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Motivated by Hartshorne’s work on curves in P3, we study the properties
of reflexive rank-2 sheaves on smooth projective threefolds.

1. Introduction

We work over an algebraically closed field of characteristic 0.
There has been a tremendous amount of interest in recent years in the study of

curves on Calabi–Yau threefolds, and especially on the general quintic inP4. In
this note, motivated by Hartshorne’s work [1978; 1980] on curves inP3, we study
the properties of reflexive rank-2 sheaves on smooth projective threefolds.

Some similar results are obtained in [Ballico and Miró-Roig 1997] for Fano
threefolds (and somewhat more generally). The greatest advantage of our results
is the determination of explicit effective bounds for the third Chern class,c3, of a
reflexive sheaf (Theorem 14) and of explicit bounds for vanishing of higher coho-
mology and the existence of global sections (Corollary 13). In Section 3 we write
out these bounds for the case of a smooth threefold hypersurface of degreed.

We refer the reader to [Hartshorne 1980] for basic properties of reflexive sheaves.
Recall the followingSerre correspondencefor reflexive sheaves (the referenced
result is only forP3, but as noted in [Hartshorne 1978, 1.1.1] the general case
follows immediately from the proof):

Theorem 1 [Hartshorne 1980, 4.1].Let X be a smooth projective threefold, M
an invertible sheaf with H1(X, M∗) = H2(X, M∗) = 0. There is a one-to-one
correspondence between

(1) pairs (F , s), whereF is a rank-2 reflexive sheaf on X with
∧2F = M and

s ∈ 0(F ) is a section whose zero set has codimension2, and

(2) pairs (Y, ξ), where Y is a closed Cohen–Macaulay curve in X, generically a
local complete intersection, and ξ ∈ 0(Y, ωY ⊗ ω∗

X ⊗ M∗) is a section that
generates the sheafωY ⊗ ω∗

X ⊗ M∗ except at finitely many points.
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Furthermore, c3(F ) = 2pa(Y) − 2− c2(F )c1(ωX) − c2(F )c1(F ). �

The case whereF is locally free corresponds the curveY being a local complete
intersection. FurthermoreωY⊗ω∗

X ⊗M∗ ∼= OY, ξ is a nonzero section andc3(F )=

0. In this case we sayY is subcanonical.

Example 2.SupposeX ⊂P4 is a smooth hypersurface of degreed, Y ⊂ X a smooth
rational curve. ThenY is the zero locus of a section of some rank two vector bundle
V if and only if Y is a line or a plane conic in the embedding given byOX(1). If
Y is a line, then

∧2V = OX(3− d); if Y is a plane conic, then
∧2V = OX(4− d).

Example 3. SupposeX ⊂ P4 is a smooth hypersurface of degreed, Y ⊂ X a
smooth elliptic curve. ThenY is the zero locus of a section of some rank two
vector bundleV with

∧2V = OX(5− d).

Finally, we recall some basic formulae:

Proposition 4. LetF be a coherent sheaf of rank r on a smooth threefold X. Then

χ(X, F ) =
1
6c1(F )3

−
1
2c1(F )c2(F ) −

1
2c1(X)c2(F ) +

1
4c1(X)c1(F )2

+
1
12c1(X)2c1(F ) +

1
12c2(X)c1(F ) +

r
24c1(X)c2(X) +

1
2c3(F ).

Note also that ifF has rank two and L is an invertible sheaf, then

(1) c1(F ⊗ L) = c1(F ) + 2c1(L),

(2) c2(F ⊗ L) = c2(F ) + c1(L)c1(F ) + c1(L)2,

(3) c3(F ⊗ L) = c3(F ).

2. Stability and Boundedness

Definition 5. Let L be a very ample line bundle on a smooth projective varietyX.
A reflexive coherent sheafF on X is L-semistableif for every coherent subsheaf
F ′ of F with 0 < rankF ′ < rankF , we haveµ(F ′, L) ≤ µ(F , L), where

µ(F , L) =
c1(F ).[L]

dim X−1

(rankF ) [L]dim X
.

If the inequality is strict,F is L-stable. Note that if rankF = 2, it suffices to take
F ′ invertible.

Definition 6. We say that a reflexive sheafF is normalized with respect to Lif
−1 < µ(F , L) ≤ 0. As L is typically fixed, we usually say simply thatF is
normalized. Note that sinceµ(F ⊗ L , L) = µ(F , L) + 1, there exists, for any
fixed F , a uniquek ∈ Z such thatF ⊗ Lk is normalized with respect toL.

For a fixedX, our goal is to give a bound onc3(F ) in terms ofc1(F ) and
c2(F ). Note that the formula forc3 in Theorem 1 gives:
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Lemma 7. Let X be a smooth threefold, L a very ample line bundle, F a rank two
reflexive sheaf,

∧2F = M a line bundle with H1(M∗)= H2(M∗)=0. If s ∈0(F )

is a section whose zero locus is a curve, then

c3(F ) ≤ d2
− 3d − c2(F )c1(ωX) − c2(F )c1(F )

where d= c2(F )c1(L).

Proof. In light of Theorem 1, we need only note that the degree of the curve section
in the embedding given byL is d=c2(F )c1(L). The fact that 2pa(Y)−2≤d2

−3d
is just the bound coming from the degree of a plane curve. �

The idea now is: given a very ample line bundleL, bound the twist ofF by Lr

needed to produce a section, and then use the bound in Lemma 7. First note the
following elementary result:

Lemma 8. LetF be a reflexive sheaf on a smooth projective variety X with a very
ample line bundle L. If either

(1) F is L-stable andµ(F , L) ≤ 0 or

(2) F is L-semistable andµ(F , L) < 0

then H0(X, F ) = 0.

Proof. Suppose otherwise thatF has a sectionOX → F . Dualizing, we get a
surjectionF ∗

→ IY ⊂ OX; dualizing again we have 0→ I ∗

Y → F , but I ∗

Y is
invertible andH0(X, I ∗

Y ) = HomOX (IY, OX) 6= 0. Henceµ(I ∗

Y , L) ≥ 0 and the
result follows. �

The main technical result is:

Proposition 9. Let X be a smooth projective threefold with very ample line bundle
L and withPicX = ZL. Let F be a normalized L-semistable rank-2 reflexive
sheaf, and D be a general member of the linear system|L|. Assume that the
general member of the linear system|L ⊗ OD| is not rational, and that m< 0 is an
integer satisfying

2m < 3µ(2X, L) − 2µ(F , L) − 2.

Then H0(FD(mD)) = 0.

Remark 10. The assumption that the general member of the linear system|L⊗OD|

is not rational can be dropped if we require that

2m < 3µ(2X, L) − 2µ(F , L) − 4.

As this would impact all further estimates, we have chosen to add the extra hypoth-
esis rather than explicitly keeping track of the two separate cases. The interested
reader will have little trouble altering the bounds in subsequent arguments in cases
where this is of interest (say a threefold quadric hypersurface).
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Proof of Proposition 9.We proceed by contradiction. Letm be the smallest integer,
if one exists, satisfying the inequality and such thatH0(FD(mD)) is nonzero for
the general, hence every, member of|L|. We will showm ≥ 0.

Fix a smooth memberD such thatFD is locally free. The proposed section
yields a sequence

0 → OD → FD(mD) → IZ(2mD) ⊗
∧2F → 0,

whereZ ⊂ D is zero-dimensional of lengthc2(F (mD)). Choose a smooth curve
C in the system|L D| (i.e., in the class ofD.[L]) with Z ∩C empty. Tensoring the
sequence above byOC yields an extension of line bundles.

The class of the extension lies in

Ext1OC

(
OC, OC(−2mD) ⊗

∧2F ∗
)
= H1(C, OC(−2mD) ⊗

∧2F ∗
)
.

Note thatKC = KX ⊗ OC(2D). Now, as the inequality in the hypotheses is easily
seen to be equivalent to

−2m[L]
3
− c1(F ).[L]

2 > KX.[L]
2
+ 2[L]

3
= 2g(C) − 2

the extension group vanishes, hence

FC(mD) = OC ⊕
[
OC(2mD) ⊗

∧2F
]

andh0(C, FC(mD)) = 1. By minimality ofm, we see also that

h0(D, FD(mD)) = 1.

Now blow upX alongC, and considerπ : BlC(X) → X. We have a morphism
f : BlC(X) → P1 given by the pencil of divisors in|L| containingC. It is easy
to see that foreveryone of these divisors,h0(FD(mD)) = 1. Then, because
π∗F is reflexive, f∗π∗F (mD) is invertible [Hartshorne 1980, 1.4,1.7]. However,
we know thatH0(FD(mD)) → H0(FC(mD)) is an isomorphism and therefore
f∗π∗F (mD)∼= f∗π∗FC(mD)∼= OP1, where the last isomorphism follows directly
from the splitting ofFC.

Consequently,H0(X, F (mD)) 6= 0 and som ≥ 0 by Lemma 8, contradicting
the assumption thatm is negative. �

Corollary 11. With notation and hypotheses as is Proposition 9, if

2k > max
{
0, 2+ 2µ(F , L) − 3µ(2X, L)

}
,



STABLE REFLEXIVE SHEAVES ON SMOOTH PROJECTIVE 3-FOLDS 395

then H2
(
D, KD ⊗ F ∗

D(kD)
)
= 0 for the general member D. If , furthermore, k is

such that

(6k2
+ 6k + 2) − (6k + 3)

(
2µ(F , L) + 3µ(2X, L)

)
≥

(
6c2(F ) − c1(X)2

− 3c1(F )2
− 3c1(F )c1(X) − c2(X)

)
[L]

[L]3
,

then H0
(
D, KD ⊗ F ∗

D(kD)
)
6= 0.

Proof. We can chooseD smooth and so thatFD is locally free. Then

h2(D, KD ⊗ F ∗

D(kD)
)
= h0(D, FD(−kD)

)
,

which is zero by Proposition 9.
Because of the vanishing ofH2 above, the second part follows directly from a

computation of the Euler characteristic. �

Corollary 12. With notation and hypotheses as is Proposition 9 there exists a
constantρ depending on c1(F ), c2(F ), c1(L) and ci (2X) such that if r≥ ρ then
H1

(
D, KD ⊗ F ∗

D(r D)
)
= 0.

Proof. By the previous corollary, there is a constant depending on the above param-
eters such that ifk is larger than that constant, thenKD ⊗ F ∗

D(kD) has a section.
Choosing thesmallestsuch integerk we have a sequence

0 → OD → KD ⊗ F ∗

D(kD) → IZ(2kD) ⊗ K 2
D ⊗

∧2F ∗
→ 0,

where, as above,Z ⊂ D is zero-dimensional of length

` = c2(FD) −
(
c1(KD) + kc1(O(D))

)
c1(FD) +

(
c1(KD) + kc1(O(D))

)2
.

Let α ∈ Z be such thatK 2
X ⊗

∧2F ∗
= Lα. BecauseD is a smooth surface,

H1(D, O(pD)) = 0 for p ≥ 3c1(L)3
− 5 (by [Bertram et al. 1991, 1.10], for in-

stance). Further, by the standard uniform regularity result [Mumford 1966, p.103],
H1

(
D, IZ((2k + t)D) ⊗ K 2

D ⊗
∧2F ∗

)
vanishes fort ≥ ` − 2k − α − 2 and

t ≥ 3c1(L)3
− 7− 2k − α.

Consequently,H1
(
D, KD ⊗ F ∗

D(r D)
)
= 0 for

r ≥ max{` − k − α − 2, 3c1(L)3
− 7− k − α}. �

Corollary 13. With notation and hypotheses as in Proposition 9, there exists an
integerρ2 depending on c1(F ), c2(F ), c1(L) and ci (2X) such that if r≥ ρ2 then
H0(X, KX ⊗ F ∗

⊗ Lr ) 6= 0.

Proof. The vanishing ofH1 andH2 on D described in the corollaries above gives
H2(X, KX ⊗F ∗

⊗Lr )= 0. The result now follows by another Euler characteristic
argument (see Proposition 4). �
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Theorem 14. Let X be a smooth projective threefold with very ample line bundle
L and withPicX = ZL. Let F be an L-semistable rank-2 reflexive sheaf. Then
there exists an integer C depending on c1(F ), c2(F ), c1(L) and ci (2X) such that
C ≥ c3(F ).

Proof. As c3(F ) is unaffected by twisting by a line bundle, we may assume that
F is normalized. The preceding results apply and we can take a section ofKX ⊗

F ∗
⊗ Lk for somek, bounded as in Corollary 13. We then have an exact sequence

0 → OX → KX ⊗ F ∗
⊗ Lk

→ IY ⊗ K 2
X ⊗ L2k

⊗
∧2F ∗

→ 0,

whereY ⊂ X is a curve. Computing Euler characteristics gives

2pa(Y) − 2 = d1d2 + c3(F ) + c1(ωX)d2,

where
d1 = c1(KX ⊗ F ∗

⊗ Lk) = −c1(F ) − 2c1(X) + 2kc1(L)

and

d2 = c2(KX ⊗F ∗
⊗ Lk)

= c2(F )+c1(F )c1(X)−kc1(F )c1(L)+c1(X)2
−2kc1(X)c1(L)+k2c1(L)2.

In the embedding determined byL, the degree of the curveY is preciselyd2c1(L).
This impliesd2c1(L)(d2c1(L) − 3) ≥ 2pa(Y) − 2 and so

d2c1(L)(d2c1(L) − 3) − d1d2 − d2c1(ωX) ≥ c3(F ). �

3. Explicit bounds

Let X be a smooth hypersurface inP4 of degreed > 2, andF a rank twoL-
semistable reflexive sheaf. In this case, we haveKX = OX(d − 5); since L-
semistability is independent of the choice ofL, we takeL = O(1). Note that
[L]

3
= d, thatc2(2X) = (10− 5d + d2)c1(L)2, and thatµ(2X, L) =

1
2(5 − d).

Further, ifF is normalized thenµ(F , L) = 0 or µ(F , L) = −
1
2. We explicitly

compute the bound in the caseµ(F , L) = 0, the other case being exactly analo-
gous, though a bit more notationally cluttered. For notational convenience we let
S= c2(F )c1(L).

The first bound in Corollary 11 becomes

k > max
{
0, 1

4(3d − 11)
}
,

so here it suffices to takek > 0 if d < 5 andk > 1
4(3d − 11) if d ≥ 5.

The second bound in Corollary 11 becomes

(6k2
+ 6k + 2) +

(6k + 3)(3d − 15)

2
−

(6S− 35d + 15d2
− 2d3)

d
> 0;
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hence

k >
−3d2

+ 13d +
√

11d4 − 150d3 + 391d2 + 48dS

4d
when S≥

1
48(−11d3

+ 150d2
− 391d), otherwise the second bound in Corollary

11 is unnecessary.
In Corollary 12, note thatKD = OD(d−4) and that the bound forp is irrelevant

since the vanishing holds already forp = 0. The length ofZ is at most

S+ d(d − 4+ k)2,

so for the vanishingH1
(
D, KD ⊗ F ∗

D(r D)
)
= 0 we need

2r ≥ S+ d(d − 4+ k)2
− 2(d − 4).

In Corollary 13, we compute the Euler characteristic ofF ∗(m) and takem ≥ r
such thatχ(KX ⊗ F ∗(m)) −

1
2(c3(F )) > 0. We have

χ(KX ⊗ F ∗(m)) −
1
2(c3(F ))

=
1
12(2m+ d − 5)(d3

+ 2md2
− 5d2

− 10md+ 10d + 2m2d − 6S);

hence we need

m >
−d2

+ 5d +
√

5d2 − d4 + 12dS

2d
.

As before, this bound is irrelevant unlessS≥
1
12(d

3
− 5d).

For example, in the case of the quintic we obtain

(1) for S≥ 13:

256c3(F ) <
(
320S2

+80S
√

60S−525−4004S−540
√

60S−525+11955
)

×
(
320S2

+80S
√

60S−525−4068S−548
√

60S−525+12339
)
;

(2) for S< 13:

16c3(F ) < (5S2
+ 184S+ 1620)(5S2

+ 180S+ 1536).
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