to its Galois conjugate). LetE1 denote the elliptic curve given by the Weierstrass
equation

y2
− xy− θy = x3

+ (2+ 2θ)x2
+ (162+ 3θ)x + 71+ 34θ.

This elliptic curve is in a table found in [Pinch 1982], among other curves that have
good reduction everywhere over certain quadratic fields. We show below thatE1

is not F-isogenous to its Galois conjugate. This is also noted (without proof) in
[Cremona 1992]. We takeE2 to be the curveEσ1 , whereσ is the nontrivial element
of Gal(F/Q).

Proposition 9.1.The elliptic curve E1 is not isogenous over F to its Galois conju-
gate.

I i K ai + bi θ γi I i | p ∈ Z

I1 F 1
I2 F(α1) 61 −23+ 46θ − 10i − (1+ θ) j + (−2+ θ)k 61
I3 F(α1) 45+ 4θ 81− 10i − (1+ θ) j + (−2+ θ)k 173
I4 F(α1) 149 45− 10i − (1+ θ) j + (−2+ θ)k 149
I5 F(α1) 53+ 5θ 34− 10i − (1+ θ) j + (−2+ θ)k 101
I6 F(α1) 79 6− 10i − (1+ θ) j + (−2+ θ)k 79
I7 F(α1) 53 −22+ 44θ − 10i − (1+ θ) j + (−2+ θ)k 53
I8 F(α2) 23+ 2θ 32+ (−8+ θ)i − 4 j − (7+ θ)k 67
I9 F(α1) 9+ θ 14− 10i − (1+ θ) j + (−2+ θ)k 37
I10 F(α1) 10+ θ 7− 10i − (1+ θ) j + (−2+ θ)k 17
I11 F(α1) 184+ 17θ 22− 10i − (1+ θ) j + (−2+ θ)k 281
I12 F(α1) 107+ 10θ 33− 10i − (1+ θ) j + (−2+ θ)k 181
I13 F(α2) 47 −18+ 36θ + (−8+ θ)i − 4 j − (7+ θ)k 47
I14 F(α1) 31 −1+ 2θ − 10i − (1+ θ) j + (−2+ θ)k 31
I15 F(α1) 32+ 3θ 3− 10i − (1+ θ) j + (−2+ θ)k 23
I16 F(α1) 131 54− 10i − (1+ θ) j + (−2+ θ)k 131
I17 F(α1) 59 −14+ 28θ − 10i − (1+ θ) j + (−2+ θ)k 59
I18 F(α2) 61 −26+ 52θ + (−8+ θ)i − 4 j − (7+ θ)k 61
I19 F(i ) 31+ 3θ 34+ i 89
I20 F(α1) 75+ 7θ 15− 10i − (1+ θ) j + (−2+ θ)k 73
I21 F(α1) 13 −3+ 6θ − 10i − (1+ θ) j + (−2+ θ)k 13
I22 F(α1) 157 −6+ 12θ − 10i − (1+ θ) j + (−2+ θ)k 157
I23 F(i ) 11+ θ 2+ i 5

Table 1. Prime idealsI i = (ai + bi θ, γi ), where theOI i have dis-
tinct2-series.
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Proof. If E1 andEσ1 are isogenous, the local factors of theL-series ofE1 andEσ1
will be the same for all primes ofF . Let p = (5,1+ 2θ) denote one of the prime
ideals ofF above 5. We have an isomorphism ofR/p with Z/5 that mapsθ to

1 2 3 4 5 6 7 8 9 10 11 11+θ 12−θ 12

J1 24 24 96 24 144 96 192 24 312 144 288 0 0 96
J2 0 24 0 24 0 96 0 24 0 144 0 0 0 96
J3 0 0 24 0 0 24 0 0 96 0 0 0 0 24
J4, J5 0 0 0 24 0 0 0 24 0 0 0 0 0 96
J6, J7, J8 0 0 0 0 24 0 0 0 0 24 0 0 0 0
J9 0 0 0 0 0 24 0 0 0 0 24 0 0 24
J10 0 0 0 0 0 24 0 0 0 0 0 0 0 48
J11 0 0 0 0 0 0 24 0 0 24 0 0 0 24
J12 0 0 0 0 0 0 24 0 0 24 0 0 0 0
J13, J14 0 0 0 0 0 0 24 0 0 0 48 0 0 0
J15 0 0 0 0 0 0 0 24 24 0 0 0 0 48
J16 0 0 0 0 0 0 0 24 0 24 24 0 0 24
J17 0 0 0 0 0 0 0 24 0 24 48 0 0 0
J18 0 0 0 0 0 0 0 24 0 48 0 0 0 0
J19 0 0 0 0 0 0 0 48 0 0 0 0 0 0
J20 0 0 0 0 0 0 0 0 24 48 48 0 0 0
J21 0 0 0 0 0 0 0 0 48 24 0 0 0 24
J22 0 0 0 0 0 0 0 0 48 0 48 0 0 0
J23 0 0 0 0 0 0 0 0 0 48 48 24 24 48

12+θ 13−θ 13 13+θ 14−θ 14 14+θ 15−θ 15 15+θ

J4, J5 0 0 0 0 0 0 0 0 0 0
J6 0 0 24 0 0 0 0 0 96 0
J7 0 0 0 0 0 24 0 0 144 24
J8 0 0 0 0 0 48 0 0 96 0
J13 0 0 48 0 0 24 48 48 0 0
J14 0 0 24 24 24 48 0 0 24 24

16−θ 16 16+θ 17−θ 17 17+θ 18−θ 18 18+θ

J4 0 24 0 0 48 0 0 24 24
J5 0 48 0 0 0 0 0 0 0

Table 2. Beginning coefficientscξ,Ji of the2-series ofJ1 to J23.
More are given for ideals whose early coefficients agree.
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ξ 3 7 11+θ 12−θ 12+θ 13−θ 13 14+θ 15−θ 15+θ 16−θ

ξ | p 3 7 5 5 29 29 13 83 83 113 113

v1 −4 −6 3 −2 0 10 1 14 9 11 6
v2 −4 −6 −2 3 10 0 1 9 14 6 11
v3 1 9 −2 −2 −5 −5 26 14 14 11 11

Table 3. Eigenvalues for simultaneous rational eigenvectors forB′(ξ).

2 mod 5. Then the equation for the reduced curveẼ1 overZ/5 has affine equation

Ẽ1 : y2
+ 4xy+ 3y = x3

+ x2
+ 3x + 4.

and we compute that̃E1(R/p) has order 8. Similarly, the reduction of the curve
Eσ1 has equation

Ẽσ1 : y2
+ 4xy+ y = x3

+ 4x + 2.

and we compute that̃Eσ1 (R/p) has order 3. ThereforeE1 is not isogenous toEσ1 .
�

Finally we check that our curvesE1, E2 andE3 do not possess potential complex
multiplication. We first remark thath+(F)= 1. Our conclusion about these curves
now follows from:

Proposition 9.2.Let K be a totally real number field of narrow class number one.
Let E/K be an elliptic curve that has good reduction everywhere. Then E does
not possess potential complex multiplication.

Proof. SupposeE(C) has CM defined over the fieldQ(
√

n), wheren<0. Consider
the fieldL = K (

√
n). ThenE and its complex multiplications are defined overL.

Consider thè -adic representation given by the action of Galois on the`-adic Tate
module ofE/L

σ` : Gal(Q/L)→ GL2(Q`).

We construct another representation

σ
[ρ]

` : Gal(Q/L) → GL2(Q`),

τ 7→ σ`(ρτρ
−1),

whereρ ∈ Gal(Q/K ) is nontrivial when restricted toL. Now, sinceE is actually
defined overK , thisσ` extends to a representationσ̃` of Gal(Q/K ). However,

σ̃`(ρτρ
−1)= σ̃`(ρ)σ̃`(τ )σ̃`(ρ)

−1
= σ̃`(ρ)σ`(τ )σ̃`(ρ)

−1,

and henceσ [ρ]

`
∼= σ`.
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SinceE has CM overL, the representationσ` is abelian, soσ` = χ` ⊕ χ ′

` for
some charactersχ`, χ ′

` of H . It can easily be seen from such a decomposition that,
in the obvious notation,

σ
[ρ]

` = χ
[ρ]

` ⊕χ
′[ρ]

`

as well. Now,χ` corresponds to a weight 1 grössencharakterψ of L, andχ`=χ
[ρ]

`

if and only if ψ(z)= ψ(z) for all z ∈ L∗
∞

= C∗. Butψ(z)= z−1 andψ(z)= z−1,
henceψ(z) 6= ψ(z), soχ` 6= χ

[ρ]

` . Thusχ ′

` = χ
[ρ]

` , and soσ` = χ` ⊕ χ
[ρ]

` , hence
σ̃` = IndG

H (χ`). Since the degree ofχ` is 1, we get the formula

condσ̃` = NL/K (condχ`)disc(L/K )

for the conductor of̃σ`; see [Martinet 1977]. Recall thatE has good reduction
everywhere, so everỹσ` is unramified at all the primes ofK not dividing`. Since
σ̃` is ramified at all the primes which divide cond(σ̃`), we see that disc(L/K )must
be the unit ideal. ThusL is an unramified finite abelian extension ofK . But since
h+(K )= 1 this implies thatK = L which is impossible sincen< 0. �

10. Matching the elliptic curves to the cusp forms

Continuing with the notation of the previous section we haveF = Q(
√

509), R the
ring of integers inF andθ =

1
2(1+

√
509).

We begin by showing that the curveE3 is attached to the formf 3. The curveE3

is equal to the curveA′ that arises from Shimura’s construction [1971, 7.7]. This
curve is constructed from a pair of eigenforms{ f1, f2} in S2(00(509), χ) whereχ
is the quadratic character of(Z/509Z)×. These forms are constructed in [Cremona
1992]. Furthermore we know that

L(E3, s)= L( f1, s)L( f2, s).

The base change off1 to GL2(F) will be a form with rational coefficients of full
level, trivial character and weight 2. Hence we see thatf 3 is the base change of
the form f1 and we have

L(E3, s)= L( f 3, s).

Let E1 be as in Section 9. SinceE1 has good reduction everywhere, the 2-adic
representation on the Tate module ofE1,

σ1 : Gal(F/F)→ GL2(Q2),

is unramified outside the prime ideal 2R of F . For each prime idealp of F outside
2R we have

Tr σ1(Frp)= a(E1)p,



358 JUDE SOCRATES AND DAVID WHITEHOUSE

where Frp denotes a Frobenius element atp anda(E1)p denotes thep-th Fourier
coefficient ofE1. Moreover detσ1(Frp)= Np.

Let f 1 denote the unramified cusp form given in Section 8 above. By [Taylor
1989] and [Blasius and Rogawski 1993] there exists a 2-dimensional representation

σ2 : Gal(F/F)→ GL2(Q2)

unramified outside the prime ideal 2R of F and such that for each prime idealp of
F outside 2R we have

Tr σ2(Frp)= a( f 1)p

where again Frp denotes a Frobenius element atp and a( f 1)p denotes thep-th
Fourier coefficient off 1. Moreover we have detσ2(Frp)= Np.

To prove thatE1 is attached to the formf 1 we must show that the representations
σ1 andσ2 are equivalent. For this we will use the following result of Faltings and
Serre as stated and proved in [Livné 1987].

Theorem 10.1.Let K be a global field, S a finite set of primes of K, and E a finite
extension ofQ2. Denote the maximal ideal in the ring of integers of E byp and the
compositum of all quadratic extensions of K unramified outside S by KS. Suppose

ρ1, ρ2 : Gal(K/K )→ GL2(E)

are continuous representations, unramified outside S, and furthermore satisfying:

1. Tr ρ1 ≡ Tr ρ2 ≡ 0 modp anddetρ1 ≡ detρ2 modp.

2. There exists a set T of primes of K, disjoint from S, for which

• the image of the set{Frt : t ∈ T} in theZ/2Z-vector spaceGal(KS/K ) is
noncubic;

• Tr ρ1(Frt)= Tr ρ2(Frt) anddetρ1(Frt)= detρ2(Frt) for all t ∈ T .

Thenρ1 andρ2 have isomorphic semi-simplifications.

A subsetSof theZ/2Z-vector space Gal(KS/K ) is said to be noncubic if every
homogeneous polynomial of degree three that vanishes onS vanishes on all of
Gal(KS/K ). In particular Gal(KS/K ) is itself noncubic and we will apply this
theorem withT chosen such that the image of{Frt : t ∈ T} in Gal(KS/K ) is the
whole space.

As we can see from Table 3, we cannot apply this result immediately since the
traces of Frobenius are not all even. Therefore for eachi we letσ i denote the mod
2 representations obtained fromσi and letL i denote the extension ofF cut out by
σ i . We begin by showing that we can identify these two extensions.
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Matching L1 and L2. We know thatL1 = F(E1[2]). HenceL1 is the splitting
field of the polynomial

g(x)= 4x3
+ (9+ 8θ)x2

+ (648+ 14θ)x + 411+ 137θ

and is anS3-extension ofF unramified outside of 2R. Moreover the quadratic
extension ofF contained inL1 is F(

√
u), whereu = 442+ 41θ is a fundamental

unit of F .
We now considerL2. We know thatL2 is an extension ofF that is unramified

outside of 2R. Moreover since some of thea( f 1)p’s are odd we know thatL2 is
either a normal cubic extension ofF or else is anS3 extension. By the next lemma
we deduce thatL2/F must be anS3 extension.

Lemma 10.2. There are no normal cubic extensions of F unramified outside of
2R.

Proof. Suppose thatL/F is such an extension. Letf(L/F) denote the conductor
of F . By [Cohen 2000, Corollary 3.5.12] we deduce thatf(L/F) divides 2R. But
now using Pari [Cohen et al. 2004] we compute that the ray class group for the
modulus 2R∞1∞2, where∞i denote the infinite places ofF , is trivial. Therefore
no such extensionL of F exists. �

Let F1 be the unique quadratic extension ofF contained inL2. We let u =

442+ 41θ be the fundamental unit ofF . SinceF1 is unramified outside 2 we
know thatF1 must be one of the fields

F(
√

−1), F(
√

u), F(
√

2), F(
√

−u), F(
√

−2), F(
√

2u) or F(
√

−2u).

Let p be a prime ofF and letP be a prime ofF1 abovep. We note that ifa( f 1)p

is odd thenf (P/p)= 1. We use this criterion to eliminate all the above quadratic
extension ofF except forF(

√
u). Taking p = (11+ θ)R eliminates the fields

F(
√

2), F(
√

−2), F(
√

2u) andF(
√

−2u). While takingp= (15−θ)R eliminates
the fieldsF(

√
−1) andF(

√
−u). Therefore we haveF1 = F(

√
u).

Lemma 10.3.There is a unique normal cubic extension of F1 which is unramified
outside of2R1, where R1 denotes the ring of integers in F1.

Proof. We note that 2R1 = p2, wherep is the unique prime ofF1 above 2. Suppose
that L/F1 is such an extension. Letf(L/F1) denote the conductor ofL/F1. By
[Cohen 2000, Corollary 3.5.12] we deduce thatf(L/F1) dividesp. Using Pari we
compute that the order of the ray class group for the modulusp∞1∞2, where∞i

denote the real places ofF1, is three, from which we deduce thatL is unique. �

Since bothL1 andL2 containF(
√

u), we deduce thatL1 = L2.
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Application of Faltings and Serre.Let K denote a fixed cubic extension ofF
contained inL = L1 = L2. We now apply Theorem 10.1 to the representations
σ1|K andσ2|K . We note that these representations satisfy the conditions of the
theorem.

Now K = F(α), whereα satisfies the equation

ψ2(x)= 4x3
+ (9+ 8θ)x2

+ (648+ 14θ)x + 411+ 137θ

over F . Usingθ2
− θ − 127= 0 we find thatα satisfies the equation

m(x)= 64x6
+ 416x5

− 10940x4
− 30552x3

+ 550476x2
+ 560056x − 8633740

overQ. In fact we can writeK = Q(β), whereβ satisfies the equation

x6
− 25x4

− 46x3
+ 29x2

+ 66x + 20.

Using Pari we find thatK has class number one andO×

K
∼= {±1}× Z4 with funda-

mental units given by

u1 =
1
34β

5
+

3
17β

4
−

23
34β

3
−

92
17β

2
−

293
34 β −

47
17,

u2 =
7

102β
5
−

13
51β

4
−

31
34β

3
+

19
51β

2
+

91
102β +

11
51,

u3 =
10
51β

5
−

8
51β

4
−

71
17β

3
−

361
51 β

2
+

79
51β +

199
51 ,

u4 =
106
51 β

5
−

44
51β

4
−

875
17 β

3
−

3745
51 β

2
+

4693
51 β +

5047
51 .

Now the ideal 2RK factors asp1p
2
2. A generator forp1 is given by

a1 =
4
51β

5
+

7
51β

4
−

42
17β

3
−

277
51 β

2
+

205
51 β +

304
51

and a generator forp2 is given by

a2 =
16
51β

5
−

23
51β

4
−

117
17 β

3
−

292
51 β

2
+

667
51 β +

349
51 .

Let KS denote the compositum of all quadratic extensions ofK which are unram-
ified outside ofS= {p1, p2}. ThenKS is the compositum of the fields

K (
√

−1), K (
√

u1), K (
√

u2), K (
√

u3), K (
√

u4), K (
√

a1) andK (
√

a2).

Using Pari we can find a setT of primes inK such that

Gal(KS/K )= {FrP ∈ Gal(KS/K ) : P ∈ T}

where FrP denotes the Frobenius element in Gal(KS/K ) at P. Let T0 denote the
primes ofF generated by the elements ofF in the left hand column of Table 4.
Then we can takeT to be the set of primes inK above those inT0.
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ξ = a + bθ p a(p)

3 inert −4
7 inert −6

11+ θ 5 3
12− θ 5 −2
12+ θ 29 0
13− θ 29 10
14+ θ 83 14
15− θ 83 9
15+ θ 113 11
16− θ 113 6
17+ θ 179 0
18− θ 179 25

19 inert −12
20+ θ 293 16
21− θ 293 26
22+ θ 379 −20
23− θ 379 20

23+ 2θ 67 −7
25− 2θ 67 8
25+ θ 523 36
26− θ 523 11

25+ 2θ 167 22
27− 2θ 167 −8
29+ θ 743 44
30− θ 743 −36

31 inert −18
32+ θ 929 40
33− θ 929 10

33+ 2θ 647 18
35− 2θ 647 43
34+ θ 1063 4
35− θ 1063 −1
37+ θ 1279 −20
38− θ 1279 25

37+ 3θ 337 −28
40− 3θ 337 2
39+ 2θ 1091 60
41− 2θ 1091 0

41 inert −18
41+ 3θ 661 −20
44− 3θ 661 −10
45+ 2θ 1607 42
47− 2θ 1607 57
50+ θ 2423 −24
51− θ 2423 −69

51+ 4θ 773 −24
55− 4θ 773 −4
54+ θ 2843 −6
55− θ 2843 −61

ξ = a + bθ p a(p)

54+ 5θ 11 3
59− 5θ 11 −2
55+ 4θ 1213 −46
59− 4θ 1213 34
56+ 5θ 241 2
61− 5θ 241 −8
57+ 5θ 359 −6
62− 5θ 359 9

59 inert −22
60+ θ 3533 6
61− θ 3533 −84
62+ θ 3779 30
63− θ 3779 0

62+ 3θ 2887 −73
65− 3θ 2887 62
65+ 2θ 3847 82
67− 2θ 3847 32
66+ 5θ 1511 −8
71− 5θ 1511 −13
67+ 3θ 3547 −68
70− 3θ 3547 2
68+ 5θ 1789 −34
73− 5θ 1789 −14
69+ 2θ 4391 130
71− 2θ 4391 75
71+ 3θ 4111 −35
74− 3θ 4111 100
71+ 5θ 2221 −18
76− 5θ 2221 −53
74+ 5θ 2671 −72
79− 5θ 2671 −12
76+ 3θ 4861 70
79− 3θ 4861 −30

79 inert −32
79+ 5θ 3461 −2
84− 5θ 3461 −57
79+ 6θ 2143 24
85− 6θ 2143 −56
79+ 7θ 571 −20
86− 7θ 571 10
82+ 3θ 5827 −28
85− 3θ 5827 22
84+ θ 7013 −6
85− θ 7013 −16

85+ 3θ 6337 78
88− 3θ 6337 48
85+ 6θ 3163 86
91− 6θ 3163 −4
91+ 3θ 7411 −55
94− 3θ 7411 100

ξ = a + bθ p a(p)

92+ θ 8429 100
93− θ 8429 −110

95+ 2θ 8707 −28
97− 2θ 8707 182
95+ 6θ 5023 76
101− 6θ 5023 86
95+ 8θ 1657 28
103− 8θ 1657 −22
100+ 3θ 9157 98
103− 3θ 9157 73
101+ 4θ 8573 66
105− 4θ 8573 −79
105+ θ 11003 116
106− θ 11003 36

108+ 5θ 9029 −54
113− 5θ 9029 96
109+ θ 11863 −66
110− θ 11863 24

109+ 6θ 7963 −16
115− 6θ 7963 59
110+ 3θ 11287 208
113− 3θ 11287 178
111+ 8θ 5081 −30
119− 8θ 5081 90
112+ 5θ 9929 −146
117− 5θ 9929 −96
113+ 5θ 10159 76
118− 5θ 10159 56
114+ 5θ 10391 98
119− 5θ 10391 −117
122+ θ 14879 0
123− θ 14879 −75

122+ 3θ 14107 152
125− 3θ 14107 32
124+ 11θ 1373 34
135− 11θ 1373 −6
137+ 11θ 4909 20
148− 11θ 4909 40
139+ 6θ 15583 −156
145− 6θ 15583 4
143+ 7θ 15227 108
150− 7θ 15227 −122
164+ 7θ 21821 −210
171− 7θ 21821 −150
169+ 11θ 15053 −6
180− 11θ 15053 −106
171+ 10θ 18251 −68
181− 10θ 18251 −198
178+ 5θ 29399 56
183− 5θ 29399 96

Table 4. a(p)’s for the elliptic curveE1 and cusp formf 1.
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For eachp ∈ T0 we have computeda(E1)p anda( f 1)p and found that they are
the same. Hence we deduce that for allP ∈ T we have

Tr σ1(FrP)= Tr σ2(FrP).

Thus by Theorem 10.1σ1 andσ2 are isomorphic.

End of Proof. We have proved in the previous subsection thatσ1|K is isomorphic
to σ2|K and therefore thatσ1|L is isomorphic toσ2|L . We note that sinceE1 does
not possess potential complex multiplication by Proposition 9.2 soσ1|L and hence
σ2|L are both irreducible. Then by Frobenius reciprocity we know thatσ1|F1 is
isomorphic toσ2|F1 ⊗χ for some characterχ of Gal(F/F1) trivial on Gal(F/L).
Let p = (11+ θ)R thena(E1)p is odd andp splits in F1. Let P be a prime ofF1

abovep and let FrP be a Frobenius element atP in Gal(F/F1). Then

Tr(σ1|F1(FrP))= a(E1)p = Tr(σ2|F1(FrP))

and henceχ(FrP) = 1. But sinceP is inert in L we deduce thatχ must be
trivial. Therefore we haveσ1|F1 = σ2|F1. Now using Frobenius reciprocity again
we deduce thatσ1 is isomorphic toσ2⊗δ for some characterδ of Gal(F/F) trivial
on Gal(F/F1). If we takep = (12− θ)R thenp is inert in F1. Now

Tr(σ1(Frp))= a(E1)p = Tr(σ2(Frp))

and henceδ(Frp)= 1. We deduce thatδ is trivial and hence thatσ1 = σ2.
Thus we conclude thatE1 is attached to the formf 1. It immediately follows

that the curveE2 is attached to the formf 2. The verification of Conjecture 1.1 for
F = Q(

√
509) is now complete.

Remark. We found after this work was completed that one could use [Skinner
and Wiles 1999, Theorem A] to prove that the curveE1 is modular. Here one
uses that the Galois representation on the 5-adic Tate module ofE1 is residually
reducible. However, our method can, in principle, be used in situations where their
results do not apply. Moreover, our interest in this problem arises from attaching
elliptic curves to unramified Hilbert modular forms, for which one needs to be able
to determine the space of cusp forms. Furthermore, it appears that our method
of computing the space of cusp forms can be extended to higher weight, where
eigenforms with rational Hecke eigenvalues should correspond to certain other
geometric objects.

Acknowledgments

Both authors thank their advisor, Dinakar Ramakrishnan, for his support and guid-
ance through this work. They also thank Don Blasius for comments on an earlier



UNRAMIFIED HILBERT MODULAR FORMS AND ELLIPTIC CURVES 363

version of this paper, Barry Mazur for his encouragement and the referee for a
thorough report that led to several improvements in the exposition.

References

[Blasius 2004]D. Blasius, “Elliptic curves, Hilbert modular forms, and the Hodge conjecture”, pp.
83–103 inContributions to automorphic forms, geometry, and number theory, edited by H. Hida
et al., Johns Hopkins Univ. Press, Baltimore, MD, 2004. MR MR2058605

[Blasius and Rogawski 1993]D. Blasius and J. D. Rogawski, “Motives for Hilbert modular forms”,
Invent. Math.114:1 (1993), 55–87. MR 94i:11033 Zbl 0829.11028

[Cohen 1993]H. Cohen,A course in computational algebraic number theory, Graduate Texts in
Mathematics138, Springer, Berlin, 1993. MR 94i:11105 Zbl 0786.11071

[Cohen 2000]H. Cohen,Advanced topics in computational number theory, Graduate Texts in Math-
ematics193, Springer, New York, 2000. MR 2000k:11144 Zbl 0977.11056

[Cohen et al. 2004]H. Cohen et al., “PARI/GP version 2.1.3”, software, Bordeaux, 2004, Available
at http://pari.math.u-bordeaux.fr.

[Cremona 1992]J. E. Cremona, “Modular symbols for01(N) and elliptic curves with everywhere
good reduction”,Math. Proc. Cambridge Philos. Soc.111:2 (1992), 199–218. MR 93e:11065
Zbl 0752.11022

[Gelbart and Jacquet 1979]S. Gelbart and H. Jacquet, “Forms of GL(2) from the analytic point of
view”, pp. 213–251 inAutomorphic forms, representations and L-functions(Corvallis, OR, 1977),
vol. 1, edited by A. Borel and W. Casselman, Proc. Sympos. Pure Math.33, Amer. Math. Soc.,
Providence, RI, 1979. MR 81e:10024 Zbl 0409.22013

[Gross 1987]B. H. Gross, “Heights and the special values ofL-series”, pp. 115–187 inNumber
theory(Montreal, 1985), edited by H. Kisilevsky and J. Labute, CMS Conf. Proc.7, Amer. Math.
Soc., Providence, RI, 1987. MR 89c:11082 Zbl 0623.10019

[Hasse 1952]H. Hasse,Über die Klassenzahl abelscher Zahlkörper, Akademie-Verlag, Berlin,
1952. MR 14,141a Zbl 0046.26003

[Hida 1988] H. Hida, “On p-adic Hecke algebras for GL2 over totally real fields”,Ann. of Math.(2)
128:2 (1988), 295–384. MR 89m:11046 Zbl 0658.10034

[Hijikata et al. 1989]H. Hijikata, A. K. Pizer, and T. R. Shemanske,The basis problem for mod-
ular forms on00(N), Mem. Amer. Math. Soc.418, Amer. Math. Soc., Providence, RI, 1989.
MR 90d:11056 Zbl 0689.10034

[Labesse and Langlands 1979]J.-P. Labesse and R. P. Langlands, “L-indistinguishability for SL(2)”,
Canad. J. Math.31:4 (1979), 726–785. MR 81b:22017 Zbl 0421.12014

[Leopoldt 1958] H.-W. Leopoldt, “Eine Verallgemeinerung der Bernoullischen Zahlen”,Abh. Math.
Sem. Univ. Hamburg22 (1958), 131–140. MR 19,1161e Zbl 0080.03002

[Livné 1987] R. Livné, “Cubic exponential sums and Galois representations”, pp. 247–261 inCur-
rent trends in arithmetical algebraic geometry(Arcata, CA, 1985), edited by K. A. Ribet, Contemp.
Math.67, Amer. Math. Soc., Providence, RI, 1987. MR 88g:11032 Zbl 0621.14019

[Marcus 1977]D. A. Marcus,Number fields, Springer, New York, 1977. MR 56 #15601 ZBL 0383.
12001

[Martinet 1977] J. Martinet, “Character theory and ArtinL-functions”, pp. 1–87 inAlgebraic num-
ber fields: L-functions and Galois properties(Durham, 1975), edited by A. Fröhlich, Academic
Press, London, 1977. MR 56 #5502 Zbl 0359.12015



364 JUDE SOCRATES AND DAVID WHITEHOUSE

[Neukirch 1999] J. Neukirch,Algebraic number theory, Grundlehren der Math. Wissenschaften322,
Springer, Berlin, 1999. MR 2000m:11104 Zbl 0956.11021

[Pinch 1982] R. G. E. Pinch,Elliptic curves over number fields, Ph.D. thesis, Oxford University,
1982.

[Pizer 1973] A. K. Pizer, “Type numbers of Eichler orders”,J. Reine Angew. Math.264 (1973),
76–102. MR 49 #2650 Zbl 0274.12008

[Pizer 1976] A. Pizer, “The representability of modular forms by theta series”,J. Math. Soc. Japan
28:4 (1976), 689–698. MR 54 #10154 Zbl 0344.10012

[Pizer 1980a]A. Pizer, “An algorithm for computing modular forms on00(N)”, J. Algebra64:2
(1980), 340–390. MR 83g:10020 Zbl 0433.10012

[Pizer 1980b]A. Pizer, “Theta series and modular forms of levelp2M”, Compositio Math.40:2
(1980), 177–241. MR 81k:10040 Zbl 0416.10021

[Rajan 2002]C. S. Rajan, “On the image and fibres of solvable base change”,Math. Res. Lett.9:4
(2002), 499–508. MR 2003g:11054 Zbl 01886044

[Shimizu 1965] H. Shimizu, “On zeta functions of quaternion algebras”,Ann. of Math.(2) 81
(1965), 166–193. MR 30 #1998 Zbl 0201.37903

[Shimura 1971]G. Shimura,Introduction to the arithmetic theory of automorphic functions, Publ.
Math. Soc. Japan11, Iwanami Shoten, Tokyo, 1971. MR 47 #3318 Zbl 0221.10029

[Skinner and Wiles 1999]C. M. Skinner and A. J. Wiles, “Residually reducible representations
and modular forms”,Inst. Hautes Études Sci. Publ. Math.89 (1999), 5–126. MR 2002b:11072
Zbl 1005.11030

[Socrates 1993]J. Socrates,The quaternionic bridge between elliptic curves and Hilbert modular
forms, Ph.D. thesis, California Institute of Technology, Pasadena, CA, 1993.

[Taylor 1989] R. Taylor, “On Galois representations associated to Hilbert modular forms”,Invent.
Math.98:2 (1989), 265–280. MR 90m:11176 Zbl 0705.11031

[Vignéras 1980]M.-F. Vignéras,Arithmétique des algèbres de quaternions, Lecture Notes in Math-
ematics800, Springer, Berlin, 1980. MR 82i:12016 Zbl 0422.12008

Received January 6, 2004. Revised July 1, 2004.

JUDE SOCRATES

DIVISION OF MATHEMATICS

PASADENA CITY COLLEGE

PASADENA, CA 91106

jtsocrates@paccd.cc.ca.us

DAVID WHITEHOUSE

MATHEMATICS 253-37
CALIFORNIA INSTITUTE OFTECHNOLOGY

PASADENA, CA 91125

dw@caltech.edu


