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ON SMOOTH PROJECTIVE 3-FOLDS
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Motivated by Hartshorne’s work on curves in P2, we study the properties
of reflexive rank-2 sheaves on smooth projective threefolds.

1. Introduction

We work over an algebraically closed field of characteristic O.

There has been a tremendous amount of interest in recent years in the study of
curves on Calabi-Yau threefolds, and especially on the general quirfit. i
this note, motivated by Hartshorne’s work [1978; 1980] on curveé®’jrwe study
the properties of reflexive rank-2 sheaves on smooth projective threefolds.

Some similar results are obtained in [Ballico and Mir6-Roig 1997] for Fano
threefolds (and somewhat more generally). The greatest advantage of our results
is the determination of explicit effective bounds for the third Chern classf a
reflexive sheaf (Theorem 14) and of explicit bounds for vanishing of higher coho-
mology and the existence of global sections (Corollary 13). In Section 3 we write
out these bounds for the case of a smooth threefold hypersurface of degree

We refer the reader to [Hartshorne 1980] for basic properties of reflexive sheaves.
Recall the followingSerre correspondender reflexive sheaves (the referenced
result is only for3, but as noted in [Hartshorne 1978, 1.1.1] the general case
follows immediately from the proof):

Theorem 1[Hartshorne 1980, 4.1]Let X be a smooth projective threefpli
an invertible sheaf with fi(X, M*) = H2(X, M*) = 0. There is a one-to-one
correspondence between

(1) pairs (Z, s), where.Z is a rank2 reflexive sheaf on X with?.# = M and
s e I'(%) is a section whose zero set has codimen&iand

(2) pairs (Y, &), where Y is a closed Cohen—Macaulay curve ing&nerically a
local complete intersectigrand & € I'(Y, wy ® 0y ® M*) is a section that
generates the sheak ® vy ® M* except at finitely many points
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Furthermore c3(%) = 2pa(Y) — 2— Co(F)Cr(wx) — C2(F)C1(F). O

The case wherg is locally free corresponds the curVebeing a local complete
intersection. Furthermorey ® vy ® M* =0y, £ is a nonzero section amgd(.% ) =
0. In this case we saY is subcanonical

Example 2. SupposeX C P*is a smooth hypersurface of degieY X a smooth
rational curve. ThelY is the zero locus of a section of some rank two vector bundle
V if and only if Y is a line or a plane conic in the embedding givendyy(1). If

Y is a line, then\2V = 0x(3—d); if Y is a plane conic, thep?V = Ox (4 —d).

Example 3. SupposeX c P* is a smooth hypersurface of degreeY c X a
smooth elliptic curve. ThelY is the zero locus of a section of some rank two
vector bundleV with A2V = 0x(5—d).

Finally, we recall some basic formulae:

Proposition 4. Let.# be a coherent sheaf of rank r on a smooth threefold Xen

X (X, F) = geu(F)® = 3eu(F)C(F) = 5e1(X)C(F) + e (X)Cu(F)?
+15C100%C1(F) + $;02(X)C1(F) + 361(X)C2(X) + 5C3(F).

Note also that if# has rank two and L is an invertible shedlfien

(1) ci(F QL) =ci(F)+2c(L),

(2) c2o(F ®L) =Co(F) + ca(L)Cu(F) +cu(L)?,

(3) c3(F ® L) =c3(F).

2. Stability and Boundedness

Definition 5. Let L be a very ample line bundle on a smooth projective vanéty
A reflexive coherent shea¥ on X is L-semistabléf for every coherent subsheaf
F' of & with 0 < rank.%’ < rank.%, we haveu (%', L) < u(%#, L), where

B Cl(j‘)'[L]dim X-1
~ (rank.%) [L]dimX"

If the inequality is strict,# is L-stable Note that if rank# = 2, it suffices to take
ZF' invertible.

w(Z, L

Definition 6. We say that a reflexive she& is normalized with respect to [f
-1 < u(#,L) <0. AsL is typically fixed, we usually say simply tha¥ is
normalized Note that sinceu(%# ® L, L) = u(%#, L) + 1, there exists, for any
fixed.#, a uniquek € Z such thatZ ® LX is normalized with respect tb.

For a fixed X, our goal is to give a bound ocy(.%#) in terms ofci1(.%#) and
c2(%#). Note that the formula focs in Theorem 1 gives:
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Lemma 7. Let X be a smooth threefqld a very ample line bund]eZ a rank two
reflexive sheafA2.# = M a line bundle with H(M*) = H2(M*) =0. If s e ['(.%)
is a section whose zero locus is a curtfeen
Ca(F) < d® — 3d — c2(F)cr(wx) — C2(F)C1(F)

where d= cx(F)ci(L).
Proof. In light of Theorem 1, we need only note that the degree of the curve section
in the embedding given by isd = co(.#)c1(L). The fact that Pa(Y)—2<d?—3d
is just the bound coming from the degree of a plane curve. O

The idea now is: given a very ample line buntliebound the twist of# by L'
needed to produce a section, and then use the bound in Lemma 7. First note the
following elementary result:

Lemma 8. Let.# be a reflexive sheaf on a smooth projective variety X with a very
ample line bundle LIf either

(1) % is L-stable andu(.%#, L) <0or

(2) . is L-semistable ang(#,L) <0

then HO(X, .%) = 0.

Proof. Suppose otherwise tha¥ has a sectio®x — .#. Dualizing, we get a

surjection7* — 4y C Ox; dualizing again we have & %y — .7, but 4§ is

invertible andHO(X, %) = Homg, (A, Ox) # 0. Henceu (%, L) > 0 and the

result follows. O
The main technical result is:

Proposition 9. Let X be a smooth projective threefold with very ample line bundle
L and withPicX = ZL. Let.# be a normalized L-semistable ra@kreflexive
sheaf and D be a general member of the linear systdm Assume that the
general member of the linear systén® Op| is not rational and that m< Ois an
integer satisfying

2m < 3u(®x, L) —2u(%#, L) — 2
Then H(#p(mD)) =0.

Remark 10. The assumption that the general member of the linear syl$t&0ip |
is not rational can be dropped if we require that

2m < 3u(Ox, L) — 2u(Z, L) — 4.

As this would impact all further estimates, we have chosen to add the extra hypoth-
esis rather than explicitly keeping track of the two separate cases. The interested
reader will have little trouble altering the bounds in subsequent arguments in cases
where this is of interest (say a threefold quadric hypersurface).
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Proof of Proposition 9We proceed by contradiction. Letbe the smallest integer,
if one exists, satisfying the inequality and such thEX(.%p (m D)) is nonzero for
the general, hence every, membetlof. We will showm > 0.

Fix a smooth membeD such that%p, is locally free. The proposed section
yields a sequence

0— 0p — Zp(MD) — #7(2mD) ® \2.F — O,

whereZ c D is zero-dimensional of lengtty(-# (m D)). Choose a smooth curve
C in the systenjLp| (i.e., in the class oD.[L]) with ZNC empty. Tensoring the
sequence above Ifi yields an extension of line bundles.

The class of the extension lies in

Extt. (Oc, Oc(~2mD) ® A2.F*) = H(C, 0c(—2mD) @ \2.F™).

Note thatkKc = Kx ® 0c(2D). Now, as the inequality in the hypotheses is easily
seen to be equivalent to

—2m[LT — c1(Z).[L1? > Kx.[L1?+ 2[L]® = 29(C) — 2
the extension group vanishes, hence
Fc(mD) =0c & [0c(2mD) ® \°.F ]
andh®(C, .Zc(mD)) = 1. By minimality ofm, we see also that
h%(D, #p(mD)) = 1.

Now blow up X alongC, and considerr : Blc(X) — X. We have a morphism
f : Blc(X) — P! given by the pencil of divisors ifiL| containingC. It is easy
to see that foreveryone of these divisorsh®(.#p(mD)) = 1. Then, because
7*.7 is reflexive, f,7*.% (m D) is invertible [Hartshorne 1980, 1.4,1.7]. However,
we know thatH%(%p(mD)) — HO%(Zc(mD)) is an isomorphism and therefore
for*#(MmD) = f,* %c(mD) = 0p1, where the lastisomorphism follows directly
from the splitting of.%¢.

ConsequentlyH%(X, .# (mD)) # 0 and som > 0 by Lemma 8, contradicting
the assumption than is negative. O

Corollary 11. With notation and hypotheses as is Propositioif 9

2k > max{0, 2+ 2u(Z, L) — 3u(Ox, L)},
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then H(D, Kp ® .74 (kD)) = 0 for the general member Of , furthermore k is
such that

(6k? + 6k +2) — (6k + 3)(2u(Z, L) +3u(Ox, L))
- (6C2(F) — c1(X)? — Bcy(F)? — Bea(F) e (X) — c2(X))[L]
- [L]3 ’
then H(D, Kp ® Z (kD)) # 0.

Proof. We can choos® smooth and so tha¥#p is locally free. Then

h?(D, Kp ® Z5(kD)) = h°(D, #p(—kD)),

which is zero by Proposition 9.
Because of the vanishing &2 above, the second part follows directly from a
computation of the Euler characteristic. 0

Corollary 12. With notation and hypotheses as is Proposition 9 there exists a
constantp depending ong.%), ca(#), c1(L) and g (®x) such thatif r> p then
H(D, Kp ® Z3(rD)) =0.

Proof. By the previous corollary, there is a constant depending on the above param-
eters such that ik is larger than that constant, th&m ® .7 (kD) has a section.
Choosing thesmallestsuch integek we have a sequence

0— 0p — Kp ® Z5(kD) — #7(2kD) ® K3 @ A\2.Z* — 0,
where, as aboveZ c D is zero-dimensional of length
¢ =2(Fp) — (c1(Kp) + ke (G(D))) c1(:Fp) + (c1(Kp) + keu(@(DY))?.

Let o € Z be such thaK3 ® A\27* = L%, BecauseD is a smooth surface,
H1(D,0(pD)) = 0 for p > 3c1(L)® — 5 (by [Bertram et al. 1991, 1.10], for in-
stance). Further, by the standard uniform regularity result [Mumford 1966, p.103],
H(D, #z((2k + t)D) ® K3 ® A2.#*) vanishes fort > ¢ — 2k — o — 2 and
t>3c(L)3—7—2k—a.

ConsequentlyH*(D, Kp ® Z5(rD)) = 0 for

r>max{—k—a—2 3c(L)3—7—k—al. O
Corollary 13. With notation and hypotheses as in Propositigritiere exists an
integerp, depending ong.%), cx(.%), c1(L) and ¢ (®x) such that if r> p, then
HOX, Kx®.Z*® L") #0.
Proof. The vanishing oH* andH? on D described in the corollaries above gives

H?(X, Kx®.Z*®L") =0. The result now follows by another Euler characteristic
argument (see Proposition 4). O
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Theorem 14.Let X be a smooth projective threefold with very ample line bundle
L and withPicX = ZL. Let.# be an L-semistable rank+eflexive sheaf Then
there exists an integer C depending al.g), co(%#), c1(L) and G (©x) such that

C > c3(%).

Proof. As c3(#) is unaffected by twisting by a line bundle, we may assume that
Z is normalized. The preceding results apply and we can take a sectiog @f
F*® LX for somek, bounded as in Corollary 13. We then have an exact sequence

0— 0x > Kx®.F*® LK > A @KZ®L*QN2F* — 0,
whereY C X is a curve. Computing Euler characteristics gives
2pa(Y) — 2= dhdz + c3(F) + C1(wx)dy,
where
th = c1(Kx ® F* @ LX) = —c1(F) — 2c1(X) + 2ken (L)

and
dr = Co(Kx®F*® L")

= Co(F) +cr(F)en(X) —ka(F)en(L) +e1(X)? = ke (X)ea(L) +kPea (L),
In the embedding determined hy the degree of the curwéis preciselyd,c; (L).
This impliesdxci (L) (dac1(L) —3) > 2pa(Y) — 2 and so

daCy (L) (d2Ca (L) — 3) — didz — daC1(wx) > C3(F). O

3. Explicit bounds

Let X be a smooth hypersurface i of degreed > 2, and.# a rank twoL-
semistable reflexive sheaf. In this case, we hye = Ox(d — 5); since L-
semistability is independent of the choice lof we takeL = 6(1). Note that
[L]® = d, thatc(®@x) = (10— 5d + d?)cy(L)?, and thatu(®x, L) = 3(5—d).
Further, if.Z is normalized them(%#,L) =0 or u(%, L) = —%. We explicitly
compute the bound in the cag€.#, L) = 0, the other case being exactly analo-
gous, though a bit more notationally cluttered. For notational convenience we let
S=cy(F)cu(l).

The first bound in Corollary 11 becomes

k > max{0, (3d — 1D},

so here it suffices to takde> 0 if d < 5 andk > %(Sd —11)if d > 5.
The second bound in Corollary 11 becomes
(6k+3)(3d — 15  (6S— 35d + 15d2 — 2d3)
— >
2 d

(6k? 4 6k +2) + 0;
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hence

—3d?+13d + +/11d% — 150d3 + 391d2 + 48d S
4d
whenS > 4i8(—11d3 + 15002 — 391d), otherwise the second bound in Corollary
11 is unnecessatry.
In Corollary 12, note thak p = 0p (d —4) and that the bound fgp is irrelevant
since the vanishing holds already fpre= 0. The length oZ is at most

S+d(d —4+k)?,

k >

so for the vanishindd*(D, Kp ® Z(rD)) = 0 we need
2r > S+d(d—4+k)?>—2(d—4).

In Corollary 13, we compute the Euler characteristicof(m) and takem > r
such thaty (Kx ® Z*(m)) — 3(c3(#)) > 0. We have

X (Kx ® Z*(m)) — 3(cs(F))
= 1 (@m+d—5)(d®+2md? — 5d2 — 10md+ 10d + 2m?d — 6S);

hence we need

—d?2+5d++/5d2—d4+12dS
> 2d .
As before, this bound is irrelevant unleSs> %z(d3 — 5d).
For example, in the case of the quintic we obtain

(1) for S>13:
256c3(.7) < (32082 +80Sv/60S—525— 4004S— 540v/60S—525+ 11955
X (32082 +80Sv/60S—525— 40685 — 548/60S—525+ 12339;

(2) for S< 13:
16c3(.%) < (557 + 184S+ 1620 (55 + 180S+ 1536).
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