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We use the free entropy defined by D. Voiculescu to prove that the free group
factors cannot be decomposed as closed linear spans of noncommutative
monomials in elements of nonprime subfactors or abelian∗-subalgebras, if
the degrees of monomials have an upper bound depending on the number of
generators. The resulting estimates for the hyperfinite and abelian dimen-
sions of free group factors settle in the affirmative a conjecture of L. Ge and
S. Popa (for infinitely many generators).

1. Introduction

L. Ge and S. Popa [1998] defined for a given type II1-factorM the two quantities

`h(M) = min{ f ∈ N | ∃ hyperfiniteR1, . . . , R f ⊂ M s.t. spw R1R2 · · · R f = M},

`a(M) = min{ f ∈ N | ∃ abelianA1, . . . , A f ⊂ M s.t. spwA1A2 · · · A f = M}

(the min being∞ if M cannot be generated as stated) and conjectured that

`h(L(Fn)) = `a(L(Fn)) = ∞ for n ≥ 2,

whereL(Fn) is the type II1-factor associated to the free group withn generators.
We use the concept of free entropy introduced by D. Voiculescu in his break-

through paper [1994] to prove that the conjecture mentioned above is true at least
partially (for n = ∞) that is,`h(L(Fn)), `a(L(Fn)) ≥

[n−2
2

]
+ 1 for 4 ≤ n ≤ ∞.

Actually, our result is more general and it states that the free group factor withn
generators cannot be asymptotically generated (Definitions 3.2 and 4.2) as

lim
ω→0

‖·‖2
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

Nω
j1ZωNω

j2Zω
· · · Nω

jt Z
ωNω

jt+1

or

lim
ω→0

‖·‖2
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

Aω
j1ZωAω

j2Zω
· · · Aω

jt Z
ωAω

jt+1
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if the Nω
1 , . . . , Nω

f (for all ω) are nonprime subfactors, theAω
1 , . . . , Aω

f are abelian
∗-subalgebras, theZω

⊂ L(Fn) are subsets containingp self-adjoint elements, and
f, d ≥ 1 are integers such thatn ≥ p + 2 f + 1. Note thatL(Fn) admits decom-
positions of this sort if we allowd = ∞, for example ifZω

= Z = {1}, f = n,
Nω

1 = N1, . . . , Nω
n = Nn aren distinct copies of the hyperfinite type II1-factor R

andAω
1 = A1, . . . ,Aω

n = An aren distinct copies ofL∞([0, 1]) (sinceL(Fn) is both
the free product ofn copies ofR and the free product ofn copies ofL∞([0, 1]);
see [Voiculescu et al. 1992]). The indecomposability ofL(Fn) asspwNZN im-
plies the primeness of its finite-index subfactors; more generally, all subfactors of
finite index in the interpolated free group factors of Dykema [1994] and Rădulescu
[1994] are prime [Ştefan 1998]. Indeed, according to V. Jones [1983], ifN is a
subfactor of finite index inM thenM decomposes asNeN, wheree is the Jones
projection. In particular, the indecomposability properties ofL(Fn) over nonprime
subfactors and abelian subalgebras are preserved to its subfactors of finite index.
Recall that the Haagerup approximation property [Haagerup 1978/79] is another
property preserved to the free group subfactors. A first example of a prime II1-
factor (with a nonseparable predual, though) was given by Popa [1983] and then
Ge [1998] proved (with a free entropy estimate) that the free group factorL(Fn) is
prime for alln with 2 ≤ n < ∞, thus answering a question from [Popa 1995].

Our results are based on estimates of free entropy, that is, estimates of volumes
of various sets of matrix approximants (matricial microstates). Voiculescu [1996]
pioneered this technique in his proof of the absence of Cartan subalgebras in the
free group factors. Subsequently, Ge [1997] and Dykema [1997] were able to prove
that the free group factors do not have abelian subalgebras of finite multiplicity.

The paper has four parts. In Section 2 we prove the first estimate of free en-
tropy and recover a result of Voiculescu [1994]: if a free family ofm self-adjoint
noncommutative random variables can be generated by noncommutative power
series by another family ofn self-adjoint noncommutative random variables, then
n ≥ m (Theorem 2.3). However, we show that the assumption of freeness from
[Voiculescu 1994] is not essential and can be dropped. As a consequence, the
number of self-adjoint generators with finite entropy that generate a∗-algebraA

algebraically, is constant. In Section 3 we prove the indecomposability ofL(Fn)

(and of its subfactors of finite index) over nonprime subfactors (Theorem 3.5), and
in Section 4 the indecomposability over abelian subalgebras (Theorem 4.4).

We give next a short account of Voiculescu’s free probability theory [Voiculescu
1990; Voiculescu et al. 1992] and of his original concept of free entropy [Voiculescu
1994; 1996]. A type II1-factorM endowed with its unique normalized, faithful, nor-
mal traceτ is sometimes called aW∗-probability space. The traceτ determines the
2-norm onM by the formula‖x‖2 = τ(x∗x)1/2, for all x ∈ M , and the completion
of M with respect to‖·‖2 is denotedL2(M, τ ). An elementx ∈ M is a semicircular
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element if it is self-adjoint and if its distribution is given by the semicircle law:

τ(xk) =
2

π

∫ 1

−1
tk
√

1− t2dt for all k ∈ N.

A family (Ai )i ∈I of unital ∗-subalgebras ofM is a free family if the conditions
n ∈ N, i1, . . . , in ∈ I , i1 6= i2 6= · · · 6= in, xk ∈ Aik andτ(xk) = 0 for 1 ≤ k ≤ n
imply τ(x1x2 · · · xn) = 0. A set{xi }i ∈I ⊂ M is free if the family(∗-alg{1, xi })i ∈I

is free. A free set{xi }i ∈I ⊂ M consisting of semicircular elements is called a
semicircular system. IfFn is the free group withn generators (2≤ n ≤ ∞) then
L(Fn) denotes the von Neumann algebra generated by the left regular represen-
tation λ : Fn → B(l 2(Fn)); see [Murray and von Neumann 1943].L(Fn) is a
factor of type II1 — the free group factor onn generators. It has a canonical trace
τ( · )= ( · δe, δe), where{δg}g∈Fn is the standard orthonormal basis inl 2(Fn). Every
L(Fn) is generated as a von Neumann algebra by a semicircular system withn
elements [Voiculescu et al. 1992]. We denote byMsa

k = Msa
k (C) the set ofk × k

self-adjoint complex matrices and byτk its unique normalized trace.τk induces
the 2-norm‖ · ‖2 : Msa

k → R+ and the euclidean norm‖ · ‖e :=
√

k‖ · ‖2. If
B is a measurable subset of anm-dimensional (real) manifold, volm(B) denotes
the Lebesgue measure ofB. The free entropyχ(x1, . . . , xn) of a finite family
of self-adjoint elements was introduced in [Voiculescu 1994], but we will recall
the definition of the modified free entropy [Voiculescu 1996], which is better
suited for applications. For self-adjoint elementsx1, . . . , xn+m ∈ M one defines
first the set of matricial microstates: FixingR, ε > 0 and p, k ∈ N we define
0R(x1, . . . , xn : xn+1, . . . , xn+m; p, k, ε) to be the set{
(A1, . . . , An) ∈ (Msa

k )n
∣∣ there existAn+1, . . . , An+m ∈ Msa

k

such that‖A j ‖ ≤ R and
∣∣τ(xi1 · · · xiq) − τk(Ai1 · · · Aiq)

∣∣< ε

for all q = 1, . . . , p and all j, i1, . . . , iq ∈ {1, . . . , n + m}
}
.

Next we define

χR(x1, . . . , xn : xn+1, . . . , xn+m; p, k, ε) :=

log
(
volnk2(0R(x1, . . . , xn : xn+1, . . . , xn+m; p, k, ε))

)
,

χR(x1, . . . , xn : xn+1, . . . , xn+m; p, ε) :=

lim sup
k→∞

( 1

k2
χR(x1, . . . , xn : xn+1, . . . , xn+m; p, k, ε)+

n

2
logk

)
,

χR(x1, . . . , xn : xn+1, . . . , xn+m) :=

inf
{
χR(x1, . . . , xn : xn+1, . . . , xn+m; p, ε)

∣∣ p ∈ N, ε > 0
}
,

χ(x1, . . . , xn : xn+1, . . . , xn+m) := sup
{
χR(x1, . . . , xn : xn+1, . . . , xn+m)

∣∣ R> 0
}
.
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When taking the last sup it suffices to assume 0< R ≤ max{‖x1‖, . . . , ‖xn+m‖}

rather than 0< R < ∞ [Voiculescu 1994; 1996]. The quantity

χ(x1, . . . , xn : xn+1, . . . , xn+m)

is the free entropy ofx1, . . . , xn in the presence ofxn+1, . . . , xn+m. If m = 0,
it is simply called the free entropy ofx1, . . . , xn and writtenχ(x1, . . . , xn). If
{xn+1, . . . , xn+m} ⊂ {x1, . . . , xn}

′′ we have

χ(x1, . . . , xn : xn+1, . . . , xn+m) = χ(x1, . . . , xn);

see [Voiculescu 1996]. For a single self-adjoint elementx = x∗
∈ M one has:

χ(x) =
3
4 +

1
2 log 2π +

∫ ∫
log |s− t | dµ(s) dµ(t),

whereµ is the distribution ofx; see [Voiculescu 1994]. Ifx1, . . . , xn aren self-
adjoint free elements ofM thenχ(x1, . . . , xn) = χ(x1) + · · · + χ(xn) [Voiculescu
1994]. The converse is also true [Voiculescu 1997], provided thatχ(xi ) > −∞

for 1 ≤ i ≤ n. In particular, the free entropy of a finite semicircular system is
finite; hence the free group factorL(Fn) has a system of generators with finite free
entropy for 2≤ n < ∞.

2. Noncommutative power series and free entropy

The main result of this section is that if a (not necessarily free) family ofm self-
adjoint noncommutative random variables with finite free entropy can be generated
as noncommutative power series by another family ofn self-adjoint noncommuta-
tive random variables, thenn ≥ m. In other words, a finite system with finite free
entropy has minimal cardinality among all finite systems of self-adjoint elements
that are equivalent under the noncommutative analytic functional calculus. Thus,
we recover Voiculescu’s result [1994], with the observation that our approach does
not require the assumption of freeness.

We review first a few facts concerning the theory of systems of algebraic equa-
tions [van der Waerden 1949], necessary in the proof of Lemma 2.1. Ifg1, . . . , gn

are forms inn variables, there exists a polynomial (the resolvent) in their coef-
ficients, R(g1, . . . , gn), with the property thatR(g1, . . . , gn) = 0 if and only if
the systemg1(ξ1, . . . , ξn) = · · · = gn(ξ1, . . . , ξn) = 0 has a nontrivial solution. If
h1, . . . , hn−1 aren − 1 forms inn variables and

hn(u)(ξ1, . . . , ξn) := u1ξ1 + · · · + unξn,

thenRu(h1, . . . , hn−1) := R(h1, . . . , hn−1, hn(u)) (theu-resolvent) is either iden-
tically 0, or a form of degree degh1 × · · · × deghn−1 in u = (u1, . . . , un). In
the first case, the systemh1 = · · · = hn−1 = 0 has infinitely many solutions
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[(ξ1, . . . , ξn)] ∈ PCn−1; in the second, all the solutions[(ξ1, . . . , ξn)] ∈ PCn−1

are given by the factorization ofRu(h1, . . . , hn−1) (and thus, the system admits at
most degh1 × · · · × deghn−1 solutions, as predicted by Bézout’s Theorem).

Let f1, . . . , fn ∈ R[41, . . . , 4n] be n polynomials inn indeterminates, of de-
greesd1, . . . , dn, respectively. Fora = (a1, . . . , an) ∈ Rn define

Fi,ai (ξ1, . . . , ξn+1) = ξ
di
n+1

(
fi
( ξ1

ξn+1
, . . . ,

ξn

ξn+1

)
− ai

)
for i = 1, . . . , n.

Bézout’s Theorem implies that the system of equations

f1(ξ1, . . . , ξn) = a1, . . . , fn(ξ1, . . . , ξn) = an

admits at mostd1 . . . dn solutions(ξ1, . . . , ξn) ∈ Cn if Ru(F1,a1, . . . , Fn,an) 6≡ 0.
Note also that the set

Su( f1, . . . , fn) :=
{
(a1, . . . , an) ∈ Rn

| Ru(F1,a1, . . . , Fn,an) 6≡ 0
}

is either open and dense inRn, or empty.
We proceed now with Lemma 2.1, which gives an upper bound for the Lebesgue

measure of the intersection of an algebraically parameterized manifold embedded
in Rm with the unit ball ofRm. This lemma will be of further use in estimating the
volumes of various sets of matricial microstates that will appear as sets of points
within a given distance from such manifolds.

Lemma 2.1. For integers n≤ m and polynomials f1, . . . , fm ∈ R[41, . . . , 4n]

define f= ( f1, . . . , fm) : Rn
→ Rm. If the polynomials

det
(
∂ fJ

∂ξ

)
are not identically0 for all multiindices J∈ {(i1, . . . , in) | 1 ≤ i1 < · · · < in ≤ m}

and if Su = Su( f1, . . . , fn) 6= ∅, then

(1)
∫

f −1
(

B(0,1)
)
(∑

|J|=n

det2
(
∂ fJ

∂ξ

))1/2

dξ ≤

(m
n

)
·C · voln(B(0, 1)),

where C= C(deg f ) = max{deg fi1 × · · · × deg fin | 1 ≤ i1 < · · · < in ≤ m} and
B(0, 1) = Bn(0, 1) is the unit ball inRn.

Proof. We consider first the casem= n. Let Sdenote the set of all irregular values
of f , that is,

S= f
(
{ξ ∈ Rn

| rank(d fξ ) < n}
)
.

It suffices to show that (1) holds withf −1
(
B(0, 1) \ Sε

)
replacing f −1

(
B(0, 1)

)
,

whereSε is an arbitrary open set that containsS∪ (Rn
\ Su). For any

a = (a1, . . . , an) ∈ Rangef ∩ B(0, 1) \ Sε
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the set f −1({a}) has at mostC = deg f1 × · · · × deg fn elements, sayf −1({a}) =

{b1, . . . , bp(a)} for some 1≤ p(a) ≤ C. There exist an open ballBa 3 a and open
neighborhoodsVa

1 3 b1, . . . , Va
p(a) 3 bp(a) such thatBa andVa

i are diffeomorphic

via f for 1 ≤ i ≤ p(a) and f −1(Ba) =
⋃p(a)

i =1 Va
i . Since it is compact, we can

cover Rangef ∩ B(0, 1)\Sε with a finite set of such open ballsBa1, . . . , Bak . This
covering determines a finite partition of Rangef ∩ B(0, 1) \ Sε , sayW1, . . . , Wt .
For each 1≤ j ≤ t choose a unique 1≤ l = l ( j ) ≤ k such thatWj ⊂ Bal and
f −1(Wj ) = Tj 1 ∪ · · ·∪ Tj p(al ), whereTj i ⊂ Val

i andWj andTj i are diffeomorphic
via f for all 1 ≤ i ≤ p(al ). We have∫

f −1
(

B(0,1)\Sε

)
∣∣∣∣det

(
∂ f
∂ξ

)∣∣∣∣dξ =

t∑
j =1

∫
f −1(Wj )

∣∣∣∣det
(
∂ f
∂ξ

)∣∣∣∣dξ

=

t∑
j =1

p(al ( j ))∑
i =1

∫
Tj i

∣∣∣∣det
(
∂ f
∂ξ

)∣∣∣∣dξ

=

t∑
j =1

p(al ( j ))∑
i =1

voln(Wj )

≤ C
t∑

j =1

voln(Wj ) = C · voln
(
B(0, 1) \ Sε

)
.

In the casem > n one has the estimates∫
f −1(B(0,1))

( ∑
|J|=n

det2
(
∂ fJ

∂ξ

))1/2

dξ ≤

∫
f −1(B(0,1))

∑
|J|=n

∣∣∣∣det
(
∂ fJ

∂ξ

)∣∣∣∣dξ

≤

∑
|J|=n

∫
f −1
J (B(0,1))

∣∣∣∣det
(
∂ fJ

∂ξ

)∣∣∣∣dξ

≤

(m
n

)
·C · voln(B(0, 1)). �

Lemma 2.1 will be used in the proof of Proposition 2.2. Thek×k matricial mi-
crostates ofx1, . . . , xm are points within euclidean distance 2ω

√
mk from the range

of a polynomial function in the matricial microstates ofy1, . . . , yn provided that
eachxi is within ‖·‖2-distanceω from noncommutative polynomials iny1, . . . , yn.

Proposition 2.2. Let P1, . . . , Pm ∈ C〈Y1, . . . , Yn〉 be complex polynomials in n
noncommutative self-adjoint variables. Assume that(M, τ ) is a II1-factor and that
{x1, . . . , xm} ⊂ M is a finite set of self-adjoint generators ofM. Set

a = max
{
‖x1‖2 + 1, . . . , ‖xm‖2 + 1

}
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and d = max{degP1, . . . , degPm}. If {y1, . . . , yn} ⊂ M is another finite set of
self-adjoint generators ofM with n < m and such that

‖xi − Pi (y1, . . . , yn)‖2 < ω for all i = 1, . . . , m and someω ∈ (0, a],

then

χ(x1, . . . , xm) ≤ C(m, n, a) + (m− n) logω + n logd,

where C(m, n, a) is a constant that depends only on m, n, a.

Proof. Replacing eachPi by 1
2(Pi + P∗

i ) if necessary, we can assume thatPi = P∗

i
for i = 1, . . . , m. Given R > 0, ε > 0 and an integerp ≥ 1, consider

(A1, . . . , Am) ∈ 0R(x1, . . . , xm : y1, . . . , yn; p, k, ε).

If p is large enough andε >0 is sufficiently small, one can find matricesB1, . . . , Bn

in Msa
k such that‖B1‖, . . . , ‖Bn‖ ≤ R and

‖Ai − Pi (B1, . . . , Bn)‖2 < ω for i = 1, . . . , m,

or, equivalently,

‖Ai − Pi (B1, . . . , Bn)‖e < ω
√

k for i = 1, . . . , m.

With the identificationsg = (g1, . . . , gmk2) : (Msa
k )n ∼= Rnk2

→ (Msa
k )m ∼= Rmk2

,

(B1, . . . , Bn) = (ξ1, . . . , ξnk2) ∈ Rnk2
, and

g(B1, . . . , Bn) =
(
P1(B1, . . . , Bn), . . . , Pm(B1, . . . , Bn)

)
,

the previous inequalities imply∥∥(Ai )1≤i ≤m − g(ξ1, . . . , ξnk2)
∥∥

e < ω
√

mk.

At the cost of introducing an additional variableξnk2+1 ∈ R, we can assume that
the components ofg aremk2 homogeneous polynomial functions in the variables
ξ1, . . . , ξnk2+1, all having degrees at mostd.

Now let f1, . . . , fmk2 be arbitrary homogeneous polynomial functions inξ1, . . . ,

ξnk2+1, such that degf j = degg j for j = 1, . . . , mk2. For every multiindexJ =

( j1, . . . , jnk2+1) with 1≤ j1 < · · · < jnk2+1 ≤ mk2, saying thatSu( f j1, . . . , f jnk2+1
)

is empty is equivalent to saying that the coefficients off j1, . . . , f jnk2+1
satisfy a

certain system of algebraic equations. Hence the set

�1 =
{

f = ( f1, . . . , fmk2)
∣∣ deg f j = degg j for j = 1, . . . , mk2,

Su( f j1, . . . , f jnk2+1
) 6= ∅ for all J = ( j1, . . . , jnk2+1)

}
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is open and dense in its natural ambient linear space. Similarly, the set

�2 =

{
f = ( f1, . . . , fmk2)

∣∣∣ deg f j = degg j for j = 1, . . . , mk2,

det
(
∂ fJ

∂ξ

)
6≡ 0 for all J = ( j1, . . . , jnk2+1)

}
is also open and dense in the same linear space.

The matrixd fξ has
( mk2

nk2
+ 1

)
minors of dimension(nk2

+1)×(nk2
+1) and all

these minors have a nontrivial common zero only if a certain system of algebraic
equations in the coefficients off1, . . . , fmk2 has a solution [van der Waerden 1949].
Not all the polynomials appearing in this system are identically equal to 0. It
follows that the set

�3 =
{

f = ( f1, . . . , fmk2)
∣∣ deg f j = degg j for j = 1, . . . , mk2,

rank(d fξ ) = nk2
+ 1 ∀ξ ∈ Rnk2

+1
\ {0}

}
contains a subset that is open and dense in the linear space previously considered.
Therefore there exists an elementf ∈ �1 ∩ �2 ∩ �3 such that∥∥ f (ξ1, . . . , ξnk2+1)−g(ξ1, . . . , ξnk2+1)

∥∥
e<ω

√
mk if |ξi |≤ R for 1≤ i ≤nk2

+1;

hence
∥∥(Ai )1≤i ≤m − f (ξ1, . . . , ξnk2+1)

∥∥
e < 2ω

√
mk. The function f satisfies the

hypotheses of Lemma 2.1 and its components are homogeneous polynomials. It
has the property that diste

(
(Ai )1≤i ≤m, Rangef

)
< 2ω

√
mkand it does not depend

on the system(Ai )1≤i ≤m.
We have‖(A1, . . . , Am)‖e ≤ a

√
mk (if ε > 0 is small enough); hence the set of

matricial microstates(A1, . . . , Am) of (x1, . . . , xm) such that

diste
(
(A1, . . . , Am), Rangef

)
< 2ω

√
mk

is contained in the(mk2, nk2
+ 1)-tube of radius 2ω

√
mk around

Rangef ∩ Bmk2

(
0, (a + 2ω)

√
mk

)
.

If B is a small ball inRnk2
+1

\ {0} and if VB(2ω
√

mk) denotes the(mk2, nk2
+1)-

tube of radius 2ω
√

mkaround f (B), the formula for volumes of tubes [Weyl 1939]
implies

volmk2

(
VB(2ω

√
mk)

)
= volmk2−nk2−1

(
Bmk2−nk2−1(0, 1)

)
·

∑
e even

0≤e≤nk2
+1

(
2ω

√
mk

)e+mk2
−nk2

−1
kB,e

(mk2−nk2+1)(mk2−nk2+3) · · · (mk2−nk2−1+e)
.
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With the notations from [Weyl 1939] one haskB,e =
∫

f (B)
Heds and

He =
1

2e(e/2)!

∑
σ∈6e

sgnσ

nk2
+1∑

α1,...,αe=1

H
ασ(1)ασ(2)
α1α2 H

ασ(3)ασ(4)
α3α4 . . . ,

whereHλµ
αβ denotes the Riemann tensor off (B). Assuming without loss of gener-

ality that degf j = d for j = 1, . . . , mk2, one can verify that eachHλµ
αβ ( f (ξ)) is a

sum of quotients of homogeneous polynomials where all numerators have degree
6(d−1)(nk2

+1)−2d and all denominators have degree 6(d−1)(nk2
+1). Hence

He is a rational function inξ and in the coefficients off (ξ). Due to its intrinsic
nature,He is independent of the embedding of Rangef in Rmk2

+1; in particular it is
invariant under orthogonal transformations inRmk2

+1. Since there exist sufficiently
many polynomialsf (ξ) such that Rangef is flat, this entailsHe = 0 for evene
such that 2≤ e ≤ nk2

+ 1. Therefore the volume of the(mk2, nk2
+1)-tube of

radius 2ω
√

mk around f (B) is

volmk2VB(2ω
√

mk)=(volmk2−nk2−1Bmk2−nk2−1(0,1))(2ω
√

mk)mk2
−nk2

−1
∫

f (B)

ds,

and with Lemma 2.1 and the inequality

(2)
1

0
(
1+

nk2
+1

2

) ·
1

0
(
1+

mk2
−nk2

−1
2

) ≤
2mk2/2

0
(
1+

mk2

2

)
we obtain the estimate

volmk20R(x1, . . . , xm : y1, . . . , yn; p, k, ε)

≤

( mk2

nk2
+ 1

)
·C(d) · volnk2+1B(0, (a + 2ω)

√
mk)

· volmk2−nk2−1B(0, 1) · (2ω
√

mk)mk2
−nk2

−1

=

( mk2

nk2
+ 1

)
·C(d) · π (nk2

+1)/2

·
(a+2ω)nk2

+1(mk)(nk2
+1)/2π (mk2

−nk2
−1)/2(2ω)mk2

−nk2
−1(mk)(mk2

−nk2
−1)/2

0
(
1+

nk2
+1

2

)
0
(
1+

mk2
−nk2

−1
2

)
≤

( mk2

nk2
+ 1

)
· C(d) ·

πmk2/2(mk)mk2/22mk2/2(3a)nk2
+1(2ω)mk2

−nk2
−1

0
(
1+

mk2

2

) .



374 MARIUS B. S, TEFAN

The last inequality implies further

χR(x1, . . . , xm : y1, . . . , yn; p, k, ε)

≤
1

k2
log
( mk2

nk2
+ 1

)
+

1

k2
logC(d) +

m

2
logπ +

(3m
2

− n
)

log 2+ n log(3a)

+
m

2
log(mk) + (m−n) logω −

1

k2
log0

(
1+

mk2

2

)
+

m

2
logk + o(1).

Note that
1

k2
log0

(
1+

mk2

2

)
=

m

2
log

mk2

2e
+ o(1),

C(d)≤dnk2
+1 and

1

k2
log
( mk2

nk2
+ 1

)
=m logm−n logn−(m−n) log(m−n)+o(1);

therefore

χR(x1, . . . , xm : y1, . . . , yn; p, k, ε)

≤ m logm− n logn + n logd − (m− n) log(m− n) +
m

2
logπ

+

(3m
2

− n
)

log 2+ n log(3a) +
m

2
logm+

m

2
logk + (m− n) logω

−
m

2
log

m

2e
− m logk +

m

2
logk + o(1)

= C(m, n, a) + (m− n) logω + n logd + o(1).

By taking the appropriate limits afterk, p, ε, we finally obtain

χR(x1, . . . , xm : y1, . . . , yn) ≤ C(m, n, a) + (m− n) logω + n logd,

and sinceR > 0 is arbitrary,

χ(x1, . . . , xm : y1, . . . , yn) ≤ C(m, n, a) + (m− n) logω + n logd.

Now recall that{x1, . . . , xm} is a system of generators ofM; henceχ(x1, . . . , xm)=

χ(x1, . . . , xm : y1, . . . , yn). �

Let Y1, . . . , Yn be noncommutative indeterminates and let

P(Y1, . . . , Yn) =

∞∑
k=0

∑
1≤i1,...,ik≤n

ai1···ikYi1 · · · Yik

be a noncommutative power series inY1, . . . , Yn, with complex coefficients. Fol-
lowing [Voiculescu 1994], we say thatR > 0 is a radius of convergence ofP if

∞∑
k=0

∑
1≤i1,...,ik≤n

|ai1···ik |R
k < ∞.
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It is well known from the theory of power series that if 0< R0 < R, then

∞∑
k=q+1

∑
1≤i1,...,ik≤n

|ai1···ik |R
k
0 = O

((
R0

R

)q+1
)

.

The next result is basically [Voiculescu 1994, Corollary 6.12], with the obser-
vation that the freeness of{x1, . . . , xm} assumed there has been dropped.

Theorem 2.3.Let x1, . . . , xm and y1, . . . , yn be self-adjoint noncommutative ran-
dom variables in aII1-factor (M, τ ) such that y1, . . . , yn ∈ {x1, . . . , xm}

′′ and
χ(x1, . . . , xm) > −∞. If xi = Pi (y1, . . . , yn) for i = 1, . . . , m, where the Pi are
noncommutative power series having a common radius of convergence R> b =

max{‖y1‖, . . . , ‖yn‖}, then n≥ m.

Proof. Suppose thatm > n. For 1≤ i ≤ m, xi is a noncommutative power series
of y1, . . . , yn, i.e.,

xi =

∞∑
k=0

∑
1≤i1,...,ik≤n

a(i )
i1···ik

yi1 · · · yik .

For every integerq ≥ 0, Pi,q(y1, . . . , yn) :=
∑q

k=0

∑
1≤i1,...,ik≤n a(i )

i1···ik
yi1 · · · yik is

a noncommutative polynomial of degree at mostq, and

∥∥xi − Pi,q(y1, . . . , yn)
∥∥

2 =

∥∥∥∥ ∞∑
k=q+1

∑
1≤i1,...,ik≤n

a(i )
i1···ik

yi1 · · · yik

∥∥∥∥
2

≤

∞∑
k=q+1

∑
1≤i1,...,ik≤n

|a(i )
i1···ik

|bk
= O

((
b
R

)q+1
)

.

The estimate of free entropy from Proposition 2.2 implies

χ(x1, . . . , xm) ≤ C(m, n, a) + (m− n) log
(

b
R

)q+1
+ n logq + O(1)

and lettingq tend to∞, one obtainsχ(x1, . . . , xm) = −∞, a contradiction. �

Let N be a∗-algebra in aW∗-probability space(M, τ ). Suppose thatN is finitely
generated and let{x1, . . . , xm} be a system of self-adjoint generators. Let also
{y1, . . . , yn} be another set of self-adjoint elements that generateN algebraically
as a∗-algebra. In particular, there exist noncommutative polynomials(Pi )1≤i ≤m

such thatxi = Pi (y1, . . . , yn) for i = 1, . . . ,≤ m. In this context, Corollary 2.4 is
an immediate consequence of Theorem 2.3.

Corollary 2.4. If χ(x1, . . . , xm)>−∞ and∗-alg{y1, . . . , yn}=∗-alg{x1, . . . , xm}

then n≥ m, so any2 systems of self-adjoint elements with finite free entropy that
generateN algebraically as a∗-algebra have the same cardinality.
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Voiculescu [1998] proved that the modified free entropy dimension [Voiculescu
1996] of a finite set of self-adjoint elements that generate algebraically a∗-algebra
N is independent of the set of generators. It is still an open question whether the
free entropy dimension is a von Neumann algebra invariant. Voiculescu [1999]
also showed that sets of generators satisfying sequential commutation in certain
property T factors have modified free entropy dimension≤ 1. L. Ge and J. Shen
([2000]) proved then that the estimateδ0≤1 is true for any set of generators, as long
as the factor has one set of generators satisfying sequential commutation. Recall
from [Voiculescu 1996] the definition of the modified free entropy dimension:

δ0(x1, . . . , xm) = m+ lim sup
ω→0

χ(x1 + ωs1, . . . , x1 + ωsm : s1, . . . , sm)

|logω|
,

where{s1, . . . , sm} is a semicircular system free from{x1, . . . , xm}. In general one
hasδ0(x1, . . . , xm) ≤ m, and also 0≤ δ0(x1, . . . , xm) if {x1, . . . , xm} ⊂ L(Fp) for
somep. Considering two sets{x1, . . . , xm} and {y1, . . . , yn} of self-adjoint ele-
ments that generate algebraically the∗-algebraN and noticing that{y1, . . . , yn} ⊂

{x1 + ωs1, . . . , x1 + ωsm, s1, . . . , sm}
′′, one has

δ0(x1, . . . , xm) = m+ lim sup
ω→0

χ(x1 + ωs1, . . . , x1 + ωsm : s1, . . . , sm, y1, . . . , yn)

| logω|

≤ m+ lim sup
ω→0

χ(x1 + ωs1, . . . , x1 + ωsm : y1, . . . , yn)

| logω|
.

Also,
∥∥xi +ωsi − Pi (y1, . . . , yn)

∥∥= ‖ωsi ‖ ≤ ω for i = 1, . . . , m, and with Propo-
sition 2.2 we obtain

δ0(x1, . . . , xm) ≤ m+ lim sup
ω→0

C(m, n, a) + (m− n) logω + n logd

| logω|

≤ m+ n − m = n,

wherea = max{‖x1‖2 + 1, . . . , ‖xm‖2 + 1, ‖y1‖2 + 1, . . . , ‖yn‖2 + 1} and d =

max{degPi | 1 ≤ i ≤ m}. In particular, if there exists a set{y1, . . . , yn} with
δ0(y1, . . . , yn) = n which generatesN algebraically, then

sup
{
δ0(x1, . . . , xm)

∣∣ ∗-alg{x1, . . . , xm} = N
}

= n.

3. Indecomposability over nonprime subfactors

In this section we prove that the free group factorL(Fn) does not admit an asymp-
totic decomposition of the form

lim
ω→0

‖·‖2
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

Nω
j1ZωNω

j2Zω
· · · Nω

jt Z
ωNω

jt+1
,
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where (for eachω) Zω
⊂ L(Fn) is a subset withp self-adjoint elements,Nω

1 , . . . ,

Nω
f are nonprime subfactors ofL(Fn), the integerd is at least 1, andn≥ p+2 f +1.

A nonprime II1-factor is just a factor isomorphic to the tensor product of two factors
of type II1. For free group subfactors one has the following: ifn ≥ p+2 f +2 and
P ⊂ L(Fn) is a subfactor of finite index, thenP does not admit such an asymptotic
decomposition either. In particular, the hyperfinite dimension ofL(Fn) is at least[n−2

2

]
+ 1 and that ofP is at least

[n−3
2

]
+1. Forn = ∞ this settles a conjecture

of Ge and Popa [1998]: the hyperfinite dimension of free group factors is infinite.
The definitions of hyperfinite dimension and of asymptotic decomposition over
nonprime subfactors are given next.

Definition 3.1 [Ge and Popa 1998].If M is a type II1-factor, the hyperfinite di-
mension ofM, denoted̀ h(M), is by definition the smallest positive integerf ∈ N

with the property that there exist hyperfinite subalgebrasR1, . . . , R f ⊂ M such
thatspw R1R2 · · · R f = M. If there is no such positive integer,`h(M) = +∞.

Definition 3.2. A type II1-factorM admits an asymptotic decomposition over non-
prime subfactors if, for anyn ≥ 1, anyx1, . . . , xn ∈ M, and anyω > 0, there exist
nonprime subfactorsNω

1 = N1(x1, . . . , xn; ω), . . . , Nω
f = N f (x1, . . . , xn; ω) of M

and also a setZω
= Z(x1, . . . , xn; ω) ⊂ M containingp self-adjoint elements, such

that

dist‖·‖2

(
x j ,

∑
1≤ j1,..., jt+1≤ f

1≤t≤d

Nω
j1ZωNω

j2Zω
· · · Nω

jt Z
ωNω

jt+1

)
< ω for j = 1, . . . , n.

In this situation we write

M = lim
ω→0

‖·‖2
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

Nω
j1ZωNω

j2Zω
· · · Nω

jt Z
ωNω

jt+1
.

If L(Fn) admitted an asymptotic decomposition over nonprime subfactors as in
this definition, the situation described in Proposition 3.4 (withM = L(Fn)) would
take place for arbitraryω > 0, since any II1-factor is generated by its projections
of given trace (12, for example). The following is a result from [Ge 1998, p. 155]
(see also [Kadison and Ringrose 1986, Exercise 12.4.11]); we include a proof for
completeness.

Lemma 3.3.Any typeII1-factorM with separable predual is generated by a count-
able family of projections of given trace.

Proof. Every II1-factor with separable predual is generated by a countable family of
abelian subalgebras, so there exist abelian subalgebrasA1, A2, . . . of M generating
M as a von Neumann algebra. If necessary, one can replace eachAn by a maxi-
mal abelian subalgebra ofM containing it, henceAn can assume to be a maximal
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abelian subalgebra ofM for 1 ≤ n < ∞. Being a maximal abelian subalgebra of a
type II1-factor, eachAn has no atoms and thus it is generated by a countable subset
of projections of given trace. �

Proposition 3.4. Let z1, . . . , zp be self-adjoint elements of aII1-factor M and let

(Nv)1≤v≤ f be a family of subfactors ofM. Assume thatNv = R(v)
1 ∨R(v)

2 ' R(v)
1 ⊗

R(v)
2 , whereR(v)

1 , R(v)
2 are II1-factors, and assume that x1, . . . , xn are self-adjoint

generators ofM. Assume moreover that there exist projections p(v)
1 , . . . , p(v)

rv
∈R(v)

2

and q(v)
1 , . . . , q(v)

sv
∈ R(v)

1 of trace 1
2 and complex noncommutative polynomials

(φ j )1≤ j ≤n of degree at most d(where d≥ 1 is fixed) in the variables(zu)1≤u≤p

such that

(3)

∥∥∥∥x j −φ j

(
(p(v)

i )1≤i ≤rv
1≤v≤ f

, (q(v)
l ) 1≤l≤sv

1≤v≤ f
, (zu)1≤u≤p

)∥∥∥∥
2
< ω for j = 1, . . . , n,

whereω ∈ (0, a] is a given positive number, and such that in all the monomials of
eachφ j the projections p(v)

i , q(v)
l and p(w)

k , q(w)
s are separated by some zu if v 6=w.

Then

(4) χ(x1, . . . , xn) ≤ C(n, p, a, d, f ) + (n − p− 2 f ) logω,

where a= max
{
‖x j ‖2 + 1

∣∣ 1 ≤ j ≤ n
}

and C(n, p, a, d, f ) is a constant that
depends only on n, p, a, d, f .

Proof. All variables involved are self-adjoint, so we can assume thatφ j = φ∗

j for
j = 1, . . . , n. Fix an integerk0 ≥ 1 and letR> 0. SupposeMk0(C) ∼= M(v)

1 ⊂ R(v)
1

andMk0(C) ∼= M(v)
2 ⊂ R(v)

2 , and let{e(v)
j l } j,l , { f (v)

j l } j,l be matrix units forM(v)
1 and

M(v)
2 respectively. If(

(A j )1≤ j ≤n, (G
(v)
i )1≤i ≤rv

1≤v≤ f
, (H (v)

l ) 1≤l≤sv
1≤v≤ f

, {E(v)
j l } j,l ,v, {F (v)

j l } j,l ,v, (Zu)1≤u≤p

)
is an arbitrary microstate in the set of matricial microstates

0R

(
(x j )1≤ j ≤n,(p(v)

i )1≤i ≤rv
1≤v≤ f

,(q(v)
l ) 1≤l≤sv

1≤v≤ f
,{e(v)

j l } j,l ,v,{ f (v)
j l } j,l ,v,(zu)1≤u≤p;m,k,ε

)
and if m is large andε is small enough, then∥∥∥A j − φ j

(
(G(v)

i )1≤i ≤rv
1≤v≤ f

, (H (v)
l ) 1≤l≤sv

1≤v≤ f
, (Zu)1≤u≤p

)∥∥∥
2
< ω for j = 1, . . . , n.

Let δ > 0 and writek = k2
0t +w for some integersw, t with 0≤ w ≤ k2

0 −1. If m, ε

are suitably chosen, there existM(v)
1

∼= M̃(v)
1 ⊂ Mk(C), M(v)

2
∼= M̃(v)

2 ⊂ Mk(C) (not

necessarily unital inclusions) and matrix units{Ẽ(v)
j l } j,l ,v ⊂ M̃(v)

1 , {F̃ (v)
j l } j,l ,v ⊂ M̃(v)

2
such that∥∥Ẽ(v)

j l − E(v)
j l

∥∥
2 < δ and

∥∥F̃ (v)
j l − F (v)

j l

∥∥
2 < δ for j, l = 1, . . . , k0,
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andM̃(v)
1 ⊂

(
M̃(v)

2

)′
∩ Mk(C). The relative commutants of̃M(v)

1 andM̃(v)
2 in Mk(C)

satisfy (
M̃(v)

1

)′
∩ Mk(C) ∼=

(
Mk0(C) ⊗ 1⊗ Mt(C)

)
⊕ Mw(C),(

M̃(v)
2

)′
∩ Mk(C) ∼=

(
1⊗ Mk0(C) ⊗ Mt(C)

)
⊕ Mw(C).

Let

η(v)
(
x, {e(v)

j l } j,l
)
:=

1

k0

k0∑
j,l=1

e(v)
j l xe(v)

l j ∈ C〈X1, . . . , Xk2
0+1〉

be the polynomial ink2
0 + 1 indeterminates that gives the conditional expectation

E
(M(v)

1 )′∩M
: M → (M(v)

1 )′ ∩ M, that is,

E
(M(v)

1 )′∩M
(x) = η(v)

(
x, {e(v)

j l } j,l
)
.

ThenG(v,1)
1 := η(v)

(
G(v)

1 , {Ẽ(v)
j l } j,l

)
∈
(
M̃(v)

1

)′
∩ Mk(C), and since

p(v)
1 = E

(M(v)
1 )′∩M

(p(v)
1 ) = η(v)

(
p(v)

1 , {e(v)
j l } j,l

)
,

it follows that∣∣τk
(
(G(v,1)

1 )l )
− τ

(
(p(v)

1 )l )∣∣< δ1 for all l = 1, . . . , m1

for any givenδ1, m1, provided thatε, δ are small andm is large enough. For
suitablem1, δ1 there exists a projectionP(v,1)

1 ∈
(
M̃(v)

1

)′
∩ Mk(C) of rank

[ k0t+w
2

]
such that

∥∥P(v,1)
1 − G(v,1)

1

∥∥
2 < δ2. Then

∥∥G(v)
1 − P(v,1)

1

∥∥
2 ≤

∥∥G(v)
1 − G(v,1)

1

∥∥
2 +∥∥G(v,1)

1 − P(v,1)
1

∥∥
2 < 2δ2, since

∥∥G(v)
1 −G(v,1)

1

∥∥
2 < δ2 for convenientm, ε, δ. With

this procedure we can find projections

P(v,1)
1 , . . . , P(v,1)

rv
∈
(
M̃(v)

1

)′
∩Mk(C) and Q(v,1)

1 , . . . , Q(v,1)
sv

∈
(
M̃(v)

2

)′
∩Mk(C),

all of rank
[ k0t+w

2

]
, such that

∥∥G(v)
i − P(v,1)

i

∥∥
2< 2δ2 and

∥∥H (v)
j − Q(v,1)

j

∥∥
2 < 2δ2

for all indicesi, j, v. Moreover,∥∥∥A j −φ j

(
(P(v,1)

i )1≤i ≤rv
1≤v≤ f

, (Q(v,1)
l ) 1≤l≤sv

1≤v≤ f
, (Zu)1≤u≤p

)∥∥∥
2
<ω for all j =1, . . . , n

if we choose a sufficiently smallδ2>0. LetG(v)
1 (k)⊂

(
M̃(v)

1

)′
∩Mk(C) andG(v)

2 (k)⊂(
M̃(v)

2

)′
∩Mk(C) be two fixed copies of the Grassmann manifoldG

(
k0t+w,

[k0t+w
2

])
of projections inMk0t+w(C) of rank

[ k0t+w
2

]
. There exists a unitaryU (v)

∈ U(k)

such that
U (v) P(v,1)

1 U (v)∗, . . . ,U (v) P(v,1)
rv

U (v)∗
∈ G(v)

1 (k),

U (v)Q(v,1)
1 U (v)∗, . . . ,U (v)Q(v,1)

sv
U (v)∗

∈ G(v)
2 (k).
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The previous inequality becomes∥∥∥A j − φ j

((
U (v) P(v,1)

i U (v)∗
)

1≤i ≤rv
1≤v≤ f

,
(
U (v)Q(v,1)

l U (v)∗
)

1≤l≤sv
1≤v≤ f

, (Zu)1≤u≤p,(
ReU (v), Im U (v)

)
1≤v≤ f

)∥∥∥
2
< ω

for all j = 1, . . . , n. The euclidean norm onMsa
k induces aU(k0t + w)-invariant

metric on the manifoldG
(
k0t+w,

[
k0t+w

2

])
, and if{Pa}a∈A(k) is a minimalθ -net in

the manifold with respect to this metric, it follows from [Szarek 1982] that|A(k)|≤

(Chk/θ)gk , whereC is a universal constant,gk =2
[ k0t+w

2

]
·
(
k0t+w−

[ k0t+w
2

])
is the

dimension ofG
(
k0t +w,

[ k0t+w
2

])
andhk ≤

√
2k is the diameter of the Grassmann

manifold G
(
k0t + w,

[ k0t+w
2

])
in Msa

k . There existα := (a(v)
1 , . . . , a(v)

rv
)1≤v≤ f and

β := (b(v)
1 , . . . , b(v)

sv
)1≤v≤ f with entries fromA(k) such that∥∥P(v)

a(v)
i

−U (v) P(v,1)
i U (v)∗

∥∥
e ≤ θ and

∥∥P(v)

b(v)
l

−U (v)Q(v,1)
l U (v)∗

∥∥
e ≤ θ

for 1 ≤ i ≤ rv, 1 ≤ l ≤ sv, 1 ≤ v ≤ f . In particular, the polynomials(φ j )1≤ j ≤n

are Lipschitz functions; hence there exists a constantD = D
(
(φ j )1≤ j ≤n, R

)
> 0

(note that|α| = r1 + · · · + r f and|β| = s1 + · · · + sf ) such that∥∥φ j (V1, . . . , V|α|+|β|+p+2 f ) − φ j (W1, . . . , W|α|+|β|+p+2 f )
∥∥

e

≤ D
∥∥(V1, . . . , V|α|+|β|+p+2 f ) − (W1, . . . , W|α|+|β|+p+2 f )

∥∥
e

for all 1 ≤ j ≤ n and all

V1, . . . , V|α|+|β|+p+2 f , W1, . . . , W|α|+|β|+p+2 f ∈ {V ∈ Mk | ‖V‖ ≤ R}.

We then have∥∥∥A j − φ j

(
(Pa)a∈α, (Pb)b∈β, (Zu)1≤u≤p,

(
ReU (v), Im U (v)

)
1≤v≤ f

)∥∥∥
e

< ω
√

k + D
∥∥∥((U (v) P(v,1)

i U (v)∗
)

1≤i ≤rv
1≤v≤ f

,
(
U (v)Q(v,1)

l U (v)∗
)

1≤l≤sv
1≤v≤ f

,

(Zu)1≤u≤p,
(
ReU (v), Im U (v)

)
1≤v≤ f

)
−

(
(Pa)a∈α, (Pb)b∈β,(Zu)1≤u≤p,

(
ReU (v), Im U (v)

)
1≤v≤ f

)∥∥∥
e

< ω
√

k + Dθ
√

|α| + |β|

= 2ω
√

k,

if we choose

θ :=
ω

D

√
k

|α| + |β|
.
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DefineFα,β : (Msa
k )p+2 f

→ (Msa
k )n by

Fα,β

(
(Wu)1≤u≤p,

(
W(v)

1 , W(v)
2

)
1≤v≤ f

)
=

(
φ j
(
(Pa)a∈α, (Pb)b∈β, (Wu)1≤u≤p, (W

(v)
1 , W(v)

2 )1≤v≤ f
))

1≤ j ≤n
,

and note that diste
(
(A j )1≤ j ≤n, RangeFα,β

)
< 2ω

√
nk. Note also that all the com-

ponents ofFα,β are polynomial functions of degrees at most 3d + 2. Now use
Lemma 2.1 as in the proof of Proposition 2.2 to obtain the estimates

volnk20R

(
(x j )1≤ j ≤n : (p(v)

i )1≤i ≤rv
1≤v≤ f

, (q(v)
l ) 1≤l≤sv

1≤v≤ f
, {e(v)

j l } j,l ,v, { f (v)
j l } j,l ,v, (zu)1≤u≤p;

m, k, ε
)

≤

((
Chk

θ

)gk
)|α|+|β|

·

( nk2

(p+ 2 f )k2

)
· C(d)

· vol(p+2 f )k2 B
(
0, (a + 2ω)

√
nk
)
· volnk2−(p+2 f )k2 B

(
0, 2ω

√
nk
)

=

(
C Dhk

ω

√
|α|+|β|

k

)(|α|+|β|)gk

·

( nk2

(p+ 2 f )k2

)
· C(d)

·
(πnk)(p+2 f )k2/2(2ω + a)(p+2 f )k2

0
(
1+

(p+2 f )k2

2

) ·
(πnk)(nk2

−(p+2 f )k2)/2(2ω)nk2
−(p+2 f )k2

0
(
1+

nk2
−(p+2 f )k2

2

) .

This estimate, inequality (2) on page 373, and the inequalitieshk ≤
√

2k, 0<ω≤a,

gk = 2
[

k0t+w

2

](
k0t + w −

[
k0t+w

2

])
≤ 2k0t+w

2

(
k0t + w −

k0t+w

2

)
=

(k0t+w)2

2
=

(k+k0w−w)2

2k2
0

,

together withC(d) ≤ (3d + 2)(p+2 f )k2
, imply

volnk20R

(
(x j )1≤ j ≤n : (p(v)

i )1≤i ≤rv
1≤v≤ f

, (q(v)
l ) 1≤l≤sv

1≤v≤ f
, {e(v)

j l } j,l ,v, { f (v)
j l } j,l ,v, (zu)1≤u≤p;

m, k, ε
)

≤

(
C D

√
2(|α| + |β|)

ω

)(k+k0w−w)2

2k2
0

(|α|+|β|)

·
2nk2/2(πnk)nk2/2(3a)(p+2f )k2

(2ω)(n−p−2f )k2

0
(
1+

nk2

2

) ( nk2

(p+ 2 f )k2

)
(3d + 2)(p+2f )k2

.
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Therefore

1

k2
χR

(
(x j )1≤ j ≤n : (p(v)

i )1≤i ≤rv
1≤v≤ f

, (q(v)
l ) 1≤l≤sv

1≤v≤ f
, {e(v)

j l } j,l ,v, { f (v)
j l } j,l ,v,

(zu)1≤u≤p; m, k, ε
)

+
n
2

logk

≤C(n, p, a, d, f )+n logk+
|α| + |β|

2k2
0

(
1+

k0w−w

k

)2
log

C D
√

2(|α| + |β|)

ω

+ (n−p−2 f ) logω −
1
k2 log0

(
1+

nk2

2

)
+

1
k2 log

( nk2

(p+ 2 f )k2

)
.

Use the asymptotics

1

k2
log

( nk2

(p+ 2 f )k2

)
= n logn − (p+ 2 f ) log(p+ 2 f ) − (n − p− 2 f ) log(n − p− 2 f ) + o(1)

and Stirling’s formula

1

k2
log0

(
1+

nk2

2

)
=

n
2

log nk2

2e
+ o(1)

to conclude that

(5) χR

(
(x j )1≤ j ≤n : (p(v)

i )1≤i ≤rv
1≤v≤ f

, (q(v)
l ) 1≤l≤sv

1≤v≤ f
, {e(v)

j l } j,l ,v, { f (v)
j l } j,l ,v,

(zu)1≤u≤p; m, ε
)

≤
|α| + |β|

2k2
0

log(C D
√

2(|α| + |β|)) + C(n, p, a, d, f )

+

(
n − p− 2 f −

|α| + |β|

2k2
0

)
logω.

The last inequality shows that the free entropy of{x1, . . . , xn} does not exceed
C(n, p, a, d, f ) + (n−p−2 f ) logω, sincek0 is an arbitrary integer,R is an arbi-
trary positive number andx1, . . . , xn generateM . �

3.1. Hyperfinite dimension of free group factors.

Theorem 3.5.If n ≥ p+ 2 f + 1, the free group factorL(Fn) cannot be asymptot-
ically decomposed as

lim
ω→0

‖·‖2
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

Nω
j1ZωNω

j2Zω
· · · Nω

jt Z
ωNω

jt+1
,

where(for eachω) Zω
⊂ L(Fn) contains p self-adjoint elements, Nω

1 , . . . , Nω
f are

nonprime subfactors ofL(Fn), and d≥ 1 is an integer.
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Proof. Suppose first that∞ > n ≥ p + 2 f + 1 and consider a semicircular sys-
tem {x1, . . . , xn} that generatesL(Fn) as a von Neumann algebra. If there were a
decomposition as in the theorem, one could find for everyω > 0 noncommutative
polynomials and projections as in Proposition 3.4 satisfying the inequalities (3).
But then the estimate of the free entropy (4) would imply thatχ(x1, . . . , xn)=−∞

asω tends to 0, a contradiction.
If n = ∞ thenL(F∞) is generated by an infinite semicircular system{xt }t≥1. If

we fix an integerk ≥ p+ 2 f + 1, we can approximatex1, . . . , xk by polynomials
(φ j )1≤ j ≤k as in (3), getting the estimate of the modified free entropy (5) withk
instead ofn. Takingm, 1/ε, R, k0 → ∞ andω → 0 in this estimate, one obtains

χ
(
(x j )1≤ j ≤k : (p(v)

i )1≤i ≤rv
1≤v≤ f

, (q(v)
l ) 1≤l≤sv

1≤v≤ f
, {e(v)

j l } j,l ,v, { f (v)
j l } j,l ,v, (zu)1≤u≤p

)
< χ(x1, . . . , xk),

where(p(v)
i )1≤i ≤rv,1≤v≤ f , (q(v)

l )1≤l≤sv,1≤v≤ f , {e(v)
j l } j,l ,v, { f (v)

j l } j,l ,v, and(zu)1≤u≤p

are as in Proposition 3.4. IfAt denotes the von Neumann algebra{x1, . . . , xt }
′′

andEt the conditional expectation onto it, then(
(x j )1≤ j ≤k, (Et(p(v)

i ))1≤i ≤rv
1≤v≤ f

, (Et(q
(v)
l )) 1≤l≤sv

1≤v≤ f
, {Et(e

(v)
j l )} j,l ,v,

{Et( f (v)
j l )} j,l ,v, (Et(zu))1≤u≤p

)
t≥1

converges in distribution ast → ∞ to(
(x j )1≤ j ≤k, (p(v)

i )1≤i ≤rv
1≤v≤ f

, (q(v)
l ) 1≤l≤sv

1≤v≤ f
, {e(v)

j l } j,l ,v, { f (v)
j l } j,l ,v, (zu)1≤u≤p

)
.

Therefore

χ
(
(x j )1≤ j ≤k : (Et(p(v)

i ))1≤i ≤rv
1≤v≤ f

, (Et(q
(v)
l )) 1≤l≤sv

1≤v≤ f
, {Et(e

(v)
j l )} j,l ,v,

{Et( f (v)
j l )} j,l ,v, (Et(zu))1≤u≤p

)
< χ(x1, . . . , xk)

for some large integert > k. But this leads to a contradiction:

χ(x1, . . . , xt) = χ
(
(x j )1≤ j ≤t : (Et(p(v)

i ))1≤i ≤rv
1≤v≤ f

, (Et(q
(v)
l )) 1≤l≤sv

1≤v≤ f
, {Et(e

(v)
j l )} j,l ,v,

{Et( f (v)
j l )} j,l ,v, (Et(zu))1≤u≤p

)
≤ χ

(
(x j )1≤ j ≤k : (Et(p(v)

i ))1≤i ≤rv
1≤v≤ f

, (Et(q
(v)
l )) 1≤l≤sv

1≤v≤ f
, {Et(e

(v)
j l )} j,l ,v,

{Et( f (v)
j l )} j,l ,v, (Et(zu))1≤u≤p

)
+ χ(xk+1, . . . , xt)

< χ(x1, . . . , xk) + χ(xk+1, . . . , xt) = χ(x1, . . . , xt). �
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Corollary 3.6. If P ⊂ L(Fn) is a subfactor of finite index and if n≥ p + 2 f + 2,
thenP cannot be asymptotically decomposed as

lim
ω→0

‖·‖2
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

Nω
j1ZωNω

j2Zω
· · · Nω

jt Z
ωNω

jt+1
,

where(for eachω) Zω contains p self-adjoint elements ofP, theNω
1 , . . . , Nω

f are
nonprime subfactors ofP, and d≥ 1 is an integer.

Proof. SinceP ⊂ L(Fn) is a subfactor of finite index,L(Fn) can be obtained from
P with the basic construction [Jones 1983; Jones and Sunder 1997]: there exists
a subfactorQ ⊂ P such thatL(Fn) = 〈P, eQ〉, whereeQ is the Jones projection
associated to the inclusionQ ⊂ P. But 〈P, eQ〉 = PeQP [Jones and Sunder 1997];
henceL(Fn) can be decomposed asPeQP. Now apply Theorem 3.5. �

Corollary 3.7. If n ≥ p+2 f +1, the free group factorL(Fn) cannot be decomposed
as

spw
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

N j1ZN j2Z · · · N jt ZN jt+1,

whereZ ⊂ L(Fn) contains p self-adjoint elements, N1, . . . , N f are nonprime sub-
factors ofL(Fn), and d≥ 1 is an integer. Moreover, if P ⊂ L(Fn) is a subfactor of
finite index and if n≥ p+ 2 f + 2, thenP also cannot be decomposed as

spw
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

N j1ZN j2Z · · · N jt ZN jt+1,

for any subsetZ containing p self-adjoint elements ofP, any N1, . . . , N f non-
prime subfactors ofP, and any integer d≥ 1.

Proof. This follows from Theorem 3.5 and Corollary 3.6, withZω
= Z, Nω

1 = N1,
. . . , Nω

f = N f . �

Corollary 3.8 settles a conjecture from [Ge and Popa 1998] in the casen = ∞.
Recall that for a type II1-factorM one defines

`h(M) = min{ f ∈ N | ∃ hyperfiniteR1, . . . , R f ⊂ M s.t. spwR1R2 · · · R f = M}.

Note that the definition of hyperfinite dimension is given in terms of hyperfinite
subalgebras. If one defined the hyperfinite dimension in terms of hyperfinite sub-
factors instead of hyperfinite subalgebras, the proof of Corollary 3.8 would have
followed immediately from Corollary 3.7. But with Definition 3.1, we need the
asymptotic indecomposability result from Theorem 3.5.

Corollary 3.8. `h(L(Fn)) ≥
[n−2

2

]
+ 1 for 4 ≤ n ≤ ∞.
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Proof. If `h(L(Fn)) ≤
[n−2

2

]
, thenL(Fn) = spw R1R2 · · · R f for some hyperfi-

nite subalgebrasR1, . . . , R f and some integerf with n ≥ 2 f + 2. Let m ≥ 1,
y1, . . . , ym ∈ L(Fn) andω > 0 be fixed. There exist finite dimensional subalgebras
Bω

v = Bv(y1, . . . , ym; ω) ⊂ Rv, for 1≤ v ≤ f , such that

dist‖·‖2

(
y j , Bω

1 Bω
2 · · · Bω

f

)
< ω for 1 ≤ j ≤ m.

Each finite dimensional subalgebraBω
v is contained in a copy of the hyperfinite

II1-factor, sayBω
v ⊂ Rω

v = Rω
v (y1, . . . , ym; ω) ⊂ L(Fn). Consequently,

dist‖·‖2

(
y j , Rω

1 Rω
2 · · · Rω

f

)
< ω for 1 ≤ j ≤ m;

henceL(Fn) admits an asymptotic decomposition of the form

lim
ω→0

‖·‖2 Rω
1 Rω

2 · · · Rω
f ,

contradicting Theorem 3.5 sinceRω
1 , . . . , Rω

f are nonprime andn ≥ 2 f + 2. �

Corollary 3.9. If P ⊂ L(Fn) is a subfactor of finite index and5 ≤ n ≤ ∞, then
`h(P) ≥

[n−3
2

]
+ 1.

Proof. Follows from Corollary 3.6. �

4. Indecomposability over abelian subalgebras

Another estimate of free entropy is used to prove that the free group factorL(Fn)

does not admit an asymptotic decomposition of the form

lim
ω→0

‖·‖2
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

Aω
j1ZωAω

j2Zω
· · · Aω

jt Z
ωAω

jt+1
,

where (for eachω) theAω
1 , . . . , Aω

f are abelian subalgebras ofL(Fn), Zω
⊂ L(Fn)

is a subset withp self-adjoint elements,d ≥ 1 is an arbitrary integer, andn ≥

p + 2 f + 1. Similarly, for free group subfactors one has the following: ifn ≥

p + 2 f + 2 andP ⊂ L(Fn) is a subfactor of finite index, thenP does not admit
such an asymptotic decomposition either. In particular, the abelian dimension of
L(Fn) is ≥

[n−2
2

]
+1 and the abelian dimension ofP is ≥

[n−3
2

]
+1. Forn=∞ this

proves the second part of Ge and Popa’s conjecture [Ge and Popa 1998]: the abelian
dimension of free group factors is infinite. The definitions of abelian dimension
and asymptotic decomposition over abelian subalgebras are given next.

Definition 4.1 [Ge and Popa 1998].If M is a II1-factor, the abelian dimension ofM,
denoted̀ a(M), is defined as the smallest positive integerf ∈ N with the property
that there exist abelian subalgebrasA1, . . . , A f ⊂ M such thatspwA1A2 · · · A f =

M. If there is no such positive integer,`a(M) = +∞.
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Definition 4.2. A type II1-factor M admits an asymptotic decomposition over
abelian subalgebras if, for anyn ≥ 1, anyx1, . . . , xn ∈ M, and anyω > 0, there
exist abelian∗-subalgebrasAω

1 = A1(x1, . . . , xn; ω), . . . ,Aω
f = A f (x1, . . . , xn; ω)

of M and also a setZω
= Z(x1, . . . , xn; ω)⊂ M containingp self-adjoint elements,

such that

dist‖·‖2

(
x j ,

∑
1≤ j1,..., jt+1≤ f

1≤t≤d

Aω
j1ZωAω

j2Zω
· · · Aω

jt Z
ωAω

jt+1

)
< ω for 1 ≤ j ≤ n.

In this situation we write

M = lim
ω→0

‖·‖2
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

Aω
j1ZωAω

j2Zω
· · · Aω

jt Z
ωAω

jt+1
.

Proposition 4.3 gives an estimate of the free entropy of a (finite) system of
generators of a II1-factorM that can be asymptotically decomposed as

lim
ω→0

‖·‖2
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

Aω
j1ZωAω

j2Zω
· · · Aω

jt Z
ωAω

jt+1
.

As in the statement of Proposition 3.4, the approximations in the‖ · ‖2-norm (6)
hold for everyω > 0 if the II1-factor can be decomposed as above.

Proposition 4.3. Let z1, . . . , zp be self-adjoint elements of aII1-factor M and let
(Av)1≤v≤ f be a family of abelian subalgebras ofM. Let x1, . . . , xn be self-adjoint

generators ofM and assume that there exist projections p(v)
1 , . . . , p(v)

rv
∈ Av and

complex noncommutative polynomials(φ j )1≤ j ≤n of degree at most d(where d≥ 1
is fixed) in the variables(zu)1≤u≤p such that

(6)
∥∥∥x j − φ j

(
(p(v)

i )1≤i ≤rv
1≤v≤ f

, (zu)1≤u≤p

)∥∥∥
2
< ω for j = 1, . . . , n,

whereω ∈ (0, a] is a given positive number, and such that in all monomials of
everyφ j the projections p(v)

i and p(w)
k are separated by some zu if v 6= w. Then

(7) χ(x1, . . . , xn) ≤ C(n, p, a, d, f ) + (n−p−2 f ) logω,

where a= max
{
‖x j ‖2 + 1|1 ≤ j ≤ n

}
and C(n, p, a, d, f ) is a constant that

depends only on n, p, a, d, f .

Proof. As in the proof of Proposition 3.4 we can assume thatφ j =φ∗

j for 1≤ j ≤ n,
and fix R > 0. Consider an arbitrary element(

(B j )1≤ j ≤n, (P(v)
i )1≤i ≤rv

1≤v≤ f
, (Zu)1≤u≤p

)
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of
0R

(
(x j )1≤ j ≤n, (p(v)

i )1≤i ≤rv
1≤v≤ f

, (zu)1≤u≤p; m, k, ε
)

for some large integersm, k and smallε > 0. Possibly after further restricting
m andε, we can find mutually orthogonal projectionsQ(v)

1 , . . . , Q(v)
rv

∈ Msa
k with

rankQ(v)
i =

[
τ(p(v)

i )k
]

for i = 1, . . . , rv, such that∥∥∥B j − φ j

(
(Q(v)

i )1≤i ≤rv
1≤v≤ f

, (Zu)1≤u≤p

)∥∥∥
2
< ω for all 1 ≤ j ≤ n.

If S(v)
1 , . . . , S(v)

r ∈ Msa
k are fixed, mutually orthogonal projections with rankS(v)

i =[
τ(p(v)

i )k
]

for every 1≤ i ≤ rv, then there exists a unitaryU (v)
∈ U(k) such that

Q(v)
i = U (v)∗Si U (v) for every 1≤ i ≤ rv. The previous inequality becomes∥∥∥B j − φ j

(
(S(v)

i )1≤i ≤rv
1≤v≤ f

, (Zu)1≤u≤p,
(
ReU (v), Im U (v)

)
1≤v≤ f

)∥∥∥
2
< ω,

and all the components ofφ j are polynomials of degrees≤3d+2 in the lastp+2 f
variables. Reasoning as in the last part of the proof of Proposition 3.4 we can easily
obtain now the estimateχ(x1, . . . , xn) ≤ C(n, p, a, d, f )+(n− p−2 f ) logω. �

Abelian dimension of free group factors.

Theorem 4.4. If n ≥ p + 2 f + 1, the free group factorL(Fn) does not admit an
asymptotic decomposition of the form

lim
ω→0

‖·‖2
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

Aω
j1ZωAω

j2Zω
· · · Aω

jt Z
ωAω

jt+1
,

where each subsetZω contains p self-adjoint elements, Aω
1 , . . . , Aω

f ⊂ L(Fn) are
abelian∗-subalgebras and d≥ 1 is an integer.

Proof. Apply Proposition 4.3 in the same manner that Proposition 3.4 was used in
the proof of Theorem 3.5. �

Corollary 4.5. If P ⊂ L(Fn) is a subfactor of finite index and if n≥ p + 2 f + 2,
thenP cannot be asymptotically decomposed as

lim
ω→0

‖·‖2
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

Aω
j1ZωAω

j2Zω
· · · Aω

jt Z
ωAω

jt+1
,

where each subsetZω contains p self-adjoint elements ofP, theAω
1 , . . . , Aω

f ⊂ P

are abelian∗-subalgebras, and d≥ 1 is an integer.

Proof. This is a direct consequence of Theorem 4.4 and of decompositionL(Fn) =

PeQP (see the proof of Corollary 3.6). �
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Corollary 4.6. If n ≥ p+2 f +1, the free group factorL(Fn) cannot be decomposed
as

spw
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

A j1ZA j2Z · · · A jt ZA jt+1,

whereZ ⊂ L(Fn) contains p self-adjoint elements, A1, . . . , A f are abelian∗-
subalgebras ofL(Fn), and d ≥ 1 is an integer. Moreover, if P ⊂ L(Fn) is a
subfactor of finite index and if n≥ p+2 f +2, thenP also cannot be decomposed
as

spw
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

A j1ZA j2Z · · · A jt ZA jt+1,

for any subsetZ containing p self-adjoint elements ofP, anyA1, . . . , A f abelian
∗-subalgebras ofP, and any integer d≥ 1.

Proof. Apply Theorem 4.4 and Corollary 4.5 forZω
= Z, Aω

1 = A1, . . . ,Aω
f = A f .

�

Corollary 4.7 settles the second part of the conjecture of Ge and Popa [1998],
in the casen = ∞. As a reminder,̀ a(M) is defined as

min
{

f ∈ N | ∃ abelian∗-algebrasA1, . . . , A f ⊂ M s.t. spwA1A2 · · · A f = M
}

for every type II1-factorM.

Corollary 4.7. `a(L(Fn)) ≥
[n−2

2

]
+ 1 for 4 ≤ n ≤ ∞.

Proof. This follows from the first part of Corollary 4.6 withZ = {1}. �

Corollary 4.8. If P ⊂ L(Fn) is a subfactor of finite index and5 ≤ n ≤ ∞, then
`a(P) ≥

[n−3
2

]
+ 1.

Proof. Apply the second part of Corollary 4.6. �

Remark 4.9.One can combine both indecomposability properties ofL(Fn) into a
single statement: ifn ≥ p+2 f +1, the free group factorL(Fn) does not admit an
asymptotic decomposition of the form

lim
ω→0

‖·‖2
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

Mω
j1ZωMω

j2Zω
· · · Mω

jt Z
ωMω

jt+1
,

where each subsetZω containsp self-adjoint elements, eachMω
1 , . . . , Mω

f ⊂ L(Fn)

is either a nonprime subfactor or an abelian∗-subalgebra andd ≥ 1 is an integer.
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