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ORTHOGONAL FUNCTIONS IN H∞

CHRISTOPHER J. BISHOP

We construct examples of H∞ functions f on the unit disk such that the
push-forward of Lebesgue measure on the circle is a radially symmetric
measure µf in the plane, and we characterize which symmetric measures
can occur in this way. Such functions have the property that { f n} is orthog-
onal in H2, and provide counterexamples to a conjecture of W. Rudin, in-
dependently disproved by Carl Sundberg. Among the consequences is that
there is an f in the unit ball of H∞ such that the corresponding composition
operator maps the Bergman space isometrically into a closed subspace of
the Hardy space.

1. Introduction

Let H∞ denote the algebra of bounded holomorphic functions on the unit disk D,
let U be the closed unit ball of H∞ and let U0={ f ∈U : f (0)=0}. If f ∈H∞ then
it has radial boundary values (which we also call f ) almost everywhere on the unit
circle T. We say that f is orthogonal if the sequence of powers { f n

: n= 0, 1, . . . }
is orthogonal, that is, if ∫

T

f n f̄ m dθ = 0

whenever n 6= m. In this paper we will characterize orthogonal functions in H∞

in terms of the Borel probability measure µf (E) = | f −1(E)|, where | · | denotes
Lebesgue measure on T, normalized to have mass 1. We will also determine exactly
which measures arise in this way. We say a measure is radial if µ(E) = µ(eiθ E)
for −∞< θ <∞ and every measurable set E . We will prove:

Theorem 1.1. If f ∈ U0 then { f n
: n = 0, 1, . . . } is an orthogonal sequence if

and only if µf is a radial probability measure supported in the closed unit disk and

MSC2000: primary 30H05; secondary 30D35, 30D55, 47B38.
Keywords: Rudin’s conjecture, orthogonal functions, cut-and-paste construction, composition

operators, radial measures, Nevalinna function, harmonic measure, Bergmann space, Hardy
space.

The author is partially supported by NSF Grant DMS 01-03626.
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2 CHRISTOPHER J. BISHOP

satisfying ∫
|z|≤1

log
1
|z|

dµf (z) <∞.(1–1)

Moreover, given any measure µ satisfying these conditions there exists f ∈ U0

such that µ= µf .

The result is motivated by the observation that if f is an inner function (that is,
f ∈ H∞ and | f |= 1 almost everywhere on T) with f (0)= 0 then µf is normalized
Lebesgue measure on T (Lemma 2.3) and f is orthogonal since, if m > n,∫

T

f n f̄ mdθ =
∫

T

f n−mdθ = 2π f n−m(0)= 0.

At a 1988 MSRI conference Walter Rudin asked if the converse is true, that is, are
multiples of inner functions the only orthogonal bounded holomorphic functions
on the disk? In other words, is normalized Lebesgue measure on the circle the
only radial measure which can occur as a µf ? Our characterization shows that
many other symmetric measures can occur and hence provide counterexamples to
Rudin’s “orthogonality conjecture”. The conjecture was independently disproved
by Carl Sundberg [2003].

The simplest example of a measure satisfying Theorem 1.1 (other than Lebesgue
measure on a circle) is to takeµ to be Lebesgue measure on the union of two circles{
z : |z| = 1

2

}
∪ {z : |z| = 1}, normalized to give each mass 1

2 . The corresponding
function f is orthogonal by the theorem, but is clearly not inner since | f | = 1

2 on
a subset of T of positive measure.

A more interesting example of a radial measure satisfying (1–1) is normalized
area measure on the disk. Thus there is an f ∈U0 such that µf is normalized area
measure. We will show (Lemma 6.1) that for any holomorphic g on the disk, and
f ∈U0 orthogonal,

‖g ◦ f ‖p
H p =

∫
D

|g|pdµf +µf (T)‖g‖
p
H p ,(1–2)

and hence:

Corollary 1.2. There is an f ∈ U0 such that for any analytic g on D, g is in the
Bergman space Ap, if and only if g ◦ f is in the Hardy space H p, and the norms
are equal.

Thus the subspace M f spanned by the powers of f in H 2 is isomorphic to the
Bergman space, and multiplication by f on M f is isomorphic to multiplication by
z on the Bergman space. Since both spaces are Hilbert spaces, of course one is
isomorphic to a subspace of the other, but it is perhaps a little surprising that this
isomorphism can be accomplished with a composition operator. Similar statements
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can be made for Bergman spaces with respect to radial weights w dx dy = dµ of
finite mass which satisfy (1–1).

More generally, it would be interesting to know for which pair of spaces X, Y , of
analytic functions on D, there is an f ∈U0 such that g ∈ X if and only if g◦ f ∈ Y ,
and to characterize such f ’s when they exist. The latter problem is interesting
even when X = Y (for example, see [Cima and Hansen 1990]). In Corollary 6.3
we characterize orthogonal functions with this property when X = Y = H p (it is
true if and only if µf (T) > 0). In particular, all inner functions have this property
(as claimed in [Cima and Hansen 1990]).

Paul Bourdon has pointed out that (1–2) implies that orthogonal functions f
where µf (T) > 0 give examples of composition operators with closed range. See
[Cima et al. 1974/75] and [Zorboska 1994] for characterizations of such functions.

The radial symmetry of a “Rudin counterexample” has also been noted by Paul
Bourdon [1997a]. He showed that f is orthogonal if and only if the Nevanlinna
counting function,

N f (w)=
∑

f (z)=w

log 1
|z|

is almost everywhere constant on each circle centered on the origin. He also
showed that the answer to Rudin’s question is “yes” if f is univalent, and that
if f is orthogonal, the closure of the range of f is a disk (since the range of f
equals the set where N f is positive). The Nevanlinna function N f is related to µf

by the formula

N f (w)= log
1
|w|
−

∫
log

1
|z−w|

dµf (z)

(except possibly on a set of logarithmic capacity zero). This is due to W. Rudin
[1967] but we shall give a proof for completeness (Lemma 3.1).

Corollary 1.3. If f ∈U0 is nonconstant and orthogonal then N f (w)= N (|w|) for
all w outside an exceptional set of zero logarithmic capacity, where

N (r)=
∫ 1

r

1−µ(t)
t

dt

for some increasing function µ on [0, 1] such that µ(0) = 0 and µ(1) = 1, and∫ 1
0 µ(t) dt/t <∞ (in fact, µ(r)=µf (D(0, r))). Moreover, for every such N there

is an f ∈ U0 such that N f (w) = N (|w|) except possibly on a set of logarithmic
capacity zero.

The first part of this is due to Paul Bourdon [1997b]. The condition on N in the
previous result has many equivalent formulations; for example, it holds if and only
if M(r)= N (er ) on (−∞, 0] is concave up, has M(0)= 0 and supr<0 M(r)+r <
∞, or if N (|z|) is subharmonic on D \ {0} and N (|z|)+ log |z| is bounded above.
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The behavior of the composition operator C f : g→ g◦ f can often be expressed in
terms of N f , for example, see [Shapiro 1987; Smith 1996; Smith and Yang 1998].
The result above provides radial examples with any desired rate of decay faster
than 1− r as r→ 1.

If f is orthogonal, then f (0)= 2π
∫

f dθ = 0, so f cannot be an outer function.
However, our construction can be modified to give:

Corollary 1.4. There is an orthogonal f such that f (z)/z is a nonconstant outer
function.

Thus, not only are there orthogonal functions which are not inner, there are exam-
ples with only the most trivial possible inner factor. I do not know whether there
is an example where f (z)/z is bounded away from zero on D or which symmetric
measures µ are of the form µf with f (z)/z outer.

One can also construct examples with other properties. For example, f ∈U0 is
said to be in the hyperbolic little Bloch class Bh

0 if

lim
|z|→1

(1− |z|2)| f ′(z)|
1− | f (z)|2

= 0.

(This is contained in the usual little Bloch space, where only the numerator is
required to go to zero.) We will show (Lemma 5.2) that if g is inner and f ∈ H∞

then µ f ◦g = µf . Thus taking g to be an inner function in the hyperbolic little
Bloch class (which exists by a result of Wayne Smith [1998] and independently of
Aleksandrov, Anderson and Nicolau [Aleksandrov et al. 1999]; also see [Cantón
1998]), we can deduce:

Corollary 1.5. Any of the measures in Theorem 1.1 is µf for some f ∈Bh
0 .

Cima, Korenblum and Stessin [Cima et al. 1993] also identified symmetric prop-
erties of orthogonal functions and showed the answer to Rudin’s question is “yes”
if f is Hölder of order α > 1

2 on T. I do not know if there exists any (noninner)
orthogonal function which is continuous up to the boundary, but expect that it
might be possible to build one by modifying the construction in this paper. If there
is a continuous orthogonal function, it would be very interesting to know if the
result of Cima, Korenblum and Stessin is sharp, and if not, what the best modulus
of continuity for such a function could be. What other natural conditions on an
orthogonal function imply that it is actually inner?

The remaining sections are organized as follows:

Section 2: We describe some elementary properties of µf and prove it is radial
if and only if f is orthogonal.

Section 3: We prove Corollary 1.3 (given Theorem 1.1).

Section 4: We prove some results concerning the convergence of µf .
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Section 5: We prove Corollary 1.5 (given Theorem 1.1).

Section 6: We prove Corollary 1.2 (given Theorem 1.1).

Section 7: We construct a symmetric µf which is supported on two circles.

Section 8: We construct all examples supported in
{1

2 ≤ |z| ≤ 1
}
.

Section 9: We complete the proof of Theorem 1.1.

Section 10: We prove Corollary 1.4.

2. Elementary properties of µf

We begin by recalling a few simple facts about analytic functions f and their
corresponding measures µf . Many of these are well known but we include them
for the convenience of the reader.

Lemma 2.1. If f ∈ H∞ then µf satisfies∫
log

1
|z|

dµf (z) <∞.

Proof. If f has a zero of order n at the origin, then g(z)= f (z)/zn is holomorphic
on the unit disk and |g| = | f | on T, hence µg(A) = µf (A) for any annulus A =
{z : r1 ≤ |z| ≤ r2}. Thus ∫

ϕ(z) dµf (z)=
∫
ϕ(z) dµg(z)

for any radial function ϕ. Using Fatou’s lemma and the fact that log |g(z)|−1 is
superharmonic on the disk (see [Garnett 1981, page 35]), we deduce∫

log
1
|z|

dµf (z)=
∫

log
1
|z|

dµg(z)=
1

2π

∫
log |g(eiθ )|−1 dθ

=
1

2π

∫
lim
r→1

log |g(reiθ )|−1 dθ

≤
1

2π
lim
r→1

∫
log |g(reiθ )|−1 dθ ≤ log |g(0)|−1 <∞. �

A similar estimate is true for other points, for example,∫
log

1
|z− a|

dµf (z) <∞.

In particular, this implies the well-known fact that the set where f has radial limit
a must have measure zero.

Given an arc I ⊂ T we define the Carleson box with base I to be

Q = Q I = {z ∈ D : z/|z| ∈ I, 1− |z| ≤ |I |}.
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A positive measure µ is a Carleson measure if there exists a C < ∞ such that
µ(Q I )≤ C |I |, for every arc I ∈ D.

Lemma 2.2. If f ∈ U0 then µf is a Carleson measure with constant independent
of f .

Proof. Define ϕ(z) = ω(z, Q,D \ Q) for z ∈ D \ Q and ϕ(z) = 1 for z ∈ Q. It is
easy to see that ω(z, I,D) ≥ M−1 > 0 for every z ∈ ∂Q ∩D and some M <∞

(independent of I and z ∈ ∂Q), so the maximal principle implies

ϕ(0)≤ Mω(0, I,D)≤ M |I |.

Let fr (z)= f (r z). Note that limr→1 ϕ( f (r x))= ϕ( f (x)) for almost every x ∈ T,
because ϕ is continuous on the closed disk except at two points, and the set where
f has a radial limit equal to one of these has measure zero (by the remark following
Lemma 2.1). So by the Lebesgue dominated convergence theorem,

µf (Q)≤
∫
ϕ dµf =

1
2π

∫
ϕ ◦ f dθ = lim

r→1

1
2π

∫
ϕ ◦ fr dθ.(2–1)

Since ϕ is superharmonic on D, it follows that ϕ ◦ f is too, so the right-hand side
of (2–1) is at most ϕ( f (0))= ϕ(0)≤ M |I |. �

If f (0) 6= 0 then µf is still a Carleson measure, but with norm depending on
| f (0)|.

One can think of the previous lemma as a weak version of the Littlewood subor-
dination principle: that if f is an analytic self-map of the disk then g ∈ H p implies
g ◦ f ∈ H p (with smaller or equal norm). Formally, this implies that if f (0) = 0,
then ∫

|g|p dµf ≤
1

2π

∫
T

|g ◦ f |p dθ = ‖g ◦ f ‖p
H p ≤ ‖g‖

p
H p

for every g ∈ H p. This implies that dµf is a Carleson measure with norm inde-
pendent of f (see, for example, [Garnett 1981, Theorem I.5.6]).

The following result appears in many places (for example, [Löwner 1923; Nord-
gren 1968, Lemma 1; Rudin 1980, page 405; Tsuji 1959, Theorem VIII.30]) and
is sometimes called “Löwner’s lemma”. See [Fernández et al. 1996] and its refer-
ences for various generalizations.

Lemma 2.3. If f is an inner function such that f (0) = 0, then µf is normalized
Lebesgue measure on the unit circle.

Proof. It is enough to check that µf (I ) = |I | for arcs. Let I be an arc on the unit
circle and let ϕ(z) = ω(z, I,D). Then ϕ ◦ f is bounded and harmonic, and takes
radial boundary values 1 and 0 almost everywhere (1 almost everywhere that f has
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radial limit in I , and 0 almost everywhere that f has radial limit outside I ). Thus

|I | = ϕ(0)= ϕ( f (0))=
1

2π

∫
f −1(I )

dθ = µf (I ). �

As noted before, the following lemma is similar to results in [Bourdon 1997a]
and [Cima et al. 1993].

Lemma 2.4. Suppose f ∈ H∞. Then the measure µf is radial if and only if { f n
}

is orthogonal.

Proof. If µf is radial, it can be written so that∫
g(z) dµf (z)=

∫ 2π

0

∫
∞

0
g(reiθ ) dθ dν(r)

for every g ∈ Cc(R
2), the set of continuous functions of compact support defined

on R2, and for some measure ν on (0,∞). Thus∫
T

f n f̄ m dθ =
∫

C

zn z̄m dµf (z)=
∫
∞

0

∫ 2π

0
rn+mei(n−m)θ dθ dν(r)= 0

if n 6= m, so f is orthogonal. Conversely, if f is orthogonal, then µf satisfies∫
C

zn z̄m dµf (z)=
∫ 2π

0

∫
∞

0
rn+mei(n−m)θ dµf (reiθ )= 0

for n 6= m. Thus ∫
C

P(z, z̄) dµf (z)=
∫

D

∑
n

an,nr2n dµf (z)

for any polynomial P(z, z̄)=
∑

n,m an,mzn z̄m in z and z̄, and hence∫
C

P(λz, λ̄z̄) dµf (z)=
∫

C

P(z, z̄) dµf (z)

for any |λ| = 1. Since polynomials in z and z̄ are dense in the continuous functions
on the closed unit disk, we deduce that∫

D

g(z) dµf (z)=
∫

D

g(λz) dµf (z)

for any g ∈ Cc(R
2) and any |λ| = 1. This implies µf is radial. �

The following lemma greatly simplifies the construction of the basic example,
where µf is supported on two circles. It says that if we can construct an example
where µf is radial on the smaller circle, then it automatically looks like Lebesgue
measure on the larger one.
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Lemma 2.5. Suppose f lies in U0, and µf is supported on the circles C1/2∪C1 ={
|z|= 1

2

}
∪{|z|=1}. Ifµf restricted to C1/2 is a multiple of Lebesgue 1-dimensional

measure, then so is µf restricted to C1.

Proof. Suppose u is any bounded harmonic function on D. Then v(z) = u( f (z))
is also bounded and harmonic on D and u(0)= v(0). Thus

u(0)= v(0)=
1

2π

∫ 2π

0
u( f (eiθ )) dθ =

∫
u(z) dµf (z)

=

∫
C1/2

u(z) dµf (z)+
∫

C1

u(z) dµf (z)

= µf (C1/2)u(0)+
∫

C1

u(z) dµf (z).

Hence
∫

C1
u dµf = µf (C1)u(0) for any bounded harmonic function u on D. This

easily implies that µf restricted to C1 is a multiple of Lebesgue measure on C1. �

The same proof gives the following generalization of Lemma 2.5.

Lemma 2.6. Suppose f ∈ U0. Then µf restricted to the unit circle is of the form
1

2π (1− g(θ)) dθ , where g is the balayage of µf onto the circle, that is,

g(θ)=
∫

D

Pz(θ) dµf (z),

where Pz(θ) is the Poisson kernel for D with respect to the point z.

3. The Nevanlinna counting function

For f ∈ H∞, the Nevanlinna counting function is defined to be

N f (w)=
∑

f (z)=w

log
1
|z|
.

If f ∈ U0 then N f (w) ≤ log |w|−1. Clearly this is just the Green’s function for
the Riemann surface associated to f (projected to the plane by summing over
sheets). Since µf is the projection of harmonic measure for the Riemann surface,
the following is analogous to the standard result for Green’s functions of planar
domains. Let 1= ∂2

x +∂
2
y denote the Laplacian and let δ0 be the Dirac mass at the

origin.

Lemma 3.1 [Rudin 1967]. If f ∈ U0 then 1N f = −δ0 + µf in the sense of
distributions, and

N f (w)= log
1
|w|
−

∫
log

1
|z−w|

dµf (z)(3–1)
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for all w, except possibly for an exceptional set E of logarithmic capacity zero
where “<” holds.

The exceptional set is required. For example, if f is the universal covering map
of D minus a compact set E of zero logarithmic capacity, f is an inner function,
µf is normalized Lebesgue measure on the circle and N f (z)= χD\E(z) log |z|−1.

Proof. For 0 < r < 1, let fr (z) = f (r z) and let γr = fr (T). If we choose r so
that f ′ never vanishes on the circle of radius r , then γr is a smooth curve and it
is easy to check using Green’s theorem that 1N fr =−δ0+µ fr . To see that (3–1)
holds for µ fr , note that both sides of the equation have the same distributional
Laplacian, so they differ by a harmonic function. N fr vanishes outside the unit
disk by definition, and the right side of (3–1) vanishes there because µ fr evaluates
harmonic functions at 0. Hence the difference between the left and right sides is
the constant zero function.

For any smooth ϕ with compact support,∫
N fr1ϕ dx dy =−ϕ(0)+

∫
ϕ dµ fr .

We shall see later that µ fr weakly converges to µf (Corollary 4.4), and clearly
N fr ↗ N f as r ↗ 1. Thus taking r → 1 and applying the monotone convergence
theorem we get ∫

N f1ϕ dx dy =−ϕ(0)+
∫
ϕ dµ f .

This proves the first claim of the lemma. Next we verify (3–1).
We already know that if we replace f by fr then we have equality in (3–1) for

all z and as r → 1, and we know N fr (z) ↗ N f (z) for all z. Thus the question
reduces to whether

(3–2) Ur (w)→U1(w) as r→ 1

for all w except a set E of logarithmic capacity zero, where

Ur (w)=

∫
log

1
|z−w|

dµ fr (z).

Note that Ur is decreasing in r , by the superharmonicity of log | f |−1, and that U1

is bounded below by −log 2, since |z−w|< 2 for points in the unit disk.
To prove that (3–2) holds, we follow the proof of Frostman’s theorem (see

[Garnett 1981, Theorem II.6.4], for example). Suppose σ is a measure such that
V (z)=

∫
log |z−w|−1 dσ(z) is bounded. It suffices to show σ(E)= 0. By Fatou’s

lemma

lim
r→1

∫
log

1
|z−w|

dµ fr (z)≥
∫

log
1

|z−w|
dµf (z),
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so limr→1 Ur (w)≥U1(w) for allw. On the other hand, by Fatou’s lemma, Fubini’s
theorem and the Lebesgue dominated convergence theorem,∫

E
lim
r→1

Ur (w) dσ(w) ≤ lim
r→1

∫
E

Ur (w) dσ(w)

= lim
r→1

1
2π

∫ 2π

0
V ( f (reiθ )) dθ =

1
2π

∫ 2π

0
V ( f (eiθ )) dθ

=
1

2π

∫ 2π

0

∫
E

log
1

| f (eiθ )−w|
dσ(w) dθ =

∫
E

U1(z) dσ(w).

Thus we must have limr→1 Ur (w)=U1(w) except on a set of zero σ measure. �

Lemma 3.1 clearly implies that µf is radial if and only if N f is (except for the
exceptional set). Thus we see that { f n

} is an orthogonal sequence if and only if µf

is radial, if and only if N f is radial, except on a set of logarithmic capacity zero.
This gives an alternate approach to the results of Bourdon [1997a].

We can also compute exactly which radial functions can occur as N f for some
f ∈U0. Note that

1
2π

∫ 2π

0
log

1
|reiθ −w|

dθ =
{

log(1/|w|) if r ≤ |w|,
log(1/r) if r ≥ |w|.

Thus if µf is radial and we set µ(r)= µf (D(0, r)), then

N f (w)= log
1
|w|
−

∫
log

1
|z−w|

dµf (z)=
∫ 1

|w|

1−µ(r)
r

dr.

Moreover, the integral condition∫
D

log
1
|z|

dµ <∞

becomes ∫ 1

0
µ(r)

dr
r
<∞.

Thus Theorem 1.1 implies the following corollary.

Corollary 3.2. Suppose N (r) =
∫ 1

r (1−µ(t)) dt/t for some increasing function µ
such that

∫ 1
0 µ(r) dr/r <∞, with µ(0)= 0 and µ(1)= 1. Then there is an f ∈U0

such that N f (z)= N (|z|) except on a set of zero logarithmic capacity.

For example, if µf is normalized area measure on the unit disk then µ(r)= r2

and N f (z)= log 1/r − (1− r)≈ (1− r)2 as r→ 1.
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4. Weak* convergence of µf

We will obtain the functions f in Theorem 1.1 by a “cut and paste” construction
of the corresponding Riemann surface. What this means is that we shall build a
sequence of nested Riemann surfaces R0 ⊂ R1 ⊂ R2 ⊂ · · · ⊂

⋃
Rn = R by identi-

fying subdomains of the unit disk along common boundary arcs. The projection of
R into the unit disk is a bounded holomorphic function on R, and hence R must be
hyperbolic, that is, its universal covering space is the unit disk D. The desired map
will be the covering map f : D→ R followed by the projection into the disk and
the corresponding measure µf is simply the harmonic measure for the surface R,
projected into the plane. In fact, we shall abuse notation and consider the covering
map f :D→ R as actually mapping into the complex numbers (that is, we identify
the covering map and this map followed by the projection into the plane). By a
similar abuse we shall think of harmonic measure on R and the corresponding
projected measure µf as the same. Similarly, we will fix a point in R0 which
projects to 0 and call it 0 as well. All our covering maps will be chosen to map 0
in the disk to 0 on the surface. See [Bishop 1993] and [Stephenson 1988], where
a similar procedure has been used in different problems.

The main point we must be careful about is to show that the harmonic measure
for R is the limit of the measures for Rn . To see that there might be a problem in
general, consider what can happen when the surfaces are not nested. For example,
Rn is the unit disk minus the points

{
zk =

1
2 exp(i2πk2−n) : k = 1, . . . , 2n

}
. Then

the universal covering map fn :D→ Rn is an inner function (the isolated boundary
points do not have any harmonic measure, so all the measure lives on the part of
the boundary above the unit circle) and hence µ fn is Lebesgue measure on the
unit circle. However, one can show (with some work) that fn(z)→ 1

2 z uniformly
on compact sets of D, so that µf is Lebesgue measure on the circle of radius 1

2 .
However, if the Riemann surfaces are nested by (increasing) inclusion, then we
will show the corresponding measures converge weak*, that is,

lim
n→∞

∫
g dµn =

∫
g dµ

for any g ∈ Cc(R
2).

Lemma 4.1. Suppose ε > 0 and D(0, ε)= R0 ⊂ R1 ⊂ · · · are obtained by identi-
fying subdomains of the unit disk along boundary arcs. Let R =

⋃
∞

n=1 Rn . Choose
covering maps fn : D→ Rn and f : D→ R so that fn(0) = f (0) = 0. Then µ fn

converges weak* to µf on the closed unit disk.

The easiest way to see this is using Brownian motion; we shall first sketch such
a proof and then give a more classical proof without using Brownian motion.
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Let W be the Wiener space of continuous paths in C starting at the origin. If R
is a Riemann surface constructed as above then we can think of the paths as taking
values in R and for each path w ∈W, we define the stopping time tw as the first
time t such that w(t) 6∈ R. Then w→ tw is measurable and the harmonic measure
for R is simply the push-forward of Wiener measure on W under the map given by
w→w(tw). Given a sequence of nested surfaces R0 ⊂ R1 ⊂ · · · as in the lemma,
we get a corresponding sequence of maps gn :W→ C. Moreover, if R =

⋃
n Rn

and g :W→C is the corresponding map, then g(w)= limn gn(w); this is because
the inclusions imply that for any continuous path in the plane, the first time it
leaves R is the limit of the first time it left Rn . Thus for any bounded, continuous
function ϕ on the plane, ϕ(gn(w))→ϕ(g(w)) for allw, so the Lebesgue dominated
convergence theorem implies that∫

W
ϕ(g(w)) dw = lim

n→∞

∫
W
ϕ(gn(w)) dw,

which is the desired weak* convergence.
The sketch above is simple and explains why the result is true, but uses the exis-

tence of Wiener measure and deep connections between it and harmonic measure.
It therefore seems desirable to provide a second proof which uses only function
theory. Moreover, we will need some corollaries of the following classical proof
for our applications to composition operators.

Let {Rn}, R, { fn} and f be as in the lemma and let �n = f −1(Rn) ⊂ D. Then
�0 ⊂ �1 ⊂ · · · and

⋃
n �n = D. Let ωn be the harmonic measure for �n with

respect to the origin and let ϕ be any continuous function on the plane. We want
to show that

lim
n→∞

∫
ϕ( f (z)) dωn(z)=

∫
T

ϕ( f (eiθ )) dθ/2π.

We start by proving the much easier fact that ωn converges weak* to normalized
Lebesgue measure on the circle. (Since f need not be continuous up to the bound-
ary, ϕ ◦ f need not be continuous either, so weak* convergence of ωn is not, by
itself, enough to prove weak* convergence of µ fn .)

Lemma 4.2. If {0} ∈ �0 ⊂ �1 ⊂ · · · is a sequence of subdomains such that⋃
n �n = D, and ωn = ω(0, · , �n) is the corresponding harmonic measure with

respect to the origin, then {ωn} converges weak* to (normalized) Lebesgue measure
on T. Moreover, the measures ωn are all Carleson with a uniform constant.

Proof. The Carleson condition follows from Lemma 2.2 applied to the covering
map onto �n , so we need only prove weak* convergence. Since

⋂
n

(
D\�n

)
= T,

there is a sequence {rn} ↗ 1 such that Dn = {z : |z|< rn} ⊂�n ⊂D. Suppose that
I ⊂T is an open arc and let Q={z∈D : z/|z|∈ I, 1−|z|≤ |I |} be the corresponding
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Carleson square. To show ωn converges weak* to normalized Lebesgue measure,
it is clearly enough to show that ωn(Q)→ |I |.

Let Un = Dn ∪ Q and Vn =D \ (Q \ Dn). Then ω(0, I,Un)→ |I |. To see this,
first note that ω(0, I,Un)≤ |I | follows immediately from the maximum principle
applied to ω(z, I,Un) on Un . For the other direction, suppose that J ⊂ I is a proper
subinterval and note that

ω(0, I,Un)≥ ω(0, J,Un)= |J | −
∫
∂Un\I

∫
J

Pz(θ) dθ dω(0, ·,Un),

and that
∫

J Pz(θ) dθ→ 0 as n→∞ for z ∈ ∂Un \ I . Thus the Lebesgue dominated
convergence theorem implies lim infω(0, I,Un) ≥ |J |. Since this holds for any
proper subinterval J , we see that ω(0, I,Un)→|I | as desired. A similar argument
shows that ω(0, Q ∩ Vn, Vn)→ |I | as n→∞.

Thus, by the monotonicity of harmonic measure,

ωn(Q)≥ ω(0, ∂�n ∩ Q,Un)≥ ω(0, I,Un)→ |I |,

and so lim infn ωn(Q)≥ |I |. On the other hand,

ωn(Q)≤ ω(0, Q ∩ ∂Vn, Vn)→ |I |,

which implies that ωn(Q)→ |I |. This proves the lemma. �

Lemma 4.3. Suppose g is a bounded, continuous function on D which has nontan-
gential limit g(x) almost everywhere on T, and that νn is a sequence of probability
measures on D which converge weak* to (normalized) Lebesgue measure on the
circle and which are all Carleson measures with a uniform constant. Then

lim
n→∞

∫
D

g(z) dνn(z)=
1

2π

∫
T

g(eiθ ) dθ.

Proof. We may assume that ‖g‖∞ = 1. Fix some ε > 0. Since g has nontangential
limits almost everywhere, given almost any x ∈ T there is a δ(x) > 0 such that if I
is any interval containing x with length less than δ(x), then g is within ε/2 of g(x)
on the top half of the corresponding Carleson box Q. Fix a complex number a,
and a δ > 0, and assume that Ea = {x ∈T : |g(x)−a| ≤ ε/2, δ(x) > δ} has positive
Lebesgue measure. Using the Lebesgue density theorem choose a dyadic interval
I of length less than δ so that |I ∩ Ea| ≥ (1− ε)|I | and let Qk be the collection
of maximal dyadic subsquares with bases {Ik} ⊂ I such that |g(z)− a| > ε for
some z in the top half of Qk . Let Q be the Carleson square with base I and let
W = Q \

⋃
Qk . Then g is within ε of a constant on W , and |∂W ∩ I | ≥ (1−ε)|I |.
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We claim that for these domains limn νn(W )= |∂W ∩T|. To prove this, we use
the weak* convergence of {νn} to deduce

lim
n→∞

∫
W

dνn = lim
n→∞

(
νn(Q)−

∑
k

νn(Qk)
)

= |I | − lim
n→∞

∑
k

νn(Qk)

= |I | −
∑

k

lim
n→∞

νn(Qk)

= |I | −
∑
|Ik |

= |∂W ∩T|,

where we used the Lebesgue dominated convergence theorem on the sequence
space `1 to interchange the limit and the infinite sum (our assumption that the
measures are uniformly Carleson implies that νn(Qk) ≤ C |Ik |, independent of n;
this gives the `1 upper bound).

Moreover, the intervals I with these properties form a Vitali cover of T (see, for
example, [Wheeden and Zygmund 1977, Section 7.3]), so we can form a disjoint
cover of almost every point of T using such intervals. Thus we can construct a
finite number of disjoint domains W j = Q j \

⋃
k Q j

k , where

(1) Q j is a Carleson square with base I j and |∂W j ∩ I j | ≥ (1− ε)|I j |,

(2) g is within ε of a constant c j on each W j ,

(3)
∑

j |∂W j ∩T| ≥ 1− ε.

Let W =
⋃

j W j be this finite union. The weak* convergence of {νn} implies that

lim sup
n→∞

νn(D \W )≤ ε,

and so if ‖g‖∞ ≤ 1,∣∣∣∣ lim
n→∞

∫
g dνn −

∫
T

g dθ/2π
∣∣∣∣≤ lim

n→∞

∣∣∣∣∫
W

g dνn −
1

2π

∫
∂W∩T

g dθ
∣∣∣∣

+

∫
D\W
|g| dνn +

1
2π

∫
T\∂W
|g| dθ

≤ Cε
∑

j

|∂W j ∩T| + 2|T \∪∂W j |

≤ Cε.

Letting ε→ 0 proves Lemma 4.3 and thus completes our function-theoretic proof
of Lemma 4.1. �
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A very special (and easier) case of Lemma 4.3 is:

Corollary 4.4. Suppose f ∈U0 and let fr (z)= f (r z) for r<1. Thenµ fr converges
weak* to µf as r→ 1.

Corollary 4.5. If f is inner and f (0)= 0 then µ fr converges weak* to normalized
Lebesgue measure on T.

5. A change of variables

The following result was suggested by Paul Bourdon and simplifies certain argu-
ments from an earlier version of the paper.

Lemma 5.1. Suppose g is a positive, continuous function on D and has nontan-
gential boundary values almost everywhere on T. Then, for any f ∈U,∫

g(z) dµf (z)=
1

2π

∫ 2π

0
g( f (eiθ )) dθ.

The integral on the left requires some interpretation since g is not necessarily
continuous on the support of µf . On the interior of the disk, g is continuous and
positive so the integral is well defined (possibly infinite). On the circle, µf is
absolutely continuous with respect to Lebesgue measure and the boundary values
of g are Borel, so the integral on the circle is also well defined.

Proof. Using the monotone convergence theorem we can reduce to the case when
g is bounded (just truncate and let the truncation tend to ∞). So assume g is
bounded by M . For any ε > 0 we can easily construct a sawtooth region W so that
|T ∩ ∂W | > 1− ε and g extends continuously to the closure of W . Thus we can
write g = (g− h)+ h where h is continuous, bounded by M and g− h is zero on
W . The lemma is true for continuous functions by the definition of µf , and∫

(g− h) dµf ≤ 2Mµf (D \W )≤ 2MCε,

since µf is Carleson with a uniform constant. Similarly∫
(g− h) ◦ f (eiθ ) dθ ≤ 2MCε,

so taking ε→ 0 proves the lemma. �

The following lemma is now immediate.

Lemma 5.2. If g ∈ H∞ and f is inner with f (0)= 0 then µg = µg◦ f .
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The hyperbolic little Bloch space, Bh
0 , is defined to be the space of those holo-

morphic maps f ∈U such that

lim
|z|→1

(1− |z|2)| f ′(z)|
1− | f (z)|2

= 0,

and is contained in the usual little Bloch space, B0. Schwarz’s inequality implies
the left side is bounded by 1 for any analytic self-map of the disk, and from this it
is easy to verify that g and f are both holomorphic self-maps of the disk, and f is
hyperbolic little Bloch then so is g ◦ f . It is far from obvious that there is an inner
function in the hyperbolic little Bloch space, but they do exist (see [Aleksandrov
et al. 1999; Cantón 1998; Smith 1998]). This and Lemma 5.2 thus imply:

Corollary 5.3. If g ∈U, then there is an f ∈Bh
0 such that µf = µg.

Recall that the Hardy space, H p , is the set of holomorphic functions g such
that

‖g‖H p = lim
r→1

(
1

2π

∫ 2π

0
|g(reiθ )|p dθ

)1/p

<∞.

Such a function has radial boundary values almost everywhere on T, which we
also denote by g. If we know g ∈ H p for p > 1, then the radial maximal function
of g is in L p and so on can use the dominated convergence theorem to deduce that

‖g‖H p =
1

2π

∫ 2π

0
|g(eiθ )|p dθ.

In general, however, the right-hand side might be finite but g might not be in H p

(there exist nonzero holomorphic functions on the disk that have radial value zero
almost everywhere, and hence are not in H p). If f ∈ U then µf restricted to T

is absolutely continuous with respect to Lebesgue measure, so
∫

D
|g|p dµf makes

sense.
As another application of Lemma 5.1 we can show

Lemma 5.4. Suppose g∈H p on the unit disk and f ∈U0. Then for any 0< p<∞,

‖g ◦ f ‖p
H p = lim

r→1

∫
D

|g|p dµ fr =

∫
D

|g|p dµf .

Proof. The first equality is the definition of the H p norm, so we only have to prove
the second. If g ∈ H p and f ∈ U0 then by a result of Ryff [1966], g ◦ f ∈ H p

with smaller or equal norm. Thus |g|p is positive, continuous function on the disk
which has nontangential boundary values almost everywhere, so Lemma 5.1 shows
that ∫

|g(z)|p dµf =
1

2π

∫ 2π

0
|g( f (eiθ ))|p dθ,
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and since we already know g ◦ f ∈ H p, we can deduce that the right-hand side
equals ‖g ◦ f ‖H p . �

6. Mapping the Bergman space into the Hardy space

For our applications to composition operators, we need a version of Lemma 5.4 that
works without the assumption that g ∈ H p. The proof given above doesn’t work
in general because if g is not in H p we can’t say that ‖g‖H p =

∫ 2π
0 |g|

p dθ/2π . In
fact, we will not even assume g has boundary values on the circle, so this integral
is not necessarily defined.

Lemma 6.1. Suppose g is holomorphic on the open unit disk, f ∈ U0 and µf is
radial. Then, for any 0< p <∞,

‖g ◦ f ‖p
H p = lim

r→1

∫
D

|g|p dµ fr =

∫
D

|g|p dµf +µf (T)‖g‖
p
H p .(6–1)

Proof. Let gs(z) = g(sz) for 0 < s < 1. First, we want to show that, for any
0< p <∞,

lim
s→1

∫
|g(sz)|p dµf =

∫
D

|g(z)|p dµf +µf (T)‖g‖
p
H p ,(6–2)

Since g is holomorphic, |g|p is subharmonic for 0 < p < ∞ (see, for example,
[Garnett 1981, page 35]) and hence m(r)= 1

2π

∫
|g(reiθ )|p dθ, is defined on [0, 1)

and is an increasing function of r [Garnett 1981, Corollary I.6.6]. Therefore we
can extend it to be defined at r = 1 by ‖g‖p

H p = m(1) = limr→1 m(r). Thus
ms(r)≡ m(sr) increases to m(r) as s→ 1 for all r ∈ [0, 1]. Let ν be the measure
on [0, 1] defined by ν(E)= µf ({z : |z| ∈ E}). Since µf is radial we have∫

ϕ dµf =
1

2π

∫ 1

0

∫ 2π

0
ϕ(reiθ ) dθ dν(r).

Thus by the monotone convergence theorem,

lim
s→1

∫
|gs |

p dµf = lim
s→1

∫
ms(r) dν =

∫
[0,1]

m(r) dν =
∫

D

|g|p dµf +µf (T)m(1).

This is (6–2).
We will break the proof of (6–1) into three cases.

Case 1:
∫

D
|g|p dµf =∞.

For any M > 0 choose 0< t < 1 so that
∫
|z|<t |g|

p dµf > 2M and write |g|p =
g1+g2 where g1 and g2 are nonnegative, g1= |g|p on |z|< t , and g1 is continuous
and compactly supported in D. Then∫

|g|p dµ fr ≥

∫
g1 dµ fr >

1
2

∫
g1 dµf ≥ M
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if r is close enough to 1. Thus
∫
|g|p dµ fr →∞=

∫
|g|p dµf .

Case 2:
∫

D
|g|p dµf <∞ and µf (T)= 0.

Since µ fr converges weak* to µf ,

lim
r→1

∫
|gs |

p dµ fr =

∫
|gs |

p dµf

for any fixed s < 1. Since gs( f (z)) is holomorphic on the open disk, |gs( f (z))|p

is subharmonic. Thus
∫
|gs |

p dµ fr is increasing in r , and hence∫
|gs |

p dµ fr ≤

∫
|gs |

p dµf .

Now take s → 1. For r fixed, µ fr is compactly supported in the disk, so |gs |
p

is uniformly bounded on its support and hence the left-hand side converges to∫
|g|p dµ fr . Condition (6–2) implies the right-hand side converges to

∫
|g|p dµf .

Thus ∫
|g|p dµ fr ≤

∫
|g|p dµf

for all r < 1.
Fix ε >0 and choose 0< t <1 so that

∫
t<|z|<1 |g|

p dµf <ε. Write |g|p= g1+g2

as in Case 1. Thus
∫

g2µf < ε. Also, if r is close enough to 1 then, by weak*
convergence, ∣∣∣∫ g1 dµf −

∫
g1 dµ fr

∣∣∣< ε.
Thus ∫

g2 dµ fr ≤

∣∣∣∫ g1 dµf −

∫
g1 dµ fr

∣∣∣+ ∫ g2 dµf ≤ 2ε.

Hence∣∣∣∫ |g|p dµf −

∫
|g|p dµ fr

∣∣∣≤∫ g2 dµ fr +

∣∣∣∫ g1 dµf −

∫
g1 dµ fr

∣∣∣+∫ g2 dµf

≤ 4ε,

if r is close enough to 1.

Case 3:
∫

D
|g|p dµf <∞ and µf (T) > 0.

If limr→1
∫
|g|p dµ fr =∞ then by the subharmonicity of |g ◦ f |p we see that∫

|g|p dµf =∞, so (6–1) holds. Thus we may assume that limr→1
∫
|g|p dµ fr <

∞, that is, we may assume that g ◦ f ∈ H p, and hence that |g( f (z))|p has a
harmonic majorant u on D (see [Garnett 1981, Lemma II.1.1]).

First we show that g ∈ H p. For 0 < r < 1 let Dr = D(0, r). Let �r be
the component of f −1(Dr ) which contains the origin, and let ωr be the harmonic
measure on �r with respect to the origin. Let νr be the push-forward of ωr under
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the map f . Then clearly νr is supported on Dr and νr (E)≤µf (E) for any E ⊂ Dr .
By Lemma 2.6, νr on Cr = ∂Dr must be 1

2π dθ minus the balayage of νr restricted
to Dr . Since νr ≤µf , this means that νr on Cr is at least 1

2π dθ minus the balayage
of µf restricted to Dr . Since µf is radial, its balayage onto Cr is also radial, that is,
equal to 1

2πµf (Dr ) dθ ≤ 1
2π (1−µf (T)) dθ . Thus νr ≥

1
2πµf (T) dθ on Cr . Hence,

for any g holomorphic on D,

1
2π

∫ 2π

0
|g(reiθ )|p dθ ≤

1
µf (T)

∫
|g|p dνr =

1
µf (T)

∫
|g ◦ f |p dωr .

Thus, if u is a harmonic majorant of |g ◦ f |p on D,

1
2π

∫ 2π

0
|g(reiθ )|p dθ ≤

1
µf (T)

∫
u dωr =

u(0)
µf (T)

<∞.

In other words, g ∈ H p and thus (6–1) follows from Lemma 5.4. �

Recall that the Bergman space Ap is defined as the set of holomorphic functions
g on the disk D such that

‖g‖Ap =

( 1
π

∫
D

|g|p dx dy
)1/p

<∞.

Corollary 6.2. If f ∈ H∞ such that dµf =
1
π
χD dx dy, then any function g,

analytic on the disk, is in the Bergman space if and only if g ◦ f is in the Hardy
space, and ‖g‖Ap = ‖g ◦ f ‖H p , that is, the composition operator C f : Ap

→ H p

is an isometry.

Proof. Using Lemma 6.1 we see that

‖g ◦ f ‖H p = lim
r→1

( 1
2π

∫ 2π

0
|g( f (reiθ ))|p dθ

)1/p

= lim
r→1

(∫
|g|p dµ fr

)1/p
=

(∫
|g|p dµ f

)1/p
= ‖g‖Ap . �

This corollary may seem a little surprising, since functions in H p have nontan-
gential limits almost everywhere, whereas those in Ap need not, but since f has
almost all of its boundary values in the interior of the disk, this is not a contradic-
tion. Of course, it still remains to show (see Section 9) that there is an f ∈ H∞

such that µf is area measure.
Corollary 6.2 obviously holds for any weighted Bergman space where the weight

is a radial measure of finite mass satisfying the integral condition (1–1) in Theorem
1.1. If instead of an isometry, we merely want ‖g‖Ap ' ‖g ◦ f ‖H2 we could take a
much bigger class of functions f , for example, µf = w dx dy for some weight w
which is bounded above and below on an annulus {r < |z|< 1}. Constructing such
examples only needs the techniques of Section 8, not the full proof of Theorem 1.1.
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Similarly, by appropriate choices of µf one can construct composition operators
on H p which satisfy conditions like

‖C f (g)‖
p
H p =

1
2‖g‖

p
H p +

1
2‖g‖

p
Ap or ‖C f (g)‖

p
H p =

1
2‖g‖

p
H p +

1
2‖g1/2‖

p
H p .

In [Cima and Hansen 1990], a function f is said to have property (∗) relative to H p

if g ◦ f ∈ H p implies that g ∈ H p, for any holomorphic g on D. Paul Bourdon has
pointed out that for general f ∈U, the condition µf (T)= 0 implies condition (∗),
which implies N f (z) = o(1− |z|) which, by J. Shapiro’s theorem [1987], implies
that C f is compact and hence does not have a bounded right inverse. Since f is
nonconstant, C f is 1-to-1 and so does not have closed range (this is a consequence
of the open mapping theorem, for example [Rudin 1973, Corollary 2.12c]). Thus
C f does not have property (∗), since any function in C f (H p) \ C f (H p) is an
H p function without an H p preimage. Lemma 6.1 clearly implies the following
corollary.

Corollary 6.3. If f ∈ U0 is orthogonal, then f has property (∗) relative to H p if
and only if µf (T) > 0.

Proof. If µf (T) > 0 then the argument in Case 3 of the proof of Lemma 6.1 shows
that g ◦ f ∈ H p implies g ∈ H p. Thus f has property (∗) with respect to H p. �

A special case of Corollary 6.3 is when µf (T) = 1, that is, all inner functions
have property (∗). It would be very interesting to have a similar characterization
of property (∗) for general functions in U0.

7. An example of µf supported on two circles

In this section we will construct an f ∈ H∞ so that µf is supported on the union
of two circles C1/2 and C1 (where Cr = {z : |z| = r}) and is a multiple of Lebesgue
measure on each. This example suffices to disprove Rudin’s orthogonality conjec-
ture, and introduces the estimates and techniques needed for the general case of
Theorem 1.1. In the next section we will show that any radial probability measure
supported in { 12 ≤ |z| ≤ 1} can occur as a µf , and in Section 9 we will do the
general case of measures supported on D.

Based on Lemmas 4.1 and 2.5, it suffices to build an increasing sequence of
Riemann surfaces {Rn} so that the corresponding maps { fn} satisfy fn(0)= 0, that
µ fn is supported on the two circles C1/2 ∪C1, and that µ fn restricted to C1/2 is of
the form 1

2π gn(θ) dθ , where gn converges uniformly to a positive constant.
We start by taking f0(z)= 1

2 z, that is, f0 is the (trivial) Riemann mapping from
D to the disk R0={|z|< 1/2}. The corresponding measure µ0=µ f0 is normalized
Lebesgue measure on the circle C1/2, that is, 1

2π g0(θ) dθ where g0(θ)= 1.
Now we describe the idea of the construction of R1 (we will give the details

later). First we replace R0 with a slightly smaller disk, S1. We divide the boundary
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of S1 into a large number of alternating intervals which we call type I and type
J . Along each type I interval we attach a copy of a certain Riemann surface with
boundary over C1/2 (attaching different copies to different intervals) and along
each type J interval we attach copies of certain surfaces with boundary over C1.
This gives the surface R1. With appropriate choices of the parameters involved we
can show that, with high probability, the Brownian paths which first hit ∂S1 at a
type I interval go on to hit the part of ∂R1 over C1/2 and the paths which hit the J
intervals go on to hit ∂R1 over C1. Thus we have “rerouted” a certain fraction
of the harmonic measure on C1/2 out to C1. By choosing various parameters
correctly, we can make the harmonic measure over C1/2 in R1 be close to any
multiple of Lebesgue measure we want (as long as the total mass is less than 1).
The resulting measure may not be radial but, by iterating the construction with
variable size barriers, we can make harmonic measure as close to a multiple of
Lebesgue measure as we wish, obtaining a radial measure in the limit.

Now we give the construction of R1 in more detail. Choose δ1 very small and
let S1 = D(0, r1), where r1 =

1
2 − δ1. Obviously harmonic measure on S1 is just

normalized Lebesgue measure on its boundary. Choose a large integer m1 and
points {z j : j = 1, . . . ,m1} equally spaced on the circle Cr1 . Choose a continuous
function 0<η(x)< 1 on Cr1 , let I j be an arc of ∂S1 of angle measure η(z j )2π/m1

centered at z j , and let {J j } be the complementary arcs. For the first step of the
construction we can take η(x) = η1 to be a constant for simplicity, but in later
steps we will have to use nonconstant η’s.

Fix some 0 < τ1 < 1 and, for each arc of the form I j with endpoints {p, q},
choose a countable collection of points E = {w j

k } ⊂ I j , accumulating only at the
endpoints of I j , so that for any z ∈ I j

(7–1) dist(z, E)≤ τ1 dist(z, {p, q}).

Let the components of I j \E be denoted {I j
k }. For each I j

k , consider the (infinitely
connected) planar domain D\E and the universal cover of the domain. Take a copy
of the arc I j

k in the universal cover; it is on the boundary of a simply connected
domain D in the universal cover which covers D(0, 1

2). The arc cuts the universal
cover into two components and we let R j

k denote the component which does not
contain D. For each interval I j

k , we attach a copy of R j
k to S1 along the arc I j

k .
For the intervals {J j } we follow the same procedure, defining a set E ⊂ J j

and sub intervals {J j
k }, but replacing D(0, 1

2) with D(0, 1). That is, we attach a
component of the universal cover of D(0, 1) \ E , cut along J j

k . Doing this for
all j and k gives the surface R1. The harmonic measure for R1 is now supported
on C1/2 ∪ C1, (the rest of the ideal boundary covers a countable set, so has zero
measure) so we only need to check that it is still close to radial on C1/2.
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Now we want to discuss the two main estimates for describing the harmonic
measure of R1. The first says that a continuous convolution of the Poisson kernel
is well approximated by a discrete version if the sample points are sufficiently close
together. The second says that the harmonic measure of I intervals is small when
viewed from a J interval, and vice versa.

Suppose D(0, r) is a disk and g is a continuous function on a smaller circle Cs ,
s < r . The balayage of g onto the circle Cr is

Bg(θ)=
∫ 2π

0
g(sei t)Psei t (θ) dt,

where Pz(θ) is the Poisson kernel for D(0, r) with respect to the point z.

Lemma 7.1. With the intervals {I j } defined as above, and F =
⋃

j I j , for any
continuous 0< g < 1 on the circle Cs

B(gχF )(θ)=

∫
F

g(sei t)Psei t (θ) dt→ B(gη)(θ),

uniformly as m1→∞.

Proof. Let K j be the interval on Cs , centered at z j , of angle measure 2π/m1

(choose them to be half-open, so that they form a disjoint cover of the circle).
Define piecewise constant functions a(x) and b(x) on Cr1 by

a(x)=
∑

j

χK j (x)η(z j ), b(x, θ)=
∑

j

χK j (x)g(z j )Pz j (θ),

and let

A(m1)= ‖η(z)− a(z)‖∞, B(m1)= ‖g(x)Px(θ)− b(x, θ)‖∞.

It is clear that, by uniform continuity, both quantities tend to zero as m1 →∞.
Thus by using the fact that χF (x)−a(x) has mean value zero on each interval K j

where b(x, θ) is constant in x we get

|B(gχF )(θ)− B(gη)(θ)|

=

∣∣∣∫ 2π

0
(g(sei t)Psei t (θ)− b(sei t , θ)+ b(sei t , θ))(χF (sei t)− η(sei t)) dt

∣∣∣
≤ B(m1)

∫ 2π

0

∣∣(χF − η(sei t)
∣∣ dt +

∫ 2π

0
b(sei t , θ)

∣∣a(sei t)− η(sei t)
∣∣ dt

≤ 2πB(m1)+ A(m1)max |b|.

This clearly tends to zero as m1→∞, as desired. �

Now for the second estimate. We want to show that the harmonic measure of
C1/2 is much larger than that of C1 with respect to a point z ∈ I j

k .
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Lemma 7.2. Suppose that z ∈ I j
k , and suppose that γ is a circular arc in S1 with

endpoints in the corresponding set E such that dist(γ, z) ' dist(z, {p, q}) (with
constants independent of τ1), and which separates z from all the J -intervals. Let
� be the component of R1 \ γ which contains z. Then ω(z, γ,�)→ 0 as τ1 does.

Proof. Standard estimates of hyperbolic metric imply that γ is within a bounded
hyperbolic distance of a geodesic in R1, and that the hyperbolic distance from γ to
z is at least C log τ−1

1 . Lifted to the disk, this implies the harmonic measure of γ
with respect to z is ≤ exp(C log τ1) ≤ τ

α
1 , for some α > 0, as desired. Obviously,

the same estimate holds if we reverse the rôles of the I and J intervals. �

The previous result has a simple explanation in terms of Brownian motion. Con-
sider a Brownian motion on the Riemann surface started at z and run until it either
hits γ or leaves R1. The path will only hit γ if it stays on the correct sheet of R1,
but this is extremely unlikely because it will cross the arc I j many times and each
time it has a certain chance (which is large if τ is small) of becoming “tangled”
and ending up on the wrong sheet.

We can now show that the harmonic measure of R1 on the circle C1/2 can be
taken as close to a multiple of Lebesgue measure as we wish (depending on our
choices of m1, τ1 and η). The harmonic measure of R1 on the circle C1/2 will
be the balayage of the harmonic measure of S1 restricted to the I intervals, with
an error bounded by Cτα1 . The harmonic measure is (normalized) angle measure
restricted to the I -intervals. Thus if m1 is large enough, the harmonic measure on
C1/2 will be of the form 1

2π g1(x) dθ , with g1 as close to a constant as we wish.
Take 1

2 +
1
10 ≤ g1(x)≤ 1

2 +
3

10 , to be concrete.
Now suppose we have constructed Rn−1. To construct Rn , we follow the method

above. We start passing to a subsurface Sn ⊂ Rn−1 where the boundary circles over
C1/2 are replaced by boundaries over C1/2−δn . The parameter δn is chosen so small
that every component of Rn−1\Sn is a regular cover of the annulus

{1
2−δn< |z|< 1

2

}
(which will be possible by the construction of Rn−1) and so that harmonic measure
µSn on Sn is very close to harmonic measure on Rn−1, say

(7–2)
∣∣∣∫ ϕd(µSn −µRn−1)

∣∣∣≤ 2−n

for every smooth ϕ with gradient bounded by n.
As before we choose mn equally spaced points {zn

j } on Cn = C 1
2−δn

and define
intervals {I n

j } of Cn , centered at these points, of angle measure 2πηn(zn
j )/mn ,

where
ηn(x)=

(1
2
+

2
10n

)
/gn−1(x).

The complementary intervals are denoted {J n
j }. We choose a very small τn and sets

E in each interval which satisfies (7–1) with τn . We then attach copies D(0, 1
2)\E
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to the copies of the I intervals in ∂Sn and copies of D(0, 1) \ E to the J intervals.
Then if we choose δn and τn small enough and mn large enough, we can get the
harmonic measure of Rn over C1/2 to be gn(x) dθ/2π with gn as close to gn−1ηn

as we wish, say

1
2
+

1
10n ≤ gn ≤

1
2
+

3
10n .

Continuing in this way we can clearly construct a sequence {Rn} of Riemann sur-
faces so that the harmonic measures over C1/2 converge to a multiple of Lebesgue
measure. This almost finishes the proof, except that the surfaces {Rn} are not nested
by inclusion. However, the subsurfaces {Sn} constructed as part of the induction
are nested and their union is also R. Hence their harmonic measures converge to
that of R. By (7–2), the weak* limit for the measures on {Sn} and {Rn} must be
the same, so we are done.

The same proof shows that we can build an f ∈ H∞ so that µf |C1/2 =
1

2π g dθ
for any continuous g with 0≤ g< 1 (or any g which is the decreasing limit of such
functions). Similarly, the circle can be replaced by any smooth curve γ , and g by
a continuous function such that g ds ≤ dω(0, · ,D \ γ ).

The construction in this section clearly generalizes as follows.

Lemma 7.3. Suppose R is a Riemann surface built by attaching subdomains of
D along boundary arcs. Let 5 denote the corresponding projection of R into the
plane. Suppose 5(∂R) hits Cr and there is a δ > 0 such that every component of
5−1(Cr ) in ∂R is the boundary of a domain in R which is a regular cover of the
annulus {r − δ < |z| < r} (or {r < |z| < r + δ}). Suppose the harmonic measure
of R over Cr projects to a measure of the form 1

2π g dθ on Cr , where 0 < g < 1.
Choose s < r (or s > r ) very close to r . Suppose we are given N functions {ηk}

such that 0 < ηk < 1. Choose a large integer m and choose m N equally spaced
points {zi } on Cs . Let I k

j be the interval of length 2πηk(zk+ j N )/m N centered at
zk+ j N . Let Ji denote the components of Cs \

⋃
j,k I k

j . Choose a small τ and choose
sets E satisfying (7–1) in every interval. For k = 0, . . . , N , choose sk < s < rk .
For each arc in ∂R projecting to I k

j attach a copy of Ak \ E = {sk < |z|< rk} \ E .
To each arc projecting to a Ji attach a copy of A0 \ E = {s0 < |z|< r0} \ E . If s is
close enough to r , if m is large enough and if τ is small enough, then the projected
harmonic measure of the new surface S on ∂S \ R is as close to

∑
k Bk(ηk g) as we

wish, where Bk denotes balayage from Cs onto ∂Ak .

For the proof of Theorem 1.1, we can always take sk = 0, that is, we can attach
disks instead of annuli. Only for the proof of Corollary 1.4 will we have to attach
proper annuli.
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8. Theorem 1.1 on an annulus

In this section we will show that any radial probability measure µ supported in the
annulus

{
z : 1

2 ≤ |z| ≤ 1
}

is of the form µf for some f ∈U0, and in the next section
we will extend this to the general case.

First some notation. For 0 < r < s < 1 let A(r, s) = {z : r ≤ |z| < s}. When
s = 1, we let A(r, 1) = {z : r ≤ |z| ≤ 1}. For 0 < r < 1, let µ(r) = µ(A(0, r)).
Let r0

=
1
2 , let r1

0 =
1
2 , let r1

1 =
3
4 and, more generally, let rn

k =
1
2 + k2−n−1 for

k = 0, . . . , 2n
− 1. Let µn

k = µ
(

A
(
rn

k , r
n
k+1

))
, and let Cn

k = Crn
k
.

By rescaling, we may assume that T ⊂ supp(µ) ⊂ D and hence that µn
2n−1 is

positive for all n.
We will construct a sequence R0 ⊂ R1 ⊂ · · · of Riemann surfaces, such that the

corresponding measure µn is supported on the union of 2n circles,
⋃2n

−1
k=0 Cn

k . On
Cn

k the measure µn will have the form 1
2π gn

k dθ where

(8–1) µn
k < gn

k ≤ µ
n
k + εn

for k = 0, . . . , 2n
− 2 and any εn > 0 we choose, and for k = 2n

− 1 we have

(8–2) µn+1
2n+1−2 < gn

k ≤ µ
n
2n−1.

Recall that since µn is a probability measure, if it gives too much mass to the first
2n
− 1 annuli, then it must give too little to the last one. It is obvious that such

measures {µn} converge weak* to µ, so by the argument at the end of the previous
section, the µf corresponding to the limiting surface R =

⋃
n Rn must equal µ.

Thus it only remains to construct the surfaces. As in the previous section we
start with R0=D

(
0, 1

2

)
. To construct R1, we will proceed exactly as in the previous

section, except that instead of redirecting harmonic measure to the unit circle, we
send it to the circle C3/4. The estimates are all the same so we can obtain a surface
R1 such that the corresponding µ1 is supported on C1/2 ∪C3/4 and is of the form
1

2π g1
0 dθ on C1

0 and 1
2π g1

1 dθ on C1
1 where

µ1
0 < g1

0 < µ
1
0+ ε1 and µ2

2 < g1
1 < µ

1
1,

for any ε1 > 0 we choose.
To construct Rn+1 for n ≥ 1, we just make one small change. The mass on

the outermost circle Cn
2n−1 is redistributed to itself, Cn

2n−1 = Cn+1
2n+1−2, and to the

outermost circle of the next stage, Cn+1
2n+1−1. The mass of any other circle Cn

j is
redistributed to three circles; itself, Cn

j = Cn+1
2 j , the next circle out in the next

generation, Cn+1
2 j+1 and the outermost circle of the next generation, Cn+1

2n+1−1.
To do this we let C̃n

j be the circle of radius rn
j −δn , where δn < 2−n−10 is chosen

so small that the harmonic measure on Sn (the subsurface of Rn bounded by the lifts
of C̃n

j which contain 0 and hence contain Sn−1) is as close as we wish to harmonic
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measure on Rn−1, that is, it satisfies (7–2). We now just apply the construction of
Lemma 7.3, with N = 2, s0 = s1 = s2 = 0, r0 = rn+1

2 j , r1 = rn+1
2 j+1 and r2 = rn+1

2n+1−1.
More precisely, suppose that we have two continuous functions η1 and η2 defined
on C̃n

j , such that η1 + η2 < 2, together with mn equidistributed points {z j } on
∂Sn , and choose intervals centered at these points. However, instead of having two
types of intervals, we will have three: {I j } of angle measure 2πη1(θ)/mn centered
at z j for j even, {K j } of angle measure 2πη2(θ)/mn centered at z j for j odd, and
the remaining intervals {J j }. We choose a very small τn and a countable set E in
each interval which satisfies (7–1). Then along type I intervals we attach a copy
of the universal cover of D

(
0, rn

j

)
\ E , along the type K intervals we attach the

universal cover of D
(
0, rn+1

2 j+1

)
\E , and along the type J intervals we attach that of

D
(
0, rn+1

2n+1−1

)
\ E . Then if we take mn large enough and δn and τn small enough,

the harmonic measure of the surface Rn+1 over Cn
j will be as close to the balayage

of η1gn
j onto Cn

j as we wish and the harmonic measure over Cn+1
2 j+1 will be as close

to the balayage of η2gn
j onto that circle as we wish, independent of what changes

we make at circles other than Cn
j .

Now do a similar construction around each circle Cn
j , for j = 0, . . . , 2n

− 2.
At the outermost circle Cn

2n−1, we redirect the measure to only two circles: itself
and the outermost circle of the next generation, Cn+1

2n+1−1. By construction, condi-
tion (8–1) holds with any constant εn we want. Then by Lemma 2.6, µn on the
outermost circle must be normalized Lebesgue measure minus the balayage of the
measures on the inner circles. Since these measures have total mass as close to,
but larger than,

µ
(

A
( 1

2 , r
n
2n−1

))
=

2n
−2∑

j=0

µn
j

r as we wish, the mass of the outermost circle is as close to, but smaller than,
µ
(

A
(
rn

2n−1, 1
))
= µn

2n−1. Moreover, since the measures on the inner circles are as
close to radial as we wish, so is their balayage onto the outermost circle and hence
so is µf restricted to the outermost circle (this condition defines our choice of εn).
This gives condition (8–2). The proof is completed by taking limits just as before.

9. Theorem 1.1 on the whole disk

To complete the proof of Theorem 1.1 we need to show how to obtain any measure
satisfying (1–1). As in the last section we can assume T ⊂ supp(µ) ⊂ D. We can
also simplify the situation slightly by observing that it is enough to assume that
most of the mass of µ lives away from the origin, that is,

(9–1)
∫

log
1
|z|

dµ≤ δ.
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This is because for f ∈ H∞ the measure µ f d is the push-forward under z→ zd of
the measure µf and so∫

log
1
|z|

dµ f =
1
d

∫
log

1
|z|

dµ f d .

By taking d large we can make the right-hand side as small as we wish. Thus for
any µ on the disk satisfying (1–1), it suffices to construct an f corresponding to
the pull-back of µ under zd , that is, it suffices to consider only measures satisfying
(9–1) for any δ > 0 we choose.

Start by taking R0 = D
(
0, 1

4

)
. Let rn = 2−n for n = 0, 1, 2, . . . and let µn =

µ(A(rn, rn−1)). Then

(9–2)
∑
n>2

(n− 1)(log 2)µn ≤

∫
log

1
|z|

dµ≤ δ,

so

(9–3) µn ≤
δ

(log 2)(n− 1)
≤
δ′

n
,

where δ′ is as small as we wish.
We need two simple facts about harmonic measure on an annulus.

Lemma 9.1. Suppose A = {z : s < |z| < r} and s < t < r . Then ω(z,Cs, A) =
us,r (z)= (log |z| − log r)/(log s− log r) for any z with |z| = t .

Proof. This is immediate since the given function is harmonic in A, equals 1 on
Cs and equals 0 on Cr . �

Lemma 9.2. Suppose s, t, r and A are as in Lemma 9.1. Then if t ≥ 2s, there is an
M <∞, independent of s, t and r , such that for |z| = t , ω(z, ·, A) restricted to Cs

has the form 1
2π g dθ and g satisfies maxCs g ≤ M minCs g.

Proof. Recall that harmonic measure on ∂A is the normal derivative of Green’s
function G with pole at z. Let t ′ = 2

3 t > s. By Harnack’s inequality there is an M
such that maxCt ′

G ≤ M minCt ′
G, and hence there is a constant C such that

C(1− us,t ′)≤ G ≤ MC(1− us,t ′),

on {s < |z| < t ′}. Since the normal derivative of us,r ′ is constant on Cs (since u
is radial), this implies the normal derivative of G on Cs is trapped between two
constants A and M A, as desired. �

Consider the annulus An = {z : 2−n < |z| < 2−1, n = 3, 4, . . . } and a point
z such that |z| = 1

3 . The two previous results imply that there is a constant B
such that harmonic measure for A on the circle C2−n is of the form 1

2π g dθ where
g≥ B/n for n≥ 3. By (9–2) we can assume µ is chosen so that

∑
n nµn ≤ (2B)−1.
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Thus
∑

n Bnµn ≤
1
2 , and hence it is possible to choose a collection of disjoint,

adjacent intervals {In : n = 2, 3, 4 . . . } on C1/4, of angle measure 4πnµn/B. In
each interval In choose a countable set En satisfying the “thickness” condition
(7–1) with some τn , and attach to In a copy of the universal cover of An+1 \ En .
The resulting Riemann surface has harmonic measures supported over the union of
circles

⋃
n C2−n for n = 1, 3, 4, 5, . . . and, moreover, if we choose τn→ 0 quickly

enough, the harmonic measure of the circles corresponding to n = 3, 4, 5 . . . is of
the form 1

2π gn dθ with gn > µn−1, but might not be close to radial.
For each such circle C2−n , choose I and J intervals in the usual way and attach

copies of D
(
0, 1

2

)
\ E and D

(
0, 2−n

)
\ E respectively. As we have seen before, we

can choose η, m and τ so that the harmonic measure 1
2π gn dθ on C2−n is as close

to (but larger than) µn as we wish. Using Lemma 2.6, the harmonic measure of
C1/2 will be as close to (but less than) µ1 as we wish and, in particular, it is larger
than µ

({1
2 ≤ |z|<

3
4

})
(this is where we use the assumption that T is in the support

of µ).
The rest of the proof is now the same as the previous section. On each annulus

we redistribute the harmonic measure from the circle into the annulus, sending any
“extra” measure to the outermost circle, C1−2−n . In the limit, we obtain the desired
measure µ.

10. An example which is almost an outer function

In this section we will construct an orthogonal function f whose only inner factor
is the required zero at 0, that is, f (z)/z is outer. We will construct f so that 0 is
the only zero of f ; thus f (z)/z has no Blaschke factor. In order to prove it has
no singular inner factor, recall that if f (z)/z = gh with g outer and h a nontrivial
singular inner function, then

log | f |−1
= log |g|−1

+ log |h|−1,

and that the first term on the right is the Poisson integral of its boundary values on
T, but that the second term is the Poisson integral of a singular measure on T and
has boundary value zero almost everywhere on T. Let

Hε = {z ∈ D : |h(z)|< ε} and Fε = {z ∈ D : | f (z)|< ε}.

Since log |h(0)|−1
= log(1/ε)ω(0, Hε,D \ Hε), we deduce that

ω(0, Hε,D \ Hε)≥ C/ log(1/ε),

where C = log |h(0)|−1 and consequently, since Hε ⊂ Fε ,

(10–1) ω(0, Fε,D \ Fε)≥ C/ log(1/ε).
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We will construct R so that the harmonic measure of {z ∈ R \ D(0, 1
2) : |z| ≤ 2−n

}

has harmonic measure (in R, with respect to 0) less than λn for some λ < 1. This
contradicts (10–1), so the covering map has no singular inner factor.

Since we have already seen several constructions of this type in great detail, I
will only sketch the construction. Start with R0= D

(
0, 1

2

)
. Divide C1/2 into a finite

collection of intervals {In} and in each choose a set E satisfying (7–1). Along each
interval attach a copy of { 14 < |z|< 1} \ E . This gives R2.

Lemmas 9.1 and 9.2 imply that harmonic measure of R2 over C1/4 is of the form
1

2π g dθ where the max of g is bounded by a universal constant times the minimum.
Thus there is a constant c <min(g) and a λ < 1 such that∫

(g− c) dθ ≤ λ
∫

g dθ.

In other words, we can truncate g to be a constant and still retain a fixed fraction
of the harmonic measure.

Now do the standard construction of I and J intervals on C 1
4+δ

, attaching copies
of
{ 1

8 < |z|< 1
}

and
{ 1

4 < |z|< 1
}

respectively, so that the new harmonic measure
on C1/4 is very close to radial (say within ε1 of constant) and has mass at least
(1− λ) times the previous mass.

At the next stage we do the construction near both circles C1/4 and C1/8. At C1/8

we repeat the process of the previous paragraph, making the harmonic measure
above C1/8 as close to radial as we wish, while retaining at least (1− λ) of the
total mass, transferring the excess to C1 and C1/16. On C1/4 we only make the
measure within ε2 of constant (while losing at most ε1 of the mass), the excess
being transferred to C1/8 and C1.

We now iterate the process in the obvious way. At stage n we have a surface Rn

which only covers the origin once, and such that the harmonic measure is supported
on the circles {C2−k }, with the k-th circle getting mass at most λk . Thus the same
is true for the limiting measure µ, and hence the harmonic measure of the set
{z ∈ R \ R0 : |z|< 2−n

} has harmonic measure less than Cλn in R. This proves that
f (z)/z is outer.
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BASES OF QUANTIZED ENVELOPING ALGEBRAS

BANGMING DENG AND JIE DU

We give a systematic description of many monomial bases for a specified
quantized enveloping algebra and of many integral monomial bases for the
associated Lusztig Z[v, v−1]-form. The relations among monomial bases,
PBW bases and canonical bases are also discussed.

1. Introduction

Let g be a (complex) semisimple Lie algebra and let U+ be the positive part of its
associated quantized enveloping algebra U = Uv(g) over Q(v) with a Drinfeld–
Jimbo presentation in the generators Ei , Fi , K±1

i (i ∈ I = [1, n]). We denote by
U+ the Lusztig form of U+, that is, U+ is generated by all the divided powers
E (m)i over Z := Z[v, v−1

]. Let � be the set of words on the alphabet I and,
for w = ie1

1 ie2
2 · · · i

em
m ∈ � with i j−1 6= i j for all j , put Ew = Ee1

i1
· · · Eem

im
and

m(w)
= E (e1)

i1
· · · E (em)

im
. Further, let 3 denote the set of all functions from the set of

positive roots of g to nonnegative integers.
Certain monomial bases of the form m(w) have been introduced for U+ in

[Lusztig 1990, 7.8] and [Ringel 1995, Theorem 1′] for the simply laced case, and
in [Chari and Xi 1999] in general, and are used in the elementary construction of
canonical bases. In this paper, we present a systematic way to sort out bases from
the monomials Ew for U+ and from the monomials m(w) for U+, and relate them
to PBW bases and canonical bases. The main result is:

Theorem 1.1. Assume that g is simply laced. There is a partition � =
⋃
λ∈3�λ

such that, by choosing an arbitrary wordwλ∈�λ for every λ∈3, the set {Ewλ}λ∈3
of monomials forms a basis for U+. If all words wλ are chosen to be distinguished
(see Section 5), the set {m(wλ)}λ∈3 forms a Z-basis for U+.

We shall see from Remarks 6.5 that the monomial bases given in [Lusztig 1990],
[Ringel 1995] and [Reineke 2001a, 4.2] can be obtained in this systematic descrip-
tion by a selection of the representatives wλ. The assumption of simply laced types

MSC2003: 17B37, 16G20.
Keywords: quantized enveloping algebra, Ringel–Hall algebra, generic extension, monomial basis,

canonical basis.
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is made so that we may directly use the theory of quiver representations. See also
[Deng and Du 2005] for a similar result in the affine sln case. It is natural to expect
that a similar result holds in the nonsimply laced case and to relate this theory to
Kashiwara’s crystal bases defined by using the monomials in Kashiwara operators
[1991].

The main ingredients for the proof are Ringel’s Hall algebra theory [Ringel
1995], the monoidal structure [Reineke 2001b] on the set M of isoclasses of finite-
dimensional representations of a Dynkin quiver Q and the Bruhat–Chevalley type
partial ordering on orbits in an affine space. These will be discussed separately in
Sections 2, 3 and 4. Distinguished words are introduced and investigated in Section
5 and we prove the main result in Section 6. As an application of the theory, we
mention an elementary construction [Reineke 2001b, §6] of the canonical bases
for U+ as the counterpart of a similar construction for the Hecke algebra in [Kazh-
dan and Lusztig 1979]. This construction uses the same order as the one used in
the geometric construction, involving perverse sheaf and intersection cohomology
theories. Finally, more explicit results on distinguished words are worked out for
the case of type A in Section 7.

Throughout, k denotes a finite field unless otherwise specified. Let qk = |k|.
All modules are finite-dimensional over k. If M is a module, nM , n > 0, denotes
the direct sum of n copies of M . Further, by [M] we denote the class of modules
isomorphic to M , i.e., the isoclass of M . For modules M, N1, . . . , Nt , let F M

N1···Nt

denote the number of filtrations

M = M0 ⊃ M1 ⊃ · · · ⊃ Mt−1 ⊃ Mt = 0

such that Mi−1/Mi ∼= Ni for all 1 6 i 6 t .

2. Ringel–Hall algebras of Dynkin quivers

Let Q = (I, Q1) be a quiver, i.e., a finite directed graph, where I = Q0 is the set
of vertices {1, 2, . . . , n} and Q1 is the set of arrows. If ρ ∈ Q1 is an arrow from
tail i to head j , we write h(ρ) for j and t (ρ) for i . Thus we obtain functions
h, t : Q1→ I . A vertex i ∈ I is called a sink if there is no arrow ρ with t (ρ)= i ,
and a source if there is no ρ with h(ρ)= i .

Let k Q be the path algebra of Q. A (finite-dimensional) representation V of Q,
consisting of a set of finite-dimensional vector spaces Vi for each i ∈ I and a set
of linear transformations Vρ : Vt (ρ)→ Vh(ρ) for each ρ ∈ Q1, is identified with a
(left) k Q-module. We call dim V := (dim V1, . . . , dim Vn) the dimension vector of
V and `(V ) :=

∑n
i=1 dim Vi the length of V (also called the dimension of V ). If
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Q contains no oriented cycles, there are exactly n pairwise nonisomorphic simple
k Q-modules S1, . . . , Sn corresponding bijectively to the vertices of Q.

From now on, we assume that Q is a Dynkin quiver, that is, a quiver whose
underlying graph is a (simply laced) Dynkin graph. By Gabriel’s theorem [1972],
there is a bijection between the set of isoclasses of indecomposable k Q-modules
and a positive system8+ of the root system8 associated with Q. For any β ∈8+,
let M(β)= Mk(β) denote the corresponding indecomposable k Q-module. By the
Krull–Remak–Schmidt theorem, every k Q-module M is isomorphic to

M(λ)= Mk(λ) :=
⊕
β∈8+

λ(β)Mk(β),

for some function λ :8+→N. Thus the isoclasses of k Q-modules are indexed by
the set

3= {λ :8+→ N} ∼= N|8
+
|.

By a result of Ringel [1990], for λ,µ1, . . . , µm in 3, there is a polynomial
ϕλµ1···µm

(q) ∈ Z[q], called a Hall polynomial, such that for any finite field k of qk

elements
ϕλµ1···µm

(qk)= F Mk(λ)
Mk(µ1)···Mk(µm)

.

Let A=Z[q] be the integral polynomial ring in the indeterminate q . The generic
(untwisted) Ringel–Hall algebra H=Hq(Q) of Q over A is by definition the free
A-module having basis {uλ | λ ∈3}, and satisfying the multiplicative relations

uµuν =
∑
λ∈3

ϕλµν(q)uλ.

We sometimes write uλ = u[M(λ)] in order to make certain calculations in term of
modules. For i ∈ I , we set ui = u[Si ]. Clearly, H admits a natural Nn-grading by
dimension vectors.

Following [Ringel 1993b], we can twist the multiplication of the Ringel–Hall
algebra to obtain the positive part U+ of a quantized enveloping algebra.

Let Z=Z[v, v−1
], where v is an indeterminate with v2

=q . The twisted Ringel–
Hall algebra H?

= H?
v(Q) of Q is by definition the free Z-module having basis

{uλ = u[M(λ)] | λ ∈3} and satisfying the multiplication rules

uµ ? uν = v〈µ,ν〉uµuν = v〈µ,ν〉
∑
λ∈3

ϕλµν(v
2)uλ,

where 〈µ, ν〉=dimk Homk Q(M(µ), N (ν))−dimk Ext1k Q(M(µ), N (ν)) is the Euler
form associated with the quiver Q. Note that, if we define the bilinear form 〈−,−〉 :
Zn
×Zn

→ Z by
〈a, b〉 =

∑
i∈I

ai bi −
∑
ρ∈Q1

at (ρ)bh(ρ),
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where a = (a1, · · · , an), b= (b1, . . . , bn), then

〈µ, ν〉 =
〈
dim M(µ),dim M(ν)

〉
.

For each m > 1, set [m] = (vm
−v−m)/(v−v−1) and [m] ! = [1][2] · · · [m]. We

define, for each i ∈ I , the divided powers

u(?m)i =
u?mi

[m] !
and E (m)i =

Em
i

[m] !
,

in H? and U+, respectively. Here u?mi = ui ? · · · ? ui︸ ︷︷ ︸
m

= vm(m−1)/2um
i .

Proposition 2.1 [Ringel 1995, §7]. The algebra H? is generated by all u(?m)i , for
i ∈ I , m > 1. There is a natural isomorphism

9 :U+
∼
→H?, E (m)i 7→ u(?m)i (i ∈ I,m > 1).

We shall identify U+ with H? under this isomorphism.

3. Generic extensions and the monoid M

In this section, we collect some recent results on generic extensions for quiver
representations over an algebraically closed field k.

Fix d = (di )i ∈ Nn and define the affine space

R(d)= R(Q, d) :=
∏
α∈Q1

Homk(kdt (α), kdh(α))∼=
∏
α∈Q1

kdh(α)×dt (α) .

Thus a point x = (xα)α of R(d) determines a representation V (x) of Q. The
algebraic group GL(d)=

∏n
i=1 GLdi (k) acts on R(d) by conjugation:

(gi )i · (xα)α = (gh(α)xαg−1
t (α))α.

The GL(d)-orbits Ox in R(d) correspond bijectively to the isoclasses [V (x)] of
representations of Q with dimension vector d.

The stabilizer GL(d)x={g∈GL(d) |gx= x} of x is the group of automorphisms
of M := V (x) which is Zariski-open in Endk Q(M) and has dimension equal to
dim Endk Q(M). It follows that the orbit OM := Ox of M has dimension

dim OM = dim GL(d)− dim Endk Q(M).

Lemma 3.1 [Reineke 2001b]. Let Q be a Dynkin quiver. For x ∈ R(d1) and
y ∈ R(d2), let E(Ox ,Oy) be the set of all z ∈ R(d) where d= d1+d2 such that V (z)
is an extension of some M ∈ Ox by some N ∈ Oy . Then E(Ox ,Oy) is irreducible.
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Given representations M, N of Q, consider the extensions

0→ N → E→ M→ 0

of M by N . By the lemma, there is a unique (up to isomorphism) such extension G
with dim OG maximal (i.e., with dim Endk Q(G) minimal). We call G the generic
extension of M by N , denoted by M ∗ N .

For two representations M, N , we say that M degenerates to N , or that N is a
degeneration of M , and write [N ] 6 [M] (or simply N 6 M), if ON ⊆ OM , the
closure of OM . Note that N < M⇐⇒ ON ⊆ OM\OM .

Remark 3.2. The relation 6 on the isoclasses is independent of the field k. This is
seen from the following equivalence proved in [Bongartz 1996, Proposition 3.2]:

(3–1) N 6 M ⇐⇒ dim Hom(X, N )> dim Hom(X,M) for all X

and the fact that the dimension dim Hom(X, Y ) is the same over any field. Thus
we may simply define a (characteristic-free) partial order on 3 by

λ6 µ ⇐⇒ Mk(λ)6 Mk(µ).

for any given (algebraically closed) field k.

The first part of the following result is well-known (see, for example, [Bongartz
1996, 1.1]) and the other parts are proved in [Reineke 2001b].

Theorem 3.3. (1) If 0→N→E→M→0 is exact and nonsplit, then M⊕N<E .

(2) Let M, N , X be representations of Q. Then X 6 M ∗ N if and only if there
exist M ′ 6 M, N ′ 6 N such that X is an extension of M ′ by N ′. In particular,
M ′ 6 M, N ′ 6 N H⇒ M ′ ∗ N ′ 6 M ∗ N .

(3) Let M be the set of isoclasses of k Q-modules and define a multiplication ∗
on M by [M] ∗ [N ] = [M ∗ N ] for any [M], [N ] ∈ M. Then M is a monoid
with identity 1 = [0] and the multiplication ∗ preserves the induced partial
ordering on M.

(4) M is generated by the simple modules [Si ], i ∈ I .

Let� be the set of words in the alphabet I ={1, . . . , n}. Forw= i1i2 · · · im ∈�,
let ℘(w) ∈3 be the element defined by

(3–2) [Si1] ∗ · · · ∗ [Sim ] = [M(℘ (w))].

Thus we obtain a map ℘ : �→ 3. The theorem shows that ℘ is surjective and
induces a partition�=

⋃
λ∈3�λ with�λ=℘−1(λ). Each�λ is called a fibre of℘.

By Remark 3.2, if we set λ∗µ :=M(λ∗µ)∼=M(λ)∗M(µ) for λ,µ∈3, the el-
ement λ∗µ is well-defined, independent of the field k. Note that the multiplication
∗ on 3 depends on the orientation of Q.
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4. The poset 3

In this section we look at some properties of the poset (3,6), where 6 is defined
in Remark 3.2.

For w = i1i2 · · · im ∈ � and λ ∈ 3, let ϕλw denote the Hall polynomial ϕλµ1···µm
,

where M(µr )∼= Sir . Thus, for a finite field k,

ϕλw(qk)= F Mk(λ)
Si1k ···Sim k

is the number of composition series of Mk(λ):

Mk(λ)= M0 ⊃ M1 ⊃ · · · ⊃ Mm−1 ⊃ Mm = 0

with M j−1/M j ∼= Si j k . Such a composition series is called a composition series of
type w.

The following lemma is a bit stronger than [Deng and Du 2005, 6.2].

Lemma 4.1. Let w ∈� and µ> λ in 3. Then ϕµw 6= 0 implies ϕλw 6= 0.

Proof. Letw= i1i2 · · · im andw′= i2 · · · im . We apply induction on m. If m=1 then
µ> λ forces M(µ)= M(λ) and the result is clear. Now assume m > 1. If ϕµw 6= 0,
then ϕµw(qk) 6=0 for some finite field k. Thus Mk(µ) has a submodule M ′k∼=Mk(µ

′)

having a composition series of type w′. Hence ϕµ
′

w′ 6= 0, since ϕµ
′

w′(qk) 6= 0. Base
change to the algebraic closure k̄ of k gives an exact sequence over k̄

0−→ M ′ −→ M(µ)−→ Si1 −→ 0,

where we have dropped the subscripts k̄. Thus

M(λ)6 M(µ)6 Si1 ∗M ′.

By Theorem 3.3(2), there exist modules N ′, N ′′ such that M(λ) is an extension of
N ′ by N ′′ and N ′ 6 M ′, N ′′ 6 Si1 . So we obtain an exact sequence (over k̄)

0−→ N ′
f
−→ M(λ)

g
−→ N ′′ −→ 0.

Now the condition N ′ 6 M ′ means λ′ 6 µ′ where N ′ ∼= M(λ′). Since ϕµ
′

w′ 6= 0, it
follows from induction that ϕλ

′

w′ 6= 0, that is, N ′ has a composition series of type
w′. On the other hand, since Si1 is simple, N ′′ 6 Si1 implies N ′′ ∼= Si1 . Therefore,
M(λ) has a composition series of type w, and consequently, ϕλw 6= 0. �

We now relate the partial order 6 to certain nonzero Hall polynomials.

Theorem 4.2. Let λ,µ ∈ 3. Then λ 6 µ if and only if there exists a word w ∈
℘−1(µ) with ϕλw 6= 0.
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Proof. Suppose λ6µ. Since ℘ is surjective, µ=℘(w) for some w ∈�. By (3–2),
we see that ϕ℘(w)w 6= 0. Thus Lemma 4.1 implies ϕλw 6= 0, as required.

Conversely, letw= i1i2 · · · im ∈�, λ∈3, and suppose ϕλw 6=0. We use induction
on m to prove that λ 6 ℘(w). If m = 1, there is nothing to prove. Let m > 1 and
w′ = i2 · · · im and assume λ′ 6 ℘(w′) whenever ϕλ

′

w′ 6= 0. Since ϕλw 6= 0, there is
a finite field k (of any given characteristic) such that ϕλw(qk) 6= 0. Thus there is
a submodule M ′k of Mk(λ) having a composition series of type w′. This implies
ϕλ
′

w′ 6= 0 where Mk(λ
′)∼= M ′k . By induction, we have λ′ 6 ℘(w′).

On the other hand, base change to the exact sequence

0−→ M ′k −→ Mk(λ)−→ Si1k −→ 0

yields an exact sequence over k̄

0−→ M ′ −→ M(λ)−→ Si1 −→ 0.

(Here again we dropped the subscripts k̄.) By Theorem 3.3(2) we obtain

M(λ)6 Si1 ∗M(λ′)6 Si1 ∗M(℘ (w′))= M(℘ (w)).

Therefore, λ6 ℘(w). �

5. Distinguished words

Let w = i1i2 · · · im be a word in �. Then w can be uniquely expressed in the tight
form w = j e1

1 j e2
2 · · · j et

t , where er > 1, 1 6 r 6 t , and jr 6= jr+1 for 1 6 r 6 t − 1.
Following [Ringel 1993a, 2.3], a filtration

M = M0 ⊃ M1 ⊃ · · · ⊃ Mt−1 ⊃ Mt = 0

of a module is called a reduced filtration of type w if Mr−1/Mr ∼= er S jr for all
1 6 r 6 t . Any reduced filtration of M of type w can be refined to a composition
series of M of typew. Conversely, given a composition series of M of typew, there
is a unique reduced filtration of M of type w such that the given composition series
is a refinement of this reduced filtration. By γ λw(q) we denote the Hall polynomial
ϕλµ1···µt

(q), where M(µr )= er S jr . Thus, for a finite field k of qk elements, γ λw(qk)

is the number of the reduced filtrations of Mk(λ) of type w. A word w is called
distinguished if γ ℘(w)w (q)= 1; this is the case if and only if, for some algebraically
closed field k, Mk(℘ (w)) has a unique reduced filtration of type w. See [Deng and
Du 2005, §5].

Example 5.1. Let w = j1e1 j2e2 · · · jt et be in the tight form. If j1, . . . , jt are pair-
wise distinct and satisfy

Ext1k Q(S jr , S js ) 6= 0 H⇒ r < s,
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then F M
N1···Nt

= 0 or 1 for every k Q-module M , where Nr = er S jr . Thus w is
distinguished.

Distinguished words will be used in the construction of integral monomial bases
for the Lusztig form. The following lemma shows that these words are somehow
evenly distributed.

Lemma 5.2. Each fibre of ℘ contains at least one distinguished word.

Proof. This follows directly from [Reineke 2001a, Lemma 4.5]. For completeness,
we present here the construction of such distinguished words.

By I we denote the set of the isoclasses of indecomposable representations of
Q. Let I∗ be a directed partition of I [Reineke 2001a, §4], that is, a partition of
the set I into subsets I1, . . . ,Im such that

(a) Ext1k Q(M, N )= 0 for all M, N in the same part Ir ,

(b) Ext1k Q(M, N )= 0=Homk Q(N ,M) if M ∈Ir , N ∈Is , where 1 6 r < s 6 m.

Then, for each λ ∈3, we have a unique decomposition

M(λ)=
m⊕

r=1

Mr ,

where all the summands of Mr belong to Ir , 1 6 r 6 m. Thus

(5–1) Homk Q(Mr ,Ms) 6= 0 H⇒ r 6 s.

Further, since Q is a Dynkin quiver, we can order the vertices of Q in a sequence
i1, i2, . . . , in such that, for each 1 < j 6 n, i j is a sink in the full subquiver of Q
with vertices {i1, . . . , i j−1, i j }. Equivalently, i1, i2, . . . , in are ordered to satisfy

(5–2) Ext1k Q(Si j , Sil ) 6= 0 H⇒ j < l.

Let d(r) = (d(r)1 , . . . , d(r)n )= dim Mr , for 1 6 r 6 m, and set

wr = i1 · · · i1︸ ︷︷ ︸
d(r)i1

· · · · · · in · · · in︸ ︷︷ ︸
d(r)in

andwλ=w1 · · ·wm ∈�. Then [Reineke 2001a, Lemma 4.5] implies that ℘(wλ)=
λ and γ λwλ(q)= 1, that is, wλ is distinguished. �

We call the distinguished words constructed above directed distinguished words
(with respect to the given directed partition I∗).

We mention a special case of directed partitions I∗ where each part Ir contains
only one isoclass. This case is equivalent to ordering the indecomposable modules
M(β1),M(β2), . . . such that

(5–3) Homk Q(M(βr ),M(βs)) 6= 0 H⇒ r 6 s.
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Note that monomial bases associated to these special directed distinguished words
have been constructed in [Lusztig 1990] and [Ringel 1995]; see Remarks 6.5 below.

The following example shows that a fibre of ℘ could contain many words other
than directed distinguished ones.

Example 5.3. Let Q denote the quiver

1 2 3

4
?�

-

Let λ ∈ 3 be such that M(λ) is the indecomposable k Q-module with dimension
vector (1, 1, 1, 2). Then ℘−1(λ) contains 12 words

12342, 13242, 21342, 23142, 31242, 32142,

12434, 13424, 21434, 23414, 31424, 32414

all distinguished. From the structure of the Auslander–Reiten quiver of k Q, one
sees easily that the first 6 words are directed distinguished, but the last 6 are not.

6. Monomial and integral monomial bases

For m > 1, let [[m]] ! = [[1]][[2]] · · · [[m]], where [[e]] = (qe
−1)/(q−1). Then [[m]] =

vm−1
[m] and [[m]] ! = vm(m−1)/2

[m] !.

Lemma 6.1. Let w ∈� be a word with the tight form j e1
1 j e2

2 · · · j et
t . Then, for each

λ ∈3,

ϕλw(q)= γ
λ
w(q)

t∏
r=1

[[er ]]
!.

In particular, ϕ℘(w)w (q)=
∏t

r=1[[er ]]
! if w is distinguished.

Proof. The result follows from the definition of a distinguished word and the fact
that the number of composition series of eSi is [[e]] ! (see [Ringel 1993b, 8.2]). �

To each word w = i1i2 · · · im ∈�, we associate a monomial

uw = ui1ui2 · · · uim ∈H.

Theorem 4.2 and Lemma 6.1 give:

Proposition 6.2. For each w ∈� with the tight form j1e1 j2e2 · · · jt et , we have

(6–1) uw =
∑

λ6℘(w)

ϕλw(q)uλ =
t∏

r=1

[[er ]]
!
∑

λ6℘(w)

γ λw(q)uλ.

Moreover, the coefficients appearing in the sum are all nonzero.
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This improves [Ringel 1995, Theorem 1, p. 96] in two ways: it generalizes the
formula from certain directed distinguished words to all words, and it replaces the
lexicographical order by the Bruhat type partial order 6 .

For any commutative ring A′ which is an A-algebra and any A-module M , let
MA′ =A′⊗A M denote the A′-module obtained from M by base change to A′.

Theorem 6.3. For every λ ∈ 3, choose an arbitrary word wλ ∈ ℘−1(λ). The set
{uwλ | λ∈3} is a Q(q)-basis of HQ(q). If all the wλ are chosen to be distinguished,
then this set is an A(q−1)-basis of HA(q−1) where A(q−1) denotes the localization of
A at the maximal ideal generated by q − 1.

Proof. This follows from Proposition 6.2 and the fact that ϕ℘(wλ)wλ is invertible in
A(q−1) if wλ is distinguished. �

Let g = n− ⊕ h ⊕ n+ be the Lie algebra over Q of type Q with generators
ei , fi , hi . Let U(g) be the universal enveloping algebra of g. Define monomials ew
similarly for w ∈� in U(n+).

Corollary 6.4. For every λ ∈ 3, choose an arbitrary distinguished word wλ ∈
℘−1(λ). The set {ewλ | λ ∈3} is a Q-basis of U(n+).

Proof. The result follows from the isomorphism HA′/(q − 1)HA′
∼= U(n+), where

A′ =A(q−1), and Theorem 6.3. �

Proof of Theorem 1.1. For each w = i1i2 · · · im ∈� we have

ui1 ? · · · ? uim = v
ε(w)uw,

where

ε(w)=
∑

16r<s6m

〈dim Sir ,dim Sis 〉.

Let, for w = j e1
1 · · · j et

t in tight form,

m(w)
:= E (e1)

j1 · · · E
(et )
jt =

( t∏
r=1

[er ]
!

)−1

u?e1
j1 ? · · ·?u

?et
jt .

Since
∏t

r=1[er ]
!
= v−δ(w)

∏t
r=1[[er ]]

!, where δ(w)=
∑t

r=1 er (er−1)/2, it follows
from Proposition 6.2 that

(6–2) m(w)
=

( t∏
r=1

[[er ]]
!

)−1

vδ(w)+ε(w)uw = vδ(w)+ε(w)
∑

λ6℘(w)

γ λw(v
2)uλ.

Together with Proposition 2.1 and Theorem 6.3, this implies Theorem 1.1 with
�λ = ℘

−1(λ) for all λ ∈3. �
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Remarks 6.5. (a) It is clear, from the definition, that the monomial basis {E (M)}
constructed in [Reineke 2001a, Theorem 4.2] involves only directed distin-
guished words wλ.

(b) As a special case of [Reineke 2001a, Theorem 4.2], the monomial bases con-
structed in [Lusztig 1990, 7.8; Ringel 1995, pp. 101–2] involve only those
directed distinguished words defined with respect to the special directed par-
tition I∗ satisfying conditions (5–3) and (5–2); see [Ringel 1995, Theorem 1]
and [Lusztig 1990, 4.12(c), 4.13].1

We now look briefly at the elementary and algebraic construction of the canon-
ical basis for U+ [Reineke 2001b, §6]. Note that the elementary constructions
given in, e.g., [Lusztig 1990; Kashiwara 1991; Ringel 1995; Chari and Xi 1999]
used a finer order than the one used in the geometric construction. We now use the
same order which has an algebraic interpretation (3–1).

For each λ ∈3, set

ũλ = v
− dim M(λ)+dim End(M(λ))uλ.

Then, by Proposition 2.1, U+ is Z-free with basis E = {ũλ : λ ∈ 3}. Note that
U+ =

⊕
d U+d is NI -graded according to the dimension vectors, and each U+d is

Z-free with basis E∩U+d = {ũλ : λ ∈3d}. Clearly, each 3d together with 6 is a
poset.

Define a ring homomorphism ι : U+ → U+ by setting ι(E (m)i ) = E (m)i and
ι(v)= v−1. Clearly, ι preserves the grading of U+. Write, for any ũλ ∈U+d ,

(6–3) ι(ũµ)=
∑
λ

rλ,µũλ.

By [Lusztig 1990, 9.10] (see [Du 1994] for more details), the existence of the
canonical bases for U+d follows from the property

(6–4) rλ,λ = 1, rλ,µ = 0 unless λ6 µ.

of the coefficients rλ,µ. We use (6–2) to derive (6–4). We first calculate δ(w)+ε(w)
for directed distinguished words; compare [Ringel 1995, Lemma, p. 102].

Lemma 6.6. We have for any directed distinguished word w ∈�

δ(w)+ ε(w)=− dim M(℘ (w))+ dim End M(℘ (w)).

Proof. Let w ∈� be a directed distinguished word. Then, by definition, there is a
directed partition I∗ of I and a λ∈3 such thatw has the formw=wλ=w1 · · ·wm

1It seems to us that condition (5–2) was implicitly used in [Lusztig 1990, 7.2], though it was not
explicitly stated in the paper.
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with
wr = i1 · · · i1︸ ︷︷ ︸

d(r)i1

· · · · · · in · · · in︸ ︷︷ ︸
d(r)in

,

where M(λ)=M1⊕M2⊕· · ·⊕Mm , d(r)= (d(r)1 , . . . , d(r)n )=dim Mr for 16r 6m,
and the sequence i1, i2, . . . , in of vertices are ordered to satisfy (5–2). Clearly,

δ(w)=

m∑
r=1

n∑
j=1

d(r)i j

(
d(r)i j
−1
)

2
.

Since 〈dim Si j ,dim Sil 〉 = 0 for j > l and Ext1(Mr ,Ms)= 0 for all 1 6 r 6 s 6 m,
we obtain, for each 1 6 r 6 m,

ε(wr )=

n∑
j=1

d(r)i j
(d(r)i j
− 1)

2
〈dim Si j ,dim Si j 〉+

∑
16 j<l6n

〈
dim d(r)i j

Si j ,dim d(r)il
Sil

〉

= 〈dim Mr ,dim Mr 〉−

n∑
j=1

(
d(r)i j

)2

2
−

n∑
j=1

d(r)i j

2

= dim End(Mr )−

n∑
j=1

d(r)i j

(
d(r)i j
+1
)

2

and therefore,

ε(w)=

m∑
r=1

ε(wr )+
∑

16r<s6m

〈dim Mr ,dim Ms〉

=

m∑
r=1

ε(wr )+
∑

16r<s6m

dim Hom(Mr ,Ms).

Noting that Hom(Mr ,Ms)= 0 for r > s, we finally obtain

δ(w)+ ε(w)=

m∑
r=1

dim End(Mr )+
∑

16r<s6m

dim Hom(Mr ,Ms)−

m∑
r=1

n∑
j=1

d(r)i j

= dim End(M(λ))− dim M(λ).

This completes the proof. �

By Lemma 6.6 and (6–2), any directed distinguished word w satisfies

(6–5) m(w)
= ũ℘(w)+

∑
λ<℘(w)

fλ,℘ (w)ũλ,
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where 0 6= fλ,℘ (w) ∈ Z. If we fix a representative set 3′ = {wλ : λ ∈ 3}, where
wλ ∈ �λ, consisting of directed distinguished words, the relation above implies
that, for any µ ∈3,

ũµ ∈m(wµ)+

∑
λ<µ

Zm(wλ).

Restricting to 3d , where d is a fixed dimension vector, we obtain the transition
matrix ( fλ,µ)λ,µ∈3d . This matrix has an inverse (gλ,µ)λ,µ∈3d satisfying gλ,λ = 1
and gλ,µ = 0 unless λ6 µ. Thus

ũµ =m(wµ)+

∑
λ<µ

gλ,µm(wλ).

Applying ι, we obtain by (6–5)

(6–6) ι(ũµ)=m(wµ)+

∑
λ<µ

ḡλ,µm(wλ) = ũµ+
∑
λ<µ

rλ,µũλ.

This proves that the coefficients in (6–3) satisfy (6–4). Thus the corresponding
canonical basis {cλ}λ∈3 is uniquely defined.

Remarks 6.7. (a) The canonical basis defined above is the same as Lusztig’s
canonical basis. This is because the basis E is a PBW type basis (see [Ringel
1996, Theorem 7]). We also note that, as in the Hecke algebra case [Kazhdan
and Lusztig 1979; 1980], the partial order used in this construction is the same
as the one used in the geometric construction (see [Lusztig 1990, §9]).

(b) The relation (6–6) is derived via directed distinguished words. However, it can
be used to prove the following result,2 which generalizes the formula given
in Lemma 6.6 to all distinguished words. Thus we may also use nondirected
distinguished words in the construction above to obtain canonical bases.

Proposition 6.8. For any distinguished word w ∈�, we have

δ(w)+ ε(w)=− dim M(℘ (w))+ dim End M(℘ (w)).

Proof. Let w ∈� be distinguished. By (6–2), we have

(6–7) m(w)
= vs ũ℘(w)+

∑
λ<℘(w)

hλ,℘ (w)ũλ,

where s = δ(w)+ε(w)+dim M(℘ (w))−dim End M(℘ (w)) and 0 6= hλ,℘ (w) ∈ Z

for λ < ℘(w). By applying ι to (6–7), we deduce from (6–6) that

ι(m(w))= v−s ũ℘(w)+
∑

λ<℘(w)

dλ,℘ (w)ũλ

2We thank the referee for pointing out the proof.
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for some dλ,℘ (w) ∈ Z. Since ι(m(w))=m(w), equating coefficients yields vs
= v−s .

This implies s = 0, that is,

δ(w)+ ε(w)=− dim M(℘ (w))+ dim End M(℘ (w)). �

7. The type A case

We now give a combinatorial description of the map ℘ : �→ 3 for the linear
quiver

Q = An : 1−→ 2−→ · · · −→ n−1−→ n.

We also give an explicit description of the distinguished words in this case. Since
An is a subquiver of a cyclic quiver, the results obtained below and their proofs
are similar to (or even simpler than) those given in [Deng and Du 2005], and the
proofs will mostly be omitted.

It is known that, for 1 6 i 6 j 6 n, there is a unique (up to isomorphism)
indecomposable k An-module Mi j with top Si and of length j − i + 1, and all
Mi j , 1 6 i 6 j 6 n, form a complete set of nonisomorphic indecomposable k An-
modules. By Gabriel’s theorem, each Mi j corresponds to a positive root βi j . Thus
8+={βi j | 1 6 i 6 j 6 n}. For each map λ∈3, we set λi j =λ(βi j ). First, we have
the following positivity result, which can be proved by counting and induction on
the length of w (compare [Deng and Du 2005, Proposition 9.1]).

Proposition 7.1. For each w ∈� and each λ ∈3, the polynomial ϕλw lies in N[q].

Now, for each i ∈ I , we define a map σi :3→3 as follows. For λ ∈3, if Si+1

is not a summand of M(λ)/rad M(λ) (i.e., λi+1,l = 0 for all l), then σiλ is obtained
by adding 1 to λi i so that M(σiλ)= M(λ)⊕ Si ; otherwise, σiλ is defined by

(σiλ)rs =


λrs if (r, s) 6= (i, j), (i + 1, j),

λi j + 1 if (r, s)= (i, j),

λi+1, j − 1 if (r, s)= (i + 1, j),

where j is the maximal index with λi+1, j 6= 0. We have the following (compare
[Deng and Du 2005, Proposition 3.7]).

Proposition 7.2. Let i ∈ I and λ ∈ 3. Then Si ∗ M(λ) ∼= M(σiλ). Therefore
℘(w)= σi1 · · · σim (0) for any w = i1 · · · im ∈�.

Let w = j e1
1 j e2

2 · · · j et
t ∈ � be in the tight form. For each 0 6 r 6 t , we put

wr = j er+1
r+1 · · · j et

t and λ(r) = ℘(wr ). In particular, w0 = w and wt = 1. Further,
for r > 1, we have

λ(r−1)
= ℘(wr−1)= σ jr · · · σ jr︸ ︷︷ ︸

er

(λ(r)).
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The following result gives a combinatorial description of distinguished words
(compare [Deng and Du 2005, 5.5]).

Proposition 7.3. Let w = j e1
1 j e2

2 · · · j et
t ∈ � and λ(r), with 0 6 r 6 t , be given as

above. Then w is distinguished if and only if , for each 1 6 r 6 t , either λ(r)jr j = 0

for all jr 6 j 6 n, or er 6
∑n

a=lr+1 λ
(r)
jr+1,a where lr is the maximal index for which

λ
(r)
jr lr 6= 0.

Proof. Using a similar argument as in [Deng and Du 2005, Theorem 5.5], one
can show that w is distinguished if and only if, for each 1 6 r 6 t , M(λ(r−1))

admits a unique submodule isomorphic to M(λ(r)). However, the latter condition
is equivalent to the described combinatorial condition, as shown in [Deng and Du
2005, Lemma 5.4]. �
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FLAT MODULES AND LIFTING OF FINITELY GENERATED
PROJECTIVE MODULES

ALBERTO FACCHINI, DOLORS HERBERA AND ISKHAK SAKHAJEV

We introduce nets in rings, which turn out to describe right flat modules
and left flat modules over a fixed ring R at the same time. As an application
we prove that for a finitely generated projective right R/J(R)-module P ,
there exists a finitely generated flat right R-module M with M/M J(R) iso-
morphic to P if and only if there exists a projective left R-module P ′ with
P ′/J(R)P ′ isomorphic to the dual of P .

1. Introduction

Although there is a close relation between finitely generated projective right R-
modules and finitely generated projective left R-modules given by the duality
HomR(−, R), there does not seem to be such an evident relation between finitely
generated flat right R-modules and finitely generated flat left R-modules. In this
paper we define an algebraic object that allows us to describe right flat modules and
left flat modules at the same time. We call this algebraic object a net, because its
definition recalls the definition of nets encountered in topology. Our concept finds
its origin in [Vasconcelos 1969, proof of Theorem 2.1], and was implicitly used
in [Lazard 1974; Sakhaev 1987; 1993; 1996]. As an application of our theory,
we study how projective modules over the ring R/J (R) lift to projective or flat
modules over R. For instance, we find that for a finitely generated projective right
R/J (R)-module P , there exists a finitely generated flat right R-module M with
M/M J (R) isomorphic to P if and only if there exists a projective left R-module P ′

with P ′/J (R)P ′ isomorphic to the dual HomR/J (R)(P, R/J (R)) of P (Theorem
7.1).
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The paper is organized as follows. In the next two sections we give our basic
definitions and constructions. We define nets in rings and show how it is possible
to associate to each net both a flat cyclic right module and a flat cyclic left module.
In Section 4 we prove that this construction allows us to describe all flat right or
left modules.

In Section 5 we give a couple of examples. The first one is the flat module
introduced in [Bass 1960]. The second one is based on [Sakhaev 1987; 1993;
1996] and is the key tool in the last two sections to study finitely generated flat
modules that are projective modulo the Jacobson radical.

Our rings are associative and have an identity. Modules are unital. For every
module MR , we denote by L(MR) the set of all submodules of MR . The Jacobson
radical of a ring R is denoted by J (R).

2. Nets in rings

In this section we introduce the concepts that will be used freely throughout the
paper.

Let A be a set with a transitive relation < . (We denote the relation by < , not
≤ , to stress that it is not necessarily reflexive.)

Definition 2.1. A net in A is a pair (3, ϕ), where

(1) 3 is a nonempty partially ordered set, without a greatest element, without a
least element, and with 3 upward directed and downward directed (that is,
for each pair λ,µ in 3 there exist ν and ξ in 3 such that λ≤ ν, µ≤ ν, ξ ≤ λ
and ξ ≤ µ);

(2) ϕ :3→ A is a strictly increasing map, that is, for every λ,µ ∈3, λ≤ µ and
λ 6= µ implies ϕ(λ) < ϕ(µ).

For every λ,µ∈3, we shall write λ<µ whenever λ≤µ and λ 6=µ. Whenever
(3, ϕ) is a net in A, we will usually write aλ instead of ϕ(λ). The standard notation
for the net will be (aλ)λ∈3.

Let S be a ring. Let < be the relation on S defined by s < t if ts = s for s, t ∈ S.

Proposition 2.2. Let S be a ring with the relation just defined.

(i) The relation < is transitive.

(ii) If s, t ∈ S and t is idempotent, then s < t if and only if sS ⊆ t S.

(iii) For every s, t ∈ S, s < t and t < s if and only if s and t are both idempotent
and sS= t S. In particular, for every s ∈ S, s< s if and only if s is idempotent.

(iv) For every s, t ∈ S, s < t in S if and only if 1− t < 1− s in the opposite ring
Sop of S.



FLAT MODULES AND LIFTING OF PROJECTIVE MODULES 51

Proof. Properties (i), (ii) and (iv) are trivial. For (iii), suppose that s < t and t < s.
Then ts = s and st = t , so that s2

= s(ts) = ts = s. By symmetry, t also is
idempotent. Now (iii) follows from (ii). �

Let (sλ)λ∈3 be a net in a ring S with the transitive relation < just defined. Then:

(1) From sµsλ = sλ it follows that sλS ⊆ sµS whenever λ ≤ µ, so that (sλS)λ∈3
is a net in the set L(SS) with the transitive relation ⊆.

(2) The canonical projections S/sλS → S/sµS give a direct system of right S-
modules over the upward directed set 3. We shall denote the direct limit
S/
⋃
λ∈3 sλS of this direct system by limS (sλ)λ∈3, and call it the upper limit

of the net (sλ)λ∈3.

(3) From Proposition 2.2(iv) it follows that (1−sλ)λ∈3op is a net in Sop defined
on the opposite partially ordered set 3op of 3. Thus in the ring S we have
that S(1−sµ) ⊆ S(1−sλ) for λ ≤ µ in 3, so that the canonical projections
S/S(1−sµ)→ S/S(1−sλ) give a direct system of left S-modules over 3op

(3op is upward directed because 3 is downward directed). The direct limit
of this direct system of left S-modules is S/

⋃
λ∈3 S(1− sλ). We shall denote

it by limS (sλ)λ∈3, and call it the lower limit of the net (sλ)λ∈3. It coincides
with the upper limit of the net (1− sλ)λ∈3op , which is a right Sop-module.

Proposition 2.3. Let (sλ)λ∈3 be a net in a ring S. Then:

(i) The upper limit limS (sλ)λ∈3 is a cyclic flat right S-module.

(ii) The exact sequence

0→
⋃
λ∈3

sλS→ S→ limS (sλ)λ∈3→ 0

is pure, and
⋃
λ∈3 sλS is a flat right ideal of S.

(iii) The upper limit limS (sλ)λ∈3 is projective if and only if there exists λ0 ∈ 3

such that sλ0 S= sλS for any λ∈3, λ≥ λ0. In this case, s2
λ = sλ for any λ∈3,

λ > λ0.

(iv) The lower limit limS (sλ)λ∈3 is a cyclic flat left S-module.

(v) The exact sequence

0→
⋃
λ∈3

S(1− sλ)→ S→ limS (sλ)λ∈3→ 0

is pure, and
⋃
λ∈3 S(1− sλ) is a flat left ideal of S.

(vi) The lower limit limS (sλ)λ∈3 is projective if and only if there exists µ0 ∈ 3

such that S(1− sµ0)= S(1− sλ) for any λ ∈3, λ ≤ µ0. In this case, s2
λ = sλ

for any λ ∈3, λ < µ0.
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Proof. In order to show that limS (sλ)λ∈3 = S/
⋃
λ∈3 sλS is flat, it is enough to

prove that
(⋃

λ∈3 sλS
)

L =
(⋃

λ∈3 sλS
)
∩ L for any left ideal L [Anderson and

Fuller 1992, Lemma 19.18]. The inclusion
(⋃

λ∈3 sλS
)

L⊆
(⋃

λ∈3 sλS
)
∩L always

holds. If x ∈
(⋃

λ∈3 sλS
)
∩ L , then x = sµy for suitable µ ∈ 3 and y ∈ S. As 3

does not have a greatest element, there exists ν > µ, so that x = sµy = sνsµy =
sνx ∈

(⋃
λ∈3 sλS

)
L . This shows (i).

Statement (ii) follows from (i), because every short exact sequence that ends
with a flat module is pure.

To prove (iii), assume that λ0 ∈ 3 is such that sλ0 S = sλS for λ ∈ 3, λ ≥ λ0.
Then, for every λ > λ0, there exists a ∈ S such that sλ = sλ0a = sλsλ0a = s2

λ.
Thus

⋃
λ∈3 sλS is generated by an idempotent, hence it is a direct summand of S.

Conversely, if limS (sλ)λ∈3 is projective, then
⋃
λ∈3 sλS is principal, so that there

is a λ0 with sλ0 S = sλS for every λ≥ λ0.
The proofs of statements (iv) to (vi) are similar. �

Notice that every countable partially ordered set 3 satisfying condition (1) of
Definition 2.1 contains an upward and downward cofinal subset order-isomorphic
to the ordered set Z. Thus we can always suppose 3 = Z for every countably
infinite net.

Examples 2.4. Let S be a ring, and let 3 be a partially ordered set satisfying
condition (1) of Definition 2.1.

(1) Let e ∈ S be an idempotent. Then the constant map 3 → S defined by
λ 7→ e for every λ ∈ 3 is a net whose upper limit is the projective right module
S/eS∼= (1−e)S and whose lower limit is the projective left module S/S(1−e)∼= Se.

(2) More generally, let ϕ : 3→ S be a net such that, for every λ ∈ 3, ϕ(λ) =
eλ is an idempotent of S. Equivalently, {eλ}λ∈3 is a family of, not necessarily
distinct, idempotents of S such that eλS ⊆ eµS for any pair λ < µ in 3. The
upper limit of this net is S/

⋃
λ∈3 eλS and the lower limit is S/

⋃
λ∈3 S(1− eλ).

Moreover, the upper limit is projective if and only if the family {eλS}λ∈3 has a
greatest element, eλ0 S say, and in this case limS (eλ)λ∈3 ∼= (1− eλ0)S. Dually, the
lower limit is projective if and only if {eλS}λ∈3 has a least element, eλ1 S say, and
then limS (eλ)λ∈3 ∼= Seλ1 .

3. Tensoring nets with bimodules

Now we study how elements of nets act on bimodules producing interesting pure
exact sequences.

Proposition 3.1. Let R and S be rings, let S MR be an S-R-bimodule, and let R NS

be an R-S-bimodule. Assume (sλ)λ∈3 is a net in the ring S. Then:
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(i) (sλM)λ∈3 is a net in L(MR)with the transitive relation⊆ , and (M/sλM)λ∈3
is a directed system of right R-modules.

(ii) There is an exact sequence

0→
(⋃
λ∈3

sλS
)
⊗S M→ S⊗S M→

(
limS (sλ)λ∈3

)
⊗S M→ 0,

which is a pure sequence of right R-modules.

(iii) lim
−→

M/sλM ∼= M/
∑

λ∈3 sλM ∼= limS (sλ)λ∈3⊗S M .

(iv) The module MR is flat if and only if both M/
∑

λ∈3 sλM and
∑

λ∈3 sλM are
flat.

(v) (N (1− sλ))λ∈3 is a net in L(R N ) with the transitive relation ⊆ , and

(N/N (1− sλ))λ∈3

is a directed system of left R-modules.

(vi) There is an exact sequence

0→ N ⊗S

(⋃
λ∈3

S(1− sλ)
)
→ N ⊗S S→ N ⊗S

(
limS (sλ)λ∈3

)
→ 0,

which is a pure sequence of left R-modules.

(vii) lim
−→

N/N (1− sλ)∼= N/
∑

λ∈3 N (1− sλ)∼= N ⊗S limS (sλ)λ∈3.

(viii) The left module R N is flat if and only if both N/
∑

λ∈3 N (1 − sλ) and∑
λ∈3 N (1− sλ) are flat.

Proof. (i) follows easily from the fact that (sλ)λ∈3 is a net in S. (ii) follows from
Proposition 2.3(ii) and the associativity of tensor product.

Let {eλ}λ∈3 be the canonical basis of the free right S-module S(3). Setting
f (eλ)= sλ we obtain from Proposition 2.3(ii) an exact sequence

S(3)
f
→S→ limS (sλ)λ∈3→ 0.

Tensoring this exact sequence with M , we get that limS (sλ)λ∈3⊗S M is isomorphic
to the cokernel of f ⊗S 1M : S(3)⊗S M→ S⊗S M . Thus (iii) follows from (ii).

To prove (iv) notice that the sequence

0→
⋃
λ∈3

sλS⊗S M ∼=
∑
λ∈3

sλM→ S⊗S M ∼= M→ limS (sλ)λ∈3⊗S M→ 0

is pure.
The proof of statements (v) to (viii) is similar. �

In the next examples we apply Proposition 3.1 to Examples 2.4(2).
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Examples 3.2. Let MR be an arbitrary right module over a ring R. Let S be the
endomorphism ring End(MR), so that S MR is a bimodule.
(1) As in Examples 2.4(2), let (eλ)λ∈3 be a net of idempotents of S. Then, for
each λ ∈ 3, eλM is a direct summand of M and eλSS ∼= HomR(M, eλM)S . In
view of Proposition 2.3, K =

⋃
λ∈3 HomR(M, eλM)S is a pure flat right ideal of

S and S/K is a cyclic flat S-module. By Proposition 3.1, we obtain a pure exact
sequence of right R-modules

0→
∑
λ∈3

eλM→ M→ M
/∑

λ∈3

eλM→ 0.

(2) Nets as in (1) can be also constructed directly from a suitable family of direct
summands of M . Let 3′ be a nonempty, upward directed and downward directed
subset of L(MR) whose elements are direct summands of MR . Let 3 = 3′ × Z

be partially ordered with the lexicographic order, so that 3 is upward directed and
downward directed and does not have a greatest element and a least element. For
every λ ∈3′ fix an idempotent eλ ∈ S with image λ. Let ϕ :3→ S be defined by
ϕ : (λ, n) 7→ eλ for every (λ, n) ∈3. Then (eλ)λ∈3 is a net of idempotents of S.

(3) Assume M =
⊕

α∈A Mα. Let 3 be the set of all finite subsets of A. For each
subset λ of A, let Mλ =

⊕
α∈λ Mα, and let eλ be the idempotent endomorphism of

M with image Mλ and kernel MA\λ. Then

K =
∑
λ∈3

eλS =
∑
λ∈3

HomR(M, eλM)=
⊕
α∈A

e{α}S

is a pure and projective right ideal of S. Note that, if Mα is nonzero for every α∈ A,
then K = S if and only if A is finite, but in any case S/K⊗S M∼=M/

⊕
α∈A Mα=0.

The set 3 has a least element ∅, and, when A is finite, a greatest element A.
However, taking 3′ = 3× Z with the lexicographic order, we obtain a partially
ordered set with the properties required for index sets of nets.

4. All flat right modules and all flat left modules arise from suitable nets

Let I be a nonempty set, and let R be a ring. Let FR={ f : I×{1}→ R | f ((i, 1))=
0 for almost all i ∈ I }. Then FR is a free right R-module isomorphic to R(I )R , and
we will rather think of it as the right R-module of all columns indexed by I , with
entries in R, and at most finitely many nonzero entries. Let {ei | i ∈ I } be the
canonical basis of FR .

Let F0
= { f : {1} × I → R | f ((1, i)) = 0 for almost all i ∈ I }. Then F0 is

a free left R-module isomorphic to R R(I ), and we will think of it as the set of all
rows indexed by I , with entries in R, and at most finitely many nonzero entries.
Also denote by {ei | i ∈ I } the canonical basis of R F0.
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Let RCF(I, R) denote the ring of all square matrices indexed by I× I with only
a finite number of nonzero entries in each row and each column. Then RCF(I,−)
is a functor of the category of associative rings with identity into itself. Let B(I, R)
be the set of all square matrices indexed by I× I , with entries from R, with at most
finitely many nonzero entries. The set B(I, R) is a two-sided ideal in RCF(I, R).
If I is finite of cardinality n, RCF(I, R) = B(I, R) is the ring of all n× n square
matrices over R.

Let S(I,−) be a subfunctor of RCF(I,−) with the following property: for ev-
ery ring R, the subring S(I, R) of RCF(I, R) contains B(I, R) (and contains the
identity of RCF(I, R)). For instance, S(I, R) could be the ring RCF(I, R) itself;
or the subring B(I, R)+ 1RCF(I,R) · R, where 1RCF(I,R) · R is the set of all scalar
matrices; or S(I, R)= B(I, R)+ 1RCF(I,R) ·Z.

From now on, in this section, we specialize nets to the rings S= S(I, R). Notice
that F is an S-R-bimodule and F0 is an R-S-bimodule.

Let (Aλ)λ∈3 be a net in S. We can apply Proposition 3.1 and obtain a flat right
R-module limS (Aλ)λ∈3⊗S F ∼= FR/

⋃
λ∈3 AλFR with presentation

0→
⋃
λ∈3

AλS⊗S F ∼=
∑
λ∈3

AλF→ S⊗S F ∼= F→ limS (Aλ)λ∈3⊗S F→ 0

and a flat left R-module F0
⊗S limS (Aλ)λ∈3 ∼= F0/

⋃
λ∈3 F0(1− Aλ) with pre-

sentation

0→ F0
⊗S

⋃
λ∈3

S(1− Aλ)∼=
∑
λ∈3

F0(1− Aλ)→ F0
⊗S S ∼= F0

→

→ F0
⊗S limS (Aλ)λ∈3→ 0.

In the following theorem we show that all flat right R-modules and all flat left
R-modules arise in this way from a net in S = S(I, R) for a suitable set I .

Theorem 4.1. Let FR→ MR be an epimorphism of the free right R-module FR ∼=

R(I )R onto a flat right R-module MR . Then there exists a net (Aλ)λ∈3 in S= S(I, R)
with Aλ ∈ B(I, R) for every λ ∈ 3 and limS (Aλ)λ∈3 ⊗S F ∼= MR . Dually, let
R F0
→ R N be an epimorphism of the free left R-module R F0 ∼= R R(I ) onto a flat

left R-module R N . Then there exists a net (Bλ)λ∈3 in S = S(I, R) with 1− Bλ ∈
B(I, R) for every λ ∈3 and F0

⊗S limS (Bλ)λ∈3 ∼= R N .

Proof. For the proof, we need the following result, which is a corollary of a theorem
due to O. Villamayor [Lam 1999, Theorem 4.23].

Proposition 4.2. Let ψ : FR→ MR be an epimorphism of the free right R-module
FR ∼= R(I )R onto a flat right R-module MR . Then for any finitely generated submod-
ule C of kerψ there exists A ∈ B(I, R) such that ψ(AFR) = 0 and Ax = x for
every x ∈ C .
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Proof. The proof of [Lam 1999, Theorem 4.23 (1)⇒(2)] shows that for any c ∈
kerψ there exists ϑ ∈Hom(F, kerψ) with ϑ(c)= c such that ϑ(ei )= 0 for almost
all i ∈ I . The proof by induction of [Lam 1999, Theorem 4.23, (2)⇒ (3)] shows
that for any c1, . . . , cn ∈ kerψ there exists ϑ ∈Hom(F, kerψ) with ϑ(c j )= c j for
all j = 1, . . . , n and such that ϑ(ei )= 0 for almost all i ∈ I . If c1, . . . , cn generate
the submodule C of kerψ , then the matrix A associated to ϑ with respect to the
basis {ei | i ∈ I } has the required properties. �

We are now ready for the proof of Theorem 4.1. Let ψ : FR → MR be an
epimorphism of FR onto a flat right R-module MR , and let K be the kernel of ψ .

Suppose that K is not finitely generated. Let G be a set of generators of K . Let
Pfin(G) denote the set of all finite subsets of G, partially ordered by set inclusion.
Let Z− be the set of negative integers with its usual order, and let 3 be the disjoint
union of Z− and Pfin(G). Define z< H for every z ∈Z− and every H ∈Pfin(G), so
that 3 turns out to be upward directed and downward directed, without a greatest
element and without a least element. In order to define a net {Aλ | λ ∈ 3} in S,
first of all set Az = 0 for z ∈ Z−. Then define, for each H ∈ Pfin(G), a matrix
AH ∈ B(I, R) by induction on the cardinality |H | of H . For H =∅, set A∅ = 0.
Let H ∈ Pfin(G) with |H | > 0 and suppose that AH ′ has already been defined
for every H ′ ∈ Pfin(G) with |H ′| < |H |. Since H has only finitely many proper
subsets, the submodule C of K generated by H and by all AH ′FR when H ′ ranges
in the set of all proper subsets of H is a finitely generated submodule of K . By
Proposition 4.2, there exists AH ∈ B(I, R) such that AH x = x for every x ∈ C
and AH FR ⊆ K . This completes the definition of the matrix AH . Notice that
AH ′FR ⊆C , so that AH AH ′ = AH ′ whenever H ′ ⊂ H . Thus (Aλ)λ∈3 is a net with
the required properties.

If the module K is finitely generated, there is a finite subset J of I with K ⊆⊕
i∈J ei R. Now MR is flat and

MR ∼= FR/K ∼=
(⊕

i∈J

ei R/K
)
⊕

( ⊕
i∈I\J

ei R
)
.

Thus
(⊕

i∈J ei R
)
/K is flat and finitely presented, hence projective. It follows that

K is a direct summand of
⊕

i∈J ei R. Thus K is a direct summand of FR and
there is an idempotent endomorphism ε of FR with image K . Let A be the matrix
associated to ε with respect to the basis {ei | i ∈ I } of FR . Then the partially
ordered set Z of the integers with the matrices Az = A for every z ∈Z form a net in
S with upper limit limS(Az)z∈Z⊗S F ∼= F/

∑
z∈Z Az F ∼=MR; cf. Examples 2.4(1).

This concludes the case of K finitely generated.
Dually, let R F0

→ R N be an epimorphism of R F0 onto a flat left R-module
R N . Passing to the opposite ring Rop of R, one has an epimorphism F → N of
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the free right Rop-module F onto the flat right Rop-module N . By applying to this
epimorphism the first part of the statement, which we have just proved, we see that
there exists a net (Cλ)λ∈3 in S(I, Rop)with lim (Cλ)λ∈3⊗F ∼= F/

∑
λ∈3 CλF ∼= N

as right Rop-modules. In particular, the Cλ’s belong to S(I, Rop), and CµCλ = Cλ
whenever λ,µ ∈3 and λ<µ. Viewing these objects as left R-modules again and
remarking that transposition is an isomorphism tr : S(I, Rop)→ (S(I, R))op, we
have that the C tr

λ ’s belong to S(I, R), that C tr
λC tr

µ=C tr
λ in S(I, R) whenever λ<µ,

and R N ∼= R F0/
∑

λ∈3(R F0)C tr
λ . From C tr

λC tr
µ = C tr

λ for λ < µ, we obtain that
(1−C tr

λ )(1−C tr
µ)= 1−C tr

µ in S = S(I, R) for λ<µ. Denoting the set 3 with the
inverse order by 3op, we see that there is a net (1−C tr

λ )λ∈3op in S and

F0
⊗S limS(1−C tr

λ )λ∈3op ∼= R F0
/∑

λ∈3

R F0C tr
λ
∼= R N . �

Remark 4.3. Let S and S′ be rings. A ring homomorphism f : S→ S′ induces for
every net (sλ)λ∈3 in S a net ( f (sλ))λ∈3 in S′.

For instance, a ring homomorphism g : R→ R′ induces a ring homomorphism
g̃ = S(I, g) : S = S(I, R)→ S′ = S(I, R′). If (Aλ)λ∈3 is a net in S, then

(1)
(

limS (Aλ)λ∈3⊗S FR
)
⊗R R′ ∼= limS′ (g̃(Aλ))λ∈3⊗S′ F ′R′

and

(2) R′⊗R
(

R F0
⊗S limS (Aλ)λ∈3

)
∼= R′(F ′)0⊗S′ limS′ (g̃(Aλ))λ∈3,

where we have denoted by F ′R′ the free right R′-module of rank |I | and by R′(F ′)0

the free left R′-module of same rank.
We will be particularly interested in the case in which g : R→ R/J (R) is the

canonical projection.

5. Two examples of flat modules

As a first example, we shall consider the flat module FR/G introduced in the
seminal paper [Bass 1960]. Fix a sequence an (n ≥ 1) of elements of a given
ring R, let FR be the free right R-module with basis {en | n ≥ 1}, and let G be
the submodule of FR generated by the elements yn = en − en+1an , for n ≥ 1. It
is known that G is a free R-module with basis { yn | n ≥ 1} and FR/G is a flat
module [Bass 1960; Anderson and Fuller 1992, Lemma 28.1]. The module FR/G
is projective, that is, G is a direct summand of FR , if and only if all the descending
chains Ran ⊇ Ran+1an ⊇ Ran+2an+1an ⊇ · · · , for n ≥ 1, are stationary [Azumaya
1987, Theorem 26].
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Let S be the ring S(Z+, R), where Z+ denotes the set of all positive integers.
Let (An)n∈Z be the net in S defined by An = 0 for n ≤ 0, and

An =



1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0

0 0 · · · 1

−an . . . a2a1 −an . . . a2 · · · −an

0
0


for n ≥ 1. An easy computation shows that A2

n = An for any n ∈ Z. In particular,
An FR is a direct summand of FR .

Proposition 5.1. For every n ≥ 1 the right R-module An FR is the free submodule
of G generated by y1, . . . , yn .

Proof. We must show that the right R-module An FR , generated by

e1− en+1an . . . a2a1, . . . , en − en+1an

coincides with the right module generated by y1= e1−e2a1, . . . , yn = en−en+1an .

ei − en+1an . . . ai+1ai = (ei − ei+1ai )+ (ei+1− ei+2ai+1)ai

+ (ei+2− ei+3ai+2)ai+1ai + · · ·+ (en − en+1an)an−1an−2 . . . ai .

Conversely, for i < n, we see that yi = ei − ei+1ai = (ei − en+1an . . . ai+1ai )−

(ei+1− en+1an . . . ai+1)ai . �

Thus
∑

n∈Z An FR = G and limS (Aλ)λ∈3⊗S F ∼= FR/G.
Let E = EndR(FR). Let K1 =

⋃
∞

n=1 HomR(F,
∑n

j=1 e j R), and let K2 =⋃
∞

n=1 HomR(F, An F). In view of Examples 3.2, K1 and K2 are pure right ideals
of E . Note that they are also projective [Lazard 1969, Théorème 3.2].

Proposition 5.2. The cyclic right E-modules E/K1 and E/K2 are flat and non-
isomorphic. If the elements of the sequence an (n ≥ 1) belong to J (R), then
E/K1⊗E E/J (E)∼= E/K2⊗E E/J (E).

Proof. Applying the functor −⊗E F to the pure exact sequence

0→ K1→ E→ E/K1→ 0,

it follows that E/K1⊗E F = 0 (Examples 3.2). While applying the functor−⊗E F
to the pure exact sequence

0→ K2→ E→ E/K2→ 0,
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it follows that K2⊗E F ∼= G, hence E/K2⊗E F ∼= F/G.
If an (n ≥ 1) is a sequence of elements in J (R) and g : R→ R/J (R) denotes

the canonical projection, then g̃(K1)= g̃(K2), so

E/K1⊗E E/J (E)∼= E/K2⊗E E/J (E)

in view of Remark 4.3. �

The isomorphism f : F→ G defined by f (en)= yn for every n ≥ 1 induces an
isomorphism between the projective ideals K1 and K2.

In the next proposition we give an example that was our initial motivation to
define nets. We construct a countable net whose upper limit is nontrivial if and
only and only if its lower limit is nontrivial; that is, the net produces a nontrivial
right flat module if and only if it produces a nontrivial left flat module. This idea
will be further developed and applied in the proof of Theorem 7.1.

Proposition 5.3. Let S be a ring. Let s and u be elements of S such that u is
invertible and s2

=us. For every m∈Z, set sm=u−m(u−1s)um . Let I =
∑

m∈Z sm S,
and let L =

∑
m∈Z S(1− sm). Then:

(i) (sm)m∈Z is a net.

(ii) The right ideal I and the left ideal L are projective. The right S-module S/I
and the left S-module S/L are flat.

(iii) There exists m ∈ Z such that s2
m = sm if and only if su−1s = s, if and only if

s2
m = sm for all m ∈ Z.

(iv) The right ideal I is finitely generated if and only if the left ideal L is finitely
generated, if and only if su−2s = u−1s.

Proof. (i) Direct computation shows that sm = snsm for m < n.
(ii) Note that S/I = limS (sm)m∈Z and S/L = limS (sm)m∈Z. By Proposition 2.3,

S/I is a flat right module and S/L is a flat left module. Since, by [Lazard 1969,
Théorème 3.2], countably presented flat modules have projective dimension 1, I
and L are projective.

To prove (iii), observe that s2
m = sm if and only if

u−m(u−1s)um
· u−m(u−1s)um

= u−m(u−1s)um,

if and only if su−1s = s, as claimed. As this condition does not depend on m, if
one sm is idempotent all must be idempotent.

(iv) First observe that the identity smsm+1 = sm+1 holds for some m if and only
if su−2s = u−1s. As this condition does not depend on m, this happens if and only
if smsm+1 = sm+1 for all m.
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Since always sm S⊆ sm+1S for every m, su−2s= u−1s implies that sm S= sm+1S
for all m. Hence I is principal.

Conversely, if IS is finitely generated, then S/I is flat and finitely presented,
hence projective, so by Proposition 2.3(iii) there exists m such that s2

m = sm and
I = sm S. Then sm S = sm+1S implies smsm+1 = sm+1, hence su−2s = u−1s.

Similar arguments show the statement for L . �

The symmetry in the conclusions of Proposition 5.3 can be explained through the
following lemma, which is an observation based on [Zöschinger 1981, Satz 1.2].
See also [Puninski 2004, Section 3].

Lemma 5.4. Let S be a ring, and let s ∈ S. There exists a unit u such that s2
= us

if and only if there exists t ∈ S such that ts = 0 and s+ t is a unit. In this situation,
there exists a unit v ∈ S such that t2

= tv.

Proof. Assume there exists a unit u such that s2
= us. Then t = u− s satisfies the

required properties. Conversely, if there exists t ∈ S such that ts = 0 and s+ t is a
unit, then taking u = s+ t we have that us = s2. Note that then also tu = t2. �

6. Lifting projective modules modulo the Jacobson radical

In this section and the next we apply the theory developed earlier to the lifting of
finitely generated projective modules modulo the Jacobson radical.

For every right (left) R-module MR (R N ), let M∗ = HomR(MR, RR) (N ∗ =
HomR(R N , R R)) denote the dual of the module MR (R N ), which is a left (right)
R-module. This defines a duality, that is, a contravariant equivalence, between
the full subcategory of finitely generated projective right R-modules and the full
subcategory of finitely generated projective left R-modules.

Consider a direct sum decomposition P ⊕ Q = (R/J (R))n of the free right
R/J (R)-module (R/J (R))n , so that P and Q are two projective right R/J (R)-
modules. It is easy to see that there exists a finitely generated projective right R-
module MR such that M/M J (R)∼= P if and only if there exists a finitely generated
projective right R-module Q′R such that Q′/Q′ J (R) ∼= Q, if and only if there
exists a finitely generated projective left R-module R N such that N/J (R)N ∼=
HomR(Q, R/J (R)), if and only if there exists a finitely generated projective left
R-module R P ′ such that P ′/J (R)P ′∼=HomR(P, R/J (R)). (To prove this, let MR

be a finitely generated projective right R-module such that P ∼= M/M J (R). Then
M/M J (R)⊕Q∼= (R/J (R))n . By [Anderson and Fuller 1992, Lemma 17.17] there
exists a finitely generated projective right R-module Q′ such that Q′/Q′ J (R)∼= Q
and M ⊕ Q′ ∼= Rn . Take N = HomR(Q′, R).)

In this section we consider the problem of lifting these projective R/J (R)-
modules to projective R-modules, not necessarily finitely generated. We need the
following result of Bergman [Jøndrup 1976, Lemma 2.2].
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Proposition 6.1. Let Q and Q′ be projective right R-modules, and let ϕ : Q′→ Q
be a homomorphism. If the mapping ϕ : Q′/Q′ J (R)→ Q/Q J (R) induced by ϕ
is a pure monomorphism, then ϕ is a pure monomorphism.

Proof. First choose an R-module P ′ such that Q′⊕ P ′ is free, then an R-module
P such that (Q ⊕ P ′)⊕ P is free. Let ε : P ′ → P ′ ⊕ P denote the embedding.
Substituting ϕ : Q′→ Q with ϕ ⊕ ε : Q′ ⊕ P ′→ Q ⊕ P ′ ⊕ P , we may suppose
that Q and Q′ are free. In order to show that ϕ is a pure monomorphism, fix a
finitely generated free direct summand N ′ of Q′. Let N be a finitely generated
free direct summand of Q containing ϕ(N ′). Let f : N → Q and f ′ : N ′ →
Q′ be the inclusions, and g : Q → N , g′ : Q′ → N ′ be homomorphisms such
that g f = 1N and g′ f ′ = 1N ′ . If ϕ|N ′ : N ′ → N denotes the restriction of ϕ :
Q′ → Q, then f ϕ|N ′ = ϕ f ′. If denotes reduction modulo J (R), then f ′ is
a pure monomorphism, so that ϕ f ′ is a pure monomorphism. From f ϕ|N ′ =
ϕ f ′, it follows that ϕ|N ′ is a pure monomorphism. Thus the cokernel of ϕ|N ′ is
a flat finitely presented module, that is, a projective finitely generated module. In
particular, ϕ|N ′ is a split monomorphism. Let h : N → N ′ be a homomorphism
such that 1N ′/N ′ J (R)= hϕ|N ′ . Then hϕ|N ′ is an automorphism of N ′, so that ϕ|N ′ is
a split monomorphism. In particular, ϕ is injective, and ϕ(N ′) is a direct summand
of Q for every finitely generated free direct summand N ′ of Q. As ϕ(Q′) is the
directed union of all these direct summands ϕ(N ′), ϕ(Q′) is a pure submodule
of Q. �

Corollary 6.2. Let R be a ring with the property that for every projective right
R/J (R)-module P there exists a projective right R-module Q with Q/Q J (R)∼= P .
For every flat right R/J (R)-module M of projective dimension pdR/J (R)(M) ≤ 1
there exists a flat right R-module N of projective dimension pdR(N ) ≤ 1 with
N/N J (R) ∼= M . Moreover, if M is finitely generated, then N can also be chosen
finitely generated.

Proof. Apply Proposition 6.1 to a presentation

0 - Q′/Q′ J (R)
ϕ- Q/Q J (R) - M - 0

of the R/J (R)-module M with Q and Q′ projective R-modules. �

The hypothesis of Corollary 6.2 applies to all rings R for which every projective
right R/J (R)-module is free, and to all exchange rings R.

Proposition 6.3. Let R be a ring and X a set. Let P⊕Q= (R/J (R))(X) be a direct
sum decomposition of the free right R/J (R)-module (R/J (R))(X) as a direct sum
of two projective right R/J (R)-modules P and Q, and let π : (R/J (R))(X)→ P
be the projection with kernel Q. The following statements are equivalent:
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(i) There exist a flat right R-module MR of projective dimension at most 1, an
epimorphism ψ : R(X) → MR and an isomorphism α : MR/MR J (R)→ P
such that α ◦ (ψ ⊗ R/J (R))= π .

(ii) There exists a projective right R-module Q′R such that Q′/Q′ J (R)∼= Q.

Proof. (i)⇒ (ii) Let MR , ψ and α have the properties stated in (i). We will show
that the projective module Q′ = kerψ has the property required in (ii). From the
exact sequence

0 - Q′ - R(X)
ψ- MR - 0,

we get the exact sequence

0 - Q′/Q′ J (R) - (R/J (R))(X)
ψ⊗R/J (R)- MR/MR J (R) - 0.

Thus Q = kerπ = ker(α ◦ (ψ ⊗ R/J (R)))= ker(ψ ⊗ R/J (R))∼= Q′/Q′ J (R).
(ii)⇒ (i) Let Q′R be a projective R-module such that Q′/Q′ J (R) ∼= Q. Let

ρ : Q′→ Q be an epimorphism with kernel Q′ J (R). Denote by

ε : Q→ (R/J (R))(X)

the embedding, which is a split monomorphism. As ερ : Q′R → (R/J (R))(X)

factors through the canonical projection of R(X) onto (R/J (R))(X), there is a
commutative diagram

Q′R
ϕ - R(X)

Q

ρ

?
ε - (R/J (R))(X)

?

By Proposition 6.1 the mapping ϕ is a pure monomorphism, so that its cokernel
MR is a flat module of projective dimension ≤ 1. Let ψ : R(X) → MR be the
canonical projection. Applying −⊗R R/J (R) to the pure exact sequence

0 - Q′R
ϕ- R(X)

ψ- MR→ 0,

we obtain an exact sequence that is the upper row of the commutative diagram

0 - Q′R/Q′R J (R) - (R/J (R))(X)
ψ⊗R/J (R)- MR/MR J (R) - 0

0 - Q
?

- (R/J (R))(X)
?

π - P - 0.

Here the two vertical arrows are isomorphisms (the vertical arrow on the right is
the identity). Thus there is an isomorphism α : MR/MR J (R)→ P that completes
the commutative diagram; that is, α ◦ (ψ ⊗ R/J (R))= π . �
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7. Lifting finitely generated projective modules

Theorem 7.1. Let P⊕Q= (R/J (R))n be a direct sum decomposition of the finitely
generated free right R/J (R)-module (R/J (R))n as a direct sum of two projective
right R/J (R)-modules P and Q. Then the following statements are equivalent:

(i) There exists a finitely generated flat right R-module MR such that M/M J (R)
is isomorphic to P .

(ii) There exists a finitely generated, countably presented, flat right R-module
MR such that M/M J (R)∼= P .

(iii) There exists a projective right R-module Q′R such that Q′/Q′ J (R)∼= Q.

(iv) There exists a finitely generated flat left R-module R N such that N/J (R)N ∼=
HomR(Q, R/J (R)).

(v) There exists a finitely generated, countably presented, flat left R-module R N
such that N/J (R)N ∼= HomR(Q, R/J (R)).

(vi) There exists a projective left R-module R P ′ such that P ′/J (R)P ′ is isomor-
phic to HomR(P, R/J (R)).

Proof. Suppose that (i) holds. Let MR be a finitely generated flat right R-module
such that M/M J (R)∼= P , where P⊕Q= (R/J (R))n . Let α :M/M J (R)→ P be
an isomorphism, and let π : (R/J (R))n→ P be the projection with kernel Q. The
onto mapping α−1π : (R/J (R))n→ M/M J (R) can be lifted to a homomorphism
of right R-modules ψ : Rn

R → MR , which is necessarily onto by Nakayama’s
Lemma. Let K = kerψ and consider the pure exact sequence of right R-modules

0 - K ε- Rn
R

ψ- MR - 0.

Tensoring by R/J (R), this induces the exact sequence

(3) 0 - K/K J (R) ε- (R/J (R))n α−1π- M/M J (R) - 0,

which splits because M/M J (R) ∼= P is projective. Moreover, Q = kerπ =
ker(α−1π)∼= K/K J (R). As (3) splits, there exists a left inverse

ϕ : (R/J (R))n→ K/K J (R)

of ε with kernel isomorphic to M/M J (R) ∼= P . As Rn is projective, ϕ can be
lifted to a map ϕ : Rn

→ K making the diagram

K ε - Rn
R

ϕ - K

K/K J (R)
?

ε- (R/J (R))n
?

ϕ- K/K J (R),
?
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commute. In this diagram the vertical arrows are the natural projections. By
Proposition 4.2, there exists ω : Rn

→ K such that εω is the identity over εϕ(Rn).
Equivalently, ωεϕ=ϕ. Denote by ω : (R/J (R))n→ K/K J (R) the induced homo-
morphism. Then ωεϕ = ϕ. As ϕε is the identity mapping, ω−ϕεω = ω−ω = 0,
so that (ω− ϕεω)(Rn)⊆ K J (R), from which ε(ω− ϕεω)(Rn)⊆ (J (R))n . Thus
ε(ω − ϕεω) ∈ J (End(Rn)) [Anderson and Fuller 1992, Corollary 17.12]. Set
β = 1 − ε(ω − ϕεω), and note that β is an invertible element of End(Rn). As
ωεϕ = ϕ, it is easy to see that βεϕ = (εϕ)2. Observe that β induces the identity
endomorphism on (R/J (R))n and also that εϕ induces the idempotent endomor-
phism εϕ on (R/J (R))n , whose image is K/K J (R) ∼= Q and whose kernel is
isomorphic to P . For any m ∈ Z, let Am be the matrix associated to the en-
domorphism β−m−1εϕβm

: Rn
R → Rn

R . By Proposition 5.3(i), (Am)m∈Z is a net
in the ring S = S(n, R) of n × n matrices over R. Hence the left R-module
R N = Rn/

⋃
m∈Z Rn(1− Am) is flat. By Remark 4.3, if we apply isomorphism (2)

with R′= R/J (R) and g the canonical projection, and using that (g̃(Am))m∈Z is the
net in S′ = S(n, R/J (R)) constantly equal to the matrix A of the endomorphism
εϕ of (R/J (R))n , we see that

(R/J (R))n ⊗S′ limS′ (g̃(Am))m∈Z
∼= (R/J (R))n ⊗S′ limS′ (A)m∈Z.

By Examples 2.4(1), limS′ (A)m∈Z
∼= S′A. Thus

N/J (R)N ∼= R/J (R)⊗R N ∼= (R/J (R))n ⊗S′ limS′ (g̃(Am))m∈Z
∼=

∼= (R/J (R))n ⊗S′ limS′ (A)m∈Z
∼= (R/J (R))n ⊗S′ S′A ∼= (R/J (R))n(A).

Since Q ∼= A(R/J (R))n , we can conclude N/J (R)N ∼= HomR(Q, R/J (R)). As
N is a finitely generated, countably presented, flat module, this shows that (iv) and
(v) hold.

By symmetry, that is, applying (i) implies (iv) and (v) to the opposite ring Rop,
we see that (iv) implies (i) and (ii). Hence (i), (ii), (iv) and (v) are equivalent
statements.

By Proposition 6.3, (iii) implies (i). Assume that (ii) holds, so that there exist a
finitely generated, countably presented, flat right R-module M and an isomorphism
α : M/M J (R)→ P . The module M has projective dimension ≤ 1 [Lazard 1969,
Théorème 3.2]. Let π : (R/J (R))n→ P be the projection with kernel Q. The onto
mapping α−1π : (R/J (R))n → M/M J (R) can be lifted to a homomorphism of
right R-modules ψ : Rn

R→MR , which is necessarily onto by Nakayama’s Lemma.
As the conditions of Proposition 6.3(i) are satisfied, we deduce the existence of a
right projective module Q′ such that Q′/Q′ J (R)∼= Q. This proves that (ii) implies
(iii), so that (ii) and (iii) are equivalent statements. By symmetry, (v) and (vi) are
also equivalent. �
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Recall that a projective module P is a direct sum of countably generated sub-
modules, and that P=0 if and only if P/P J (R)=0. Hence, if a projective module
is finitely generated modulo the Jacobson radical, it must be countably generated.
Thus the modules P ′ and Q′ in the statement of Theorem 7.1 are necessarily count-
ably generated.

It would be interesting to know whether the module M in Theorem 7.1(ii) is
uniquely determined up to isomorphism. In Proposition 5.2 we saw an example of
countably presented nonisomorphic cyclic flat modules that are isomorphic modulo
the Jacobson radical, but the cyclic modules in that example are not projective
modulo the Jacobson radical.

We conclude with two results related to this question, the first of which appears
as [Lam 1999, p. 161, Exercise 20]. We give a proof for the sake of completeness.

Lemma 7.2. Let M be a finitely generated flat right module over a ring R, and let
P be a projective right R-module. If γ : P→ M is a projective cover, then γ is an
isomorphism.

Proof. The module P is finitely generated because M is finitely generated and
ker γ is small in P . Hence there exist n and a projective module Q such that
P ⊕ Q ∼= Rn . As γ ⊕ 1Q : P ⊕ Q → M ⊕ Q is a projective cover, and γ is an
isomorphism if and only if so is γ ⊕1Q , we may assume without loss of generality
that P is Rn and that γ : Rn

→ M is a projective cover.
Let x ∈ ker γ . By Proposition 4.2, there exists A ∈Mn(R) such that Ax = x and

ARn
⊆ ker γ ⊆ Rn J (R). This implies that (1− A)x = 0 and that A ∈ Mn(J (R)),

thus x = 0. This shows that ker γ = 0, hence γ is an isomorphism. �

Proposition 7.3. Let M be a finitely generated flat right module over a ring R, and
let P be a projective module. If M/M J (R)∼= P/P J (R), then M ∼= P .

Proof. As M/M J (R) ∼= P/P J (R), the module P/P J (R) is finitely generated.
We will prove that P is, in fact, finitely generated.

By Theorem 7.1, there exists a finitely generated, countably presented, flat mod-
ule M ′ such that P/P J (R)∼= M ′/M ′ J (R). Let α : P/P J (R)→ M ′/M ′ J (R) be
an isomorphism. Let π : P → P/P J (R) and π ′ : M ′→ M ′/M ′ J (R) denote the
canonical projections. Since P is projective, there exists β : P→ M ′ such that the
diagram

P
β - M ′

P/P J (R)

π

?
α- M ′/M ′ J (R)

π ′

?
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is commutative. Since kerπ ′ is small in M ′, β is onto. As M ′ has projective
dimension 1, kerβ is projective. Applying −⊗R R/J (R) to the exact sequence

0 - kerβ→ P
β- M ′ - 0,

we obtain the exact sequence

0 - kerβ⊗R R/J (R)→ P/P J (R) α- M ′/M ′ J (R) - 0.

Since α is an isomorphism, we have 0 = kerβ ⊗R R/J (R) ∼= kerβ/(kerβ)J (R).
But kerβ is projective, hence β is an isomorphism. This proves that P is a finitely
generated projective module.

Let ρ : M→ M/M J (R) denote the canonical projection. Since P is projective,
there exists γ : P→ M such that the diagram

P
γ - M

P/P J (R)

π

?
∼=- M/M J (R),

ρ

?

is commutative. Since ker ρ is small in M , γ is onto. Since P is finitely generated
and ker γ ⊆ P J (R), ker γ is small in P . Hence γ : P→ M is a projective cover.
By Lemma 7.2, γ is an isomorphism. �

Thus if a finitely generated projective right R/J (R)-module P satisfies condi-
tion (i) of Theorem 7.1 (that is, P ∼= M/M J (R) for some finitely generated flat
right R-module M) and the right/left symmetric of condition (vi) of Theorem 7.1
(that is, P ∼= P ′/P ′ J (R) for some projective right R-module P ′), then M ∼= P ′ is
a projective cover of P .
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MAXIMAL TORI DETERMINING THE ALGEBRAIC GROUPS

SHRIPAD M. GARGE

Let k be a finite field, a global field, or a local non-archimedean field, and
let H1 and H2 be split, connected, semisimple algebraic groups over k. We
prove that if H1 and H2 share the same set of maximal k-tori, up to k-
isomorphism, then the Weyl groups W(H1) and W(H2) are isomorphic, and
hence the algebraic groups modulo their centers are isomorphic except for
a switch of a certain number of factors of type Bn and Cn.

(Due to a recent result of Philippe Gille, this result also holds for fields
which admit arbitrary cyclic extensions.)

1. Introduction

Let H be a connected, semisimple algebraic group over a field k. It is natural to ask
to what extent the group H is determined by the k-isomorphism classes of maximal
k-tori contained in it. We study this question over finite fields, global fields and
local non-archimedean fields, and prove the following theorem.

Theorem 1.1 (Theorem 4.1). Let k be a finite field, a global field or a local non-
archimedean field, and let H1 and H2 be split, connected, semisimple algebraic
groups over k. Suppose that for every maximal k-torus T1 ⊂ H1 there exists a
maximal k-torus T2 ⊂ H2 such that the tori T1 and T2 are k-isomorphic, and vice
versa. Then the Weyl groups W (H1) and W (H2) are isomorphic.

Moreover, if we write W (H1) and W (H2) as a direct product of Weyl groups of
simple algebraic groups, W (H1)=

∏
31

W1,α, and W (H2)=
∏
32

W2,β , then there
exists a bijection i : 31 → 32 such that W1,α is isomorphic to W2,i(α) for every
α ∈31.

Since a split simple algebraic group with trivial center is determined by its Weyl
group, except for the groups of the type Bn and Cn , we have following theorem.

Theorem 1.2. Let k be as in Theorem 1.1, and let H1 and H2 be split, connected,
semisimple algebraic groups over k, with trivial center. Write H1 and H2 as direct
products of simple groups: H1 =

∏
31

H1,α, and H2 =
∏
32

H2,β . If H1 and H2

satisfy the condition given in Theorem 1.1, then there is a bijection i : 31 → 32

MSC2000: 20G15.
Keywords: maximal tori, algebraic groups.
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such that H1,α is isomorphic to H2,i(α), except for the case where H1,α is a simple
group of type Bn or Cn , in which case H2,i(α) could be of type Cn or Bn .

From the explicit description of maximal k-tori in SO(2n+1) and Sp(2n) (see
for instance [Kariyama 1989, Proposition 2]) one finds that these groups contain
the same set of k-isomorphism classes of maximal k-tori.

We show by an example that the existence of split tori in the groups H1 and H2

is necessary. Note that if k is Qp, then the Brauer group of k is Q/Z. Consider the
central division algebras of degree five, D1 and D2, corresponding to 1/5 and 2/5
in Q/Z respectively, and let

H1 = SL1(D1) and H2 = SL1(D2).

The maximal tori in H1 and H2 correspond, respectively, to the maximal commu-
tative subfields in D1 and D2. But over Qp every division algebra of a fixed degree
contains every field extension of that degree (see [Pierce 1982, Proposition 17.10
and Corollary 13.3]), so H1 and H2 share the same set of maximal tori over k. But
they are not isomorphic, since it is known that SL1(D) ∼= SL1(D′) if and only if
D ∼= D′ or D ∼= (D′)op [Knus et al. 1998, 26.11].

This paper is arranged as follows. The description of the k-conjugacy classes
of maximal k-tori in an algebraic group H defined over k can be given in terms of
the Galois cohomology of the normalizer in H of a fixed maximal torus. Similarly,
the k-isomorphism classes of n-dimensional tori defined over k can be described
in terms of n-dimensional integral representations of the Galois group of k (the
algebraic closure of k) over k. Using these two descriptions, in Section 2 we obtain
a Galois cohomological description for the k-isomorphism classes of maximal k-
tori in H . Since we are dealing with groups that are split over the base field k, the
Galois action on the Weyl groups is trivial. This enables us to prove, in Section
4, that if split, connected, semisimple algebraic groups H1 and H2 of rank n share
the same set of maximal k-tori up to k-isomorphism, then the Weyl groups W (H1)

and W (H2), considered as subgroups of GLn(Z), share the same set of elements
up to conjugacy in GLn(Z).

This then is the main question to be answered: if the Weyl groups of two split,
connected, semisimple algebraic groups, W1 and W2, embedded in GLn(Z) in the
natural way, i.e., by their action on the character group of a fixed split maximal
torus, have the property that every element of W1 is GLn(Z)-conjugate to one
in W2 and vice versa, are the Weyl groups isomorphic? Much of the work in
this paper seeks to prove this statement by using elaborate information available
about the conjugacy classes in Weyl groups of simple algebraic groups together
with their standard representations in GLn(Z). Our analysis finally depends on the
knowledge of characteristic polynomials of elements in the Weyl groups considered



MAXIMAL TORI DETERMINING THE ALGEBRAIC GROUPS 71

as subgroups of GLn(Z). This information is summarized in Section 3. Using it
we prove the main theorem in Section 4.

We emphasize that if we were proving Theorems 1.1 and 1.2 for simple alge-
braic groups, our proofs would be relatively very simple. However, for semisimple
groups, we have to make a somewhat complicated inductive argument on the max-
imal rank among the simple factors of the semisimple groups H1 and H2.

We use the term “simple Weyl group of rank r” for the Weyl group of a simple
algebraic group of rank r . Any Weyl group is a product of simple Weyl groups in
a unique way (up to permutation). We say that two Weyl groups are isomorphic if
and only if the simple factors and their multiplicities are the same.

The question studied in this paper seems relevant for the study of Mumford–
Tate groups over number fields. The author was informed, after the completion of
the paper, that Theorem 1.1 over a finite field is implicit in the work of Larsen and
Pink [1992]. We would like to mention that although much of the paper could be
said to be implicitly contained in [Larsen and Pink 1992], the theorems we state
(and prove) are not explicitly stated there, and our proofs are also different.

2. Galois cohomological lemmas

We begin by fixing notation. Let k denote an arbitrary field and let G(k/k) be
the Galois group of k (the algebraic closure of k) over k. Let H denote a split,
connected, semisimple algebraic group defined over k and let T0 be a fixed split
maximal torus in H , of dimension n. Let W be the Weyl group of H with respect
to T0. Then we have an exact sequence of algebraic groups defined over k,

0−→ T0 −→ N (T0)−→W −→ 1

where N (T0) denotes the normalizer of T0 in H .
The above exact sequence gives us a map ψ : H 1(k, N (T0))→ H 1(k,W ). It is

well known that a certain subset of H 1(k, N (T0)) classifies k-conjugacy classes of
maximal k-tori in H . For the sake of completeness, we formulate this as a lemma
in the case of split, connected, semisimple groups.

Lemma 2.1. Let H be a split, connected, semisimple algebraic group defined over
a field k and let T0 be a fixed split maximal torus in H . The natural embedding
N (T0) ↪→H induces a map9 :H 1(k, N (T0))→H 1(k, H). The set of k-conjugacy
classes of maximal tori in H are in one-one correspondence with the subset of
H 1(k, N (T0)) which is mapped to the neutral element in H 1(k, H) by the map 9.

Proof. Let T be a maximal k-torus in H and let L be a splitting field of T , that is,
assume that the torus T splits as a product of Gms over L . We assume that the field
L is Galois over k. By the uniqueness of maximal split tori up to conjugacy, there
exists an element a ∈ H(L) such that aT0 a−1

= T . Then for any σ ∈G(L/k), we
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have σ(a)T0 σ(a)−1
= T , as both T0 and T are defined over k. This implies that(

a−1σ(a)
)
T0
(
a−1σ(a)

)−1
= T0.

Therefore a−1σ(a) ∈ N (T0). This enables us to define a map G(L/k)→ N (T0)

which sends σ to a−1σ(a), and by composing this map with the natural map
G(k/k)→ G(L/k), we get a map φa : G(k/k)→ N (T0). We check that

φa(στ)= φa(σ )σ
(
φa(τ )

)
for all σ, τ ∈ G(k/k), and hence that φa is a 1-cocycle. If b ∈ H(L) is another
element such that bT0 b−1

= T , we see that

φa(σ )= (b−1a)−1φb(σ )σ (b−1a).

Thus the element [φa] ∈ H 1(k, N (T0)) is determined by the maximal torus T , and
so we denote it by φ(T ). It is clear that φ(T ) is determined by the k-conjugacy
class of T . Moreover, if φ(T ) = φ(S) for two maximal tori T and S in H , then
one can check that these two tori are conjugate over k. Indeed, if T = aT0 a−1 and
S = bT0 b−1 for a, b ∈ H(k) then for any σ ∈ G(k/k),

a−1σ(a)= c−1(b−1σ(b)
)
σ(c)

for some c ∈ N (T0). Then σ(bca−1) = bca−1 for all σ ∈ G(k/k), and hence
bca−1

∈ H(k) and (bca−1)T (bca−1)−1
= S. Further, it is clear that the image of

φ in H 1(k, N (T0)) is mapped to the neutral element in H 1(k, H) by 9.
Moreover, if φ1 : G(k/k)→ N (T0) is a 1-cocycle such that 9(φ1) is neutral

in H 1(k, H), then φ1(σ ) = a−1σ(a) for some a ∈ H(k). Then the cohomology
class [φ1] ∈ H 1(k, N (T0)) corresponds to the maximal torus S1 = aT0a−1 in H .
Since a−1σ(a)= φ1(σ ) ∈ N (T0), the torus S1 is invariant under the Galois action,
and so we conclude that it is defined over k. Thus the image of φ is the inverse
image of the neutral element in H 1(k, H) under the map 9. This is the complete
description of the k-conjugacy classes of maximal k-tori in the group H .

Finally, we observe that the detailed proof we have given above amounts to
looking at the exact sequence 1→ N (T0)→ H→ H/N (T0)→ 1 which gives an
exact sequence

H/N (T0)(k)−→ H 1(k, N (T0))−→ H 1(k, H)

of pointed sets. Therefore H/N (T0)(k), which is the variety of conjugacy classes
of k-tori in H , is identified with the elements of H 1(k, N (T0))which become trivial
in H 1(k, H). �

We also recall the correspondence between k-isomorphism classes of n-dimen-
sional k-tori and equivalence classes of n-dimensional integral representations of
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G(k/k). Let T0=Gn
m be the split torus of dimension n, let T1 be an n-dimensional

torus defined over k, and let L1 denote the splitting field of T1. Since the torus
T1 is split over L1, we have an L1-isomorphism f : T0→ T1. The Galois action
on T0 and T1 gives us another isomorphism, f σ := σ f σ−1

: T0→ T1. Again one
sees that the map ϕ f :G(k/k)→AutL1(T0), given by σ 7→ f −1 f σ , is a 1-cocycle.
Since the torus T0 is already split over k, we have AutL1(T0) ∼= Autk(T0), and
hence the Galois group G(k/k) acts trivially on AutL1(T0), which is isomorphic
to GLn(Z). Therefore, ϕ f is actually a homomorphism from the Galois group
G(k/k) to GLn(Z). This homomorphism gives an n-dimensional integral repre-
sentation of the absolute Galois group, G(k/k). By changing the isomorphism f
to any other L1-isomorphism from T0 to T1, we get a conjugate of ϕ f . Thus the
element [ϕ f ] in H 1(k,GLn(Z)) is determined by T1 and we denote it by ϕ(T1).
Thus a k-isomorphism class of an n-dimensional torus gives us an equivalence
class of n-dimensional integral representations of the Galois group, G(k/k). This
correspondence is known to be bijective [Platonov and Rapinchuk 1994, 2.2].

Since the group H that we consider here is split over the base field k, the Weyl
group W of H is defined over k, and W (k) = W (k). Therefore G(k/k) acts
trivially on W , and hence H 1(k,W ) is the set of conjugacy classes of elements
in Hom(G(k/k),W ). Since W acts faithfully on the character group of T0, we
can consider W ↪→ GLn(Z) and thus each element of H 1(k,W ) gives us an in-
tegral representation of the absolute Galois group. For a maximal torus T in H ,
we already have an n-dimensional integral representation of G(k/k), as described
above. We prove that this representation is equivalent to a Galois representation
given by an element of H 1(k,W ).

Lemma 2.2. Let H be a split, connected, semisimple algebraic group defined over
k. Fix a maximal split k-torus T0 in H . Let T be a maximal k-torus in H , let φ(T )∈
H 1(k, N (T0)) be the cohomology class corresponding to the k-conjugacy class of
T in H , and let ϕ(T ) ∈ H 1(k,GLn(Z)) be the cohomology class corresponding
to the k-isomorphism class of T . Then the integral representations given by ϕ(T )
and i ◦ψ ◦φ(T ) are equivalent, where ψ : H 1(k, N (T0))→ H 1(k,W ) is induced
by the natural map from N (T0) to W , and i is the natural map from H 1(k,W ) to
H 1(k,GLn(Z)).

Proof. Let L be a splitting field of T , then an element a∈H(L) such that aT0 a−1
=

T enables us to define a 1-cocycle φa :G(k/k)→N (T0) given by φa(σ )=a−1σ(a).
The element φ(T ) ∈ H 1(k, N (T0)) is precisely the class [φa].

Further, we treat conjugation by a as an L-isomorphism f : T0→ T , and then
it can be checked that the map f σ := σ f σ−1 is precisely conjugation by σ(a).
The element ϕ(T ) ∈ H 1(k,GLn(Z)) is equal to [ϕ f ], where ϕ f (σ ) = f −1 f σ .
Now, the map ψ : N (T0)→W is the natural map taking an element α ∈ N (T0) to
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α := α · T0 ∈W = N (T0)/T0. Hence we have

ψ
(
φa(σ )

)
= a−1σ(a)= f −1 f σ = ϕ f (σ ).

Since the action of W on T0 is given by conjugation, it is clear that the integral
representation of the Galois group G(k/k), given by ψ(φ(T )), is equivalent to the
one given by ϕ(T ). �

Thus, a k-isomorphism class of a maximal torus in H gives an element in
H 1(k,W ). We note here that not every subgroup of the Weyl group W may appear
as a Galois group of some finite extension K/k. For instance, if k is a local field
of characteristic zero it is known that the Galois group of any finite extension over
k is a solvable group [Serre 1979, IV].

If we assume that the base field k is either a finite field or a local non-archimedean
field, we have the following result.

Lemma 2.3. Let k be a finite field or a local non-archimedean field and let H be
a split, connected, semisimple algebraic group defined over k. Fix a split maximal
torus T0 in H and let W denote the Weyl group of H with respect to T0. An element
in H 1(k,W ) which corresponds to a homomorphism ρ : G(k/k)→W with cyclic
image, corresponds to a k-isomorphism class of a maximal torus in H under the
mapping ψ : H 1(k, N (T0))→ H 1(k,W ).

Proof. Consider the map 9 : H 1(k, N (T0))→ H 1(k, H) induced by the inclusion
N (T0) ↪→ H . If we denote the neutral element in H 1(k, H) by ι, then by Lemma
2.1 the set

X :=
{

f ∈ H 1(k, N (T0)) :9( f )= ι
}

is in one-one correspondence with the k-conjugacy classes of maximal k-tori in H .
By Lemma 2.2, it is enough to show that [ρ] ∈ψ(X), where ψ : H 1(k, N (T0))→

H 1(k,W ) is induced by the natural map from N (T0) to W .
By Tits’ theorem [1966, 4.6], there exists a subgroup W of N (T0)(k) such that

the sequence
0−→ µn

2 −→W −→W −→ 1

is exact. Let N denote the image of ρ in W . We know that N is a cyclic subgroup
of W . Let w be a generator of N and w be a lifting of w to W . Since the base field
k admits cyclic extensions of any given degree, there exists a map ρ1 from G(k/k)
to W whose image is the cyclic subgroup generated by w. Since the Galois action
on W is trivial, as W is a subgroup of N (T0)(k), the map ρ1 could be treated as a
1-cocycle from G(k/k) to N (T0). Consider [ρ1] as an element in H 1(k, N (T0)),
then ψ[ρ1] = [ρ] ∈ H 1(k,W ). We now consider two cases.

Case 1: k is a finite field.
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By Lang’s Theorem [1956, Corollary to Theorem 1], H 1(k, H) is trivial and so
the set X coincides with H 1(k, N (T0)). Therefore the element [ρ1]∈H 1(k, N (T0))

corresponds to a k-conjugacy class of maximal k-torus in H . Then, by Lemma 2.2,
[ρ] = ψ[ρ1] corresponds to a k-isomorphism class of maximal k-tori in H .

Case 2: k is a local non-archimedean field.
By [Platonov and Rapinchuk 1994, Proposition 2.10] there exists a semisimple,

simply connected algebraic group H̃ , which is defined over k, together with a k-
isogeny π : H̃ → H . We have already fixed a split maximal torus T0 in H ; let
T̃0 be the split maximal torus in H̃ which gets mapped to T0 by the covering map
π . It can be seen that by restriction we get a surjective map π : N (T̃0)→ N (T0),
where the normalizers are taken in appropriate groups. Moreover, the induced map
π1 : W̃ →W is an isomorphism.

We define the maps

ψ̃ : H 1(k, N (T̃0))→ H 1(k, W̃ ) and 9̃ : H 1(k, N (T̃0))→ H 1(k, H̃)

in the same way as the maps ψ and 9 are defined for the group H .
Consider the following diagram, where the horizontal arrows represent natural

maps.
H̃ ←−−− N (T̃0) −−−→ W̃

π

y π

y yπ1

H ←−−− N (T0) −−−→ W,

It is clear that this diagram is commutative and hence so is the following one.

H 1(k, H̃)
9̃
←−−− H 1(k, N (T̃0))

ψ̃
−−−→ H 1(k, W̃ )

π∗

y π∗

y yπ∗1
H 1(k, H) ←−−−

9
H 1(k, N (T0)) −−−→

ψ
H 1(k,W ).

Since π1 is an isomorphism, the map π∗1 is a bijection. Now consider an element
[ρ] ∈ H 1(k,W ) such that the image of the 1-cocycle ρ is a cyclic subgroup of
W , and let [ρ̃] be its inverse image in H 1(k, W̃ ) under the bijection π∗1 . Using
Tits’ theorem [1966] as above, we lift [ρ̃] to an element [ρ̃1] in H 1(k, N (T̃0)).
Since H̃ is simply connected and k is a non-archimedean local field, H 1(k, H̃) is
trivial [Bruhat and Tits 1967; Kneser 1965a, 1965b]. Therefore, 9̃[ρ̃1] is neutral
in H 1(k, H̃) and so is π∗(9̃[ρ̃1]) in H 1(k, H). By commutativity of the diagram,
we have that the element [ρ] ∈ H 1(k,W ) has a lift π∗[ρ̃1] in H 1(k, N (T0)) such
that 9(π∗[ρ̃1]) is neutral in H 1(k, H). Thus the element [ρ] corresponds to a k-
isomorphism class of a maximal torus in H . �
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3. Characteristic polynomials

For a finite subgroup W of GLn(Z), we define ch(W ) to be the set of characteristic
polynomials of elements of W , and ch∗(W ) to be the set of irreducible factors of
elements of ch(W ). Since all the elements of W are of finite order, the irreducible
factors (over Q) of the characteristic polynomials are cyclotomic polynomials. We
denote by φr the r -th cyclotomic polynomial, that is, the irreducible monic poly-
nomial over Z satisfied by a primitive r -th root of unity. We define

mi (W )=max
{
t : φt

i divides f for some f ∈ ch(W )
}

and
m′i (W )=min

{
t : φt

2 ·φ
mi (W )
i divides f for some f ∈ ch(W )

}
.

For positive integers i 6= j , we define

mi, j (W )=max
{
t + s : φt

i ·φ
s
j divides f for some f ∈ ch(W )

}
.

If U1 is a subgroup of GLn(Z) and U2 is a subgroup of GLm(Z), then U1×U2 can
be treated as a subgroup of GLm+n(Z). Then

ch(U1×U2)=
{

f1 · f2 : f1 ∈ ch(U1), f2 ∈ ch(U2)
}
.

Moreover, one can easily check that

mi (U1×U2)=mi (U1)+mi (U2),

m′i (U1×U2)=m′i (U1)+m′i (U2)

for all i , and
mi, j (U1×U2)=mi, j (U1)+mi, j (U2)

for all i, j . A simple Weyl group W of rank n has a natural embedding in GLn(Z).
We obtain a description of the sets ch∗(W ) with respect to this natural embedding.
Here we use the following result due to T. A. Springer [1974, Theorem 3.4(i)] about
the fundamental degrees of the Weyl group W . We recall that the degrees of the
generators of the invariant algebra of the Weyl group are called as the fundamental
degrees of the Weyl group.

Theorem 3.1 (Springer). Let W be a complex reflection group with fundamental
degrees d1, d2, . . . , dm . An r-th root of unity occurs as an eigenvalue for some
element of W if and only if r divides one of the fundamental degrees di of W .

Equivalently, the irreducible polynomial φr is in ch∗(W ) if and only if r divides
one of the fundamental degrees di of the reflection group W .

Table 3.2 lists the fundamental degrees and the divisors of degrees for the simple
Weyl groups (see [Humphreys 1990, 3.7]).
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Type Degrees Divisors of degrees

An 2, 3, . . . , n+1 1, 2, . . . , n+1
Bn 2, 4, . . . , 2n 1, 2, . . . , n, n+2, n+4, . . . , 2n for n even

1, 2, . . . , n, n+1, n+3, . . . , 2n for n odd
Dn 2, 4, . . . , 2n−2, n 1, 2, . . . , n, n+2, n+4, . . . , 2n−2 for n even

1, 2, . . . , n, n+1, n+3, . . . , 2n−2 for n odd
G2 2, 6 1, 2, 3, 6
F4 2, 6, 8, 12 1, 2, 3, 4, 6, 8, 12
E6 2, 5, 6, 8, 9, 12 1, 2, 3, 4, 5, 6, 8, 9, 12
E7 2, 6, 8, 10, 12, 14, 18 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 18
E8 2, 8, 12, 14, 18, 20, 24, 30 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 24, 30

Table 3.2. Fundamental degrees and divisors of the simple Weyl groups

Using Theorem 3.1 and Table 3.2, we can now easily compute the set ch∗(W )

for any simple Weyl group W . We summarize them below.

ch∗(W (An))= {φ1, φ2, . . . , φn+1}

ch∗(W (Bn))= {φi , φ2i : i = 1, 2, . . . , n}

ch∗(W (Dn))= {φi , φ2 j : i = 1, 2, . . . , n, j = 1, 2 . . . , n− 1}

ch∗(W (G2))= {φ1, φ2, φ3, φ6}

ch∗(W (F4))= {φ1, φ2, φ3, φ4, φ6, φ8, φ12}

ch∗(W (E6))= {φ1, φ2, φ3, φ4, φ5, φ6, φ8, φ9, φ12}

ch∗(W (E7))= {φ1, φ2, . . . , φ10, φ12, φ14, φ18}

ch∗(W (E8))= {φ1, φ2, . . . , φ10, φ12, φ14, φ15, φ18, φ20, φ24, φ30}

4. Main result

In this section, k is either a finite field, a global field or a non-archimedean local
field. We now restate the main result, Theorem 1.1.

Theorem 4.1. Let H1 and H2 be split, connected, semisimple algebraic groups
defined over k. Suppose that for every maximal k-torus T1 ⊂ H1 there exists a
maximal k-torus T2⊂ H2 such that the torus T2 is k-isomorphic to the torus T1 and
vice versa. Then, the Weyl groups W (H1) and W (H2) are isomorphic.

Moreover, if we write W (H1) and W (H2) as a direct product of Weyl groups of
simple algebraic groups, W (H1)=

∏
31

W1,α, and W (H2)=
∏
32

W2,β , then there
exists a bijection i : 31 → 32 such that W1,α is isomorphic to W2,i(α) for every
α ∈31.

The proof of this theorem occupies the rest of this section. Clearly the groups
H1 and H2 are of the same rank, say n. Let W1 and W2 denote the Weyl groups
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of H1 and H2, respectively. We always treat W1 and W2 as subgroups of GLn(Z).
We first prove a lemma which transforms the information about k-isomorphism of
maximal k-tori in the groups H1 and H2 into some information about the conjugacy
classes of the elements of the corresponding Weyl groups W1 and W2.

Lemma 4.2. Under the hypotheses of Theorem 4.1, for every element w1 ∈ W1,
there exists an element w2 ∈ W2 such that w2 is conjugate to w1 in GLn(Z) and
vice versa.

Proof. Let w1 ∈ W1 and let N1 denote the subgroup of W1 generated by w1.
Since the base field k admits any cyclic group as a Galois group, there is a map
ρ1 : G(k/k)→W1 such that ρ1(G(k/k))= N1.

We first consider the case where k is a finite field or a local non-archimedean
field. By Lemma 2.3, the element [ρ1] ∈ H 1(k,W1) corresponds to a maximal
k-torus in H1, say T1. By the hypothesis, there exists a torus T2 ⊂ H2 which is
k-isomorphic to T1. We know by Lemma 2.2 that there exists an integral Galois
representation ρ2 : G(k/k)→ GLn(Z) corresponding to the k-isomorphism class
of T2 which factors through W2. Let N2 := ρ2(G(k/k)) ⊆ W2. Since T1 and T2

are k-isomorphic tori, the corresponding Galois representations, ρ1 and ρ2, are
equivalent. This implies that there exists g ∈ GLn(Z) such that N2 = gN1g−1.
Then w2 := gw1g−1

∈ N2 ⊆W2 is a conjugate of w1 in GLn(Z). We can start with
an element w2 ∈W2 and obtain its GLn(Z)-conjugate in W1 in the same way.

Now we consider the case when k is a global field. Let v be a non-archimedean
valuation of k and let kv be the completion of k with respect to v. Clearly the
groups H1 and H2 are defined over kv. Let T1,v be a maximal kv-torus in H1.
Then by Grothendieck’s theorem [Borel and Springer 1968, 7.9, 7.11] and the
weak approximation property [Platonov and Rapinchuk 1994, Proposition 7.3],
there exists a k-torus in H , say T1, such that T1,v is obtained from T1 by the base
change. By hypothesis, we have a k-torus T2 in H2 which is k-isomorphic to T1.
Then the torus T2,v, obtained from T2 by the base change, is kv-isomorphic to T1,v.
Thus, every maximal kv-torus in H1 has a kv-isomorphic torus in H2. Similarly,
we can show that every maximal kv-torus in H2 has a kv-isomorphic torus in H1.
Then the proof follows by the previous case. �

Corollary 4.3. Under the hypotheses of Theorem 4.1, ch(W1) = ch(W2) and
ch∗(W1) = ch∗(W2). In particular, mi (W1) = mi (W2), m′i (W1) = m′i (W2) and
mi, j (W1)=mi, j (W2) for all i, j .

Proof. Since the Weyl groups W1 and W2 share the same set of elements up to
conjugacy in GLn(Z), the sets ch(W1) and ch(W2) are the same, and hence the
sets ch∗(W1) and ch∗(W2) are also the same. Further, for a fixed integer i , φmi (W1)

i
divides an element f1 ∈ ch(W1). But since ch(W1) = ch(W2), the polynomial
φ

mi (W1)
i also divides an element f2 ∈ ch(W2). Therefore mi (W1) ≤ mi (W2). We
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obtain the inequality in the other direction in the same way and hence mi (W1) =

mi (W2). Similarly, we can prove that m′i (W1)=m′i (W2), and also that, for integers
i 6= j , the sets{

(t1, s1) : φ
t1
i ·φ

s1
j divides some element f1 ∈ ch(W1)

}
,{

(t2, s2) : φ
t2
i ·φ

s2
j divides some element f2 ∈ ch(W2)

}
are the same for i = 1, 2. It follows that mi, j (W1)=mi, j (W2). �

We now prove the following result before going on to prove the main theorem.

Theorem 4.4. Let H1 and H2 be split, connected, semisimple algebraic groups of
rank n. Suppose that mi (W (H1)) = mi (W (H2)), that m′i (W (H1)) = m′i (W (H2)),
and that mi, j (W (H1))=mi, j (W (H2)) for all i, j . Let m be the maximum possible
rank among the simple factors of H1 and H2. Let W ′1 and W ′2 denote the product
of the Weyl groups of rank m simple factors of , respectively, H1 and H2. Then the
groups W ′1 and W ′2 are isomorphic.

Proof. We denote W (H1) by W1 and W (H2) by W2. We prove that if a simple Weyl
group of rank m appears as a factor of W1 with multiplicity p, then it appears as
a factor of W2, with the same multiplicity. We prove this lemma case by case,
depending on the type of rank m simple factors of H1 and H2.

We prove this result by comparing the sets ch∗(W ) for the simple Weyl groups
of rank m. We observe from Table 3.2 that the maximal degree of the simple Weyl
group of exceptional type, if any, is the largest among the maximal degrees of
simple Weyl groups of rank m. The next largest maximal degree is that of W (Bm),
the next one is that of W (Dm), and finally the Weyl group W (Am) has the smallest
maximal degree. We use the relation between the elements of ch∗(W ) and the
degrees of the Weyl group W , given by Theorem 3.1. So, we begin the proof of
the lemma with the case of exceptional groups of rank m, prove that it occurs with
the same multiplicity for i = 1, 2. Then we prove the lemma for Bm , then for Dm

and finally we prove the lemma for the group Am .

Case 1: One of H1 or H2 contains a simple exceptional factor of rank m.
We first treat the case of the simple group E8, that is, we assume that 8 is

the maximum possible rank of the simple factors of the groups H1 and H2. We
know that m30(W (E8)) = 1. Observe that φ30 is an irreducible polynomial of
degree 8, and hence cannot occur in ch∗(W ) for any simple Weyl group of rank at
most 7. Moreover, from Theorem 3.1 and Table 3.2, it is clear that m30(W (A8))=

m30(W (B8)) = m30(W (D8)) = 0. Hence the multiplicity of E8 in Hi is given by
m30(Wi ) which is the same for i = 1, 2.
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Similarly for the simple algebraic group E7, observe that m18(W (E7))= 1 and
m18(W )= 0 for any simple Weyl group W of rank at most 7. Then the multiplicity
of E7 in Hi is given by m18(Wi ) which is the same for i = 1, 2.

The case of E6 is done by using m9, since it is clear that m9(W ) = 0 for any
simple Weyl group W of rank at most 6.

The cases of F4 and G2 are done similarly by using m12 and m6 respectively.

Case 2: One of H1 or H2 has Bm or Cm as a factor.
Since W (Bm)∼=W (Cm), we treat the case of Bm only. By case 1, we can assume

that the exceptional group of rank m, if any, occurs with the same multiplicities in
both H1 and H2, and hence while counting the multiplicities mi , m′i and mi, j , we
can (and will) ignore the exceptional groups of rank m.

Observe that m2m(W (Bm)) = 1 and m2m(W ) = 0 for any other simple Weyl
group W of classical type of rank at most m. However, it is possible that m2m(W ) 6=

0 for a simple Weyl group W of exceptional type of rank less than m. If m ≥ 16
then this problem does not arise, therefore the multiplicity of Bm in Hi for m ≥ 16
is given by m2m(Wi ), which is the same for i = 1, 2. We do the cases of Bm for
m ≤ 15 separately.

For the group B2, we observe that m4(W (B2)) = 1 and m4(W ) = 0 for any
other simple Weyl group W of rank at most 2. Thus, the case of B2 is done using
m4(W1)=m4(W2).

For the group B3, we have m6(W (B3)) = 1, but then m6(W (G2)) is also 1.
Observe that m4(W (B3))= 1 and m4(W (G2))= 0. We do this case by looking at
the multiplicities of φ4 and φ6, so we do not worry about the simple Weyl groups
W of rank at most 3 for which the multiplicities m4(W ) and m6(W ) are both zero.
Now, let the multiplicities of B3, G2 and B2 in the group Hi be, respectively, pi , qi

and ri , for i = 1, 2. Then, using m6(W1)=m6(W2), we see that p1+q1= p2+q2.
Using m4 we have p1+r1= p2+r2 and using m4,6 we see p1+q1+r1= p2+q2+r2.
Combining these equalities, we see that p1 = p2, that is, the group B3 appears in
both the groups H1 and H2 with the same multiplicity.

For the group B4, we observe that m8(W (B4))=1. Since φ8 has degree 4, it can-
not occur in ch(W ) for any simple Weyl group of rank at most 3 and m8(W (A4))=

m8(W (D4))= 0. Since we are assuming by case 1 that the group F4 occurs in both
H1 and H2 with the same multiplicity, we are done in this case also.

For the group B5, we have m10(W (B5)) = 1 and m10(W ) = 0 for any other
simple Weyl group of classical type of rank at most 5. Since 5 does not divide the
order of W (G2) or W (F4), it follows that m10(W (G2))=m10(W (F4))= 0 and so
we are done.

The group B6 is another group where the exceptional groups give problems. We
have m12(W (B6)) = 1, but m12(W (F4)) is also 1. Observe that m10(W (B6)) = 1,
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but m10(W (F4)) = 0. Now, let the multiplicities of B6, D6, B5 and F4 in Hi be,
respectively, pi , qi , ri and si . Then p1 + s1 = m12(W1) = m12(W2) = p2 + s2.

Similarly, comparing m10, we see that

p1+ q1+ r1 = p2+ q2+ r2.

Then, we compare m10,12 of the groups W1 and W2, to see that

p1+ q1+ r1+ s1 = p2+ q2+ r2+ s2.

Combining this equality with the one obtained by m10, we get that s1= s2 and hence
p1 = p2. Thus the group B6 occurs in both H1 and H2 with the same multiplicity.

We have m14(W (E6)) = 0, therefore the group B7 is characterized by φ14 and
hence it occurs in both H1 and H2 with the same multiplicity.

For the group B8, we have m16(W (B8)) = 1. Since φ16 has degree 8, it cannot
occur in ch∗(W ) for any of the Weyl groups of G2, F4, E6 or E7. Thus, the group
B8 is characterized by φ16 and hence it occurs in both H1 and H2 with the same
multiplicity.

The group B9 has the property that m18(W (B9)) = 1. But m18(W (E7)) =

m18(W (E8)) = 1, and so we conclude that the multiplicity of E8 is the same for
both W1 and W2 using m30. Then we compare the multiplicities m18,m16 and
m16,18 to prove that the group B9 occurs in both the groups H1 and H2 with the
same multiplicity.

Now we examine the case B10. Here m20(W (B10))= 1. Observe that m20(W )=

0 for any other simple Weyl group W of rank at most 10, except E8. Then the
multiplicity of B10 in Hi is m20(Wi )−m30(Wi ) and hence it is the same for i =1, 2.

The same method also works for B12, that is, the multiplicity of B12 in Hi is
m24(Wi )−m30(Wi ).

The multiplicities of B11, B13 and B14 in Hi are given by m22(Wi ),m26(Wi ) and
m28(Wi ) and hence they are the same for i = 1, 2.

For B15, we have m30(W (B15)) = m30(W (E8)) = 1, and m30(W ) = 0 for any
other simple Weyl group W of rank at most 15. Observe also that m28(W (B15))=

m28(W (B14)) = 1, and m28(W ) = 0 for any other simple Weyl group W of rank
at most 15. Then by comparing m30, m28 and m28,30 we get the desired result that
B15 occurs in both H1 and H2 with the same multiplicity.

Case 3: One of H1 or H2 has Dm as a factor.
For this case, we assume that the exceptional group of rank m, if any, and the

group Bm occur in both H1 and H2 with the same multiplicities.
We observe that 2m−2 is the largest integer r such that φr ∈ ch∗(W (Dm)), but

m2m−2(W (Bm−1))= 1. Hence we always have to compare the group Dm with the
group Bm−1.
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Let us assume that m ≥ 17, so that φ2m−2 6∈ ch∗(W ) for any simple Weyl group
of exceptional type of rank less than m.

We know that m2m−2(W (Dm))=m2m−2(W (Bm−1))=1 and that m2m−2(W )=0
for any other simple Weyl group W of classical type of rank at most m. Further,
(X+1)(Xm−1

+1) is the only element in ch(W (Dm)) which has φ2m−2 as a factor.
Similarly Xm−1

+ 1 is the only element in ch(W (Bm−1)) which has φ2m−2 as a
factor. Observe that m′2m−2(W (Dm))=m′2m−2(W (Bm−1))+1 and m′2m−2(W )= 0
for any other simple Weyl group W of rank at most m. Let pi and qi be, respec-
tively, the multiplicities of the groups Dm and Bm−1 in Hi , for i = 1, 2. Then by
considering m2m−2, we have p1 + q1 = p2 + q2. Further if m is even, then by
considering m′2m−2 we have 2p1+q1 = 2p2+q2. These two equalities imply that
p1 = p2. If m is odd then m′2m−2 itself gives p1 = p2. Thus the group Dm appears
in both H1 and H2 with the same multiplicity.

Now we consider the groups Dm , for m ≤ 16.
For D4, we have to consider the simple algebraic groups B3 and G2. Comparing

the multiplicities m6, m4 and m4,6 we see that G2 occurs in both H1 and H2 with
the same multiplicity, and then we proceed as above to prove that D4 also occurs
with the same multiplicity in both the groups H1 and H2

For the group D5, we first prove that the multiplicity of F4 is the same for
both H1 and H2 using m12 and then prove the required result by considering m5,
m8 and m5,8. While dealing with the case D6, we observe that m10(W (G2)) =

m10(W (F4))=0, and so this case follows by an argument similar to that for m≥17.
The case D7 is proved by considering m7, m12 and m7,12. For D8, we first prove that
the group E7 occurs in both H1 and H2 with the same multiplicity by considering
m18 and then proceed as above. For D9, we prove that E8 occurs in both H1 and
H2 with the same multiplicity by considering m30 and proceed as for m ≥ 17. For
D10, we prove that E8 appears in both H1 and H2 with the same multiplicity by
considering m30, and the same follows for E7 by considering m18, m16 and m16,18.

For the groups Dm , where m≥11, the only simple Weyl group W of exceptional
type such that φ2m−2 ∈ ch∗(W ) is W (E8), but for Dm , with m≤ 15, we can assume
that E8 occurs in both H1 and H2 with the same multiplicity by considering m30

and hence we are done. For the group D16, we take care of E8 by considering m30,
m28 and m28,30. Other arguments are similar to the case m ≥ 17.

Case 4: One of H1 or H2 has Am as a factor.
We now consider the case of simple algebraic group of type Am . Here, as usual,

we assume that all other simple algebraic groups of rank m occur with the same
multiplicities in both H1 and H2.

If m is even, then m + 1 is odd and hence mm+1(W ) = 0 for any simple Weyl
group W of classical type of rank less than m. If m ≥ 30, then we do not have to
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bother about the exceptional simple groups of rank less than m. If m is odd and
m ≥ 31, then φm+1 occurs in ch∗(W (Br )) and ch∗(W (Dr+1)) for r ≥ (m + 1)/2.
Then we compare the multiplicities mm , mm+1 and mm,m+1 and find that the group
Am occurs in H1 and H2 with the same multiplicity. We must therefore consider
the cases m ≤ 29 separately.

The cases A1 and A2 are easy since there are no exceptional groups of rank 1.
For A3 we use m3,m4 and m3,4 to get the result, and the case A4 follows similarly
by using m5. The group A5 is more problematic, since neither m6(W (B3)) nor
m6(W (G2)) nor m6(W (F4)) vanish, but this is solved by first proving that F4 ap-
pears with the same multiplicity using m12 and then using the multiplicities m5, m6

and m5,6. The case A6 is solved by using m7, and for A7 we use m7, m8 and m7,8.
With A8, we can first assume that the multiplicity of E7 is the same for both H1

and H2 by using m18, and then use m7, m9 and m7,9 to get the result. For A9 we
can again get rid of E7 and E8 using the multiplicities m18 and m30. Then we are
left with the groups B5 and E6, and so here we use m7, m10 and m7,10 to get the
result.

Further, we note that for even m ∈ {10, 12, 16, . . . , 28}, we have mm+1(W )= 0
for any simple Weyl group of rank less than m. Thus, the multiplicities of the
groups Am in Hi , for even m ∈ {10, 12, 16, . . . , 28}, are characterized by consider-
ing mm+1(Wi ) and are hence the same for i = 1, 2. The case A14 follows by using
m13,m15 and m13,15.

Thus, the only remaining cases are Am where m is odd and 11 ≤ m ≤ 29. We
observe that for odd m ∈ {11, 13, 17, . . . , 29}, the only simple Weyl group W of
rank less than m, with mm(W ) 6= 0, is Am−1. Moreover, mm+1(W (Am−1)) = 0,
so the cases of the groups Am , for odd m ∈ {11, 13, 17, . . . , 29}, are solved by
considering mm,mm+1 and mm,m+1.

The only remaining case is A15, which can be solved by considering m13,m16

and m13,16. �

We now prove the main theorem of this paper.

Proof of Theorem 4.1. Recall that W1 and W2 denote the Weyl groups of H1 and
H2 respectively. Let m0 be the maximum among the ranks of simple factors of
the groups H1 and H2. It is clear from Corollary 4.3 that mi (W1) = mi (W2), that
m′i (W1) = m′i (W2) and that mi, j (W1) = mi, j (W2) for any i, j . Then we apply
Theorem 4.4 to conclude that the products of rank m0 simple factors in W1 and W2

are isomorphic.
Let m be a positive integer less than m0. For i = 1, 2, let W ′i be the subgroup of

Wi which is the product of the Weyl groups of simple factors of Hi of rank greater
than m. We assume that the groups W ′1 and W ′2 are isomorphic and then we prove
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that the products of the Weyl groups of rank m simple factors of H1 and H2 are
isomorphic. This will complete the proof of the theorem by an induction argument.

Let Ui be the subgroup of Wi such that Wi = Ui ×W ′i . Then, since m j (W ′1) =
m j (W ′2) and m′j (W

′

1)=m′j (W
′

2), we have

m j (U1)=m j (W1)−m j (W ′1)=m j (W2)−m j (W ′2)=m j (U2),

m′j (U1)=m′j (W1)−m′j (W
′

1)=m′j (W2)−m′j (W
′

2)=m′j (U2)

and similarly
mi, j (U1)=mi, j (U2).

Now we use Theorem 4.4 to conclude that the subgroups of Wi which are products
of the Weyl groups of simple factors of Hi of rank m are isomorphic, for i = 1, 2.

The proof of the theorem can now be completed by the downward induction on
m. It also follows from the proof of Theorem 4.4, that the Weyl groups of simple
factors of H1 and H2 are pairwise isomorphic. �

Remark 4.5. We remark here that the above proof is valid even if we assume
that the Weyl groups W (H1) and W (H2) share the same set of elements up to
conjugacy in GLn(Q), not just in GLn(Z). Thus Theorem 1.1 is true under the
weaker assumption that the groups H1 and H2 share the same set of maximal k-
tori up to k-isogeny, not just up to k-isomorphism.

We also remark that the above proof holds over the fields k which admit arbitrary
cyclic extensions and which have cohomological dimension ≤ 1.

Remark 4.6. Philippe Gille [2004] has recently proved that the map ψ described
in Lemma 2.2 is surjective for any quasisplit semisimple group H . Therefore our
main result, Theorem 1.1, now holds for all fields k which admit cyclic extensions
of arbitrary degree.
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KNOT MUTATION: 4-GENUS OF KNOTS AND ALGEBRAIC
CONCORDANCE

SE-GOO KIM AND CHARLES LIVINGSTON

Kearton observed that mutation can change the concordance class of a knot.
A close examination of his example reveals that it is of 4-genus 1 and has a
mutant of 4-genus 0. The first goal of this paper is to show by examples that
for any pair of nonnegative integers m and n there is a knot of 4-genus m
with a mutant of 4-genus n.

A second result is a crossing change formula for the algebraic concor-
dance class of a knot, which is then applied to prove the invariance of the
algebraic concordance class under mutation. We conclude with an applica-
tion of crossing change formulas to give a short new proof of Long’s theorem
that strongly positive amphicheiral knots are algebraically slice.

1. Introduction

The main goal of this paper is to examine the effect of knot mutation on two con-
cordance invariants of knots, the 4-ball genus and the algebraic concordance class.
We completely describe the extent to which mutation can change the 4-genus, and
show that the algebraic concordance class of a knot, as defined in [Levine 1969b],
is invariant under mutation. In the course of our work we develop a crossing change
formula for the algebraic concordance class of a knot. We apply such an approach
to demonstrate that Long’s theorem that strongly positive amphicheiral knots are
algebraically slice is an immediate corollary of the Hartley–Kawauchi theorem that
such knots have Alexander polynomials that are squares. Lastly, we show that the
Hartley–Kawauchi theorem also follows from a similar crossing change approach.

Mutation and algebraic concordance. The construction of a mutant K ∗ of a knot
K consists in removing a 3-ball B from S3 that meets K in two proper arcs and
gluing it back in via an involution τ of its boundary S, where τ is orientation-
preserving and leaves the set S∩K invariant. This is among the subtlest construc-
tions of knot theory in that it leaves a wide range of knot invariants unchanged
[Adams 1989; Kawauchi 1994; 1996; Kirk 1989; Kirk and Klassen 1990; Meyer-
hoff and Ruberman 1990; Rong 1994; Ruberman 1987; 1999]. Most relevant to

MSC2000: 57M25.
Keywords: mutation, knot concordance, amphicheiral, 4-genus, knot genus.
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the work here is the statement of [Cooper and Lickorish 1999] that the Tristram–
Levine signatures, σω, are invariant under mutation, since, for ω a prime power root
of unity, these provide the strongest classical bounds on the 4-genus [Murasugi
1965; Tristram 1969]: 1

2 |σω(K )| ≤ g4(K ). We will prove a more general result
involving Levine’s homomorphism [1969b] from the knot concordance group C to
the algebraic concordance group G:

Theorem 1.1. Mutation does not change the image of a knot under Levine’s homo-
morphism.

One proof, given in Section 7, is entirely self-contained and gives a previously
unnoticed crossing change formula for the algebraic concordance class of a knot.
(As a side note, in Section 9 we use this crossing change formula to give a quick
derivation of a result of Long that strongly positive amphicheiral knots are alge-
braically slice.) Section 8 present an alternate proof of Theorem 1.1; this argument
is briefer, but depends on the detailed analysis of Seifert forms given in [Cooper
and Lickorish 1999].

Mutation and the 4-genus of a knot. The 4-genus of a knot, g4(K ), is the least
genus of an embedded surface bounded by K in the 4-ball. This can be defined in
either the smooth or topological locally flat category; the results of this paper apply
in either. It is an especially challenging invariant to compute; there remain knots of
low crossing number for which it is uncomputed, though the smooth category has
advanced considerably in recent years, most notably with the solution of the Milnor
conjecture giving the 4-genus of torus knots [Kronheimer and Mrowka 1993].

Almost nothing has been known concerning the interplay between mutation and
the 4-genus. Basically the only success in this realm consists of Kearton’s obser-
vation [1989] that an example of [Livingston 1983] yields an example for which
mutation changes the concordance class of a knot. A close examination of that
example shows that it has 4-genus 1, but it has a mutant of 4-genus 0. Further such
examples have since been developed in [Kirk and Livingston 1999; 2001]. Our
main result regarding the 4-genus is:

Theorem 1.2. For every pair of nonnegative integers m and n, there is a knot K
with mutant K ∗ satisfying g4(K )= m and g4(K ∗)= n.

It should be noted that the original argument of [Livingston 1983] was based on
[Gilmer 1983], in which it is now known an error appears. To correct for that, one
must base the argument of [Livingston 1983] on a 3-fold branched cover rather
than the 2-fold cover. We do this here.

Strongly positive amphicheiral knots. A knot K is called strongly positive am-
phicheiral if, when viewed as a knot in R3, it has a representative that is invariant
under the map τ(x, y, z)= (−x,−y,−z) of R3. We consider two theorems:
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Theorem 1.3 [Long 1984]. A strongly positive amphicheiral knot is algebraically
slice.

Theorem 1.4 [Hartley and Kawauchi 1979]. If K is strongly positive amphicheiral,
the Alexander polynomial 1K is the square of a symmetric polynomial.

In Section 9 we use crossing change formulas developed earlier to prove that
Long’s theorem is an immediate corollary of the Hartley–Kawauchi result. In Sec-
tion 10 we use a crossing change argument to give a new proof of the Hartley–
Kawauchi theorem.

2. Background on Casson–Gordon invariants

A key tool in the proof of Theorem 1.2 is the main theorem from [Gilmer 1982]
bounding Casson–Gordon invariants in terms of the 4-genus of a knot. Here is
a simplified description of that result, based on the statement of the theorem and
later remarks in [Gilmer 1982].

Theorem 2.1 (Gilmer). Let K be an algebraically slice knot such that g4(K ) = g
and let Mq be the q-fold branched cover of S3 branched over K , with q a prime
power. Let β denote the linking form on H1(Mq ,Z). Then β can be written as a
direct sum β1⊕β2 such that

(1) β1 has a presentation of rank 2(q − 1)g, and

(2) β2 has a metabolizer D such that, for any character χ of prime power order
on H1(Mq ,Z) given by linking with an element in D, one has

|σ(K , χ)| ≤ 2qg.

Here σ(K , χ) is the Casson–Gordon invariant, originally denoted σ1τ(K , χ)
in [Casson and Gordon 1986; Gilmer 1982]. We will need to know that D can
be taken to be equivariant with respect to the deck transformation of Mq . Details
concerning this and other points will be given below, as they arise.

In our applications the group H1(Mq ,Z) will also be a vector space over a finite
field, in which case a metabolizer for β2 will be half-dimensional. Hence:

Corollary 2.2. In Theorem 2.1, if H1(Mq ,Z) is isomorphic to H1(Mq ,Zp), a Zp-
vector space, conclusion (1) can be restated as

(1) dimβ1 ≤ 2(q − 1)g

and in (2) the metabolizer D satisfies

dim D ≥ 1
2

(
dim H1(Mq ,Zp)− 2(q − 1)g

)
.
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3. The building blocks

The figure illustrates a knot K J of genus 1. The bands in the surface are tied in
knots J and −J , for a knot J to be determined later. The twisting of the bands is
such that the Seifert matrix for K J is

( 0
1

2
0

)
.

J –J

Here −J denotes the concordance inverse of J , formed from J by reversing the
orientations of S3 and the knot. A diagram for −J is constructed by reflecting a
diagram for J through a vertical line on the page and reversing the orientation of
the knot. For K J , the knot in the right band is the reflection through a vertical line
of the knot in the left band. In all examples here, J can be taken to be reversible,
so the details of the orientation issues for J are not critical.

Knots related to this one have been carefully analyzed elsewhere, for exam-
ple [Gilmer and Livingston 1992; Livingston 1983; 2001], and the details of the
following results can be found there. Here are the relevant facts.

(1) If M3 denotes the 3-fold branched cover of S3 branched over K J , then

H1(M3,Z)= Z7⊕Z7.

(2) As a Z7-vector space, H1(M3,Z) splits as the direct sum of a 2-eigenspace,
spanned by a vector e2, and a 4-eigenspace, spanned by a vector e4, with
respect to the linear transformation induced by the deck transformation.

(3) Linking with ei induces a character χi : H1(M3,Z)→ Z7. Results of Lither-
land [1984] (see also [Gilmer 1993; Gilmer and Livingston 1992]) give

σ(K , χ2)= σ1/7(J )+ σ2/7(J )+ σ3/7(J ),

σ (K , χ4)=−σ1/7(J )− σ2/7(J )− σ3/7(J ),

where σa/b denotes the classical Levine–Tristram signature, also written as σω
with ω = e(a/b)2π i . To simplify notation we set, for any knot J ,

s7(J )= σ1/7(J )+ σ2/7(J )+ σ3/7(J ).
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There are knots for which s7 is arbitrarily large, for instance connected sums
of trefoil knots, which are reversible.

4. The Basic Examples

We denote by L J the connected sum of K J with the reverse of −K J :

L J = K J #−K r
J .

As observed by Kearton, L J is a mutant of the slice knot K J #−K J .

Theorem 4.1. For any choice of J , we have g4(L J )≤ 1 and thus g4(nL J )≤ n.

Proof. Here is an illustration of L J , showing also a simple closed curve on the
genus-2 Seifert surface F . This curve has self-linking number 0 and represents the

J –J J–J

slice knot J # − J . Thus F can be surgered in the 4-ball to reduce its genus to 1,
showing that L J bounds a surface of genus 1 in the 4-ball, as desired. �

The homology of the 3-fold branched cover of L J , N3, naturally splits as

(Z7⊕Z7)⊕ (Z7⊕Z7),

with a 2-eigenspace spanned by the vectors e2⊕0 and 0⊕e′2, which we abbreviate
simply by e2 and e′2. Similarly for the 4-eigenspace. We denote the corresponding
Z7-valued characters given by linking with e2 and e′2 by χ2 and χ ′2, respectively.

Theorem 4.2. The Casson–Gordon invariants of L J are given by

σ(L J , aχ2+ bχ ′2)= ε(a)s7(J )+ ε(b)s7(J ),

σ (L J , aχ4+ bχ ′4)=−
(
ε(a)s7(J )+ ε(b)s7(J )

)
,

where ε(x)= 0 or 1 depending on whether x = 0 or x 6= 0 modulo 7.
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Proof. This follows from the additivity of Casson–Gordon invariants; see [Lither-
land 1984] or [Gilmer 1983]. The only unexpected aspect of the formula is that,
since we are dealing with K J #−K r

J , it might have been anticipated that the differ-
ence ε(a)s7(J )− ε(b)s7(J ) would appear rather than the sum. This switch occurs
because the connected sum involves the mirror image of the reverse, rather than
simply the mirror image; thus the role of J and −J are reversed in the second
summand. �

5. Proof of Theorem 1.2

As observed by Kearton, for any knots L1 and L2, the connected sums L1 #−L2

and L1 #−Lr
2 are mutants of each other. It follows immediately that for m< n, the

knot nL J is a mutant of mL J # (n−m)(K J #−K J ). Since K J #−K J is slice, this
second knot is concordant to, and hence of the same 4-genus as, mL J . To prove
Theorem 1.2 we show that for each positive integer n there exists a knot J such
that g4(mL J )= m for all m ≤ n.

Fix a positive integer n and select an arbitrary m with 1 ≤ m ≤ n. The knot J
will be chosen as its necessary properties become apparent.

Suppose that mL J bounds a surface F in the 4-ball with genus g(F) = k <
m. Let V3 denote the 3-fold branched cover of B4 branched over F having for
boundary the m-fold connected sum m N3. Also, abbreviate by D the image of
Tor H2(V3,m N3,Z) in H1(m N3,Z). An examination of the proof of Gilmer’s the-
orem in [Gilmer 1982] reveals that this D is the metabolizer given in our statement
of the result, Theorem 2.1. Thus |σ(mL J , χ)| ≤ 6k for any χ corresponding to an
element in D.

With Z7-coefficients, H1(m N3,Z) has dimension 4m, so by Gilmer’s theorem
we have dim H1(m N3,Z)−2 dim D≤ 2(3−1)k= 4k. Hence D is nontrivial, since
k < m.

Observe that by its construction, D is equivariant with respect to the deck trans-
formation and hence contains an eigenvector. Assume that it is a 2-eigenvector. If
we write H1(m N3,Z) = ⊕m H1(N3,Z), the 2-eigenvectors are naturally denoted
e2,i and e′2,i , with 1 ≤ i ≤ m, where e2,i and e′2,i are the 2-eigenvectors in the i-th
summand. A nontrivial 2-eigenvector in D will be of the form

∑
i ai e2,i+

∑
i bi e′2,i .

Using additivity, the Casson–Gordon invariant corresponding to the dual character
is given by: (∑

i

ε(ai )

)
s7(J )+

(∑
i

ε(bi )

)
s7(J ).

To complete the proof, observe that this sum is greater than or equal to s7(J ),
so that if J is chosen so that s7(J ) > 6n a contradiction is achieved. Notice that
the choice of J depends only on n and not m.
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A similar argument applies if D contains only a 4-eigenvector.

6. The growth of g4(nK ) for algebraically slice knots K

For a general knot K one has g4(nK ) ≤ ng4(K ) but one does not usually have
an equality. In the case of a knot T , such as the trefoil, for which the 4-genus is
detected by a classical (additive) invariant, such as the signature, one can some-
times demonstrate that g4(nT ) = ng4(T ). But for algebraically slice knots with
g4(K ) 6= 0 such arguments are not possible. In fact, it is unknown whether in
the topological category there is such an algebraically slice knot for which the
equality holds for all n. (In the smooth setting, Livingston [2003] has constructed
an algebraically slice knot K for which g4(K )= τ(K )= 1, where τ is the invariant
defined in [Ozsváth and Szabó 2003]. Since τ is additive and bounds g4, it follows
that g4(nK ) = ng4(K ) for all n.) We will here observe that one can come quite
close for the knot TJ , where TJ is the knot illustrated below, built as K J is, only

J J

with J tied in both bands rather than J in one band and −J in the other. (Similar
results hold for K J and L J but the proof would require the continued use of 3-fold
covers rather than the 2-fold cover for which the estimates are simpler.)

Theorem 6.1. For all ε with 0 < ε < 1, there is a knot J such that g4(nTJ ) >

(1− ε)ng4(TJ ) for all n > 0.

Proof. Our proof builds upon Gilmer’s original argument [1982]. Observe first that
g4(TJ )≤ 1. For the 2-fold branched cover we have that H1(M2,Z)= Z3⊕Z3 and
the Z3-dimension satisfies dim H1(nM2,Z3)= 2n.

If nTJ bounds a surface in the 4-ball of genus k at most (1−ε)n, then by Gilmer’s
theorem there exists a self-annihilating summand D with

dim H1(nM2,Z3)− 2 dim D ≤ 2k

and such that |σ(nK J , χ)| ≤ 4k for all characters χ dual to elements in D.
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One computes that dim D ≥ n−k. A linear algebra argument, basically Gauss–
Jordan elimination, now implies that some element of D will be of the form

⊕
i χi

with at least n− k of the χi nontrivial, and for each of these χi the corresponding
Casson–Gordon invariant is at least 2σ1/3(J ). Thus we have the equation∣∣(n− k)2σ1/3(J )

∣∣≤ 4k.

Since k ≤ (1− ε)n, this reduces to
∣∣εn2σ1/3(J )

∣∣≤ 4(1− ε)n, which is to say∣∣σ1/3(J )
∣∣≤ 2(1− ε)

ε
.

The proof is completed by noting that for any ε one can select a J for which this
inequality does not hold. �

7. Mutation and algebraic concordance

In this section we develop a crossing change formula for the algebraic concordance
class of a knot in order to prove Theorem 1.1: mutation preserves the algebraic
concordance class of a knot. Certain knot invariants, such as the Alexander poly-
nomial and Tristram–Levine signatures, provide algebraic concordance invariants,
and these have been shown to be mutation invariants (see for instance [Cooper and
Lickorish 1999; Lickorish and Millett 1987]), but the general question of whether
mutation can change the algebraic concordance class has remained open. We note
that changing a knot to its orientation reverse is a very special case of mutation
and reversal does not change the algebraic concordance class of a knot, as follows
from [Long 1984]. (More directly, it can be shown that the complete set of alge-
braic concordance invariants defined by Levine [1969a] are unchanged by matrix
transposition, the operation on Seifert matrices induced by reversal.)

We will first present a proof that the normalized Alexander polynomial is in-
variant under mutation; this argument is not new but must be presented to set up
the needed notation for the analysis of algebraic concordance that follows. This
is followed by a review of the theory and algebra of Levine’s [1969a] algebraic
concordance group G. In the last part of the section we present a crossing change
formula for the algebraic concordance class of a knot and use this to prove the
mutation invariance of this class.

The Alexander and Conway polynomial. For an oriented link L , a choice of con-
nected Seifert surface F for L , and a choice of basis for H1(F,Z) there is a Seifert
matrix V (L), say of dimension r × r . The (normalized) Alexander polynomial
1L(t) of L can be defined by setting

Vt(L)= (1− t)V + (1− t̄)V t and 1L(t)=
1
zr det Vt(L),
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where V t denotes the transpose, t̄ = t−1 and z = t−1/2
− t1/2. (Recall that 1L(t)

can be expressed as a polynomial in z, 1L(t) = CL(z) ∈ Z[z], and this defines
the Conway polynomial [1970].) Notice that z2

= −(1− t̄ )(1− t), so that if r is
even (for instance, when L is connected, so r is twice the genus of F), we have
1L ∈ Z[t̄, t] and elementary algebraic manipulations lead to the usual normalized
Alexander polynomial,

1L(t)= t−r/2 det(V − tV t).

(This polynomial is clearly independent of change of basis and an observation be-
low will show that it is an S-equivalence invariant [Trotter 1973] and thus depends
only on K .)

Here is a local picture of link diagrams for links L−, L+, and Ls , with the

L− L+ Ls

diagrams identical outside the local picture. Any crossing change and smoothing
can be achieved using this local change. In the diagram for L− a Reidemeister
move eliminates the two crossings. If Seifert’s algorithm is used to construct a
Seifert surface F0 for L− using this simplified diagram, the corresponding Seifert
matrix will be denoted A. The Seifert surfaces for the links L− and L+ that arise
from Seifert’s algorithm applied to the given diagrams are formed from F0 by
adding two twisted bands. From this we have that V (L±) is given by a (r + 2)×
(r + 2) matrix of the form

V (L±)=


a1 0

A ...
...

ar 0
a1 · · · ar b 1
0 · · · 0 0 ε±

 ,
where all entries are identical in these two matrices except that ε−=0 and ε+=−1.
V (Ls) is given by the same matrix, with the last row and column deleted.

A few consequences of these calculations follow quickly.

Theorem 7.1. The normalized Alexander polynomial is an S-equivalence invariant
and hence is a knot invariant.

Proof. S-equivalence is generated by the operation on Seifert matrices that takes a
matrix A and replaces it with the matrix denoted V (L−) above. That this doesn’t
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change the Alexander polynomial is easily checked: expand the relevant determi-
nant along the last column and then along the last row. �

Theorem 7.2 (The Conway skein relation). The Alexander polynomial satisfies
1L+ −1L− = z1Ls .

Proof. This again is a simple exercise in algebra, expanding the determinant along
the last column and then last row. �

Theorem 7.3. The Alexander polynomials of mutant knots are the same.

Proof. In the construction of the mutant K ∗, if the intersection of K with the
ball B that is being taken out and replaced via an involution is invariant under the
extension of that involution to the 3-ball, then K ∗ = K and the polynomials are
the same. In general, a series of crossing changes and smoothings converts K ∩ B
into invariant tangles, so, via the Conway skein relation, the polynomial of K ∗ is
the same as that for K . �

If K is a knot, the Alexander polynomial satisfies 1K (1) = 1 and in particular
1K (t) is nontrivial. Hence, in the matrices above, working now with K instead of
L , At is nonsingular. Thus, for Vt(K±) the same set of row and column operations
can be used to eliminate the entries corresponding to the ai in V . There results
the following matrix Wt(K±), where the entries are rational functions in t and the
matrix is hermitian with respect to the involution induced by the map t→ t̄ :

Wt(K±)=


0 0

At
...

...

0 · · · 0 c(t) 1− t

0 · · · 0 1− t̄ ε±(1−t)(1−t̄ )


.

Lemma 7.4. The ratio 1K+/1K− is equal to c(t)+ 1.

Proof. This follows from a calculation of the relevant determinants. �

Algebraic concordance. An algebraic Seifert matrix is a square integral matrix V
satisfying det(V − V t) = ±1. Such a matrix is called metabolic if it is congruent
to a matrix of the form (

0 A
B C

)
,

with A, B, and C square. Levine defined the algebraic concordance group G to
be the set of equivalence classes of algebraic Seifert matrices, with V1 and V2

equivalent if V1 ⊕ −V2 is metabolic. The group operation is induced by direct
sum.
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A rational algebraic concordance group GQ can be similarly defined, where now
it is required that det

(
(V−V t)(V+V t)

)
6= 0. Levine [1969a] proved that the in-

clusion G→ GQ is injective.
Consider next the set of nonsingular hermitian matrices with coefficients in the

field Q(t), where Q(t) has the involution t→ t̄ . In this case the equivalence relation
generated by congruence to metabolic matrices results in the Witt group of Q(t),
denoted W (Q(t)).

Theorem 7.5. The map

V → Vt = (1− t)V + (1− t̄)V t

induces an injection G→W (Q(t)).

Proof. A proof is given in [Litherland 1984] for GQ (denoted there by WS(Q,−)),
and the theorem follows from the injectivity of the inclusion G→ GQ. In defining
GQ, Litherland restricts to nonsingular matrices, but as he notes, Levine proved
that every class in G has a nonsingular representative. To simplify notation, we
will use Wt(K ) to denote both the matrix and the Witt class represented by the
matrix when the meaning is clear in context. �

Crossing changes and algebraic concordance. From the calculations and nota-
tion above, if a crossing change is performed on a knot K , the difference of Witt
classes associated to the Seifert forms is given by

Wt(K+)−Wt(K−)= (At ⊕C+)⊕−(At ⊕C−),

where

C± =
(

c(t) 1− t
1− t̄ ε±(1− t)(1− t̄)

)
.

Since At ⊕−At is Witt trivial, as is C−, only C+ contributes to the difference
of Witt classes. Diagonalization, the identification of c(t)+1 with 1L+/1K− , and
a final multiplication of a basis element (by 1K−) yields the following theorem.

Theorem 7.6. Wt(K+)−Wt(K−) is represented by the matrix(
1K+(t)1K−(t) 0

0 −1

)
,

and thus the difference is determined by the Alexander polynomials of the knots.

The special case of ω=−1 in the following corollary is a result from [Murasugi
1965]. The proof of the corollary follows from Theorem 7.6 by setting t = ω and
induction on the number of crossing changes needed to reduce K to an unknot. To
avoid the matrix being nonsingular, we must restrict to prime power roots of unity.

Corollary 7.7. For ω a prime power root of unity, sign(1K (ω))= (−1)σω(K )/2.
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We now have the main result of this section, the following corollary of Theorem
7.6, a restatement of Theorem 1.1.

Corollary 7.8. The algebraic concordance class of a knot is invariant under mu-
tation; that is, Wt(K )=Wt(K ∗) for any knot K and its mutant K ∗.

Proof. A sequence of crossing changes in the tangle in K that is being mutated
converts it into a tangle that is invariant under mutation. Thus we have a sequence
of knots

K = K0, K1, . . . , Kn = K ∗n , K ∗n−1, . . . , K ∗0 = K ∗,

where Kn = K ∗n . By the previous theorem and the mutation invariance of the
Alexander polynomial, each pair of successive differences is equal:

Wt(Ki )−Wt(Ki+1)=Wt(K ∗i )−Wt(K ∗i+1).

Thus Wt(K )−Wt(Kn)=Wt(K ∗)−Wt(K ∗n ). Since Kn =K ∗n , the proof is complete.
�

8. Generalized Mutation

Cooper and Lickorish [1999] studied the effect of a generalization of mutation,
called genus-2 mutation, on the Seifert form of a knot. Here we deduce from
their result an alternative proof of Theorem 1.1. In fact, since they demonstrate
that generalized mutation generates a finer relation than mutation, a stronger result
than Theorem 1.1 is in fact achieved.

Genus-2 mutation consists of removing a solid handlebody of genus 2 that con-
tains a knot K from S3 and replacing it via an involution of the boundary. The
involution is selected to extend to the solid handlebody so that it has three fixed
arcs. The resulting knot is called K ∗. According to [Cooper and Lickorish 1999]
there are Seifert matrices for K and K ∗ of the form

V =
(

A B t

B C

)
and V ∗ =

(
A B t

B C t

)
,

respectively, where A and C are square and B is of the form (0 | b) for some single
column b. Since V is a Seifert matrix and V −V t

= (A− At)⊕ (C −C t), we see
that A and C are also algebraic Seifert matrices. Note that

Vt =

(
At −z2 B t

−z2 B Ct

)
and V ∗t =

(
At −z2 B t

−z2 B (C t)t

)
where z = t−1/2

− t1/2 and z2
=−(1−t)(1−t̄)=−(1−t)− (1−t̄).

Since A is a Seifert matrix, At is nonsingular and hermitian. Let

P =
(

I z2(At)
−1 B t

0 I

)
.
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Then Vt and V ∗t are congruent to P̄ t Vt P and P̄ t V ∗t P , respectively, which in turn
are seen, after a simple computation, to equal(

At 0
0 Ct − z4 B(At)

−1 B t

)
and

(
At 0
0 (C t)t − z4 B(At)

−1 B t

)
.

Suppose that A is an m×m matrix. Let α(t) ∈Q(t) be the (m,m) entry of (At)
−1

and recall that B = (0 | b) for some single column b with integral entries. It is easy
to see that

B(At)
−1 B t

= α(t)bbt .

In particular, it is symmetric. For simplicity, let E = Ct − z4 B(At)
−1 B t . Then

E t
= (C t)t − z4 B(At)

−1 B t and we have that Vt and V ∗t are congruent to At ⊕ E
and At ⊕ E t , respectively. The difference of Witt classes of Vt and V ∗t is given by

(At ⊕ E)⊕−(At ⊕ E t).

Since At ⊕−At is Witt trivial, only E⊕−E t contributes to the difference of Witt
classes. Observe that E is a nonsingular hermitian matrix since At⊕E and At are.
There is a nonsingular matrix Q such that F = Qt E Q is diagonal. This implies
that F = F t

= Qt E t Q. Using congruence by base change Q⊕Q, we see E⊕−E t

is congruent to F ⊕−F , which is Witt trivial. Thus, Vt = V ∗t in W (Q(t)) and K
and K ∗ are algebraically concordant since G→W (Q(t)) is injective.

9. Strongly positive amphicheiral knots

A knot K is called strongly positive amphicheiral if it is invariant under an orien-
tation-reversing involution of S3 that preserves the orientation of K . This is easily
seen to be equivalent to the statement that K , when viewed as a knot in R3

⊂ S3,
is isotopic to a knot, again denoted by K , that is invariant under the involution
τ : R3

→ R3 given by τ(x)=−x , where x ∈ R3.
Hartley and Kawauchi [1979] proved that if K is strongly positive amphicheiral

then1K (t)= (F(t))2 for some Alexander polynomial F . Long [1984] proved that
strongly positive amphicheiral knots are algebraically slice. Here we demonstrate
that Long’s theorem is in fact a corollary of the Hartley–Kawauchi theorem and
the crossing change formula for the algebraic concordance class.

A bit of notation will be helpful: for a strongly amphicheiral knot that is invariant
under the involution τ , τ defines a pairing of the crossing points in a diagram of
K . A paired crossing change on such a K consists of changing both of a pair of
crossings. Notice that since τ is orientation-reversing, the two crossings will be of
opposite sign, so we denote the original knot K+− and the knot formed by making
the paired crossing changes K−+.
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Lemma 9.1. A sequence of paired crossing changes converts a strongly positive
amphicheiral knot into the unknot.

Proof. Since an involution of S1 cannot have one fixed point, K misses the origin
in R3 and thus projects to a knot K in the quotient R3

− {0}/τ ≡ RP2
×R. Since

K lifts to a single component in the cover, it is homotopic to standard generator of
π1(RP2

×R), whose lift is an unknot in the cover. That homotopy can be carried
out by a sequence of crossing changes, each of which lifts to a pair of crossing
changes in the cover. �

Theorem 9.2 [Long 1984]. A strongly positive amphicheiral knot is algebraically
slice.

Proof. Let K be the knot. By the previous lemma we need only show that
Wt(K+−)−Wt(K−+) represents 0 in W (Q(t)).

Working in the Witt group we can write

Wt(K+−)−Wt(K−+)=
(
Wt(K+−)−Wt(K−−)

)
−
(
Wt(K−+)−Wt(K−−)

)
.

Applying Theorem 7.6, this is represented by the difference(
1K+−(t)1K−−(t) 0

0 −1

)
⊕ −

(
1K−+(t)1K−−(t) 0

0 −1

)
Applying the Hartley–Kawauchi theorem, we write

1K+−(t)= F(t)2 and 1K−+(t)= G(t)2,

and then cancel the (−1) summands to arrive at the difference(
F(t)21K−−(t) 0

0 −G(t)21K−−(t)

)
.

This form has a metabolizer generated by the vector (G(t), F(t)) ∈ Q(t)2, and
hence it is trivial in the Witt group, as desired. �

10. The Hartley–Kawauchi Theorem

Here we present a combinatorial proof of the theorem that for strongly positive
amphicheiral knots the Alexander polynomial is a square of an Alexander polyno-
mial. The proof also gives an alternative, though longer, route to Long’s theorem
than was given in the previous section. We begin by considering the existence of
an equivariant Seifert surface for such a knot.

If Seifert’s algorithm for constructing a Seifert surface is applied to a diagram
for a strongly amphicheiral knot that is invariant under τ , the resulting surface
will be invariant. In addition, τ restricted to this surface is orientation-preserving
since τ preserves the orientation of the knot that is the boundary of the surface.
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However τ reverses the positive normal direction since it reverses the orientation
of R3. Thus:

Lemma 10.1. Let K be a strongly positive amphicheiral knot with involution τ . A
Seifert surface F of K can be constructed so that F is invariant under τ and its
Seifert form θ satisfies

θ(τu, τv)=−θ(v, u)

for all u, v ∈ H1(F).

To understand the effect of crossing changes, we consider two figures. The first
represents a portion of a symmetric diagram of a strongly amphicheiral knot, say
K+−:

The dot in center of the figure represents the origin in R3, the center of sym-
metry. For the knot K−+ the diagram will be the same, only a symmetric pair of
crossing changes has been made. Thus, for K−+ the clasps pull apart, leaving a
knot, denoted K ′, with diagram as follows:

Suppose that K ′ has an equivariant Seifert surface F0 given by Seifert’s algo-
rithm and H1(F0) has symplectic basis w1, . . . , wr . Then an equivariant Seifert
surface F for K+− is given by adding four bands to F0. The basis for H1(F0)

can be naturally extended to symplectic one for H1(F), w1, . . . , wr , x, y, τ x, τ y,
where y has trivial Seifert pairing with all elements other than x and itself, and x
has trivial Seifert pairing with τ y.

Let A be the Seifert matrix of F0 with respect to w1, . . . , wr and let T denote
the matrix representing the action of τ on H1(F0). Then Lemma 10.1 applied to
F0 can be rewritten in terms of matrices: T t AT =−At . After hermitianizing and
taking inverses, we have

T (At)
−1T t

=−(At
t)
−1
=−(At)−1.
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To find the Seifert matrix for F with respect to the basis above, a couple of
things have to be clarified. First, note that

θ(x, τ x)=−θ(ττ x, τ x)=−θ(x, τ x),

and hence θ(x, τ x)= 0. Similarly, θ(τ x, x)= 0. Next, let

a =

θ(w1, x)
...

θ(wr , x)

 and T = (ti j )1≤i, j≤r .

Then θ(w1, τ x)
...

θ(wr , τ x)

=
−θ(x, τw1)

...

−θ(x, τwr )

=
−

∑
j t j1θ(x, w j )
...

−
∑

j t jrθ(x, w j )



=−T t

θ(x, w1)
...

θ(x, wr )

=−T t a.

It follows readily that the Seifert matrix for K+− is the (r +4)× (r +4) matrix

V ε
=


A a 0 −T t a 0
at b 1 0 0
0 0 ε 0 0

−at T 0 0 −b 0
0 0 0 −1 −ε

 , where ε =−1.

Similarly, for K−+ the same matrix arise, only in this case ε = 0. After hermi-
tianizing we get

V ε
t =


At −z2a 0 z2T t a 0
−z2at

−z2b 1− t 0 0
0 1− t̄ −z2ε 0 0

z2at T 0 0 z2b −(1−t̄)
0 0 0 −(1−t) z2ε

 ,
where z = t−1/2

− t1/2. Let

P =


I z2(At)

−1a 0 −z2(At)
−1T t a 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .
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Let W ε
t = P̄ t V ε

t P . Then

W ε
t =


At 0 0 0 0
0 −z2b− z4at(At)

−1a 1− t z4at(At)
−1T t a 0

0 1− t̄ −z2ε 0 0
0 z4at T (At)

−1a 0 z2b− z4at T (At)
−1T t a −(1− t̄)

0 0 0 −(1− t) z2ε

 .

Let c(t) = −z2b− z4at(At)
−1a. Since W ε

t is hermitian, c(t) = c(t). The (1, 1)-
entry of the lower right 2× 2 submatrix of W ε

t is

z2b− z4at (T (At)
−1T t) a = z2b+ z4at(At)−1a =−c(t)=−c(t).

Let d(t)= z4at(At)
−1T t a. Then the 1× 1 matrix d(t) is equal to its transpose

z4at T (At
t)
−1a = z4at T

(
−T (At)

−1T t) a =−z4at(At)
−1T t a =−d(t),

and hence d(t)=0. Also, note that z4at T (At)
−1a=d(t)=0 since W ε

t is hermitian.
Thus V ε

t is congruent, by base change P , to

At ⊕C ⊕−C t ,

where

C =
(

c(t) 1− t
1− t̄ −z2ε

)
.

Since det P = 1,

1K+− = (c(t)+ 1)2 1
zr det At = (c(t)+ 1)21K−+,

where c(t)= c(t̄). This proves the Hartley–Kawauchi theorem.
Next, to prove Long’s theorem, we will show that Vt(K+−), At , and Vt(K−+)

are all Witt-equivalent. It suffices to show that C ⊕−C t is Witt-trivial. Observe
that C is nonsingular and hermitian since At ⊕ C ⊕−C t and At are. There is a
nonsingular matrix Q such that D = QtC Q is diagonal. This implies that

D = Dt
= QtC t Q.

Using congruence by base change Q ⊕ Q, we see that C ⊕−C t is congruent to
D⊕−D, which is Witt trivial. Thus, K+− and K−+ are algebraically concordant.
This proves Long’s theorem.
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RATIONAL JET DEPENDENCE OF FORMAL EQUIVALENCES
BETWEEN REAL-ANALYTIC HYPERSURFACES IN C2

R. TRAVIS KOWALSKI

Let (M, p) and (M̂, p̂) be the germs of real-analytic 1-infinite type hyper-
surfaces in C2. We prove that any formal equivalence sending (M, p) into
(M̂, p̂) is formally parametrized (and hence uniquely determined by) its jet
at p of a predetermined order depending only on (M, p). As an applica-
tion, we use this to examine the local formal transformation groups of such
hypersurfaces.

1. Introduction

A formal (holomorphic) mapping H : (C2, p) → (C2, p̂), with p, p̂ ∈ C2, is a
C2-valued formal power series

H(Z)= p̂+
∑
|α|≥1

cα(Z − p)α, cα ∈ C2, Z = (Z1, Z2).

The map H is invertible if there exists a formal map H−1
: (C2, p̂)→ (C2, p)

such that H(H−1(Z)) ≡ H−1(H(Z)) ≡ Z as formal power series; equivalently,
if the Jacobian of H is nonvanishing at p. We denote by J k(C2,C2)p, p̂ the jet
space of order k of (formal) holomorphic mappings (C2, p)→ (C2, p̂), and by
j k
p(H) ∈ J k(C2,C2)p, p̂ the k-jet of H at p. (See Section 2 for further details.)

Suppose that (M, p) and (M̂, p̂) are (germs of) real-analytic hypersurfaces at p
and p̂ respectively, given by the real-analytic, real-valued local defining functions
ρ(Z , Z) and ρ̂(Z , Z). The formal map H is said to take (M, p) into (M̂, p̂) if

ρ̂
(
H(Z), H(Z)

)
≡ c(Z , Z)ρ(Z , Z)

(in the sense of power series) for some formal power series c(Z , Z); if in addition
the formal map is invertible, it is called a formal equivalence between (M, p) and
(M̂, p̂), and the germs themselves are called formally equivalent.

We wish to study the parametrization and finite determination of invertible for-
mal holomorphic mappings of C2 taking one real-analytic hypersurface M into

MSC2003: 32H12, 32V20.
Keywords: real hypersurfaces, formal equivalence, jet determination.
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another. There is a great deal of literature on this if M is assumed to be minimal at
p, that is, if there is no complex hypersurface through p in C2 contained in M ; see
the remarks at the end of this introduction. In the present paper, however, we shall
assume that M is not minimal at p, so that there exists a complex hypersurface
6 ⊂ C2 with p ∈ 6 ⊂ M . It is well known [Chern and Moser 1974; Baouendi
et al. 1999b, Chapter IV] that for any real-analytic hypersurface M ⊂ C2 and
point p ∈ M (not necessarily minimal), there exist local holomorphic coordinates
(z, w) ∈ C×C, vanishing at p, such that M is defined locally by the equation

Imw =2(z, z,Rew),

where 2(z, z, s) is a real-valued, real-analytic function such that

2(z, 0, s)≡2(0, z, s)≡ 0.

Such coordinates are called normal coordinates for M at p, and are not unique. M
is said to be of finite type at p if2(z, z, 0) 6≡ 0; otherwise M is of infinite type at p.
This definition is equivalent to being of finite type in the sense of [Kohn 1972] and
[Bloom and Graham 1977]. For real-analytic hypersurfaces, it is also equivalent
to minimality — indeed, if M is of infinite type at p, then (in normal coordinates)
M contains the nontrivial complex hypersurface 6 = {w = 0}. (For details see
[Baouendi et al. 1999b, Chapter I], for example.)

In this paper, we shall focus our attention on 1-infinite type points p of a real-
analytic hypersurface M ⊂ C2, i.e., points at which the normal coordinates above
satisfy the additional condition that 2s(z, z, 0) 6≡ 0. (See Section 2 for precise
definitions.) Our main result gives rational dependence of a formal equivalence
between 1-infinite type hypersurfaces on its jet of a predetermined order.

Theorem 1.1. Let M ⊂ C2 be a real-analytic hypersurface, and suppose p ∈ M
is of 1-infinite type. There exists an integer k such that, given any hypersurface
M̂ ⊂ C2 with (M̂, p̂) formally equivalent to (M, p), there exists a formal power
series of the form

(1) 9(Z;3)=
∑
α

pα(3)
q(3)`α

(Z − p)α,

where pα, q are (respectively) C2- and C-valued polynomials on the jet space
J k(C2,C2)p, p̂ and the `α are nonnegative integers, such that any formal equiv-
alence H : (M, p)→ (M̂, p̂) satisfies

q
(

j k
p(H)

)
= det

(
∂H
∂Z

(p)
)
6= 0 and H(Z)=9

(
Z; j k

p(H)
)
.

Our proof (presented in Section 5) will actually give a constructive process for
determining such an k.
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Theorem 1.1 has a number of applications. The first states that any formal
equivalence between two germs of 1-infinite type hypersurfaces (M, p) and (M̂, p̂)
is determined by finitely many derivatives at p.

Theorem 1.2. Let (M, p) and k be as in Theorem 1.1. If H 1, H 2
: (M, p) →

(M̂, p̂) are formal equivalences and

∂ |α|H 1

∂Zα
(p)= ∂

|α|H 2

∂Zα
(p) for all |α| ≤ k,

then H 1
= H 2 as power series.

Our second application deals with the structure of jets of formal equivalences
in the jet space J k(C2,C2)p, p̂, or rather in the submanifold Gk(C2)p, p̂ of jets of
invertible maps taking (C2, p) to (C2, p̂). We shall denote by F(M, p; M̂, p̂) the
set of formal equivalences taking (M, p) into (M̂, p̂).

Theorem 1.3. Let (M, p) and k be as in Theorem 1.1. Then for any (germ of a)
real-analytic hypersurface (M̂, p̂) in C2, the mapping

j k
p : F(M, p; M̂, p̂)→ Gk(C2)p, p̂

is an injection onto a real algebraic submanifold of Gk(C2)p, p̂.

Of special interest is the case (M̂, p̂)= (M, p), since F(M, p; M̂, p̂) becomes
a group under composition, called the formal stability group of M at p and denoted
by Aut(M, p). We shall denote by Gk(C2)p :=Gk(C2)p,p the k-jet group of C2 at
p. The following result is then a corollary of Theorem 1.3.

Theorem 1.4. Let (M, p) and k be as in Theorem 1.1. Then the mapping

j k
p : Aut(M, p)→ Gk(C2)p

defines an injective group homomorphism onto a real algebraic Lie subgroup of
Gk(C2)p.

The study of the (formal) transformation groups of hypersurfaces in CN has a
long history. Its roots can be traced back to E. Cartan, who studied the structure
of the local transformation groups of smooth Levi nondegenerate hypersurfaces in
C2 in [Cartan 1932a; 1932b]. These results were later extended to higher dimen-
sions by Chern and Moser in [Chern and Moser 1974], who also proved the finite
determination of such equivalences by their 2-jets.

Further results about the transformation groups of various classes of finite type
generic submanifolds of CN have been obtained more recently by a number of
mathematicians. Regarding the parametrization of transformation groups, we men-
tion the work of Zaitsev [1997], and Baouendi, Ebenfelt, and Rothschild [Baouendi
et al. 1999a], which presents modified versions of Theorems 1.2–1.4 valid for
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smooth generic submanifolds M, M̂ in CN with M of finite type and M̂ finitely
nondegenerate. Moreover, there exist a number of results concerning the finite
determination of local equivalences addressed in Theorem 1.2. We mention the
work of Baouendi, Mir, and Rothschild [Baouendi et al. 2002], which gives the best
finite determination results to date for the general case of finite type submanifolds
in CN , and Ebenfelt, Lamel, and Zaitsev [Ebenfelt et al. 2003], which addresses the
case C2 specifically, proving that the local equivalences between any two nonflat
real-analytic hypersurface are determined by a finite jet. The reader interested in
other recent work on these problems is directed to the excellent survey articles
[Rothschild 2003] and [Zaitsev 2002].

For the proofs of the four theorems above, it is convenient to work with for-
mal mappings between formal real hypersurfaces. Hence, the results presented
here will be reformulated and proved in this more general context. The following
section presents the necessary preliminaries and definitions. In what follows, the
distinguished points p and p̂ on M and M̂ , respectively, will, for convenience and
without loss of generality, be assumed to be 0.

2. Preliminaries and basic definitions

Formal mappings and hypersurfaces. Let X = (X1, . . . , X N ) be a N -tuple of
indeterminates, and let R denote a commutative ring with unity. We define

• R[[X ]] := the ring of formal power series in X with coefficients in R;

• R[X ] := the ring of polynomials in X with coefficients R.

For R= C, we shall also define

• C{X} := the ring of convergent power series in X with coefficients in C;

• Oε(X) := the ring of power series in X with coefficients in C that converge
for X j ∈ C, |X j |< ε, 1≤ j ≤ N .

We have canonical embeddings

C[X ] ⊂ Oε(X)⊂ C{X} ⊂ C[[X ]].

A power series ρ ∈ C[[Z , ζ ]], where Z = (Z1, . . . , Z N ) and ζ = (ζ1, . . . , ζN ),
is called real if ρ(Z , ζ )= ρ(ζ, Z), where ρ denotes the power series obtained by
replacing the coefficients of ρ by their complex conjugates. If, in addition, the
power series ρ satisfies the conditions

(2) ρ(0)= 0, dρ(0) 6= 0,

we say that ρ defines a formal real hypersurface M of CN through 0, and we write

M =
{
ρ(Z , Z)= 0

}
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and say that the pair (M, 0) is a formal real hypersurface. The function ρ is a
formal defining function for M . The reader should observe that if M is a formal
real hypersurface in CN with formal defining function ρ, then in general there is
no actual point set M ⊂ CN .

Suppose that ρ̂ is another formal power series (not necessarily real) satisfying
conditions (2). If there exists a power series a(Z , ζ ) (necessarily invertible at 0)
such that

ρ̂(Z , ζ )= a(Z , ζ )ρ(Z , ζ ),

then we say that ρ̂ also defines the formal real hypersurface M , and again we write
M = {ρ̂(Z , Z)= 0}.

By a formal mapping H : (CN , 0)→ (CN , 0), denoted H ∈ E(CN ,CN )0,0, we
shall mean an element H ∈ C[[Z ]]N such that H(0) = 0. We say H is a formal
change of coordinates if it is formally invertible, i.e., if there exists a formal map
H−1
: (CN , 0)→ (CN , 0) such that

H(H−1(Z))≡ H−1(H(Z))≡ Z

as formal power series. As noted in the introduction, H is a formal change of
coordinates in CN if and only if its Jacobian at 0 is nonzero.

Given a formal change of coordinates H in CN , we define its corresponding
formal holomorphic change of variable by

Z = H(Z ′), ζ = H(ζ ′).

If M = {ρ(Z , Z)= 0} is a formal real hypersurface of CN , we say M is expressed
in the Z ′ coordinates by {ρ(H(Z ′), H(Z ′))= 0}.

If M̂ = {ρ̂(Z , Z)= 0} is another formal real hypersurface of CN , then a formal
mapping H ∈ E(CN ,CN )0,0 is said to take M into M̂ if there exists a power series
c(Z , ζ ) (not necessarily invertible at 0) such that

ρ̂
(
H(Z), H(ζ )

)
= c(Z , ζ )ρ(Z , ζ ).

In this situation we write as H : (M, 0)→ (M̂, 0). This definition is independent
of the power series used to define M and M̂ .

If H : (M, 0)→ (M̂, 0) is as above and H is invertible, it follows that H−1 takes
M̂ into M . In this case we say that M and M̂ are formally equivalent, and that H
is a formal equivalence between them, denoted H ∈ F(M, 0; M̂, 0).

The motivation behind these definitions is the following. If the formal series ρ
defining the formal real hypersurface M is actually convergent, then the equation
ρ(Z , Z) = 0 defines a real-analytic hypersurface M of CN passing through the
origin. Moreover, if H :CN

→CN is a holomorphic mapping with H(0)= 0, and
M, M̂ are both real-analytic hypersurfaces of CN , then H(M) ⊂ M̂ if and only if
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the formal mapping H maps the formal real hypersurface M into the formal real
hypersurface M̂ .

For each positive integer k, we denote by J k(CN ,CN )0,0 the jet space of order k
of (formal) holomorphic mappings (CN , 0)→ (CN , 0), and by j k

0 : E(C
N ,CN )→

J k(CN ,CN )0,0 the corresponding jet mapping taking a formal mapping H to its
k-jet at 0, j k

0 (H). We denote by Gk(CN )0⊂ J k(CN ,CN )0,0 the collection of k-jets
of invertible formal mappings of (CN , 0) to itself.

Given coordinates Z and Ẑ on CN , we may identify the jet space J k(CN ,CN )0,0

with the set of degree-k polynomial mappings of (CN , 0)→ (CN , 0). The coor-
dinates on J k(CN ,CN )0,0, which we denote by 3, can then be taken to be the
coefficients of these polynomials. Formal changes of coordinates in CN yield
polynomial changes of coordinates in J k(CN ,CN )0,0.

If M is a formal real hypersurface in CN , there is a formal change of coordi-
nates Z = (z, w) ∈ C[[z, w]]N with z = (z1, . . . , zN−1), such that M , under the
corresponding formal holomorphic change of variable Z = Z(z, w), ζ = Z(χ, τ )

)
,

is defined by

ρ(z, w, χ, τ ) :=
(
w−τ

2i

)
−2

(
z, χ, w+τ

2

)
∈ C[[Z , ζ ]],

where2∈C[[z, χ, s]] is real and satisfies2(z, 0, s)=2(0, χ, s)=0. Such coordi-
nates are called normal coordinates for M ; see [Baouendi et al. 1999b, Chapter IV].

Using the formal Implicit Function Theorem to solve for w above, we see that
there exists a unique formal power series Q ∈C[[z, χ, τ ]] with Q(0, 0, 0)= 0 such
that ρ

(
z, Q(z, χ, τ ), χ, τ

)
≡ 0; moreover, Q is convergent whenever 2 is. This

implies that there exists a power series a(z, w, χ, τ ), nonvanishing at 0, such that
ρ(z, w, χ, τ ) = a(z, w, χ, τ )

(
w − Q(z, χ, τ )

)
; whence we may write (abusing

notation)

(3) M =
{(
w−w

2i

)
=2

(
z, z, w+w

2

)}
=
{
w = Q(z, z, w)

}
.

Observe that the normality of the coordinates implies Q(z, 0, τ )= Q(0, χ, τ )= τ .
Given normal coordinates Z = (z, w) for M as above, define the numbers

m, r, L , K ∈ {0, 1, 2, . . . } ∪ {∞} as follows. Set

(4) m := sup {q :2s j (z, χ, 0)≡ 0 for all j < q} .

If m =∞ (i.e., if 2≡ 0), then set r = L = K =∞. Otherwise, set

r := sup
{
q :2zαχβsm (0, 0, 0)= 0 for all |α| + |β|< q

}
,(5)

L := sup
{
q :2χβsm (z, 0, 0)≡ 0 for all |β|< q

}
,(6)

K := sup
{
q :2zαχβsm (0, 0, 0)= 0 for all |α|< q, |β| = L

}
.(7)



RATIONAL JET DEPENDENCE OF FORMAL EQUIVALENCES 113

We shall show in Theorem 2.1 that this 4-tuple of numbers is independent of the
normal coordinates used to define them.

We say that M is of finite type at 0 if m = 0; otherwise M is of infinite type at
0. If we wish to emphasize the number m ≥ 1, we shall say that M is of m-infinite
type at 0 if m <∞, and is flat at 0 if m =∞. We shall further say M is of finite
type r at 0 if m = 0, and is of m-infinite type r at 0 if 1≤ m <∞.

We conclude these definitions by stating a few known results concerning these
numbers in the case when M is a real-analytic hypersurface in CN . In this case, it is
known that the pair (m, r) is a biholomorphic invariant of M ; see [Meylan 1995].
If M is of infinite type at 0, it contains a formal complex hypersurface 6 passing
through 0. (In normal coordinates, we may take 6 = {w = 0}.) In fact, m > 0 is
constant along the complex hypersurface 6 ⊂ M through 0. And while r is not
constant along 6, there exists a proper, real-analytic subvariety V ⊂6 outside of
which all points are of m-infinite type 2. See [Ebenfelt 2002] for details.

Statement of results. Our first result shows that the 4-tuple (m, r, L , K ) (and hence
the notion of being m-infinite type r at a point) is in fact a formal invariant of a
hypersurface.

Theorem 2.1. Let (M, 0) be a formal real hypersurface of CN . Then the numbers
(m, r, L , K ) are independent of the choice of normal coordinates used to define
them. Moreover, if (M̂, 0) is formally equivalent to (M, 0) and has the corre-
sponding 4-tuple (m̂, r̂ , L̂, K̂ ), then (m, r, L , K )= (m̂, r̂ , L̂, K̂ ).

We shall then focus on the case N = 2 and m = 1. We may now state the
generalizations of Theorems 1.1 through 1.4 valid for formal real hypersurfaces.
Our main result is the following.

Theorem 2.2. Let (M, 0) be a formal real hypersurface in C2 of 1-infinite type.
There exists an integer k such that given any formal real hypersurface (M̂, 0) in
C2 formally equivalent to (M, 0), there exists a formal power series of the form

(8) 9(Z;3)=
∑
α

pα(3)
q(3)`α

Zα,

where pα, q are (respectively) C2- and C-valued polynomials on the jet space
J k(C2,C2)0,0 and the `α are nonnegative integers, such that any formal equiva-
lence H ∈ F(M, 0; M̂, 0) satisfies

q
(

j k
0 (H)

)
= det

(
∂H
∂Z

(0)
)
6= 0, H(Z)=9

(
Z; j k

0 (H)
)
.

It is clear from the remarks made in the previous section that Theorem 2.2 is a
more general version of Theorem 1.1 from the introduction. As a consequence of
this result, we have the following, from which Theorem 1.2 is derived.
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Theorem 2.3. Let (M, 0) be a formal real hypersurface in C2 of 1-infinite type,
and let k be the number described in Theorem 2.2. If (M̂, 0) is a formal hyper-
surface formally equivalent to (M, 0), and H 1, H 2

: (M, 0)→ (M̂, 0) are formal
equivalences such that

∂ |α|H 1

∂Zα
(0)= ∂

|α|H 2

∂Zα
(0) for all |α| ≤ k,

then H 1
= H 2 as power series.

We shall then prove the following generalization of Theorem 1.4.

Theorem 2.4. Let M and k be as in Theorem 2.2. The mapping

j k
0 : Aut(M, 0)→ Gk(C2)0

defines an injective group homomorphism onto a real algebraic Lie subgroup of
Gk(C2)0.

The following generalization of Theorem 1.3 is a consequence of Theorem 2.4.

Theorem 2.5. Let M and k be as in Theorem 2.2. For any formal real hypersurface
M̂ in C2, the mapping

j k
0 : F(M, 0; M̂, 0)→ J k(C2)0

is an injection onto a real algebraic submanifold of Gk(C2)0.

3. Formal invariance of type conditions

In this section, we shall prove Theorem 2.1, or rather a slightly sharper statement
of which Theorem 2.1 is an immediate consequence:

Proposition 3.1. Let (M, 0) be a formal real hypersurface in CN , given in normal
coordinates Z = (z, w) by Equation (3). Let (M̂, 0) be a formal real hypersurface
in CN , given in normal coordinates Ẑ = (ẑ, ŵ) by the corresponding “hatted”
defining functions:

M̂ =
{
ŵ−ŵ

2i
= 2̂

(
ẑ, ẑ, ŵ+ŵ

2

)}
=
{
ŵ = Q̂(ẑ, ẑ, ŵ)

}
.

Define as in Section 2 the 4-tuple (m, r, L , K ) for M and the corresponding 4-tuple
(m̂, r̂ , L̂, K̂ ) for M̂ . If M and M̂ are formally equivalent, then (m, r, L , K ) =
(m̂, r̂ , L̂, K̂ ).

We begin with a useful lemma concerning the form of formal mappings in nor-
mal coordinates. It is proved in the same way as [Baouendi et al. 1999b, Lemma
9.4.4].
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Lemma 3.2. Let M, M̂ be formal hypersurfaces in CN through 0, expressed in
normal coordinates as in Proposition 3.1. If H = (F,G) : (M, 0)→ (M̂, 0) is a
formal mapping, then G(z, w) = wg(z, w) for some g ∈ C[[z, w]]. Moreover, if
H is a formal equivalence, then F(z, 0) ∈ C[[z]]N−1 is a formal equivalence, and
g(0, 0) 6= 0.

As a consequence of this lemma, we shall henceforth write formal equivalences
(in suitable normal coordinates) as

(9) H(z, w)=
(

f (z, w),wg(z, w)
)
,

with f = ( f 1, . . . , f N−1) ∈ C[[z, w]]N−1 satisfying det fz(0, 0) 6= 0 and g ∈
C[[z, w]] satisfying g(0, 0) 6= 0. Observe that the condition that H map M formally
into M̂ may be written as

(10) Q(z, χ, τ )g
(
z, Q(z, χ, τ )

)
≡ Q̂

(
f
(
z, Q(z, χ, τ )

)
, f (z, χ), τ g(χ, τ )

)
.

Moreover, for convenience, we shall formally expand f and g as

(11) f (z, w)=
∑
n≥0

fn(z)
n!

wn, g(z, w)=
∑
n≥0

gn(z)
n!

wn.

The main technical lemma in the proof of Proposition 3.1 is the following.

Lemma 3.3. Suppose M, M̂ are formal hypersurfaces in CN through 0, expressed
in normal coordinates as in Proposition 3.1, and assume that H : (M, 0)→ (M̂, 0)
is a formal equivalence. Then for every j ≥ 0, if

Q̂(ẑ, χ̂ , 0)≡ Q̂ τ̂ (ẑ, χ̂ , 0)− 1≡ Q̂ τ̂ 2(ẑ, χ̂ , 0)≡ · · · ≡ Q̂ τ̂ j (ẑ, χ̂ , 0)≡ 0,

then

(12) Q(z, χ, 0)≡ Qτ (z, χ, 0)− 1≡ Qτ 2(z, χ, 0)≡ · · · ≡ Qτ j (z, χ, 0)≡ 0.

Moreover, g0(z), g1(z), . . . , g j (z) are all real constants (with g0(z) nonzero), and

Qτ j+1(z, χ, 0)≡ g(0) j Q̂ τ̂ j+1
(

f0(z), f0(χ), 0
)
.

To prove Lemma 3.3, we make use of two results. The first is a generalization
of the Chain Rule due to Faa de Bruno; see [Range 1986], for example:

Lemma 3.4 (Faa de Bruno’s Formula). Suppose that f =
(

f1, f2, . . . , f`
)
∈C`[[z]]

with z ∈ C and f (0)= 0, and suppose h(z1, z2, . . . , z`) ∈ C[[z1, z2, . . . , z`]]. Then

∂v

∂zv
{
h
(

f (z)
)}
=

∑
[α1
]+[α2

]+···

+[α`]=v

v! hz1|α
1|z2|α

2|···z`|α
`|

(
f (z)

)
α1!α2! · · ·α`!

∏
1≤q≤v
1≤p≤`

(
f p
(q)(z)
q!

)α p
q

,
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where each α p
= (α

p
1 , . . . , α

p
v ) denotes an v-dimensional multi-index, and

|α p
| =

v∑
q=1

α p
q , [α

p
] =

v∑
q=1

qα p
q , α p

! =

v∏
q=1

(α p
q )!

The proof is a routine induction, and is left to the reader. The other result we
shall need gives a second characterization of the number m:

Proposition 3.5 [Baouendi and Rothschild 1991, Proposition 1.7]. Let M , m, 2,
and Q be as above. Then

m = sup
{

q : ∂
j

∂τ j

{
Q(z, χ, τ )− τ

}∣∣∣
τ=0
≡ 0 for all j < q

}
.

Furthermore,

Qτm (z, χ, 0)=


1+ i2s(z, χ, 0)
1− i2s(z, χ, 0)

if m = 1,

2i2sm (z, χ, 0) if 2≤ m <∞.

Proof of Lemma 3.3. Differentiating identity (10) v times in τ , setting τ = 0, and
canceling v! from both sides yields the identity

(13)
∑

k+[ξ ]=v

g|ξ |(z)Qτ k (z, χ, 0)
k! ξ !

v∏
p=1

(
Qτ p(z, χ, 0)

p!

)ξp

≡

∑
[α1
]+···+[αn

]+[β1
]+···

···+[βn
]+[γ ]=v

Q̂ ẑ(|α1|,...,|αn |)χ̂ (|β
1|··· ,|βn |)τ̂ |γ |

(
f0(z), f0(χ), 0

)
α1! · · ·αn!β1! · · ·βn! γ !

×

∏
1≤q≤v
1≤u≤n

( ∑
[η]=q

f u
|η|(z)

η!

q∏
r=1

(
Qτ r (z, χ, 0)

r !

)ηr
)αu

q
( f u

q (χ)

q!

)βu
q
(

gq−1(χ)

(q − 1)!

)γq

.

We now proceed by induction. For j = 0, we assume only that Q̂(ẑ, χ̂ , 0)≡ 0.
Setting τ = 0 in identity (10), we find

Q(z, χ, 0) g
(
z, Q(z, χ, 0)

)
≡ Q̂

(
f0(z), f0(χ), 0

)
= 0.

Since g(z, Q(z, χ, 0)) does not vanish at z = χ = 0, we conclude Q(z, χ, 0)≡ 0.
Applying the v = 1 case of identity (13), we find

Qτ (z, χ, 0)g0(z)≡ Q̂ τ̂

(
f0(z), f0(χ), 0

)
g0(χ).

Setting χ = 0 yields g0(z)≡ g0(0)= g0(0), whence g0(z) is a real constant r , and
since H is invertible, r 6= 0 necessarily. Dividing gn(z)= g0(χ)= r 6= 0 from both
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sides of the identity above yields

Qτ (z, χ, 0)≡ Q̂ τ̂

(
f0(z), f0(χ), 0

)
,

which proves the j = 0 case.
Now, assume that the lemma holds for some j − 1 ≥ 0; we shall prove it for j .

Suppose that (12) holds. By induction, we know that

Q(z, χ, 0)≡ Qτ (z, χ, 0)− 1≡ Qτ 2(z, χ, 0)≡ · · · ≡ Qτ j−1(z, χ, 0)≡ 0,

that g0, g1, . . . , g j−1 are constant functions, and that

Qτ j (z, χ, 0)≡ r j−1 Q̂ τ̂ j
(

f0(z), f0(χ), 0
)
.

In the j = 1 case, this implies Qτ (z, χ, 0)≡ 1; otherwise it implies Qτ j (z, χ, 0)≡
0, as desired.

Substituting these values into identity (13) (with v = j + 1), we obtain

r Qτ j+1(z, χ, 0)+ ( j + 1)g j (z)≡ r j+1 Q̂ τ̂ j+1
(

f0(z), f0(χ), 0
)
+ ( j + 1)g j (χ).

Setting χ = 0 yields

( j + 1)g j (z)= ( j + 1)g j (0)= ( j + 1)g j (0),

so g j (z) is a real constant. Subtracting ( j + 1)g j (z) from both sides and dividing
by r 6= 0 completes the induction. �

Corollary 3.6. Let M, M̂ be formal real submanifolds of CN through 0, given in
normal coordinates as in Proposition 3.1. Define m for M and the corresponding
m̂ for M̂ . If M and M̂ are formally equivalent, then m = m̂.

Proof. Lemma 3.3 implies m ≥ m̂. Then reverse the roles of M and M̂ . �

We shall be primarily interested in formal real hypersurfaces which are of infinite
type, but nonflat, at 0. That is, formal hypersurfaces of m-infinite type for some
positive integer m. In this case, Corollary 3.6 may be strengthened as follows.

Proposition 3.7. If M is of m-infinite type at 0 and H ∈F(M, 0; M̂, 0), then M̂ is
of m-infinite type at 0, g0, g1, . . . , gm−1 are constant, and

0 6≡2sm (z, χ, 0)≡ g0(0)m−1 2̂ŝm
(

f0(z), f0(χ), 0
)
.

Proof. Put together Lemma 3.3, Corollary 3.6, and Proposition 3.5. �

We now have the necessary ingredients to prove Proposition 3.1.

Proof of Proposition 3.1. We have seen that m = m̂. If the hypersurfaces are of
finite type, then it is well known that the triple (r, L , K ) is a formal invariant. (An
outline of the proof that r is a formal invariant, for example, may be found in
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[Baouendi et al. 1999b, Chapter I].) Similarly, r =∞ if and only if m = m̂ =∞,
which in turn holds if and only if r̂ = ∞; and likewise if L = ∞ or K = ∞.
Hence, it suffices to assume that all the numbers in question are positive integers.
By Proposition 3.7, we have

0 6≡2sm (z, χ, 0)≡ g0(0)m−1 2̂ŝm
(

f0(z), f0(χ), 0
)
.

A straightforward induction using Faa de Bruno’s formula implies that for any
multi-indices α and β,

2zαχβsm (z, χ, 0)= g0(0)m−1
∑
|µ|≤|α|
|ν|≤|β|

2̂ẑµχ̂ν ŝm
(

f0(z), f0(χ), 0
)

× Pαβµν
((
( f u

0 )zγ (z)
)
|γ |≤|µ|

,
(
( f u

0)χ δ (χ)
)
|δ|≤|ν|

)
,

where each Pαβµν is a polynomial in its arguments.
This implies that 2zαχβsm (0, 0, 0) = 0 whenever |α| + |β| < r̂ , whence r ≥ r̂

necessarily. Reversing the roles of M and M̂ yields r = r̂ . Similarly, the equality
of r and r̂ then implies that 2χβsm (z, 0, 0)≡ 0 whenever |β|< L̂ , whence L ≥ L̂;
reversing the roles of the formal hypersurfaces establishes equality. The proof that
K = K̂ is similar, and is left to the reader. �

4. The 1-infinite type case in C2

Notation and results. From now on we deal only with formal real hypersurfaces of
C2, and in particular those hypersurfaces that are of 1-infinite type at 0. Suppose
that M is such a formal hypersurface. We shall write M in normal coordinates
Z = (z, w) as in (3). Since M is of 1-infinite type, this implies that we can write
Q(z, χ, τ )= τ S(z, χ, τ ) for some S ∈ C[[z, χ, τ ]], so that

(14) M =
{(
w−w

2i

)
=2

(
z, z, w+w

2

)}
=
{
w = w S(z, z, w)

}
.

For convenience, we shall write

(15) θ(z, χ)=
∞∑
j=0

θ j (z)
j !

χ j
:=2s(z, χ, 0) 6≡ 0

Observe that θ j (z)≡ 0 if j < L and θ ( j)
L (0)= 0 if j < K ,where L , K are defined

by equations (6) and (7). It will be useful for later computations to observe that
Proposition 3.5 implies

(16) S(z, χ, 0)=
1+ i θ(z, χ)
1− i θ(z, χ)

,
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whence repeated differentiation in χ yields

(17) Sχ j (z, 0, 0)=


1 if j = 0,

0 if 1≤ j ≤ L − 1,

2i θL(z) if j = L ,

2i θL+1(z)− 4θ1(z)2 if j = L + 1.

We now define a new, rather technical, invariant for 1-infinite type hypersur-
faces. Letting δ j

k denote the Kronecker delta function, we define the number
T ∈ {0, 1} by

(18) T :=
K−2∏
q=0

δ0
θ
(q)
L+1(0)

.

That is, T = 1 if and only if θL+1(z)= O(|z|K−1); by means similar to the proofs
for the numbers r , L , and K , it can be shown that T is a formal invariant. Details
are left to the reader.

Now assume that M̂ is a formal real hypersurface of C2 that is formally equiv-
alent to M , and write it in normal coordinates Ẑ = (ẑ, ŵ) as

(19) M̂ =
{
ŵ−ŵ

2i
= 2̂

(
ẑ, ẑ, ŵ+ŵ

2

)}
=
{
ŵ = ŵ Ŝ(ẑ, ẑ, ŵ)

}
,

We write θ̂ (ẑ, χ̂) := 2̂ŝ(ẑ, χ̂ , 0) as above.
If H : (M, 0)→ (M̂, 0) is a formal equivalence, Lemma 3.2 implies that H(z, w)

is of the form given by (9), with f, g ∈ C[[z, w]] and fz(0, 0)g(0, 0) 6= 0. Observe
that identity (10) can be rewritten (after canceling an extra τ from both sides) as

(20) S(z, χ, τ )g
(
z, τ S(z, χ, τ )

)
≡ g(χ, τ ) Ŝ

(
f
(
z, τ S(z, χ, τ )

)
, f (z, χ), τ g(χ, τ )

)
.

We shall continue to use the formal Taylor expansions of f and g in w given by
equation (11), and shall write

(21) fn(z) :=
∑
k≥0

1
k!

ak
n zk, gn(z) :=

∑
k≥0

1
k!

bk
n zk,

where the bar denotes complex conjugation. Note that, in particular, a0
0=0, a1

0 6=0,

and b0
0 = b0

0 6= 0.
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Finally, for n ≥ 0, define the formal rational mapping ϒn
: (C2, 0)→ (C4, 0) by

ϒn
1 (z, χ) := K

θL(z)
θ ′L(z)

(1+i θ(z, χ)
1−i θ(z, χ)

)n
θz(z, χ)− L

θ L(χ)

θ ′L(χ)
θχ (z, χ),

ϒn
2 (z, χ) := (1+ θ(z, χ)

2)

((1+i θ(z, χ)
1−i θ(z, χ)

)n
− 1

)
− 2i n

θ L(χ)

θ ′L(χ)
θχ (z, χ),

ϒn
3 (z, χ) := δ

1
L δ

1
T

(
δ1

K θ
(L)
1 (0)

θχ (z, χ, 0)
θ ′1(χ)

+
θ
(K )
1 (0)θ (K )2 (0)− θ (K+1)

1 (0)θ (K−1)
2 (0)

K θ (K )1 (0)2
θ1(χ)

θ ′1(χ)
θχ (z, χ)

−

(1+i θ(z, χ)
1−i θ(z, χ)

)n
(
θ1(z)

(
1+ θ(z, χ)2

)
+

(
θ2(z)
θ ′1(z)

− 2i n
θ1(z)2

θ ′1(z)

)
θz(z, χ)

)

+
θ
(K−1)
2 (0)

θ
(K )
1 (0)

(
θ1(χ)

(
1 + θ(z, χ)2

)
+

(
θ2(χ)

θ ′1(χ)
+ 2i n

θ1(χ)
2

θ ′1(χ)

)
θχ (z, χ)

))
,

ϒn
4 (z, χ) := δ

1
K

(
θ1(χ)

θ ′1(0)

(
1+ θ(z, χ)2

)
−
θz(z, χ)
θ ′1(z)

(1+i θ(z, χ)
1−i θ(z, χ)

)n

+
θχ (z, χ)
θ ′1(0)

(
2i n

θ1(χ)
2

θ ′1(χ)
+
θ2(χ)

θ ′1(χ)
−
θ ′′1 (0)
θ ′1(0)

θ1(χ)

θ ′1(χ)

))
,

where the θ j are defined by (15). We shall prove in the next section that these four
equations actually define formal power series in (z, χ), rather than quotients of
formal power series.

Observe that the formal mapping ϒn depends on the choice of normal coordi-
nates Z = (z, w) for the formal hypersurface M .

We are now able to state the main technical result of the paper, which may be
viewed as a sharper version of Theorem 2.2, but with conjugated derivatives.

Theorem 4.1. Let (M, 0) be a formal real hypersurface in C2 which is of 1-infinite
type, given in normal coordinates Z = (z, w) by equation (14). Define ϒn(z, χ) as
immediately above. For each n ∈ N, define the complex vector space

(22) Vn(M) := spanC

{
υn

s,t := ϒ
n
zsχ t (0, 0) : s, t ∈ N

}
⊂ C4.

Then the dimension of the vector space Vn(M) is a formal invariant for each n,
and the invariant set of integers

(23) D(M) :=
{
n ∈ N : dimC Vn(M) < 2+ δ1

K + δ
1
L δ

1
T
}
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is always finite.
Furthermore, given a formal real hypersurface (M̂, 0) in C2 formally equivalent

to (M, 0), normal coordinates Ẑ = (ẑ, ŵ) for M̂ , and n ∈ N, there exists a formal
power series An(z;1,3)∈C[1,3][[z]]2, with (z,1,3)∈C×C×C4|D(M)|, such
that (

fn(z), gn(z)
)
≡An

(
z;

1
a1

0b0
0

,
(
a0

j , b0
j , a1

j , b1
j
)

j∈D(M)

)
.

for any H ∈ F(M, 0; M̂, 0).
Moreover, if M and M̂ are convergent, there exists an ε > 0 such that the map

z 7→An

(
z;

1
a1

0b0
0

,
(
a0

j , b0
j , a1

j , b1
j
)

j∈D(M)

)
lies in Oε(z)2 for every H ∈ F(M, 0; M̂, 0) and every n ∈ N.

Examples. We now use Theorem 4.1 and Proposition 3.7 to calculate the formal
transformation groups of various 1-infinite type hypersurfaces.

Example 4.2. Consider the family of 1-infinite type hypersurfaces

M j
c :=

{
(z, w) : Imw = c Rew |z|2 j} , c ∈ R \ {0}, j ≥ 1.

Observe that L = K = j , T = 1, and θ(z, χ) = czχ . If n > 0, it can be shown
that {υn

2 j,2 j , υ
n
3 j,3 j } is a basis for Vn(M j

c ) if j ≥ 2, and that adding the vectors
{υn

2,3, υ
n
3,2} extends this to a basis for Vn(M1

c ). Hence, in any case, we have
D(M j

c )={0}, so any formal equivalence with source M j
c is determined by (a1

0, b0
0).

Applying Proposition 3.7 with M = M̂ =M j
c implies f0(z)= ε z for some ε ∈C

with |ε| = 1. It thus follows that

Aut(M j
c , 0)= {(z, w) 7→ (ε z, rw) : ε ∈ C, |ε| = 1, r ∈ R \ {0}} .

In particular, every formal automorphism converges.
Observe that for j 6=k, the hypersurfaces M j

c and Mk
b are not formally equivalent

(Theorem 2.1). On the other hand, M j
c and M j

b are formally equivalent if and only
if c/b> 0. In this case, applying Proposition 3.7 implies that f0(z)= α z for some
α ∈ C of modulus (c/b)1/2 j . It thus follows that

F(M j
c , 0;M j

b , 0)=
{
(z, w) 7→

( c
b

)1/2 j(
εz, rw

)
: ε ∈ C, |ε| = 1, r ∈ R \ {0}

}
.

Hence, the hypersurfaces M j
c are formally equivalent if and only if they are bi-

holomorphically equivalent if and only if b and c have the same sign.
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Example 4.3. Consider the family of 1-infinite type hypersurfaces

N j
b :=

{
(z, w) : Imw = 2 Rew Re(bzz j )

}
, b ∈ C \ {0}, j ≥ 2.

Note L = 1, K = j , and θ(z, χ) = bzχ j
+ bz jχ . If n > 0, it can be shown that

{υn
2,2, υ

n
3,2, υ

n
3,3

}
forms a basis for Vn(N j

b ), so we again conclude that D(N j
b )={0}.

Hence, every formal equivalence H with source N j
b is determined by the values

a1
0 and b0

0.
Now, Proposition 3.7 applied to the case M = M̂ = N j

b implies that a1
0 is a

( j−1)-th root of unity and that f0(z)= z/a1
0 . We conclude that

Aut(N j
b , 0)=

{
(z, w) 7→ (ε z, rw) : ε ∈ C, ε j−1

= 1, r ∈ R \ {0}
}
.

Note that every formal automorphism converges.

Example 4.4. Consider the hypersurface

M :=
{
(z, w) : Imw =

Rew |z|2

1+
√

1− |z|4
, |z|< 1

}
.

It is easy to check that L = K = 1 in this case and that D(M)= {0, 1, 2}. (In fact,
ϒ1

4 ≡0 and 2iϒ2
1 ≡ϒ

2
2 .) A complete calculation of the stability group of this hyper-

surface is given in [Kowalski 2002b], and reveals it to be a real-analytic hyper-
surface whose stability group at the origin is determined by 3-jets but not by 2-jets.

In fact, this example can be generalized as follows. Define for k = 2, 3, 4, . . .
the set

Mk :=

{
(z, w) : w = w

(
i |z|2+

√
1− |z|4

)2/k
}
,

where the principal branch of ζ 7→ ζ 2/k is meant. A straightforward calculation
shows that each Mk defines a real hypersurface and that M2 = M above. It can
also be shown that D(Mk) = {0, k/2, k} ∩ Z, and that the stability group of Mk

is determined by (k + 1)-jets, but not by jets of any lesser order; for details, see
[Kowalski 2002a, Chapter 7]. Hence, even though Theorem 4.1 asserts that D(M)
is always finite, the integers themselves can be arbitrarily large and, consequently,
the required jet-order can be as well.

5. Proofs of the main results

Proof of Theorem 4.1. A basic outline of the proof can be divided into four steps.

(1) Given a fixed set of normal coordinates Z = (z, w), we prove that for each
n ∈ N the power series fn(z) and gn(z) are rationally parametrized by the
values (a j

` , b j
` ) for `= 0, 1 and 0≤ j ≤ n.
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(2) We prove that under these conditions, if n 6∈ D(M), the 4-tuple of complex
numbers (a0

n, a1
n, b0

n, b1
n) is itself a polynomial in 1/(a1

0 b0
0) and (a j

` , b j
` ) for

`= 0, 1 and 0≤ j ≤ n− 1.

(3) We prove that D(M), defined by these normal coordinates, is always finite.

(4) We show that the dimension of Vn(M) (and hence the set D(M)) is indepen-
dent of the normal coordinates used to define it.

To fix notation throughout the proof, we assume that M is always given in normal
coordinates Z= (z, w) by (14). We also set D=D(M) and Vn

=Vn(M). Similarly,
M̂ , whenever a target formal hypersurface is needed, will always be given in normal
coordinates Ẑ = (ẑ, ŵ) by (19). If H : (M, 0)→ (M̂, 0) is a formal equivalence,
we set

1(H) :=
1

a1
0b0

0

∈ C \ {0},

λn
2(H) :=

(
a1

n, b0
n
)
∈ C2,

λn
3(H) :=

(
a1

n, b0
n, a0

n
)
∈ C3,

λn
4(H) :=

(
a1

n, b0
n, a0

n, b1
n
)
∈ C4,

3n
j (H) :=

(
λ0

j (H), λ
1
j (H), . . . , λ

n
j (H)

)
∈ C j (n+1).

We also use the following conventions for naming various types of polynomials
and power series.

• Qd(X;3)∈C[X,3]≡C[3][X ] denotes a polynomial in X of degree d whose
coefficients are polynomial in 3.

• P(3; X) ∈ C[[X,3]] ≡ C[[X ]][3] denotes a polynomial in 3 whose coeffi-
cients are power series in X .

• R(X;3) ∈ C[[X,3]] ≡ C[3][[X ]] denotes a power series in X whose coeffi-
cients are polynomial in 3.

Assume the normal coordinates Z and Ẑ for M and M̂ are fixed. We now tackle
the first step, the parametrizing of fn and gn . We begin with a lemma.

Lemma 5.1. Let (M, 0) and (M̂, 0) be formally equivalent formal 1-infinite type
hypersurfaces as above. There exist unique formal power series U, V ∈ C[[X, Y ]],
vanishing at 0, such that

f0(z)=U
(

z,
z

a1
0

)
, f0(χ)= V

(
χ, a1

0χ
)

for any H ∈ F(M, 0; M̂, 0). If both M and M̂ are convergent hypersurfaces, then
U, V ∈ C{X, Y }.
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Proof. Proposition 3.7 implies that

(24) θ(z, χ)≡ θ̂
(

f0(z), f0(χ)
)
.

Differentiating this L times in χ using Faa de Bruno’s formula and setting χ = 0
yields the identity

(25) θL(z)≡ (a1
0)

L θ̂L
(

f0(z)
)
.

Differentiating this K times in z and setting z = 0 yields

(26) θ
(K )
L (0)=

(
a1

0

)K (a1
0
)L
θ̂
(K )
L (0).

In particular, we find that for any formal equivalence H ∈ F(M, 0; M̂, 0),

(27)
∣∣ f ′0(0)

∣∣= ∣∣a1
0

∣∣= ∣∣∣∣∣θ (K )L (0)

θ̂
(K )
L (0)

∣∣∣∣∣
1/(L+K )

=: µ ∈ R \ {0}.

We can write

θL(z)=
1

K !
θ
(K )
L (0)zK t (z),

for some t ∈ C[[z]] with t (0) = 1. Thus, there exists a unique power series u(z)
with u(0)= 1 such that u(z)K

= t (z). Similarly, write

θ̂L(ẑ)=
1

K !
θ̂
(K )
L (0) ẑK û(ẑ)K ,

with û(0)= 1. Define the formal power series

ι(ẑ, X, Y ) := ẑ û(ẑ)−µ2 Y u(X).

Observe that ι(0, 0, 0)= 0 and ιẑ(0, 0, 0)= 1, whence the formal Implicit Function
Theorem implies the existence of a unique power series U (X, Y ), vanishing at
(0, 0), such that ι

(
U (X, Y ), X, Y

)
≡ 0.

Now, suppose that H ∈ F(M, 0; M̂, 0). Then identity (25) may be written as

1
K !
θ
(K )
L (0)

(
z u(z)

)K
≡ (a1

0)
L 1

K !
θ̂
(K )
L (0)

(
f0(z) û( f0(z))

)K
.

Replacing θL
(K )(0) by equation (26) and canceling common terms yields the iden-

tity (
a1

0 z u(z)
)K
≡
(

f0(z) û( f0(z))
)K
.

Formally extracting K-th roots on both sides, we conclude that the two power series
in the brackets differ only by some multiple ε ∈ C with εK

= 1. However, since

∂

∂z
(
a1

0 z u(z)
)∣∣

z=0 = a1
0 = f ′0(0)=

∂

∂z
(

f0(z) û( f0(z))
)∣∣

z=0,
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we conclude that ε = 1 necessarily. Moreover, since a1
0 a1

0 = µ
2, we have

µ2
(

z
a1

0

)
u(z)≡ f0(z) û

(
f0(z)

)
.

Hence, ι
(

f0(z), z, z/a1
0

)
≡ 0, so by the uniqueness of U , we conclude f0(z) =

U
(
z, z/a1

0

)
. Conjugating this result yields f0(χ)= V (χ, a1

0χ), where V is defined
by V (X, Y ) :=U (X, Y/µ2).

Finally, observe that if M and M̂ are convergent, then the power series θ (hence
also u) and θ̂ (hence û) are convergent. Thus the holomorphic Implicit Function
Theorem implies that U and V are necessarily convergent near (0, 0) ∈ C2. �

We can now extend this lemma to show that fn and gn are similarly parametrized
for any n ≥ 0.

Proposition 5.2. Let (M, 0), (M̂, 0) be formally equivalent formal 1-infinite type
hypersurfaces as above. Then for every n ∈ N, there exists a formal power series
Bn(z;1,3) ∈ C[1,3][[z]]2 such that

(28)
(

fn(z), gn(z)
)
=Bn

(
z;1(H),3n

2+δ1
K+δ

1
T
(H)

)
for any H ∈ F(M, 0; M̂, 0). In addition, if n ≥ 1, then in fact

(29)
fn(z)
f ′0(z)

= T 1
n
(
z;1(H),3n−1

2+δ1
K+δ

1
T
(H)

)
−

L
a1

0

(
θL(z)
θ ′L(z)

)
a1

n +
n
b0

0

(
θL(z)
θ ′L(z)

)
b0

n

+
i δ1

K

2b0
0

(
1

θ ′1(z)

)
b1

n +
δ1

T

a1
0

(
2i n

θ1(z)2

θ ′L(z)
−
θL+1(z)
θ ′L(z)

+
L a2

0

a1
0

θL(z)
θ ′L(z)

)
a0

n,

(30) gn(z)= T 2
n
(
z;1(H),3n−1

2+δ1
K+δ

1
T
(H)

)
+ b0

n +
2i b0

0 δ
1
T

a1
0

(
θ1(z)

)
a0

n

with T (z;1,3n−1
2+δ1

K+δ
1
T
) ∈ C2

[1,3n−1
2+δ1

K+δ
1
T
][[z]].

Moreover, if M and M̂ are convergent, there exists an ε > 0 such that the map

z 7→Bn
(
z;1(H),3n

2+δ1
K+δ

1
T
(H)

)
lies in Oε(z)2 for every n ∈ N and every H ∈ F(M, 0; M̂, 0).

Proof. For convenience, we shall set γ = 2+ δ1
K + δ

1
T . We proceed by induction.

The n = 0 case follows immediately from Lemma 5.1 and the fact that g0(z)≡ b0
0

(Proposition 3.7), so let us assume that the proposition is true up to some n−1≥ 0.
To prove (28), it suffices to prove that equations (29) and (30) hold.
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Suppose that H : (M, 0)→ (M̂, 0) is a formal equivalence.1 Differentiating
identity (20) n times in τ using Faa de Bruno’s formula and setting τ = 0 (or,
equivalently, substituting Q(z, χ, τ )= τ S(z, χ, τ ) and v = n+1 into (13)) yields

(31) −S(z, χ, 0)n+1gn(z)+ b0
0 Ŝẑ

(
f0(z), f0(χ), 0

)
S(z, χ, 0)n fn(z)

+b0
0 Ŝχ̂

(
f0(z), f0(χ), 0

)
fn(χ)+ Ŝ

(
f0(z), f0(χ), 0

)
gn(χ)

≡ Pn

(
b0

0,
(

f j (z), g j (z), f j (χ), g j (χ)
)n−1

j=1; z, χ, f0(z), f0(χ)
)
,

where Pn(3; X), with (3, X) ∈ C4n−3
×C4, depends only on M and M̂ and not

the map H . (An explicit formula for Pn is given following the proof of Proposition
5.2.) Note that Lemma 3.3 implies Ŝ

(
f0(z), f0(χ), 0

)
= S(z, χ, 0), whence

Ŝẑ
(

f0(z), f0(χ), 0
)
=

Sz(z, χ, 0)
f ′0(z)

, Ŝχ̂
(

f0(z), f0(χ), 0
)
=

Sχ (z, χ, 0)

f ′0(χ).

If equation (28) holds for some n ∈ N, then

(32) λn
4(H)=

(
(Bn)

1
z , (Bn)

2, (Bn)
1, (Bn)

2
z
)
(0;1(H),3n

γ (H))

=: βn(1(H),3n
γ (H)).

Applying the inductive hypothesis to this and substituting this into equation (31)
yields

(33)
(

f j (χ), g j (χ)
)
=B j

(
χ;
(a1

0
µ

)2
1(H),

(
β`(1(H),3`γ (H))

) j
`=0

)
for j < n, where µ is defined in equation (27). Substituting these values into (31)
yields

(34) −S(z, χ, 0)n+1gn(z)+ S(z, χ, 0)gn(χ)+ b0
0 Sz(z, χ, 0)S(z, χ, 0)n

fn(z)
f ′0(z)

+b0
0 Sχ (z, χ, 0)

fn(χ)

f ′0(χ)
≡Rn(z, χ;1(H),3n−1

γ (H)),

with Rn(X;3) independent of the mapping H for each n ≥ 0.
On one hand, substituting χ = 0 and the identities from equations (16) and (17)

into (34) yields

(35) gn(z)=Rn(z, 0;1(H),3n−1
γ (H))+ b0

n +
2i b0

0

a1
0

(
θ1(z)

)
a0

n .

On the other hand, differentiating identity (34) L times in χ , setting χ = 0, and
using the identities from equations (16) and (17) yields (after rearranging terms)

1We remark that the construction given in this section can be carried out if no formal equivalence
exists between M and M̂ .
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the identity

θ ′L(z)
fn(z)
f ′0(z)

≡−
i

2b0
0

(Rn)χ j
(
z, 0;1(H),3n−1

γ (H)
)
+

n+1
b0

0

θL(z)gn(z)+
i

2b0
0

bL
n

−
1
b0

0

(
θL(z)

)
b0

n −
L
a1

0

(
θL(z)

)
a1

n −
1
a1

0

(
θL+1(z)+ 2i θ1(z)2−

L a2
0

a1
0
θL(z)

)
a0

n .

Using the formula for gn(z) from equation (35) and observing that (θ1)
2
= θ1θL

for every L ≥ 1, we can rewrite this identity as

(36) θ ′L(z)
fn(z)
f ′0(z)

≡−
i

2b0
0

(Rn)χ j
(
z, 0;1(H),3n−1

γ (H)
)
−

n
b0

0

(
θL(z)

)
b0

n +
i

2b0
0

bL
n

−
L
a1

0

(
θL(z)

)
a1

n +
1
a1

0

(
− θL+1(z)+ 2i nθ1(z)2+

L a2
0

a1
0
θL(z)

)
a0

n .

We complete the proof by examining cases.

Case 1. K = 1. In this case L = T = 1 necessarily, so γ = 4 and θ ′L(z) = θ
′

1(z)
is a multiplicative unit. Dividing it on both sides of (36) yields (29); equation (30)
follows from (35).

Case 2. K > 0. In this case, setting z = 0 in (36) yields

0=−
i

2b0
0

(Rn)χ j
(
z, 0;1(H),3n−1

γ (H)
)
+

i
2b0

0

bL
n ,

whence we may replace bL
n in identity (36) by (Rn)χ j

(
z, 0;1(H),3n−1

γ (H)
)
.

Thus, after rearranging the terms again, we may rewrite (36) as

(37) θ ′L(z)
fn(z)
f ′0(z)

≡

K−2∑
j=0

(rn
j

(
1(H),3n−1

γ (H)
)

j !
z j
+R1

n
(
z;1(H),3n−1

0 (H)
))
−

n
b0

0

(
θL(z)

)
b0

n

−
L
a1

0

(
θL(z)

)
a1

n +
1
a1

0

(
− θL+1(z)+ 2i nθ1(z)2+

L a2
0

a1
0
θL(z)

)
a0

n,

with the rn
j polynomials and R1

n(z;1,3) of order at least K−1 in z.
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Case 2A. T = 1. Note that γ = 3. Since θ ( j)
L+1(0)= 0 for j < K−1, differentiating

(37) in z (up to K−2 times) yields the relations

rn
j
(
1(H),3n−1

3 (H)
)
= 0, 0≤ j ≤ K − 2.

This does not imply that the polynomials rn
j (1,3) are themselves identically zero;

merely that they vanish whenever

(1,3)=
(
1(H),3n−1

3 (H)
)

for some formal equivalence H ∈ F(M, 0; M̂, 0).
Consequently, we may remove the first K−1 summands of the right-hand ex-

pression in identity (37). Observe that all the remaining summands are of order at
least K−1 in z, and hence can be divided by θ ′L(z) to form another power series.
This division yields (29); (30) follows from (35).

Case 2B. T =0. Note that γ =2. We know there exists some j0 ∈{1, 2, . . . , K−2}
such that θ ( j0)

L+1(0) 6= 0. Differentiating the identity (37) j0 times in z and setting
z = 0, we obtain

0= rn
j0

(
1(H),3n−1

2 (H)
)
−
θ
( j0)
L+1(0)

a1
0

a0
n,

whence we may replace a0
n in (35) and (37) by

a1
0 rn

j0(1(H),3
n−1
2 (H))

θ
( j0)
L+1(0)

to obtain

θ ′L(z)
fn(z)
f ′0(z)

≡

K−2∑
j=0

( r̃n
j (1(H),3

n−1
2 (H))

j !
z j
+R2

n(z;1(H),3
n−1
2 (H))

)
−

n
b0

0

(
θL(z)

)
b0

n −
L
a1

0

(
θL(z)

)
a1

n,

gn(z)=R3
n
(
z, 0;1(H),3n−1

2 (H)
)
+ b0

n.

Thus, (30) holds; arguing as in the proof of Case 2A now yields (29).

The only thing missing from the proof is the convergence statement. Assume
now that M and M̂ define real-analytic hypersurfaces in C2 through 0. Hence,
there exists a δ > 0 such that

S(z, χ, τ ) ∈ Oδ(z, χ, τ ), Ŝ
(
ẑ, χ̂ , τ̂

)
∈ Oδ

(
ẑ, χ̂ , τ̂

)
.

Without loss of generality, we shall assume that δ is chosen small enough such that
θL(z) 6= 0 for 0 < |z| < δ, since the zeros of a nonconstant holomorphic function
of one variable are isolated.
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Similarly, since U (X, Y ) ∈ C{X, Y } vanishes at 0 by Lemma 5.1, there exists
an η > 0 such that U (X, Y ) ∈ Oη(X, Y ) and satisfies

∣∣U (X, Y )
∣∣ < δ whenever

|X |, |Y |< η.
Choose ε <min{δ, η, µη}, where µ is defined by equation (27). We claim this

is the desired ε > 0; the proof is by induction. The case n = 0 follows from
Lemma 5.1. Assuming this choice of ε holds up to some n− 1, then observe that
the mapping

(z, χ) 7→Rn
(
z, χ;1(H),3n−1

γ (H)
)

≡ Pn

(
b0

0,
(

f j (z), g j (z), f j (χ), g j (χ)
)n−1

j=1; z, χ, f0(z), f0(χ)
)

converges if |z|, |χ |< δ for any H ∈ F(M, 0; M̂, 0). Fix such an H . By equation
(35), we conclude gn(z) converges on the ball B1(0, ε)= {z ∈ C : |z|< ε}. On the
other hand, we have shown that θ ′L(z) fn(z)/ f ′0(z) = zK−1q

(
z;1(H),3n−1

γ (H)
)
,

with q( · ;1(H),3n−1
γ (H)) convergent on B1(0, ε). Since θ ′L(z) converges for

|z|< ε and in the ε-ball vanishes only at z = 0 (of order K − 1), we conclude that
fn(z) converges on B1(0, ε) as well, which completes the proof. �

It is of interest to note that as a consequence of Proposition 5.2, we see that
if M and M̂ are real-analytic hypersurfaces in C2 and H is a formal equivalence
between them, the formal mappings z 7→ Hwn (z, 0) are convergent for every n ∈
N; moreover, they converge on some common ε-neighborhood of 0 ∈ C, with ε
independent of n and H .

Because it is useful in doing calculations, we now give the explicit formula for
Pn . Using Faa de Bruno’s formula, we have

Pn

((
f j ,g j , f j ,g j

)n−1
j=0; z,χ, ẑ, χ̂

)
= pn

((
f j ,g j , f j ,g j

)
0≤ j≤n−1,

(
Sτ j (z,χ,0)

)
0≤ j≤n,

(
Ŝẑ j χ̂ k τ̂ `(ẑ, χ̂ ,0)

)
0≤ j+k+`≤n

)
where pn is the universal polynomial

pn

((
f j , g j , f j , g j

)
0≤ j≤n−1,

(
S j
)

0≤ j≤n,
(
Ŝ( j,k,`)

)
0≤ j+k+`≤n

)
≡

∑
α∈Nn

k+[α]=n
|α|<n

n! g|α| Sk

k!α!

n∏
p=1

(
Sp−1

(p−1)!

)αp

−

∑
α,β,γ∈Nn

k+[α]+[β]+[γ ]=n
[α],[β],k<n

n! gk Ŝ(|α|,|β|,|γ |)
k!α!β! γ !

×

n∏
p=1

 ∑
ξ∈Np

[ξ ]=p

f|ξ |
ξ !

n∏
q=1

(
Sq−1

(q−1)!

)ξq

αp(
f p

p!

)βp
(

g p−1

(p−1)!

)γp

.
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In particular, observe that

(38)

Pn
(
(0, 0, g0, g0, 0, 0, . . . , 0); z, χ, ẑ, χ̂

)
=−g0 Sτ n (z, χ, 0)+ gn

0 Ŝτ̂ n (ẑ, χ̂ , 0).

This completes the first step of the proof. We move on to the second step, which
involves parametrizing 3n .

Proposition 5.3. Let (M, 0) and (M̂, 0) be formal hypersurfaces of 1-infinite type
which are formally equivalent as above. Then for every n ∈N, there exists a power
series

An(z;1,3) ∈ C[1,3][[z]]2

such that (
fn(z), gn(z)

)
=An

(
z;1(H),

(
λn

2+δ1
K+δ

1
Lδ

1
T
(H)

)
j∈D(M), j≤n

)
.

for any H ∈F(M, 0; M̂, 0). Moreover, if M and M̂ are convergent, there exists an
ε > 0 such that the map

z 7→An

(
z;1(H),

(
λn

2+δ1
K+δ

1
Lδ

1
T
(H)

)
j∈D(M), j≤n

)
lies in Oε(z)2 for every n ∈ N and every H ∈ F(M, 0; M̂, 0).

Proof. We continue with the notation from Proposition 5.2; in particular, we shall
continue to let γ denote 2+ δ1

K + δ
1
T . Observe that Proposition 5.3 follows im-

mediately from Proposition 5.2 if it can be shown that for every n 6∈ D(M), there
exists a Cγ -valued polynomial ωn(1,3) such that

(39) λn
γ (H)= ω

n(1(H),3n−1
2+δ1

K+δ
1
Lδ

1
T
(H)

)
for all H ∈ F(M, 0; M̂, 0).

To see this, suppose equation (39) holds for every n 6∈ D(M). An easy induction
shows that for every n ∈ N, there exists a Cγ -valued polynomial ω̃n(1,3) such
that

λn
γ (H)= ω̃

n
(
1(H),

(
λ

j
2+δ1

K+δ
1
Lδ

1
T
(H)

)
j∈D, j≤n

)
.

Substituting this into the power series for Bn given by Proposition 5.2 completes
the proof.

Hence, we must show that a relation of the form given in (39) holds for each
n 6∈ D(M). To this end, define the power series

ϒ̃n
: (C2, 0)→ (C4, 0)
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by ϒ̃n
j = ϒ

n
j for j 6= 3, and set

ϒ̃n
3 (z, χ) := δ

1
T

(
δ1

K θ
(L)
1 (0)

θχ (z, χ)

θ ′L(χ)

+
L
(
θ
(K )
L (0)θ (K )L+1(0)− θ

(K+1)
L (0)θ (K−1)

L1
(0)
)

K θ (K )1 (0)2
θ L(χ)

θ ′L(χ)
θχ (z, χ)

−

(1+i θ(z, χ)
1−i θ(z, χ)

)n
(
θ1(z)

(
1+ θ(z, χ)2

)
+

(
θL+1(z)
θ ′L(z)

− 2i n
θ1(z)2

θ ′L(z)

)
θz(z, χ)

)

+
θ
(K−1)
L1

(0)

θ
(K )
L (0)

(
θ1(χ)

(
1 + θ(z, χ)2

)
+

(
θ L+1(χ)

θ ′L(χ)
+ 2i n

θ1(χ)
2

θ ′L(z)

)
θχ (z, χ)

))
.

Observe that

δ1
L ϒ̃

n
3 = ϒ

n
3 .

Reconsider the identity (34). If we substitute into it the explicit formulas for
fn(z) and gn(z) given in Proposition 5.2, as well as the corresponding formulas
for fn(χ) and gn(χ) given by equation (33), we can rewrite this as

(40) ϒ̃n(z, χ)t κn(1(H), λ0
2(H)

)
λn

4(H)≡W n(z, χ;1(H),3n−1
γ (H)

)
,

where the superscript t denotes the transpose operation, κn(1, λ) is the 4 × 4
matrix of polynomials defined by

κn(1, λ0
2) :=


(L/K )1(b0

0)
2
−n/K −δ1

T (L/K ) a2
01

2(b0
0)

3 0

0 −i/2 0 0

0 0 −δ1
T 1(b

0
0)

2 0

0 0 0 δ1
K i/2


(by Lemma 5.1, a2

0 is a polynomial in a1
0), and

W n(z, χ;1,3) ∈ C[1,3][[z, χ]].

Denote by κ̃n the 4× 4 matrix function

κ̃n(1, λ0
2) :=


(K/L)1(a1

0)
2 2i n/L1(a1

0)
2
−a2

01a1
0 0

0 2i 0 0

0 0 −δ1
T 1(a

1
0)

2 0

0 0 0 −δ1
K 2i

 .
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Observe that if a1
0 b0

0 6= 0, then

κn
(

1
a1

0 b0
0

, λ0
2

)
· κ̃n

(
1

a1
0 b0

0

, λ0
2

)
=


1 0

L a2
0

K a1
0
(δ1

T−1) 0

0 1 0 0

0 0 δ1
T 0

0 0 0 δ1
K


j

,

For convenience, we denote by κn
j the upper-left j× j submatrix of κn for 1≤ j≤4;

we define κ̃n
j similarly. We now complete the proof by examining cases.

Case 1. K = 1. Observe that L = T = 1 necessarily, so ϒ̃n
= ϒn and κn

4 , κ̃
n
4

are matrix inverses for all n ∈ N. Suppose that n 6∈ D(M), and choose a basis
{υn

s j ,t j
}

4
j=1 for Vn . If 4 is the 4×4 matrix whose j-th row is υn

s j ,t j
, then it follows

that 4 is invertible. Now, differentiating (40) s j times in z, t j times in χ , and
setting z=χ = 0 (for j = 1, 2, 3, 4), we obtain the 4×4 linear system of equations
of the form

4κn
4
(
1(H), λ2

0(H)
)
λn

4 = w
n(1(H),3n−1

4 (H)
)
,

Thus, we may take

ωn(1,3n−1
4 ) := κ̃n

4 (1, λ
2
0)4

−1wn(1,3n−1
4 )

to complete the proof.

Case 2. K > L = 1 = T . We have ϒ̃n
= ϒn

= (ϒn
1 , ϒ

n
2 , ϒ

n
3 , 0) and κn

3 , κ̃
n
3 are

inverses for all n ∈ N. Observe too that (40) reduces to(
ϒn

1 (z, χ),ϒ
n
2 (z, χ),ϒ

n
3 (z, χ)

)t
κn

3
(
1(H), λ0

2(H)
)
λn

3(H)

≡W n(z, χ;1(H),3n−1
3 (H)

)
.

The proof now follows the exact same lines as in the previous case.

Case 3. T = 0. Since this implies K > 1, it follows that ϒ̃n
=ϒn

= (ϒn
1 , ϒ

n
2 , 0, 0)

and κn
2 , κ̃

n
2 are inverses for all n ∈ N. Here, the identity (40) reduces to

(41)(
ϒn

1 (z, χ),ϒ
n
2 (z, χ)

)t
κn

2
(
1(H), λ0

2(H)
)
λn

2(H)≡W n(z, χ;1(H),3n−1
2 (H)

)
.

The proof now follows the exact same lines as in the previous two cases.

Case 4. L > 1= T . Observe that identity (40) reduces to

(42)
(
ϒn

1 (z, χ),ϒ
n
2 (z, χ), ϒ̃

n
3 (z, χ)

)t
κn

3
(
1(H), λ0

2(H)
)
λn

3(H)

≡W n(z, χ;1(H),3n−1
3 (H)

)
.
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We claim that a0
n=σ

n(1(H),3n−1
3 (H)) for every n∈N, where σ n is a polynomial.

Hence, we can write(
fn(z), gn(z)

)
=Bn

(
z;1(H),3n

3(H)
)
= B̃n

(
z;1(H),3n

2(H)
)
;

that is, fn(z) and gn(z) are given by expressions of the same form as in Proposition
5.2, but without the a0

n term. Hence, identity (40) reduces to identity (41), and the
proof proceeds as in Case 3.

To prove the claim, we proceed by induction. For n= 0, this is trivial, as a0
0 = 0.

For the inductive step, we consider two cases.

Case 4A. θ (K−1)
L+1 (0)= 0. Then equation (29) implies

a0
n = fn(0)= a1

0 T 1
n
(
0;1(H),3n−1

3 (H)
)
.

Conjugating this and applying equation (33) yields a0
n = T̃ (1(H),3n−1

3 (H)) for
some polynomial T̃ (1,3). But by the inductive hypothesis, 3n−1

3 (H) is itself a
polynomial in (1(H),3n−1

2 (H)), so the induction is complete in this case.

Case 4B. θ (K−1)
L+1 (0) 6= 0. Differentiating (42) L − 1 times in χ and setting χ = 0

yields the identity∣∣θ (K−1)
L+1 (0)

∣∣2∣∣θ (K )L (0)
∣∣2 θL(z)a0

n =Wχ L−1
(
z, 0;1(H),3n−1

3 (H)
)
.

Differentiating this K times in z and setting z= 0 yields a0
n = T̃ (1(H),3n−1

3 (H))
for some polynomial T̃ (1,3). But by the inductive hypothesis, 3n−1

3 (H) is itself
a polynomial in (1(H),3n−1

2 (H)), so the induction is complete in this case. �

This completes the second step. We move on to the third step, counting the
elements of D.

Proposition 5.4. Given a fixed set of normal coordinates Z on M , the set D(M)
defined by equation (23) has at most 2(2+ δ1

K + δ
1
Lδ

1
T ) elements.

Proof. Consider the power series ϒn(z, χ) defined on page 120; we must prove
that for all but 2(2+ δ1

K + δ
1
Lδ

1
T ) integers n ∈ N, the set Vn(M) has dimension

2+ δ1
K + δ

1
L δ

1
T .

Consider the matrix

ξ(n) :=

 ↑ ↑ ↑ ↑

υn
2K ,2L υn

3K ,3L υn
3K ,2L υn

2K ,3L

↓ ↓ ↓ ↓


t

.

Our goal will be to show that for all but at most 2(2+ δ1
K + δ

1
Lδ

1
T ) integers n ∈N,

the first 2+δ1
K+δ

1
Lδ

1
T rows are linearly independent, which implies that n 6∈D(M).
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Using Faa de Bruno’s formula, we compute that

(ϒn
1 )χ2L (z, 0)= 2i

(2L)!
(L!)2

K θ (K )L (z)2 n+Q0(n; (∂νθ(z, 0))|ν|<3L+K+1
)
,

(ϒn
1 )χ3L (z, 0)=−2

(3L)!
(L!)3

K θ (K )L (z)3 n2
+Q1(n; (∂νθ(z, 0))|ν|<4L+K+1

)
,

(ϒn
2 )χ2L (z, 0)=−2

(2L)!
(L!)2

θ
(K )
L (z)2 n2

+Q1(n; (∂νθ(z, 0))|ν|<3L+K+1
)
,

(ϒn
2 )χ3L (z, 0)=−

4i
3
(3L)!
(L!)3

θ
(K )
L (z)3 n3

+Q2(n; (∂νθ(z, 0))|ν|<4L+K+1
)
,

(ϒn
3 )χ2(z, 0)= δ1

Lδ
1
T
(
− 4θ (K )1 (z)3 n2

+Q1(n; (∂νθ(z, 0))|ν|<K+4
))
,

(ϒn
3 )χ3(z, 0)= δ1

Lδ
1
T
(
− 16i θ (K )1 (z)4 n3

+Q2(n; (∂νθ(z, 0))|ν|<K+5
))
,

(ϒn
4 )χ2(z, 0)= δ1

K
(
Q0(n; (∂νθ(z, 0))|ν|<5

))
,

(ϒn
4 )χ3(z, 0)= δ1

K
(
12θ1(z)2 n2

+Q1(n; (∂νθ(z, 0))|ν|<5
))
.

Setting α := θ (K )L (0) it follows, we may write ξ(n) = C1(n)+C2(n), with C1(n)
given by

2i K (2L)! (2K )!α2

(L! K !)2
n
−2(2L)! (2K )!α2

(L! K !)2
n2 0 0

−2K (3L)! (3K )!α3

(L! K !)3
n2 −4i(3L)! (3K )!α3

3(L! K ! )3
n3 0 0

0 0 δ1
Lδ

1
T
−4(3K )!α3

(K !)3
n2 0

0 0 0 δ1
K 72α2n2


and C2(n) of the form

Q0(n; j3L+3K+1
0 θ) Q1(n; j3L+3K+1

0 θ) δ1
L δ

1
T Q1(n; j3K+4

0 θ) δ1
K Q0(n; j7

0 θ)

Q1(n; j4L+4K+1
0 θ) Q2(n; j4L+4K+1

0 θ) δ1
L δ

1
T Q2(n; j4K+5

0 θ) δ1
K Q2(n; j9

0 θ)

Q1(n; j3L+4K+1
0 θ) Q2(n; j3L+4K+1

0 θ) δ1
L δ

1
T Q1(n; j4K+4

0 θ) δ1
K Q0(n; j8

0 θ)

Q1(n; j4L+3K+1
0 θ) Q2(n; j4L+3K+1

0 θ) δ1
L δ

1
T Q2(n; j3K+5

0 θ) δ1
K Q2(n; j8

0 θ)

 .

We shall denote by ξ j (n) the upper-left j × j submatrix of ξ(n) for j = 1, 2, 3, 4.
We complete the proof by examining cases.

Case 1. K = 1. In this case L = T = 1 as well, whence 2+ δ1
K + δ

1
Lδ

1
T = 4. By

examining the matrix ξ4(n), and in particular the term of highest order in n in each
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of its entries, we find that

det ξ4(n)= 110592α10 n8
+Q7(n; j9

0 θ).

Since α 6= 0, this is a nonzero, eighth degree polynomial in n, and hence has at
most eight distinct zeros (in the complex plane). If det ξ4(n0) 6= 0, then the four
rows of ξ(n0) are linearly independent, which completes the claim.

Case 2. K > L = T = 1. In this case, we have 2+ δ1
K + δ

1
Lδ

1
T = 3. By examining

the highest order terms in n as above, we find that

det ξ3(n)= 64 K
(2K )!(3K )!2

(K !)8
α8 n6

+Q5(n; j4K+5
0 θ).

Arguing as above implies that for all but (at most) six integers n, the matrix ξ3(n)
is invertible, whence the first three rows of ξ(n) are linearly independent. This
completes the claim.

Case 3. L> 1 or T = 0. Since either of these conditions necessarily implies K > 1,
we conclude that 2+ δ1

K + δ
1
Lδ

1
T = 2. Since

det ξ2(n)=−
4
3

K
(2L)! (3L)! (2K )! (3K )!

(L! K !)5
α5 n4

+Q3(n; j4L+4K+1
0 θ),

the proof is complete by arguments similar to the previous case. �

Note that while D(M) is always finite, it is also never empty. Indeed, 0∈D(M)
for any 1-infinite type hypersurface M , since it is easy to check that ϒ0

2 (z, χ)≡ 0.
This completes the third step of the proof. We complete the proof by showing

that D(M) is independent of the choice of normal coordinates used to define it. In
fact, we prove the following, which completes the proof of Theorem 4.1.

Proposition 5.5. Suppose that M , Z = (z, w), ϒn , and Vn
=Vn(M) are as above.

Let (M̂, 0) be formally equivalent to (M, 0), with corresponding power series ϒ̂n

and subspaces V̂ n
= Vn(M̂) defined using the normal coordinates Ẑ = (ẑ, ŵ).

Then for every n ∈ N, the dimensions of Vn and V̂ n are equal. In particular,
the dimension of subspace Vn(M) ⊂ C4 is independent of the choice of normal
coordinates used to define it.

Proof. Let H(z, w) =
(

f (z, w),wg(z, w)
)

be a formal equivalence between M
and M̂ . Consider the formal power series

(z, χ) 7→ ϒ̂n( f0(z), f0(χ)
)
∈ C[[z, χ]]4,

which may be viewed as the power series ϒ̂n given in the Z coordinates. Using
Faa de Bruno’s formula and the fact that f0 : (C, 0)→ (C, 0) is a formal change
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of coordinates, it is straightforward to verify that

spanC

{
υ̂n

s,t :=
∂s+t

∂zs∂χ t ϒ̂
n( f0(z), f0(χ)

)∣∣ z=0
χ=0
: s, t ∈ N

}
= V̂ n.

From (24) we derive

θ̂ẑ
(

f0(z), f0(χ)
)
=
θz(z, χ)

f ′0(z)
, θ̂χ̂

(
f0(z), f0(χ)

)
=
θχ (z, χ)

f′0(χ)
,

whereas repeated differentiation of this in χ yields

p̂L+1
(

f0(z)
)
=

1
2(a1

0)
L+2

(
2a1

0 pL+1(z)− (L + 1)L a2
0 pL(z)

)
.

From this and identity (25), it follows by an elementary (albeit involved) calculation
that

ϒ̂n
1
(

f0(z), f0(χ)
)
= ϒn

1 (z, χ),

ϒ̂n
2
(

f0(z), f0(χ)
)
= ϒn

2 (z, χ),

ϒ̂n
3
(

f0(z), f0(χ)
)
=

1
a1

0
ϒn

3 (z, χ)+
δ1

T a2
0

K (a1
0)

2
ϒn

1 (z, χ),

ϒ̂n
4
(

f0(z), f0(χ)
)
= a1

0 ϒ
n
4 (z, χ).

Now, suppose that {υ̂n
s j ,t j
}
`0
j=1 is any collection of vectors in V̂ n; consider the

corresponding vectors υn
s j ,t j
∈Vn . Observe that if 4̂,4 denote the 4×`0 matrices

whose columns are, respectively, the υ̂n
s j ,t j

, υn
s j ,t j

, then in view of the above identi-
ties, these matrices necessarily have the same rank. In particular, the columns of 4̂
are linearly independent if and only if the columns of 4 are. From this it follows
that V̂ n and Vn have the same dimension. �

The main results. We use Theorem 4.1 to prove the main theorems stated at the
end of Section 2. We begin with Theorem 2.2.

Proof. Let M be a formal real hypersurface of 1-infinite type at 0. Observe that the
result of Theorem 2.2 is independent of the choice of coordinates Z , so without loss
of generality let us take Z = (z, w) to be normal coordinates for M , so that M is
given by equation (14). Let D=D(M) be as in Theorem 4.1, and set k :=2+max D,
which exists since D is a finite set.

To prove this k is sufficient, suppose M̂ is a formally equivalent formal real
hypersurface. Define the corresponding An as in Theorem 4.1. Fix a formal equiv-
alence H ∈ F(M, 0; M̂, 0). Conjugating the formula for ( fn, gn) implies that(

fn(χ), gn(χ)
)
=An

(
1

a1
0 b0

0

,
(
a0

j , b0
j , a1

j , b1
j

)
j∈D

)
,
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whence

(a0
n, b0

n, a1
n, b1

n)= An

(
1

a1
0 b0

0

,
(
a0

j , b0
j , a1

j , b1
j

)
j∈D

)
, n = N,

with An ∈ C[1,3]4. Substituting this into An , and recalling that

1(H)=
1

a1
0 b0

0

=
a1

0

µ2b0
0

,

where µ is defined by (27), we can write(
fn(z), gn(z)

)
= 0n

(
z;

1

a1
0 b0

0

,
(
a0

j , b0
j , a1

j , b1
j

)
j∈D

)
,

with 0n(z;1,3) ∈ C[1,3][[z]]2. Write

0n
z j

(
0;

1

a1
0 b0

0

,
(
a0

j , b0
j , a1

j , b1
j

)
j∈D

)
=:

cn
j

((
a0

j , b0
j , a1

j , b1
j

)
j∈D

)
(
a1

0 b0
0

)`n
j

,

with `n
j ∈ N and cn

j a C2-valued polynomial.
Now, observe that

∂`+ j H
∂z`∂w j (0, 0)=

(
a`j , j b`j−1

)
.

In particular, a0
j is a term in (the coordinates of) j k

0 (H), a1
j and b0

j are terms in

j k+1
0 (H), and b1

j is a term in j j+2
0 (H). Hence, c j

n is a polynomial in j2+max D
0 (H)=

j k
0 (H) and

0 6= a1
0 b0

0 = det
(
∂H
∂Z

(0, 0)
)
=: q

(
j k
0 (H)

)
,

so the proof is complete in view of equation (11). �

By inspecting Propositions 5.2 through 5.5, we see that we can replace the k
given in the proof by k := 1+δ1

K +max D to get a better bound in the K > 1 case,
and if D= {0}, then we may take k = 1 since b1

0 = 0 by Proposition 3.7.
We now use this result to prove Theorem 2.3.

Proof. Let M, k be as in Theorem 2.2. Suppose that M̂ is formally equivalent to
M , and let 9 be the formal power series from Theorem 2.2. If H 1, H 2

: (M, 0)→
(M̂, 0) are two formal equivalences that satisfy

∂ |α|H 1

∂Zα
(0)= ∂

|α|H 2

∂Zα
(0) for all |α| ≤ k,

it follows that j k
0 (H

1) = j k
0 (H

2). If we call this common jet 30, it follows from
Theorem 2.2 that H 1(Z)≡9(Z;30)≡ H 2(Z), as desired. �
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We now tackle the two applications of Theorem 2.2 mentioned in Section 2.
First we prove Theorem 2.4.

Proof. Let M, k be as in Theorem 2.2, and let9 be the formal power series defined
in accord with that theorem with M̂ = M . That the mapping

j k
0 : Aut(M, 0)→ J k

0 (C
2,C2)0,0

is injective follows from Theorem 2.3. Observe that 30 ∈ J k(C2,C2)0,0 is in the
image of j k

0 if and only if q(30) 6= 0 — so that 30 ∈ Gk(C2)0) — and

30 = j k
0
(
9( · ,30)

)
,(43)

ρ
(
9(Z ,30),9ζ,30)

)
= a(Z , ζ )ρ(Z , ζ )(44)

for some multiplicative unit a(Z , ζ )∈C[[Z , ζ ]], where ρ is a defining power series
for M . In view of equation (8), (43) is a finite set of polynomial equations in
30, whereas (44) is a (possibly countably infinite) set of polynomial equations in
(30,30). Hence, the image of the mapping j k

0 is a locally closed subgroup of the
Lie group Gk(C2)0, and so is a Lie subgroup. �

And as a corollary, we have Theorem 2.5.

Proof. Let M, k be as in Theorem 2.2, and let (M̂, 0) be formally equivalent to
(M, 0). Injectivity of the jet map again follows from Theorem 2.3. Now, fix a
formal equivalence H0 : (M, 0)→ (M̂, 0); then any other formal equivalence is of
the form H := H0 ◦ A, where A ∈ Aut(M, 0). In particular,

j k
0
(
F(M, 0; M̂, 0)

)
=
{

j k
0 (H0 ◦ A) : A ∈ Aut(M, 0)

}
=
{

j k
0 (H0) · j k

0 (A) : A ∈ Aut(M, 0)
}

= j k
0 (H0) · j k

0
(
Aut(M, 0)

)
.

Hence, the image of F(M, 0; M̂, 0) is merely a coset of the algebraic Lie subgroup
j k
0

(
Aut(M, 0)

)
in the Lie group Gk(C2)0, and so is itself a real-algebraic sub-

manifold of Gk(C2)0. �
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WEAKLY REGULAR EMBEDDINGS OF STEIN SPACES WITH
ISOLATED SINGULARITIES

JASNA PREZELJ

We show that any n-dimensional Stein space X with isolated singular points
admits a proper holomorphic injective map X → C2n which is regular on
Reg(X). The proof is based on the fact that the Whitney cones C5(x, X) are
at most 2n-dimensional, which means that there exists a neighborhood of x
in X having a weakly regular embedding into C2n. The homotopic principle
then enables us to obtain a weakly regular embedding of X into C2n.

1. Introduction

The motivation for this paper was the following question: Let M be a smooth,
compact, strongly pseudoconvex, integrable CR-manifold of dimension 2n−1≥ 5
and of CR-dimension n − 1 ≥ 2. Find the smallest integer N = N (n) such that
M admits a CR embedding into CN . By the results of Rossi [1965] and Ohsawa
[1984a; 1984b], there exists a pure n-dimensional Stein space X with isolated
singular points and a relatively compact domain D ⊂ X such that ∂D = M and
∂D∩Sing(X)=∅. This leads to the following problem: Let X be an n-dimensional
Stein space with isolated singular points. Find the smallest integer N such that there
exists a proper holomorphic injective map f : X→CN which is regular on Reg(X).
It turns out that the dimension N can be expressed in terms of the Whitney cones
C5 (for the definition see Section 2 or [Chirka 1989]).

Theorem 1.1. Let X be an n-dimensional Stein space with isolated singular points.
Let N (X)=max{[n/2]+n+1, 3,max{dim C5(x, X) : x ∈ X}} . Then there exists
a proper holomorphic injective map f : X→ CN (X), which is regular on Reg(X).

Remark 1.2. Since we are not interested in regularity at singular points we may
(and will), with no loss of generality, assume that the space is reduced. By [Ac-
quistapace et al. 1975] there is a proper holomorphic injective map f : X → CN ,

MSC2000: 32C15, 32C22, 32E10, 32H02.
Keywords: Stein space, holomorphic map, weakly regular embedding, homotopic principle,

Whitney cone.
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where N ≥ 2n+1, which is regular on Reg(X). The dimension N (X) from Theo-
rem 1.1, however, is at most 2n, because dim C5(x, X)≤ 2n for all n-dimensional
Stein spaces X and all x ∈ X . If X is a Stein manifold, it was proved by Schürman
that N (X)= [n/2] + n+ 1 for n > 1.

Remark 1.3. In the case of normal Stein spaces any two weakly regular holomor-
phic embeddings are biholomorphically equivalent. Let us mention that this result
does not necessarily give a minimal N for CR-embedding.

The paper is organized as follows: the second section contains the definition
and some properties of Whitney cones and the third section consists of the proof
of the main theorem.

Definitions and notation. For y ∈Cn let |y| := sup{|yi | : 1≤ i ≤ n} denote the sup
norm and ‖y‖ the euclidean norm. By Bn(r) we denote the ball in Cn with radius
r and center 0.

Let X be a complex space, K ⊂ X a compact subset, and f : X → Cn a
continuous map. We will use the notation | f |K := max{| f (x)| : x ∈ K } and
‖ f ‖K :=max{‖ f (x)‖ : x ∈ K }. By O(X) we denote the space of all holomorphic
functions on a complex space X equipped with the standard topology of uniform
convergence on compact sets. For an analytic set Y ⊂ X let 0(X,J(Y )) denote
the space of holomorphic functions on X which vanish on Y . By TX we denote
the complex tangent space of X and by Tx X the complex tangent space of X at the
point x .

A holomorphic map f : X→ Y is almost proper if for each compact set K ⊂ Y
the connected components of f −1(K ) are compact. A stratification of a complex
space X is a finite descending chain of analytic sets Am := X ⊃ Am−1 ⊃ · · · ⊃ A0

such that Ai \ Ai−1 is a complex manifold, for i = 1, . . . ,m.

2. Some properties of tangent cones

The Whitney tangent cones C3,C4 and C5 play an important role in our work.

Definition 2.1. Let X ⊂ Cm be an analytic set, x ∈ X . Then let

C3(x, X) := {v ∈ Cm
: there exists a sequence x j ∈ X such that x j → x,

and a sequence λ j ∈ C such that λ j (x j − x)→ v},

C4(x, X) := {v ∈ Cm
: there exists a sequence z j ∈ Reg(X) such that z j → x,

and a sequence v j ∈ Tz j X such that v j → v},

C5(x, X) := {v ∈ Cm
: there exist sequences z j , w j ∈ X with z j , w j → x,

and a sequence λ j ∈ C such that λ j (z j −w j )→ v}.

Further, set C3(X) := {(x, v) : x ∈ X, v ∈ C3(x, X)} and define C4(X) and C5(X)
similarly. Clearly these are three subsets of TX . Using the fact that every analytic
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set is locally biholomorphic to an analytic set in some Cm , we can extend the above
definition of cones to an arbitrary complex space X . A more detailed discussion
on this subject can be found in [Chirka 1989; Stutz 1972]. We state some simple
properties of Whitney cones [Chirka 1989, Sections 8.4, 9.1 and 9.2]. If n =
dim(x, X), then:

(i) The cones C4(x, X) and C5(x, X) are biholomorphically invariant, projective
algebraic sets with n ≤ dim Ci (x, X) ≤ 2n, and the cone C3(x, X) is an n-
dimensional algebraic set.

(ii) C3(x, X)⊂ C4(x, X)⊂ C5(x, X).

(iii) C4(X) is the closure of TX |Reg(X).

(iv) If x ∈ Reg(X) then dim C4(x, X)= dim C5(x, X)= n.

(v) If dim C5(x, X)= n, then x ∈ Reg(X).

Example 2.2. Let X = (Cn
×0)∪ (0×Cn)⊂C2n . Then C3(0, X)=C4(0, X)= X

and C5(0, X)= C2n .

Proposition 2.3 [Chirka 1989, Section 8.4]. Let X ⊂ Cm be an analytic set con-
taining 0, let L = Cm−k

× 0 ⊂ Cm , and suppose that C3(0, X) ∩ L = {0}. Then
there exists an open set U ⊂ Cm containing 0, such that the orthogonal projection
πL :U ∩ X→ Ck is proper.

Remark 2.4. The condition C3(0, X)∩L = {0} implies that the neighborhood of 0
lies in some cone. The condition is fulfilled for almost every (m−k)-dimensional
linear subspace L ⊂ Cm . Clearly, the projection along any L with dim L ≤ m− n
and C3(0, X)∩ L = {0} is also proper.

Proposition 2.5 [Chirka 1989, Section 9.4]. Let X ⊂ Cm be a pure n-dimensional
analytic set containing 0, let L =Cm−n

×0⊂Cm , and let πL :U ∩ X→Cn be the
orthogonal projection. If C4(0, X)∩ L = {0} then there exists an open set U ⊂ Cm

containing 0, such that br(πL , X ∩U )= (X \Reg(X))∩U .

Remark 2.6. In the case of a general n-dimensional analytic set such projection
is of course not a cover; it is, however, proper (because C3(0, X)⊂ C4(0, X)) and
regular on Reg(X)∩U .

Corollary 2.7. Let X be a complex space, let x ∈ X and suppose dim C4(x, X)= k.
Then there exists an open neighborhood U of x , and a proper holomorphic map
f :U→Ck which is regular on Reg(X)∩U . Every holomorphic map f : X→Ck

with Ker D f (x) ∩ C4(x, X) = {0} is regular on Reg(X) ∩U for a suitable open
neighborhood U of x .
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Proof. We may assume that X ⊂Cm , since the statement is local. For the first part,
notice that the condition dim C4(x, X) = k implies the existence of an (m−k)-
dimensional linear subspace L with L ∩ C4(x, X) = {0}. The rest follows from
Proposition 2.5 and the remark below.

As for the second part, if the statement is false, there exist sequences x j ∈

Reg(X) with x j → x , and v j ∈ Tx j X with ‖v j‖ = 1, such that

D f (x j )(v j )= 0.

By passing to a subsequence we may assume that v j→ v. But v is in C4(x, X) by
definition; therefore D f (x)(v)= 0, which is a contradiction. �

Proposition 2.8 [Chirka 1989, Section 9.4]. Let X ⊂ Cm be a pure n-dimensional
analytic set containing 0, and let L = Cm−n−1

× 0 ⊂ Cm . If C5(0, X) ∩ L = {0}
then there exists an open set U ⊂Cm such that the orthogonal projection πL :U→
Cn+1 is an almost one-sheeted cover over some analytic subset of Cn+1, that is, a
homeomorphism of X ∩U onto some hypersurface in U ∩Cn+1.

Remark 2.9. As before in the case of a general n-dimensional analytic set such a
projection is not a cover; it is proper (because C3(0, X) ⊂ C5(0, X)), regular on
Reg(X)∩U and injective.

Corollary 2.10. Let X be a complex space, let x ∈ X , and let dim C5(x, X) = k.
Then there exists an open neighborhood U of x , and a proper, injective holomor-
phic map f : U → Ck , which is regular on Reg(X)∩U . Every holomorphic map
f : X→Ck satisfying Ker D f (x)∩C5(x, X)= {0} is injective, proper and regular
on Reg(X)∩U for some neighborhood U of x .

Proof. The first part follows by a similar argument to that used in Corollary 2.7.
We may assume that X ⊂Cm . Because C4(x, X)⊂C5(x, X), the regularity of the
map on Reg(X)∩U , for some small neighborhood U of x , follows from Corollary
2.7. If the map were not injective in any neighborhood of x then there would exist
sequences x j , y j ∈ X with x j , y j → x and x j 6= y j , such that f (x j )− f (y j )= 0.
The Taylor series expansion gives us

f (x j )− f (y j )= D f (x j )(x j − y j )+ o(|x j − y j |)= 0,

which means that
D f (x j )

( x j − y j

|x j − y j |

)
→ 0.

By passing to a subsequence we may assume that (x j−y j )/|x j−y j | → v, which
lies in C5(x, X). But then D f (x)(v)= 0, which contradicts the assumption. �

Definition 2.11. Let X be a complex space, let x ∈ X , and let f : X → Cm be a
holomorphic map. The map f is weakly regular at x if C5(x, X)∩Ker D f (x)={0}
and weakly regular if C5(X)∩Ker D f = 0, where 0 is the zero section in TX .



WEAKLY REGULAR EMBEDDINGS OF STEIN SPACES 145

On a complex manifold the notions of regular and weakly regular coincide. One
of the key features of weakly regular maps that will be used in the sequel is local
injectivity. Let us state two more lemmas describing properties of injective weakly
regular maps.

Lemma 2.12. Let X be a complex space, let K ⊂ X be a compact set and let
f : X → Cm be a holomorphic map which is weakly regular and injective on K .
Then there exists an open neighborhood U ⊂ X of K such that f is injective and
weakly regular on U .

Proof. Weak regularity is obviously an open condition. Assume that the map is not
injective. Then there are sequences x j , y j ∈ X , with x j 6= y j , such that x j→ x ∈ K ,
y j→ y ∈ K and f (x j )= f (y j ). Injectivity of f on K implies that x = y and since
f is weakly regular on K it is injective in a neighborhood of x , which contradicts
the existence of the sequences x j and y j . �

Lemma 2.13. Let X be a complex space, let K ⊂ X be a compact set, and let
f : X → Cm be a holomorphic map which is weakly regular and injective on K .
Then there exists an ε > 0 such that any holomorphic map g : X → Cm satisfying
|g− f |K < ε is injective and weakly regular on K .

Proof. Every map g close enough to f on K is weakly regular on K and therefore
locally injective. The next step is to prove a local result:

Claim. Take x ∈ X and assume that the map f is weakly regular (and therefore
injective) in a small compact neighborhood U of x . Then there exists an ε > 0
such that if |g− f |U < ε, then g is injective and weakly regular on U .

Proof of the claim. Note that any map close to f is weakly regular at x and therefore
injective in some neighborhood of x . We need to prove that the map is injective
on U . Assume the converse. Then there exists a sequence ε j → 0, a sequence
g j : X → Cm , and sequences x j , y j ∈ U , such that |g j − f | < ε j and such that
g j (x j ) − g j (y j ) = 0. We may assume that x j → x and y j → y, and also that
(x j−y j )/|x j−y j |→v. Injectivity of f implies x= y. The Taylor series expansion
gives

Dg j (x j )(x j − y j )= o j (|x j − y j |).

Because of the Cauchy estimates there is o(|x j − y j |) such that∣∣o j (|x j − y j |)
∣∣< ∣∣o(|x j − y j |)

∣∣
for all j . Dividing the above equation by |x j − y j | and passing to the limit we get
D f (x)(v)= 0 which contradicts the fact that f is weakly regular. �

We have proved that there exists an open neighborhood V of the diagonal 1⊂
K × K such that if g is close enough to f , the map g(x)− g(y) : X × X → Cm
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will have no zeroes in V except the diagonal 1. Injectivity of f implies that
min{| f (x)− f (y)| : (x, y) ∈ K × K \ V } > 0. The same holds for each map g
close enough to f on K , which means that any such g is injective on K . �

3. Proof of the main theorem

Let X be a n-dimensional Stein space with S = {s j } = X \ Reg(X) discrete and
let N = N (X) = max

{
[n/2] + n+ 1, 3, max{dim C5(x, X) : x ∈ X}

}
. We seek a

proper, holomorphic, weakly regular, injective map F = (H,G) : X→Cn
×CN−n .

We first construct an almost proper holomorphic map H : X→ Cn having certain
additional properties (a generic almost proper map) and then construct the map
G : X→ CN−n such that F = (H,G) has the desired properties.

By the definition of N there exist injective weakly regular holomorphic maps
8 j : U j → CN defined on small neighborhoods U j of s j . For simplicity let us
assume that8 j,N (s j )= j . Since X is Stein there is a holomorphic map8 : X→CN

which coincides with the 8 j to second order on S. Define ϕ = (81, . . . , 8n). The
following theorem gives a generic almost proper map H which coincides with ϕ
on S to second order.

Proposition 3.1 (Generic almost proper maps) [Schürmann 1997; Prezelj 2003].
Let X be a n-dimensional Stein space, let Y ⊂ X be a discrete set, let Sing(X)⊂ Y ,
let ϕ : X → Cn be a holomorphic map, and let q ′ =

[n+1
2

]
. For each y ∈ Y

let a number m y ∈ N be given. The set of all almost proper holomorphic maps
H : X→ Cn satisfying

(i) (H −ϕ)y ∈ J(Y )m j for each y ∈ Y , and

(ii) dim{x ∈ X \ Y : rankx H ≤ n− i}< 2(q ′− i + 1), for i = 1, . . . , n

is residual in the set G of all holomorphic maps G satisfying (G − ϕ)y ∈ J(Y )m j

for each y ∈ Y .

Remark 3.2. The first theorem of this sort was proved in [Schürmann 1997, Propo-
sition 4.1]; see [Prezelj 2003, Proposition 2.4] for modifications. In our case m j =2
for each j . The maps H and ϕ will be fixed through the rest of the section.

The construction of the map G requires more work. We follow the proof of
the embedding theorem in [Schürmann 1992]. The full proof is quite long and
complicated, so we will only explain how to modify the theorems so that they hold
for weakly regular maps. The main tool in the proof is the h-principle:

Definition 3.3 [Gromov 1989]. Let Z and X be complex spaces, let h : Z→ X be
a surjective submersion, and let U ⊂ X be an open set. Then h admits a spray over
U if, for some m ∈N, there exists a holomorphic map s : h−1(U )×Cm

→ h−1(U )
such that
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(i) s(z, 0)= z for each z ∈ h−1(U ),

(ii) s(z,Cm)⊂ h−1(h(z)) for each z ∈ h−1(U ), and

(iii) (∂/∂t) s(z, t)|t=0 : C
m
→ Ker Dzh is surjective.

Theorem 3.4 (The h-principle for Stein spaces) [Gromov 1989; Forstnerič and
Prezelj 2001]. Let X be a Stein space, Z a complex space and h : Z → X a
holomorphic submersion (with constant corank) onto X . Assume that each x ∈ X
has a neighborhood U ⊂ X such that h admits a spray over U . Let d be a metric
on Z compatible with the complex space topology. Then:

(i) Each continuous section f0 : X→ Z can be deformed to a holomorphic section
f1 : X→ Z through a continuous one-parameter family of continuous sections
(a homotopy) ft : X→ Z , for t ∈ [0, 1].

(ii) If K ⊂ X is a compact holomorphically convex set and the initial section f0

is holomorphic in a neighborhood of K , then for each ε > 0 there exists a
homotopy ft : X → Z , for t ∈ [0, 1], such that d( ft(x), f0(x)) < ε for each
x ∈ K and t ∈ [0, 1], each ft is holomorphic in a neighborhood of K and f1

is holomorphic on X . In this case it suffices to assume that the submersion
h : Z→ X has a spray over small open subsets of X \ K .

For R > 0, let X R be an arbitrary union of finitely many connected components
of the set H−1(Bn(R)) ⊂ X , and let Z R

= H(X R) = Bn(R). Note that the map
H : X R

→ B(R) is proper. Let {X k
} be a normal exhaustion of X and let the set Uk

be an open Stein neighborhood of X k contained in X k+1, for each k. By the above
definition the set X k is Runge in X k+1. We may assume that S∩(∂X k

∪∂Uk)=∅.
By ψ(z)= ‖z‖2 we denote the square of euclidean norm on Cn .

We will construct a sequence of maps Gk : Uk → CN−n and a decreasing se-
quence ε j → 0 such that

(i) (H,Gk) :Uk→ CN is weakly regular and injective,

(ii) ‖Gk −Gk−1‖X k−1 < 2−kεk−1,

(iii) if G ′ : Uk → CN−n satisfies ‖G ′ − Gk‖X k < εk then (H,G ′) : X → CN is
weakly regular and injective,

(iv) inf{‖Gk(x)‖ : x ∈ (H−1(Bn(k− 1)) \ X k−1)∩ X k
}> k− 1,

(v) DGk(s j ) = D(8n+1, . . . , 8N )(s j ) for all j and k, whenever the expression
makes sense.

Note that the sequence Gk converges uniformly on compact sets to a map G
such that the map (H,G) : X→CN is weakly regular and injective by (i), (ii) and
(iii), and proper by (iv). Condition (v) could be omitted since weak regularity is
stable under small perturbations; in fact the construction ensures that we get (v)
for free.
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Before proceeding to the construction of maps the Gk , we define stratifications
of X and Cn which we will need in the sequel.

Lemma 3.5 [Schürmann 1992; Prezelj 2003]. There exist stratifications Xn :=

X R
⊃ Xn−1 ⊃ · · · ⊃ X0 ⊃ X−1 =∅ and Zn := Z R

⊃ Zn−1 ⊃ · · · ⊃ Z0 ⊃ Z−1 =∅,
with X0, Z0 6=∅, such that

(i) X0 ⊃ X R
∩ S and Z0 ⊃ H(S ∩ X R),

(ii) X j = H−1(Z j )∩ X R ,

(iii) the sets X j and Z j have dimension at most j and the sets X∗j := X j \ X j−1

and Z∗j = Z j \ Z j−1 are either complex j-dimensional manifolds or empty,

(iv) if X∗j is not empty, the map H : X∗j → Z∗j is an immersion for j ∈ {0, . . . , n},

(v) the rank of H is constant on each connected component of the set X∗j for each
j ∈ {0, . . . , n}.

We quote some more results from [Schürmann 1992] (the almost proper map H
is fixed). The original theorems deal with immersions and injective immersions;
in our case the term “immersion” will be replaced with the term “weakly regular”.
Let q = N − n, fix some R > 0 and let {X j } and {Z j } be the stratifications from
Lemma 3.5.

Theorem 3.6. Choose j ∈ {1, . . . , n} and r, r1, r2 ∈ R \ {0} such that r2 > 0 and
r1 < r2 < r < R. Let r2

1 and r2
2 be regular values for ψ |Z∗j and suppose that(

X j−1 ∩ X r2
)
∪
(
X j ∩ X r

)
is not empty. Let f : X r

→ Cq be a holomorphic map
such that the map (H, f ) : X r

→CN is weakly regular on
(
X j−1∩X r

)
∪
(
X j∩X r1

)
.

Then:

(i) If r1 < 0, there is a holomorphic map f ′ : X r2→Cq such that f ′− f |Xr2 is in
0(X r2,J(X j−1)

2
∩J(X j ))

q and (H, f ′) is weakly regular on X j ∩ X r2 .

(ii) If r1>0 then f can be approximated arbitrarily well on X r1 by a holomorphic
map f ′ : X r2→Cq such that f ′− f |Xr2 is in 0(X r2,J(X j−1)

2
∩J(X j ))

q and
(H, f ′) is weakly regular on X j ∩ X r2 .

Proof. Since the sheaf J(X j−1)
2
∩J(X j ) is coherent, there are finitely many holo-

morphic sections
f1, . . . , fM ∈ 0(X,J(X j−1)

2
∩J(X j ))

q

which generate 0(X r2,J(X j−1)
2
∩J(X j ))

q . We seek a map f ′ of the form

f ′ = f +
∑

α j f j ,

where α = (α1, . . . , αm) is regarded as a section of the trivial bundle X r
× CM .

Denote by K =Ker DH ⊂ TX the kernel of DH and note that the definition of X∗j
implies that K |X∗j is a vector bundle. Let6⊂ (X j∩X r )×CM

=: V be the set of all
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(x, a1, . . . , aM) such that the map (H, f +
∑

a j f j ) is not weakly regular in x . Let
p : V→ (X j∩X r ) be the trivial projection. Then because (H, f ) is weakly regular
on X j−1∩X r and the maps f j vanish to second order on X j−1, the set6 is a subset
of X∗j ×CM . Since K |X∗j is a vector bundle, 6 is the set of all (x, a1, . . . , aM) in
X∗j × CM such that the map Kx → Cq ′ given by v 7→ D f (x)v +

∑
ai D f j (x)v,

is not injective, so 6 is analytic in X∗j × CM . But we want 6 to be analytic in
V which means we have to prove that 6 is closed in V . Now, since (H, f ) is
weakly regular on X j−1 ∩ X r any map of the form

(
H, f +

∑
α j f j

)
is weakly

regular on the same set and because weak regularity is an open condition, the map(
H, f +

∑
α j f j

)
is also weakly regular in some neighborhood of X j−1∩X r which

means that6 is a closed in V . As in [Schürmann 1992] we prove that the projection
p : V \6→ (X∗j ∩ X r ) is a locally trivial fibration which admits a spray.

Our goal is to find a holomorphic section α of (X r
×CM) \6→ X r . The zero

section on
(
X j−1 ∩ X r

)
∪
(
X j ∩ X r1

)
is a section of

((X r
∩ X j )×CM) \6→ (X r

∩ X j )

because the map (H, f ) is weakly regular on
(
X j−1∩X r

)
∪
(
X j∩X r1

)
. And since

weak regularity is an open condition, the zero section defined in a neighborhood of
the set

(
X j−1∩X r

)
∪
(
X j∩X r1

)
is a section of ((X r

∩X j )×CM)\6→ (X r
∩X j ) as

well. As in [Schürmann 1992] this section can be extended to a continuous section
of ((X r

∩ X j )×CM)\6→ (X r
∩ X j ). Then the h-principle applies (if r1 < 0 we

use the existence version and if r1 > 0 the approximation version) which yields a
holomorphic section α′ of ((X r

∩ X j )×CM) \6→ (X r
∩ X j ). This section can

be trivially extended to a holomorphic section α of (X r
×CM) \6→ X r . �

Remark 3.7. The maps f j used in Theorem 3.6 vanished to the first order on X j ,
which means that if the initial map f is such that (H, f ) is injective on X j ∩ X r

then the map (H, f ′) is also injective on X j ∩ X r .

Theorem 3.8. Choose j ∈ {1, . . . , n} and r, r1, r2 ∈ R \ {0} such that r2 > 0
and r1 < r2 < r < R. Let r2

1 and r2
2 be regular values for ψ |Z∗j and suppose

that
(
X j−1 ∩ X r2

)
∪
(
X j ∩ X r

)
is not empty. Let f : X r

→ Cq be a holomorphic
map such that the map (H, f ) : X r

→ CN is injective and weakly regular on(
X j−1 ∩ X r

)
∪
(
X j ∩ X r1

)
. Then:

(i) If r1 < 0 there is a holomorphic map f ′ : X r2→ Cq such that f ′− f |Xr2 is in
0(X r2,J(X j−1)

2)q and such that (H, f ′) is injective and weakly regular on
X j ∩ X r2 .

(ii) If r1 > 0 the map f can be approximated arbitrarily well on the set X r1 by a
holomorphic map f ′ : X r2 → Cq such that f ′ − f |Xr2 ∈ 0(X r2,J(X j−1)

2)q

and (H, f ′) is injective and weakly regular on X j ∩ X r2 .
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Proof. Since the sheaves F = H∗O(X R) and J(Z j−1)
2F are coherent, there exist

finitely many holomorphic sections ψ1, . . . ψM ∈ 0(Z ,J(Z j−1)
2F)q generating

0(Z r2,J(Z j−1)
2F)q . Let f j ∈ 0(X r ,O(X))q be liftings of the sections ψ j . We

are looking for the map f ′ of the form

f ′ = f +
∑

(α j ◦ H) · f j ,

where α = (α1, . . . , αm) is regarded as a section of the trivial bundle B(r)×CM .
Let 6 ⊂ (Z j ∩ B(r))× CM

=: V be the set of all (z, a1, . . . , aM), such that the
map H−1(z)→Cn , given by x 7→ f (x)+

∑
a j f j (x), is not injective. Let the map

p : V → (Z j ∩ B(r)) be the trivial projection. Then because (H, f ) is injective
on
(
X j−1 ∩ X r

)
∪
(
X j ∩ X r1

)
and the maps f j vanish to the second order on

X j−1, the set 6 is an analytic subset of Z∗j ×CM . As above we want 6 to be an
analytic subset of V , that is, closed in V . Since (H, f ) is injective and weakly
regular on X j−1 ∩ X r and the maps f j vanish to the second order on X j−1, any
map of the form

(
H, f +

∑
(α j ◦ H) · f j

)
is injective and weakly regular on the

same set and, because being injective and weakly regular is an open condition,
such map is also injective and weakly regular in some neighborhood of X j−1∩X r .
This means that the set 6 is closed in V . As in [Schürmann 1992] we prove that
p : V \6→ (Z∗j ∩ B(r)) is a locally trivial fibration which admits a spray.

We seek a holomorphic section α of the submersion (B(r)×CM) \6→ B(r).
The zero section defined on

(
Z j−1 ∩ B(r)

)
∪
(
Z j ∩ B(r1)

)
is a section of the map(

(B(r)∩ Z j )×CM
)
\6→ (B(r)∩ Z j ) because the map (H, f ) is weakly regular

and injective on
(
X j−1∩ X r

)
∪
(
X j ∩ X r1

)
. And since being injective and weakly

regular is an open condition, the zero section defined in a neighborhood of the set(
Z j−1∩B(r)

)
∪
(
Z j∩B(r1)

)
is a section of

(
(B(r)∩Z j )×CM

)
\6→ (B(r)∩Z j ) as

well. As in [Schürmann 1992] this section can be extended to a continuous section
of
(
(B(r)∩ Z j )×CM

)
\6→ (B(r)∩ Z j ). Then the h-principle applies (if r1 < 0

we use the existence version and if r1 > 0 the approximation version) and yields a
holomorphic section α′ of

(
(B(r)∩ Z j )×CM

)
\6→ (B(r)∩ Z j ), which can be

trivially extended to a holomorphic section α of
(
B(r)×CM

)
\6→ B(r). �

At the beginning of this section we defined the map 8. Now we define

f = (8n+1, . . . , 8N ).

The map (H, f ) clearly is weakly regular on S and injective in a small neighbor-
hood of S, since 8N (s j )= j . Using in turn Theorem 3.8 and Theorem 3.6 we can
proceed by induction over the strata starting with X0 (as in [Schürmann 1992]),
and using the fact that being weakly regular or injective and weakly regular is an
open condition, to obtain the following results:
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Theorem 3.9 (Existence). Let R > 0 and let X R be the union of a finite num-
ber of connected components of the set H−1(Bn(R)). For r ∈ (0, R) let X r

:=

X R
∩ H−1(Bn(r)). There exists a holomorphic map G : X r

→ Cq satisfying the
conditions

α(r) : the map (H,G) : X r
→ CN is injective and weakly regular, and

β(r) : (H,G) coincides with 8 to the second order S ∩ X r .

Theorem 3.10 (Approximation). Let R, r > 0, X R and X r be as in Theorem 3.9
Choose r1 ∈ (r, R) and set X r1 := X R

∩ H−1(Bn(r1)). If a holomorphic map
G : X r

→ Cq satisfies conditions α(r) and β(r) from Theorem 3.9, it can be
approximated arbitrarily well on the set X r by a map G ′ : X r1 → Cq satisfying
α(r1) and β(r1) from Theorem 3.9.

Remark 3.11. Note that the induction preserves the derivatives of 8 at the points
in S since they are contained in X0 and the maps f j in Theorem 3.6 and Theorem
3.8 vanish to second order on X0.

Proof of the main theorem. Now we can construct the maps G j and the sequence
ε j → 0 with the required properties (i)–(v). First we consider the case k = 1.
By the existence Theorem 3.9 there is a map G1 : X1

→ Cq with properties (i)
and (v). By Lemma 2.13 there is an ε1 > 0 such that (iii) holds. Now we prove
the induction step. Assume that G1, . . . ,Gk and ε1, . . . , εk have already been
constructed. Let X k ′

:= X k+1
∩ (H−1(Bk) \ X k), that is, X k ′ is the union of those

connected components of H−1(B(k))which lie in X k+1 but not in X k . By Theorem
3.9 there is a map G ′k satisfying (i). By adding a sufficiently large positive constant
we may assume that ‖G ′‖X k ′ > 2k and that the map G ′ : X k

∪X k ′
→Cq , defined by

G ′|X k =Gk , G ′
X k ′ =G ′k is such that (H,G ′) : X k

∪X k ′
→CN is injective. Now the

assumptions of Theorem 3.9 are fulfilled so there exists a map Gk+1 : X k+1
→CN

satisfying (i), (ii), (iv) and (v). As above, there exists εk+1 ∈ (0, εk) such that (ii)
holds as well. �
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A DE RHAM THEOREM FOR SYMPLECTIC QUOTIENTS

REYER SJAMAAR

We introduce a de Rham model for stratified spaces arising from symplectic
reduction. It turns out that the reduced symplectic form and its powers
give rise to well-defined cohomology classes, even on a singular symplectic
quotient.

1. Introduction

Let G be a compact Lie group and let M be a smooth G-manifold. Let �(M)
be the de Rham complex of differential forms on M and �bas(M) the subcomplex
of basic forms. It was proved by Koszul [1953] that the cohomology of �bas(M)
is isomorphic to the cohomology with real coefficients of the orbit space M/G
(which is usually not a manifold, unless G acts freely).

Now suppose that M is equipped with a symplectic form ω and that the G-action
is Hamiltonian with equivariant moment map 8 : M→ g∗, where g= Lie G. The
appropriate quotient in this category is the Marsden–Meyer–Weinstein symplectic
quotient X =8−1(0)/G. It is usually not a manifold either, unless G acts freely on
the fiber8−1(0), but it always has a natural stratification into symplectic manifolds.

Much work has been done on the intersection cohomology of symplectic quo-
tients; see, for example, [Kirwan 1985; Lerman and Tolman 2000]. The purpose
of this note is rather more modest. We introduce a de Rham model for the ordinary
cohomology of the symplectic quotient X , which is a straightforward adaptation
of Koszul’s complex of basic forms. It relies on a notion of a differential form on
X that extends the concept of a smooth function developed in [Arms et al. 1991].
Relevant examples are the reduced symplectic form and its powers, which define
cohomology classes of even degree. These classes are nonzero if the quotient
is compact. Thus the symplectic quotient, even when singular, carries a suitable
analogue of a symplectic form and a Liouville volume form.

MSC2003: 53D20, 58A12.
Keywords: symplectic reduction, de Rham theory.
The author was partially supported by NSF Grant DMS-0071625.
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2. Review

Let (M, ω) be a connected symplectic manifold and let G be a compact Lie group
acting on M in a Hamiltonian fashion with moment map 8 : M → g∗, where
g = Lie G. This means d8ξ = i(ξM)ω, where ξM denotes the vector field on M
induced by ξ ∈ g and 8ξ = 〈8, ξ〉 denotes the component of the moment map
along ξ . Also 8 is required to be equivariant with respect to the given action
on M and the coadjoint action on g∗. The symplectic quotient of M by G is the
space X = Z/G, where Z = 8−1(0) is the zero fiber of the moment map. It was
proved in [Marsden and Weinstein 1974] that if G acts freely on Z , then Z and X
are smooth manifolds and X carries a natural symplectic form. If G does not act
freely on Z , often neither Z nor X are manifolds. In this case we proceed as in
[Sjamaar and Lerman 1991], the relevant results of which we recall now. For any
closed subgroup H of G let

M(H) = {m ∈ M | Gm is conjugate to H }

be the stratum of orbit type (H) in the G-manifold M . Here Gm denotes the
stabilizer of m with respect to the G-action. Put

Z(H) = Z ∩M(H).

Then Z(H) is a smooth G-stable submanifold of M . Let {Za | a ∈ A} be the
collection of connected components of all manifolds of the form Z(H), where (H)
ranges over all conjugacy classes of subgroups of G. The decomposition

(2.1) Z =
∐
a∈A

Za

is a Whitney stratification of the fiber Z . In particular the index set A has a partial
order defined by a ≤ b if Za ⊆ Z̄b. There is a unique maximal element in A.
The corresponding stratum, known as the principal or top stratum Zprin, is open
and dense in Z . Moreover the null foliation of the symplectic form ω restricted
to any stratum Za is exactly given by the G-orbits. Hence there exists a unique
symplectic form ωa on the quotient manifold Xa = Za/G satisfying π∗aωa = ι

∗
aω,

where ιa : Za ↪→ M is the inclusion map and πa : Za →→ Xa the orbit map. The
decomposition

(2.2) X =
∐
a∈A

Xa

is a locally normally trivial stratification of the quotient X into the symplectic
manifolds Xa . The principal stratum Xprin = Zprin/G is open and dense in X .
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3. Forms on a symplectic quotient

We use the same notation as in the previous section. We denote the de Rham
complex of a manifold P by �(P). A differential form on the symplectic quotient
X is a differential form α on the top stratum Xprin such that there exists a differential
form α̃ on M satisfying π∗prinα= ι

∗

prinα̃. We say that α̃ induces α. An easy averaging
argument shows that we may assume α̃ to be G-invariant on M . We denote the
collection of differential forms on X by �(X).

If X = Xprin, then X and Z are manifolds and the lift of any form on X to Z can
be extended to M , so in this case our notion of a differential form on X reduces
to the standard notion. Observe that �(X) is a subcomplex of �(Xprin), and it is
closed under the wedge product.

Example 3.1. The symplectic form ωprin on Xprin is induced by the symplectic
form ω on M and so defines a closed 2-form on X .

Clearly not every invariant form on M induces a form on X . Indeed, if α̃ ∈
�(M)G induces α ∈ �(X), then ι∗prinα̃ = π

∗

prinα is a G-horizontal form on the
G-manifold Zprin, so it is annihilated by all inner products i(ξM) for ξ ∈ g. Recall
that a form β on M is basic with respect to the G-action if it is G-invariant and
G-horizontal. Adapting this notion to our context, we say that β is 8-basic if it
is G-invariant and if ι∗prinβ ∈ �(Zprin) is horizontal. Let �8(M) denote the set
of 8-basic forms. This is a subcomplex of �(M) and the kernel of the natural
surjection �8(M)→�(X) is the ideal

I8(M)= {β ∈�(M)G | ι∗prinβ = 0}.

Thus the de Rham complex of X is isomorphic to

(3.2) �(X)∼=�8(M)/I8(M),

a subquotient of the de Rham complex of M . In degree 0 we have the smooth
functions on X as defined in [Arms et al. 1991],

C∞(X)∼= C∞(M)G
/
{ f ∈ C∞(M)G | f = 0 on Z }.

If O is a G-invariant open neighborhood of Z , then O is a Hamiltonian G-manifold
in its own right, so we can define �8(O) and I8(O). Plainly (3.2) remains valid
if we replace M with O . Thus �(X) depends only on the G-germ of M at Z .

It is true, though not completely obvious from the definition, that every form on
X restricts to a form on each stratum of X .

Lemma 3.3. (i) Let β ∈�8(M). Then ι∗aβ is a horizontal form on Za for all a.

(ii) Let β ∈ I8(M). Then ι∗aβ = 0 for all a.

(iii) There is a well-defined restriction map �(X)→�(Xa) for each stratum Xa .
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Proof. Let β ∈�8(M) and z∈ Za . Choose a sequence {zn} in Zprin converging to z.
By compactness of the Grassmannian we may assume that the sequence of tangent
spaces Tzn Zprin converges to a subspace T of Tz M . By definition i(ξM)βzn = 0 on
Tzn Zprin for all ξ ∈ g, so by continuity i(ξM)βz = 0 on T for all ξ . By Whitney’s
Condition A we have Tz Za ⊆ T . Hence i(ξM)βz = 0 on Tz Za for all ξ . This
proves (i).

Similarly, if β ∈ I8(M) then βzn = 0 on Tzn Zprin, so by continuity βz = 0 on T
and hence βz = 0 on Tz Za , which proves (ii).

It follows from (i) that if β ∈ �8(M) then ι∗aβ descends to a form βa on Xa .
The assignment β 7→ βa defines a homomorphism �8(M)→ �(Xa) for each a.
It follows from (ii) that this map is 0 on the ideal I8(M). Using the isomorphism
(3.2) we obtain the desired restriction map �(X)→�(Xa). �

4. Symplectic induction

A shortcoming of the de Rham complex �(X) is that it appears to depend on the
way in which X is written as a quotient. But in certain interesting situations this
defect turns out to be illusory. For instance, let H be a closed subgroup of G and let
(N , ωN ) be a Hamiltonian H -manifold with equivariant moment map9 : N→ h∗.
Consider the Hamiltonian G× H -space

P = T ∗G× N ,

where the action of G on P is given by left multiplication on T ∗G and the action
of H by right multiplication on T ∗G and the given action on N . Let M be the
symplectic quotient of P with respect to the H -action. This is called the G-
space induced by the H -space N . Since H acts freely on T ∗G, M is a smooth
manifold and from P it inherits a symplectic form ω and a Hamiltonian G-action
with moment map 8. Let Y be the symplectic quotient of N by the H -action
and X the symplectic quotient of M by the G-action. The principle of reduction in
stages implies that X and Y are isomorphic in the sense that there is a stratification-
preserving homeomorphism Y→ X that restricts to a symplectomorphism on each
stratum. We can represent the situation symbolically by a commutative diagram

P ..............
G

- N

M

H
?

........
..............

G
- Y ∼= X ,

H
?

........

where the dotted arrows indicate symplectic reduction with respect to the relevant
group. We assert that the de Rham complexes of X and Y are likewise isomorphic.
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To prove this we need to recall from [Sjamaar and Lerman 1991, §2] the def-
inition of the isomorphism Y → X . Choose an H -invariant subspace m of g

complementary to the subalgebra h. Then we have H -invariant decompositions
g= h⊕m and g∗ = h∗⊕m∗. Define a map

G×m∗× N → P ∼= G× g∗× N

by sending (g, α, p) to (g, α−9(p), p). This is an H -equivariant diffeomorphism
from G×m∗×N onto the zero fiber of the H -moment map on P . Taking quotients
by H we obtain a G-equivariant diffeomorphism

M ∼= (G×m∗× N )/H

from M to the homogeneous vector bundle over G/H with fiber m∗ × N . We
identify M with this bundle and write a typical point in it as [g, α, p], with g ∈ G,
α ∈ m∗ and p ∈ N . The G-action on M is given by k[g, α, p] = [kg, α, p] for
k ∈ G and the moment map by

(4.1) 8([g, α, p])= Ad∗(g)(α+9(p)).

Let f : N → M be the embedding defined by f (p) = [1, 0, p]. Then f is H -
equivariant and (4.1) shows that 8 ◦ f = pr∗ ◦9, where pr∗ : h∗ → g∗ is the
transpose of the projection map g→ h. Hence f maps the zero fiber Z N =9

−1(0)
into Z and descends to a map Y → X , which is the required isomorphism. In
particular f maps the principal stratum (Z N )prin into the principal stratum of Z .
In fact Z and Zprin are homogeneous bundles over G/H ,

Z = (G× Z N )/H and Zprin = (G× (Z N )prin)/H.

This implies that the restriction map f ∗ : �(M)→�(N ) sends�8(M) to�9(N )
and I8(M) to I9(N ). Therefore, because of the isomorphism (3.2), it descends to
a map r : �(X)→�(Y ).

Proposition 4.2. The map r : �(X)→�(Y ) is an isomorphism.

Proof. This relies on material developed in the Appendix. Let ιprin : Zprin→ M be
the inclusion map. This is a bundle map of fiber bundles over the base G/H . Its
restriction to a fiber is the inclusion map (ιN )prin : (Z N )prin→ N . Let

eM : �(N )H
→�(M)G,

eZ : �((Z N )prin)
H
→�(Zprin)

G

be the extension homomorphisms for the homogeneous bundles M and Zprin as
defined in the Appendix. Then

(4.3) eZ ◦ (ιN )
∗

prin = ι
∗

prin ◦ eM
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by Lemma A.2.
Now we show that r is surjective. In fact we must show that f ∗�8(M) =

�9(N ). Let γ ∈�9(N ). Then by definition (ιN )∗prinγ is H -basic, so eZ ((ιN )
∗

prinγ )

is G-basic by Lemma A.1(ii). From (4.3) we get that ι∗prineM(γ ) is G-basic, i.e.
eM(γ ) ∈ �8(M). Using Lemma A.1(i) we find that γ = f ∗β with β = eM(γ ) ∈

�8(M). Hence f ∗�8(M)=�9(N ).
Next we prove that r is injective. Suppose that β ∈ �8(M) satisfies f ∗β ∈

I9(N ). We need to show that β ∈ I8(M). The assumptions on β mean that ι∗prinβ

is G-basic and that (ιN )∗prin f ∗β = 0. Using Lemma A.1(iii) we get

ι∗prinβ = eZ ( f ∗ι∗prinβ)= eZ ((ιN )
∗

prin f ∗β)= eZ (0)= 0,

that is, β ∈ I8(M). �

5. The de Rham sheaf

To prove a de Rham theorem we need to sheafify the de Rham complex. Let U
be an open subset of the symplectic quotient X . The stratification of X induces
one on U , so we can talk about the principal stratum of U etc. A differential
form on U is a differential form α on Uprin such that for all x ∈ U there exist
α′ ∈ �(X) and an open neighborhood U ′ of x in U such that α = α′ on U ′prin.
The set of differential forms on U is denoted by �(U ). It is easy to check that
the presheaf of differential graded algebras � : U 7→�(U ) is a sheaf. Its space of
global sections is the previously defined de Rham complex �(X).

Lemma 5.1. � is an acyclic sheaf , i.e. H i (X, � j )= 0 for all i ≥ 1 and j ≥ 0.

Proof. The space X possesses smooth partitions of unity subordinate to arbitrary
open covers U. Indeed, for each U ∈U choose a G-invariant open Ũ in M such that
U = (Ũ ∩ Z)/G and let O be the union of the Ũ ’s. Choose a smooth G-invariant
partition of unity on the G-manifold O subordinate to the cover defined by the Ũ ’s;
this induces a smooth partition of unity on X subordinate to U. Thus the sheaf of
smooth functions �0 is fine in the sense of [Godement 1973, §3.7]. A standard
result in sheaf theory (see [Godement 1973, Théorème 4.4.3], for example) now
implies that �0 is acyclic. Since � is a module over �0, it is fine, and therefore
acyclic, as well. �

There is an alternative characterization of forms on open subsets of X . The
proof is an easy exercise involving partitions of unity.

Lemma 5.2. Let U be an open subset of X and let α ∈ �(Uprin). Then α ∈ �(U )
if and only if there exist a G-invariant open subset Ũ of M and a form α̃ ∈ �(Ũ )
such that U = (Ũ ∩ Z)/G and ι∗prinα̃ = π

∗

prinα.
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Now let R be the sheaf of locally constant real-valued functions on X and con-
sider the sequence

(5.3) 0→ R
i
−→�0 d

−→�1 d
−→ · · · ,

where i : R→�0 is the natural inclusion. The following assertion is proved in the
next section.

Lemma 5.4. The sequence (5.3) is exact.

Thus the de Rham complex is an acyclic resolution of the constant sheaf, which
by standard sheaf theory (see [Godement 1973, Théorèmes 4.7.1, 6.2.1], for ex-
ample) implies the following de Rham theorem.

Theorem 5.5. The de Rham cohomology ring H(�(X)) is naturally isomorphic to
the (Čech or singular) cohomology ring of X with real coefficients H(X,R).

6. The Poincaré lemma

In this section we prove the following (marginally stronger) version of Lemma 5.4:
every x ∈ X has a basis of open neighborhoods U such that the sequence

(6.1) 0→ R
i
−→�0(U )

d
−→�1(U )

d
−→ · · ·

is exact. The proof is a variation on a familiar homotopy argument in de Rham
theory, which requires a brief look into the functorial properties of �(X).

Let (M ′, ω′,8′) be a second Hamiltonian G-manifold with zero fiber Z ′ =
(8′)−1(0) and symplectic quotient X ′ = Z ′/G. Then we have stratifications Z ′ =∐

a∈A′ Z ′a and X ′=
∐

a∈A′ X ′a analogous to those for Z and X . Call a map f : M→
M ′ allowable if

(i) f is smooth and G-equivariant;

(ii) f (Z)⊆ Z ′;

(iii) d f (Tz Zprin) ⊆ T f (z)Z ′a(z) for all z ∈ Zprin, where Z ′a(z) ⊆ Z ′ is the stratum of
f (z).

For instance, if f is smooth and equivariant and maps Zprin into a single stratum
of Z ′, then f is allowable.

Example 6.2. Let (V, ω) be a symplectic vector space on which G acts linearly and
symplectically. A moment map is given by 8ξV (v)=

1
2ω(ξv, v), where ξ ∈ g acts

on V via the infinitesimal representation g→ sp(V ). Let t ∈R and let f : V → V
be the dilation f (v)= tv. Clearly f preserves Z . Furthermore, if t 6= 0, then f (v)
has the same stabilizer as v, so f maps Zprin to itself. If t = 0, then f maps Zprin

to 0. In either case f maps Zprin into a single stratum of Z and it is obviously



160 REYER SJAMAAR

smooth and equivariant, so it is allowable. Similarly, if |t | ≤ 1 and B is a G-
invariant open ball about the origin, the restriction of f is an allowable map from
B to itself.

The following result is easy to deduce from Lemma 3.3.

Lemma 6.3. Let f : M → M ′ allowable. Then the pullback homomorphism
f ∗ : �(M ′)→�(M) sends�8′(M ′) to�8(M) and I8′(M ′) to I8(M), and there-
fore induces a homomorphism f ∗ : �(X ′)→�(X).

Homotopies induce chain homotopies on the de Rham complex in a standard
way. Let F : M×[ 0, 1]→ M ′ be a smooth homotopy and put Ft = F |M×{t}. Let t
be the coordinate on [ 0, 1] and for γ ∈�(M ′) put κFγ =

∫ 1
0 i(∂/∂t)F∗γ dt . Then

κF lowers the degree by 1 and

F∗1 − F∗0 = κF d + dκF .

Assume that F is equivariant with respect to the given G-actions on M and M ′ and
the trivial action on [ 0, 1]. It is straightforward to check that

κF ◦ g∗ = g∗ ◦ κF for all g ∈ G,(6.4)

κF ◦ i(ξM ′)=−i(ξM) ◦ κF for all ξ ∈ g.(6.5)

Call the homotopy F allowable if

(i) F is smooth and G-equivariant;

(ii) Ft : M→ M ′ is allowable for almost all t ∈ [ 0, 1];

(iii) d F(z,t)(∂/∂t) ∈ TF(z,t)Z ′a(z,t) for almost all t ∈ [ 0, 1] and for all z ∈ Zprin,
where Z ′a(z,t) ⊆ Z ′ is the stratum of F(z, t).

For instance, if F is smooth and equivariant and if there exists a single stratum Z ′a
of Z ′ such that Ft(Zprin)⊆ Z ′a for almost all t , then F is allowable.

Example 6.6. Let (V, ω) be a symplectic representation space for G as in Example
6.2. The radial contraction F : V × [ 0, 1] → V given by F(v, t) = tv is smooth
and equivariant and satisfies Ft(Zprin) ⊆ Zprin for t 6= 0. Hence it is allowable.
Likewise, F defines an allowable homotopy B × [ 0, 1] → B for any G-invariant
open ball B about the origin.

Lemma 6.7. Let F : M × [ 0, 1] → M ′ be an allowable homotopy. Then the
homotopy operator κF : �(M ′)→ �(M) sends �8′(M ′) to �8(M) and I8′(M ′)
to I8(M), and therefore induces a homotopy κF : �(X ′)→�(X).

Proof. Let γ ∈ �k
8′(M

′). Then γ is invariant, so κFγ is invariant by (6.4). Let
z ∈ Zprin. Using (6.5) we find that for any multivector v ∈3k−1(Tz Zprin)

(6.8) i(ξM)(κFγ )z(v)=

∫ 1

0
φ(t) dt,
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where φ(t)=−γF(z,t)(ξM ′, F∗∂/∂t, (Ft)∗v). Let Z ′a(z,t) be the stratum of Z ′ con-
taining F(z, t). Since F is allowable,

F∗∂/∂t ∈ TF(z,t)Z ′a(z,t) and (Ft)∗v ∈3
k−1(TF(z,t)Z ′a(z,t)

)
for most t . Moreover, by Lemma 3.3(i) the restriction of γ to Z ′a(z,t) is horizontal.
Hence φ(t) = 0 for almost all t . From (6.8) we get i(ξM)(κFγ )z(v) = 0; in other
words κFγ ∈�

k−1
8 (M). The inclusion κF I8′(M ′)⊆ I8(M) is proved in a similar

way, and the last assertion now follows from the isomorphism (3.2). �

Example 6.9. Applying Lemma 6.7 to the radial contraction of Example 6.6 we
find that the de Rham complex of the symplectic quotient of a vector space V is
homotopically trivial. More generally, if Y = (B∩Z)/G is the symplectic quotient
of any G-invariant open ball B about the origin, then the de Rham complex of Y
is homotopically trivial.

Example 6.10. Let H be a closed subgroup of G and let V be a symplectic H -
module. Let B be an H -invariant open ball about the origin and let O be the
Hamiltonian G-manifold induced by B. Let Y be the symplectic quotient of B by
the H -action and U the symplectic quotient of O by the G-action. Then �(U )∼=
�(Y ) by Proposition 4.2, so �(U ) is homotopically trivial by Example 6.9.

This example generalizes to arbitrary Hamiltonian G-manifolds by means of
a slice argument. Let z ∈ Z and let H = Gz be the stabilizer of z. Consider
the symplectic H -module V = (TzGz)ω/TzGz known as the symplectic slice at z.
Choose an H -invariant open ball B in V and let O be the G-space induced by B.
The symplectic slice theorem due to Marle and to Guillemin and Sternberg (see
[Sjamaar and Lerman 1991, §2], for instance) says that, for sufficiently small B,
z has a G-invariant open neighborhood that is isomorphic to O as a Hamiltonian
G-manifold. Hence the point x ∈ X determined by z has an open neighborhood U
for which �(U ) is homotopically trivial. By letting B shrink to a point we obtain
a collection of such neighborhoods, which is a basis of the topology at x . This
finishes the proof of (6.1).

7. Integration and the symplectic class

In this section we show that top-degree forms on a compact symplectic quotient
are always integrable and establish a version of Stokes’ theorem. We conclude that
the cohomology class of the symplectic form and its powers are nonzero.

For technical reasons we do not assume at the outset that X is compact. We
start by introducing a metric on Xprin and demonstrating that X has “locally fi-
nite” volume. Choose a G-invariant compatible almost complex structure J on the
Hamiltonian G-manifold M . The volume element determined by the Riemann-
ian metric σ = ω( · , J · ) is identical to the Liouville volume form ωd/d! (where
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2d = dim M). The almost complex structure and Riemannian metric descend in a
natural way to each stratum of X . Let 2n = dim X and write µ = ωn

prin/n! for the
volume element of the principal stratum Xprin.

Lemma 7.1. Every x ∈ X has an open neighborhood U such that vol Uprin is finite.
Hence Xprin has finite volume if X is compact.

Proof. Choose z∈ Z mapping to x and let H =Gz . By the symplectic slice theorem
we may take U to be the symplectic quotient of an H -invariant neighborhood B
of the origin in the symplectic slice V at z. The almost complex structure on M
induces one on V , turning V into a unitary H -module. The metric on Uprin induced
by the flat metric σV on V is quasi-isometric to the metric induced by σ . Therefore
it is enough to show that U has finite volume with respect to the former. Let W be
the orthogonal complement in V of the subspace of invariants V H . The quadratic
moment map 8V is constant along V H , so ZV = V H

× ZW , where ZV =8
−1
V (0)

and ZW = 8
−1
V (0) ∩W . Let B = B1 × B2, where B1 is an open ball about the

origin in V H and B2 an H -invariant open ball about the origin in W . Then B has
a product metric and so do (ZV )prin = V H

× (ZW )prin and the quotient

(7.2) Uprin = B1× (B2 ∩ (ZW )prin)/H.

Recall that the metric cone over a Riemannian manifold (Y, σY ) is the product
Y × (0, 1) with metric t2σY + dt ⊗ dt , where t is the coordinate on (0, 1). The
metric cone over Y has finite volume if Y does. For instance, the ball B2 in W
is the metric cone over the sphere S = ∂B2. Similarly, with respect to the metric
induced by σW , B2 ∩ (ZW )prin is a metric cone over S ∩ (ZW )prin. Upon taking
quotients we see that (B2 ∩ (ZW )prin)/H is a metric cone over (S ∩ (ZW )prin)/H .
The link S∩ZW is the zero fiber of the moment map v 7→

(
8W (v),

1
2(1−|v|

2)
)

for
the H ×U(1)-action on W , where U(1) acts by complex scalar multiplication. By
induction on the depth of the stratification, the principal stratum of the symplectic
quotient (S ∩ (ZW ))/H has finite volume. Hence (B2 ∩ (ZW )prin)/H has finite
volume and therefore, because of the product decomposition (7.2), so does Uprin.

�

The Riemannian metric on M determines metrics on 3k(T M) for all k. Let
|β| ∈C0(M) denote the pointwise norm of a form β on M . Similarly, for α∈�(X)
let |α| ∈ C0(Xprin) denote the pointwise norm over the principal stratum. If α is
induced by α̃ ∈�8(M), then |α̃| is a G-invariant continuous function on M and

(7.3) π∗prin|α| ≤ ι
∗

prin|α̃|.

The support of a form α ∈ �(X) is its support as a section of the sheaf �. This
is the same as the closure in X of the support of α considered as a form on Xprin.
The estimate (7.3) implies that for α ∈�(X) with compact support the pointwise



A DE RHAM THEOREM FOR SYMPLECTIC QUOTIENTS 163

norm |α| is a bounded function on Xprin and therefore by Lemma 7.1 the global
norm

∫
Xprin
|α|µ is finite. In particular, for α of top degree 2n the integral

∫
Xprin

α

is absolutely convergent.
We can now prove Stokes’ theorem. The proof is based on the fact that the

singular strata of X have codimension ≥ 2, which makes the boundary terms in the
integral vanish.

Proposition 7.4.
∫

Xprin
dγ = 0 if γ ∈�2n−1(X) has compact support.

Proof. We use the notation of the proof of Lemma 7.1. By using partitions of unity
we can reduce the general case to the case where γ has compact support in an
open subset U of the form B1 × (B2 ∩ ZW )/H . Let 2m = dim ZW/H . If m = 0
then U is nonsingular and the result follows from the usual version of Stokes’
theorem, so we may assume m ≥ 1. Let χ : [ 0,∞)→[ 0, 1] be a smooth function
satisfying χ(t) = 0 for t near 0 and χ(t) = 1 for t ≥ 1. Define a sequence of
H -invariant functions χ̃k : V → [0, 1] for k ≥ 1 by χ̃k(v) = χ(k|prW v|), where
prW : V → W is the orthogonal projection. These functions descend to smooth
functions χk : U → [0, 1]. The functions 1 − χk are bump functions supported
near the singularities of U . In fact the sets Sk = supp(1− χk) form a decreasing
sequence satisfying

(7.5)
⋂

k

Sk = B1×{0 mod H},

the most singular stratum of U . Therefore
⋂

k(Sk)prin is empty and∣∣∣∣∫
Xprin

dγ −
∫

Xprin

χkdγ
∣∣∣∣= ∣∣∣∣∫

(Sk)prin

(1−χk)dγ
∣∣∣∣≤ C vol(Sk)prin→ 0

as k→∞. (Here C is an upper bound for |(1−χk)dγ |.) This shows that∫
Xprin

dγ = lim
k→∞

∫
Xprin

χkdγ.

To see that this limit is 0 we use∫
Xprin

χkdγ =
∫

Xprin

d(χkγ )−

∫
Xprin

dχk ∧ γ.

Since d(χkγ ) is supported away from the most singular stratum (7.5), we can
assume by induction on the depth of the stratification that

∫
Xprin

d(χkγ )= 0. More-
over, ∣∣∣∣∫

Xprin

dχk ∧ γ

∣∣∣∣≤ ∫
Xprin

|dχk ||γ |µ≤ C
∫
(Sk)prin

|dχk |µ,

where C is an upper bound for |γ |. Let ρ̃k : W → W be the dilation v 7→ kv and
ρk the induced map on ZV /H . Then χk = χ1 ◦ ρk and Sk = ρ

−1
k (S1). It follows
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that dχk(x) = kdχ1(ρk(x)). By (7.2), Uprin is the product of a ball and a metric
cone, so vol(Sk)prin = k−2m vol(S1)prin, where 2m = dim ZW/H ≥ 2. Hence∣∣∣∣∫

Xprin

dχk ∧ γ

∣∣∣∣≤ Ck1−2m
∫
(S1)prin

|dχ1|µ→ 0

as k→∞. Therefore limk→∞
∫

Xprin
χkdγ = 0. �

Stokes’ theorem implies that the volume form of a compact quotient is not exact.

Corollary 7.6. Suppose that X is compact. Then the class of ωk
prin in H 2k(�(X))

is nonzero for 0≤ k ≤ n, where 2n = dim X .

8. Generalizations

The results above can be generalized in two obvious ways. First we consider sym-
plectic quotients at nonzero levels. Let O be a coadjoint orbit in g∗. The symplectic
quotient at O is XO = ZO/G, where ZO is the fiber 8−1(O). The spaces ZO and XO

stratify in exactly the same way as when O = {0} and the strata of XO again carry
natural symplectic forms. Differential forms on XO can now be defined as before.
There is a symplectic slice theorem for orbits in ZO, so all our results generalize
to this situation with virtually unchanged proofs.

Next we consider actions of a noncompact group G. The symplectic slice theo-
rem remains valid, provided that G acts properly on M . For locally closed coadjoint
orbits O stratifications of ZO and XO were obtained in [Bates and Lerman 1997].
However, our definition of forms on X is valid as it stands only when O is closed,
because forms on a nonclosed subset may not extend to the ambient manifold. If
O is locally closed we define �(XO) = �8(N )/I8(N ). Here N = 8−1(D) is
the preimage of any G-invariant open neighborhood D of O in g∗ such that O is
closed in D, �8(N ) is the set of G-invariant forms on N that restrict to basic
forms on (ZO)prin, and I8(N ) is the set of G-invariant forms on N that restrict to
0 on (ZO)prin. With this minor modification our results carry over to symplectic
quotients by proper actions at locally closed coadjoint orbits. (For general orbits
one might try to apply the methods developed in [Cushman and Śniatycki 2001],
but we have not attempted this.)

Appendix: Forms on homogeneous bundles

Let G be a compact Lie group and H a closed subgroup. For any H -manifold F
we can form the homogeneous fiber bundle with fiber F over G/H ,

E = (G× F)/H.

The map f : F→ E defined by f (p)= [1, p] identifies F with the fiber over the
coset 0 mod H . (Here [g, p] denotes the coset (g, p)mod H of (g, p) ∈ G × F .)
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Restriction to the fiber is a homomorphism

f ∗ : �(E)G→�(F)H .

It is not hard to see that G-basic forms on E restrict to H -basic forms on F and that
f ∗ : �bas(E)→�bas(F) is an isomorphism. We require a slight generalization of
this elementary fact.

Choose an H -equivariant projection g→ h; this determines a G-invariant con-
nection 1-form θ ∈�1(G, h)G×H on the principal H -bundle G→ G/H . Let V E
be the vertical tangent bundle of E and let θE ∈ �

1(E, V E)G be the G-invariant
connection 1-form on E associated to θ . Let γ ∈�(F)H be any invariant form on
the fiber. Define a form e(γ ) ∈�(E) by putting

e(γ )[g,p](v)= γp
(
(g−1)∗θE(v)

)
for [g, p] ∈ E and v ∈3(T[g,p]E). (For simplicity we write θE for the extension of
the connection θE : T E → V E to a multiplicative map 3(T E)→ 3(V E).) The
H -invariance of γ implies that e(γ )[g,p](v) does not depend on the choice of the
representative (g, p) of the coset [g, p]. The G-invariance of θE implies that e(γ )
is G-invariant. Thus we have defined a map

e : �(F)H
→�(E)G,

which we call the extension homomorphism determined by θ . (An alternative def-
inition runs as follows. Let V = pr∗ T F , where pr : G × F → F is the Cartesian
projection. The vertical bundle of E is then the quotient V E ∼= V/H . A form
γ ∈ �(F)H is a section of 3(T F) and as such extends uniquely to a section γ̃
of V that is constant along G. Then γ̃ is G × H -invariant and so descends to a
G-invariant section γ̄ of V E . Thus e(γ )= θ∗E γ̄ is a G-invariant section of3(T E).
This argument also shows that e(γ ) is smooth.) The following result is immediate
from the definition.

Lemma A.1. (i) f ∗e(γ )= γ for γ ∈�(F)H ;

(ii) e maps �(F)bas to �(E)bas;

(iii) e( f ∗β)= β for β ∈�(E)bas.

It follows from (i) that f ∗ : �(E)G → �(F)H is surjective and from (ii)–(iii)
that f ∗ : �bas(E)→�bas(F) is an isomorphism, as noted above. Now let F ′ be a
second H -manifold and let j : F→ F ′ be an H -equivariant map. Then j extends
naturally to an G-equivariant bundle map ̄ : E → E ′ = (G × F ′)/H . Moreover
θE is the pullback of the associated connection θE ′ on E ′. This implies that the
extension homomorphism is functorial in the following sense.

Lemma A.2. e ◦ j∗ = ̄∗ ◦ e′, where e′ : �(F ′)H
→ �(E ′)G is the extension

homomorphism for E ′.
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KEPLER’S SMALL STELLATED DODECAHEDRON
AS A RIEMANN SURFACE

MATTHIAS WEBER

We provide a new geometric computation for the Jacobian of the Riemann
surface of genus 4 associated to the small stellated dodecahedron. Starting
with Threlfall’s description, we introduce other flat conformal geometries
on this surface which are related to holomorphic 1-forms. They allow us to
show that the Jacobian is isogenous to a fourfold product of a single elliptic
curve whose lattice constant can be determined in two essentially different
ways, yielding an unexpected relation between hypergeometric integrals.
We also obtain a new platonic tessellation of the surface.

1. Introduction

In his Harmonice Mundi, Kepler [1619] considers regular shapes in 2 and 3 di-
mensions. Besides the classical convex regular polygons he describes regular star
polygons, so it is natural to allow also polyhedra that have such star polygons
as faces. He comes up with several examples, among them the small stellated
dodecahedron. It is therefore plausible that he didn’t consider the 60 triangles of
the stellated dodecahedron as its natural faces but the 12 star pentagons. This given,
the polyhedron has 12 vertices and 30 edges, so the Euler formula gives

V − E + F = 12− 30+ 12=−6

MSC2003: 30F30.
Keywords: Jacobians, flat structures, small stellated dodecahedron.
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which is not the Euler characteristic of the sphere but of a Riemann surface of
genus 4. This was first observed by Poinsot and started some confusion about the
validity of Euler’s formula; see [Lakatos 1976].

All this can be resolved by viewing each star pentagon as a Riemann surface
with a branch point in the center: The same way a regular pentagon is composed
of 5 isosceles triangles with angle 2π/5, the regular pentagram is composed by 5
isosceles triangles with angle 4π/5. In fact, one can try to imagine the stellated
dodecahedron as an immersed surface where each star pentagon is realized as a
branched pentagon whose center branch point is hidden by a stellating pyramid. In
this way, the stellated dodecahedron inherits from its singular euclidean metric a
conformal structure and becomes a compact Riemann surface 6 of genus 4 whose
automorphism group contains at least the icosahedral group.

This possibility was probably first observed by Klein [1877], who showed that
the Riemann surface defined in P4 as the complete intersection

5∑
i=1

zi = 0,
5∑

i=1

z2
i = 0,

5∑
i=1

z3
i = 0

is biholomorphic to Kepler’s small stellated dodecahedron. We will briefly discuss
this in Section 4.

Threlfall [1932] gives a detailed description of the pentagon tessellation of this
genus 4 surface 6 in terms of hyperbolic geometry. In particular, he finds another
tessellation of the same surface by quadrilaterals such that 10 meet in one vertex.
Because he is working in hyperbolic geometry, it is clear a priori that these two
tessellations live on the same Riemann surface. Though Threlfall mentions the
term Riemann surface frequently, he is interested neither in the properties of this
particular surface as an algebraic curve nor in its automorphism group.

We will conformally replace the quadrilaterals in Threlfalls’s description by
other euclidean quadrilaterals to obtain new locally flat structures on the surface.
These lead directly to a basis of holomorphic 1-forms by taking the exterior deriv-
ative of the developing maps of the flat structures. As the periods of the 1-forms
are determined by the geometric data of the new metrics, we obtain easily a period
matrix for the surface. In particular:

Theorem 1.1. The Jacobian of 6 is isogenous to a 4-fold product of a rhombic
torus. Its lattice constant can be computed either using the Schwarz–Christoffel
formula for the new quadrilaterals or via the modular invariant of this torus.

Remark. G. Riera and R. E. Rodrı́guez [1992] follow quite a different approach to
compute the Jacobian of 6: They first show that some 1-parameter family of po-
larized abelian varieties of dimension 4 is stabilized under the only 4-dimensional
symplectic irreducible representation of S5. Then they determine the parameter
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(implicitly) using an algebraic characterization of the quotient tori 6/〈φ〉 and
6/(Z/2Z)2 that differs from our description in Section 6.

2. A hyperbolic metric on the stellated dodecahedron

We now view the small stellated dodecahedron as a surface of genus 4, which
comes with a natural tessellation by 12 star pentagons. Each star pentagon can be
obtained by gluing together 5 isosceles euclidean triangles with obtuse angle 4π/5.
Map such a triangle conformally to a hyperbolic (2π/5, 2π/10, 2π/10)-triangle
and continue this map by reflection first to the star pentagon. We obtain a conformal
map from the star pentagon to a regular hyperbolic 2π/5-pentagon. Continuing
again by reflection to the whole surface yields a nonsingular conformal hyperbolic
metric on the surface which is now tessellated by these hyperbolic pentagons. Here
is the lift of this tessellation to the hyperbolic plane; the numbers designate the 12
faces:

1

23

4

5

6

7

9

11

8

10

7

9

11

8

10

2

3

4

5

6

2

3

4

5

6

7

9

11

8

10

7

9

11

8

10

1212

12 12

12 12

1212

1212

Our next goal is to derive Threlfall’s tessellation of the surface by hyperbolic
quadrilaterals. The key for this is the rotation ρ of order-5 of the stellated do-
decahedron around the axes through two opposite vertices. These vertices are two
fixed points, but there are two more, namely the branch points of the dodecahedron
faces which are intersected by the rotation axes. Hence the quotient 6/〈ρ〉 is a
four-punctured sphere. More precisely:

Lemma 2.1. 6 is a fivefold cyclic branched covering over the four-punctured
sphere whose conformal structure is obtained by doubling a square. Using four
branch slits γi from the center of one of the squares to the corners, the covering is
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given by gluing together five copies of the sphere thus slit, so that the left edge of slit
γi of copy j is glued to the right edge of slit γi of copy j+di , where di = 1, 2, 4, 3.

Sketch of proof. This statement can be proved by analyzing the next figure, where
we have added to the 72◦ pentagon tessellation 10 fat hyperbolic 2π/10-squares.

Using the figure on the previous page, one checks that these 10 squares constitute
a fundamental domain for the surface. The edges are identified according to the
two dashed geodesics and the order-5 rotational symmetry around the center of the
figure. Now it is clear that two adjacent squares constitute a fundamental domain
of the group 〈ρ〉 on 6. The faces of these two squares have to be glued together
by “flipping over”, i.e., the quotient has the conformal structure claimed.

To see that the description of the covering in the lemma gives the same funda-
mental domain is straightforward; see [Threlfall 1932]. �

We digress a bit to discuss also the other natural automorphisms of the surface:
The order-3 rotation around an axes through two opposite vertices of the un-

stellated dodecahedron defines a fixed point free automorphism τ of 6 which can
be seen in the hyperbolic picture as a translation along the lower identification
geodesic by 1/3 of its length. The quotient surface 6/〈τ 〉 is a nonsingular surface
of genus 2 which comes with a tessellation by 4 hyperbolic 72◦-pentagons; it is
discussed in detail in [Threlfall 1932].

One can also obtain an order-2 rotation around the midpoints of the dodeca-
hedron edges. But it turns out that this automorphism is actually the square of
an order-4 rotation φ which is (of course) not an automorphism of the euclidean
polyhedral structure on 6 but a conformal automorphism. That this rotation is
really well defined on6 becomes clear if we convince ourselves that the midpoints
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of some pentagon edges are also the centers of the quadrilaterals:

The left picture shows one of the quadrilaterals moved to a central position with
the pentagon geodesics inside. Comparing the angles of the (congruent) triangles
in the right picture with the two triangles in the left one shows easily the claimed
symmetry.

To actually define this automorphism φ one can check that an order-4 rotation
of one square is compatible with the identifications. One also finds a second fixed
point, so that by the Riemann–Hurwitz formula, the quotient surface 6/〈φ〉 is a
torus. Because there are many different such automorphisms, this observation is the
first indication that the Jacobian of 6 might be quite interesting. The investigation
of this torus will be one of our primary goals.

Another way to see this automorphism is by looking at a new platonic tessella-
tion of 6 by 24 right-angled regular pentagons:

The figure shows the previous pentagon tessellation and the new one with thick
lines. The order-4 rotation becomes a rotation around a vertex of this (preserved)
tessellation. From this picture one can also deduce that φ has two fixed points.



172 MATTHIAS WEBER

Furthermore, the thick lines are defined as geodesics connecting midpoints of ad-
jacent pentagon edges: The sequence of edges hit by such a geodesic constitutes a
Petri polygon; see [Coxeter and Moser 1972] for details.

The vertices of the 90◦ pentagons are either centers of the quadrilaterals or mid-
points of the 72◦ pentagon edges.

This tessellation has also a euclidean realization as a euclidean uniform poly-
hedron, the so-called dodecadodecahedron, which is thus recognized as another
(new) conformal version of Kepler’s dodecahedron. This polyhedron has both
regular pentagons and star-pentagons as faces:

The central right-angled regular decagon in the next figure shows a fundamental
domain for the rotation φ on 6. The fixed points are marked by a dot, and the
nonadjacent edges are to be identified according to the labels.

a

a

b
b

c

c

This fundamental domain allows us to construct a degree-5 map from the quo-
tient torus T = 6/〈φ〉 to the sphere which is branched only over 3 points, as
follows. Decompose the regular decagon into ten (45◦, 45◦, 36◦)-triangles with
vertices at the decagon vertices and its center. Map one of these triangles to the
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upper half-plane and continue by reflection. In principle, such a map pins down the
conformal structure of the torus, but in general it is very hard to determine (say)
the modular invariant of the torus from this map.

Proposition 2.2. The automorphism group of 6 is S5, the symmetric group of 5
elements.

Proof. We know that Aut6 contains the icosahedral group A5 and has order at
least 120. Assume that the automorphism group is strictly larger, that is, at least
of order 240. Now the standard proof of Hurwitz’s theorem about the order of the
automorphism group of a compact Riemann surface forces Aut6 to be a (2, 3, 7)-
triangle group. But S5 contains no element of order 7, so Aut6 had to have at
least 7 · 120 elements which contradicts the conclusion of Hurwitz’s theorem. �

3. 6 as an algebraic curve

In this section, we construct a base of holomorphic 1-forms on 6 and derive an
algebraic equation.

The first holomorphic 1-form ω1 can be visualized by the following figure:

This is another fundamental domain of6, using euclidean quadrilaterals instead of
hyperbolic 2π/10-squares as in the figure on page 170. The identifications (which
are indicated by the shaded lines) are realized by euclidean parallel translations.
This is because we have chosen the quadrilateral with angles π/5, 2π/5, 4π/5,
3π/5. Hence this description gives a singular flat metric on 6 with trivial linear
holonomy. This means that the exterior derivative of the locally defined developing
map of this flat metric is a globally well-defined holomorphic 1-form on 6. Its
zeros coincide with the singular points of this metric: Whenever the angles at a
point add up to k · 2π , the holomorphic 1-form will have a zero of order k− 1.
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Hence the 1-form ω1 defined by the preceding figure has divisor P2+3P3+2P4,
where the points are located as follows:

1

l

P1 P2

P3

P4

Unfortunately, up to now we haven’t proved that the fundamental domain above
defines the correct conformal structure on6. In fact, this is impossible, because we
haven’t really specified which quadrilateral we are going to use for this construc-
tion. To guarantee that the resulting surface is biholomorphic to 6, it is sufficient
to ensure that the chosen quadrilateral is biholomorphic to any square, or, by the
Riemann mapping theorem, to the upper half-plane with vertices at −1, 0, 1,∞.

We do not know how explicitly it is possible to find such a quadrilateral, but at
least we know these data in terms of Schwarz–Christoffel integrals. Denote by ei

the edge Pi Pi+1. Then

e1 =

∫ 0

−1
(t−1)−1/5t−3/5(t+1)−4/5dt,

e2 =

∫ 1

0
(t−1)−1/5t−3/5(t+1)−4/5dt,

e3 =

∫
∞

1
(t−1)−1/5t−3/5(t+1)−4/5dt,

e4 =

∫
−1

−∞

(t−1)−1/5t−3/5(t+1)−4/5dt.

Denote by li = |ei/e1| the corresponding normalized edge lengths, with l = l4.
By trigonometry,

l1 = 1, l2 =−1+ l

√
5+ 1
2
≈ 0.373129,

l3 =

√
5+ 1
2

(1− l)≈ 0.244905, l4 = l ≈ 0.848641.

Now three more holomorphic 1-forms ωi can be defined using the same quadri-
lateral: Because it is conformally a square, we can permute the vertices cyclically.



KEPLER’S SMALL STELLATED DODECAHEDRON AS A RIEMANN SURFACE 175

This results in cyclically permuted divisors:

P1 P2 P3 P4

ω1 0 1 3 2
ω2 1 3 2 0
ω3 3 2 0 1
ω4 2 0 1 3

Using this, we can derive an algebraic equation for 6:

Proposition 3.1. 6 is biholomorphic to the algebraic curve defined by the affine
equation

y5
= (x + 1)x2(x − 1)−1.

Proof. Denote by x : 6 → P1 the branched quotient map 6 → 6/ρ, where we
choose the images of the branch points to be −1, 0, 1,∞, which is possible by
symmetry. Hence(

(x + 1)x2(x − 1)−1)
= P5

1 + P10
2 + P−5

3 − P−10
4 .

Now put y = ω2/ω1 and obtain the same divisor for y5. After scaling y appropri-
ately, the equation follows. �

The function y will be explained geometrically in the next section.

4. Excursion: Bring’s curve

In this section we show why the small stellated dodecahedron is biholomorphic to
Bring’s curve B, which is the complete intersection in P4 of the three hypersurfaces

5∑
i=1

zi = 0,
5∑

i=1

z2
i = 0,

5∑
i=1

z3
i = 0,

This was first shown by Klein [1877; 1884]. Bring’s curve B occurs naturally
as the locus of solutions of the reduced quintic equation

z5
+ pz+ q = 0

because the vanishing of the coefficients of z2, z3, z4 is equivalent to the equations
above.

For projective properties of B, see [Edge 1978].
Following Klein, we first construct a threefold branched covering

π1 :6→ P1
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which is branched twice at all 72◦-pentagon vertices. This is done by mapping the
hyperbolic (2π/5, 2π/10, 2π/10)-triangle that constitutes one fifth of the tessel-
lating 72◦-pentagon onto a spherical (2π/5, 2π/5, 2π/5)-triangle, and continuing
this map by reflection. The image of all the triangles will form the icosahedral tes-
sellation of the sphere. Each vertex has two preimages: one is a branched pentagon
vertex, the other an unbranched pentagon midpoint.

There is also a second such map π2, using the dual 72◦-pentagon tessellation
instead. Both of these maps can be given explicitly in terms of the 1-forms ωi : By
considering divisors we see easily that (up to normalization)

ω1ω3 = ω2ω4,

so that we have an explicit equation of the quadric Q on which the canonical curve
of 6 lies. Now the projections on the respective factors of Q ' P1

×P1 are given
by the meromorphic functions

z 7→ ω2/ω1 and z 7→ ω4/ω1,

which have precisely the same branching behavior as the functions πi above. This
shows also that π1 is proportional to the function y from the last section. We leave
to the reader the transformation of the ωi to the z j and the proof that the latter
then satisfy the cubic equation as well. See also [Edge 1978; Klein 1884, 1877,
Slodowy 1986].

5. The Jacobian of 6

In this section, we compute the Jacobian of 6 in terms of tenth roots of unity and
the constant l of Section 3, which is the ratio of two hypergeometric functions.
This also allows us to compute the lattice of the quotient tori.

To compute the Jacobian, we first choose an appropriate base for the homology
of 6. This base will not be canonical but adapted to our representation of 6 as a
branched covering over a 4-punctured sphere. Denote by ck the curve on Y that
winds k times around P1, then once around P2 and finally as often around P1 as
is necessary to lift to a closed curve on 6. Similarly, denote by c̃k the curve on Y
that winds k times around P2, then once around P3 and finally as often around P2

as is necessary to lift to a closed curve on 6.
For the holomorphic 1-forms, we take the ω j of Section 3. Here we are still free

to choose a normalization. Because we intend to compute also the lattice of the
quotient torus of 6 by the order-4 rotation subgroup 〈φ〉, we will eventually need
a nonzero holomorphic 1-form that is invariant under this rotation φ and whose
periods we can compute. If we normalize the ωi in such a way that φ∗ωi = ωi+1,
the 1-form ω= ω1+ω2+ω3+ω4 will do. This normalization can be achieved by
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(1) taking the same sized quadrilateral for the different 1-forms and just relabeling
the vertices, and

(2) fixing the developing map for all of them simultaneously.

Using these two normalizations, we obtain

Lemma 5.1. Denote by ζ = e2π i/10 and by 8 = 1
2(
√

5+ 1). For i = 1, 2, 3, 4, set
αi = 2iπ/5 reduced modulo 2π . Indices are to be taken cyclically. Then∫

ck

ω j = ekiα j e j (1− eiα j+1),∫
c̃k

ω j = ekiα j+1e j+1(1− eiα j+2)

Hence the period matrix of the Jacobian with respect to the ω j and the cycles
c0, . . . , c3, c̃0, . . . , c̃3 is given by

�=


ζ 2k(1−ζ 4)

ζ 4k+7(1−ζ 8)(−1+l8)
ζ 8k+6(1−ζ 6)8(1−l)

ζ 6k+4(1−ζ 2)l

∣∣∣∣∣∣∣∣
3

k=0

ζ 4k+7(1−ζ 8)(−1+l8)
ζ 8k+6(1−ζ 6)8(1−l)

ζ 6k+4(1−ζ 2)l
ζ 2k(1−ζ 4)

∣∣∣∣∣∣∣∣
3

k=0


Proof. To compute the period of an ωk , we use the definition of ωk by a flat metric
on the 4-punctured sphere which is given by doubling the quadrilateral of figure 9.
Because the developing map of the flat metric is the integral of the corresponding
1-form, the period can be read off from the picture: Winding around a vertex Pj

changes the direction into which we develop by the cone angle at Pj , and the
loop from Pj to Pj+1, around this point and back to Pj contributes the factor
e j (1− eiα j+1). The rest is straightforward computation. �

For a similar computation, see [Karcher and Weber 1999].
This construction also shows that ρ acts on the 1-forms by multiplication with

roots of unity:

ω1 7→ ζ 2ω1, ω2 7→ ζ 4ω2, ω3 7→ ζ 8ω3, ω4 7→ ζ 6ω4.

This is because ρ changes the direction of the developing map by a rotation of
order 5 if we choose the base point for the development in one of the fixed points,
and the amount depends on the respective cone angle in this point.

Because we haven’t normalized our homology base, the polarization of the Ja-
cobian still has to be computed. We do this by giving the intersection matrix of the
cycles:
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Lemma 5.2. The intersection matrix of the cycles c0, . . . , c3, c̃0, . . . , c̃3 is given by

I =



0 1 1 −1 −1 0 0 1
−1 0 1 1 0 1 0 −1
−1 −1 0 1 0 −1 0 0

1 −1 −1 0 0 0 1 0
1 0 0 0 0 1 1 −1
0 −1 1 0 −1 0 1 1
0 0 0 −1 −1 −1 0 1
−1 1 0 0 1 −1 −1 0


.

The proof is straightforward but tedious and we omit it.
The claims may be checked by verifying the Riemann period conditions

�I−1�t
= 0 and − i�I−1�t > 0.

In fact,

−i�I−1�t
=
(
−5 ζ 2

− 5 ζ 3
+ 10 l8

(
ζ 2
+ ζ 3)

− 5 l2 (1+8)
(
ζ + ζ 4)) I d

≈ 5.52531I d.

Corollary 5.3. The lattice of the quotient torus 6/〈φ〉 is spanned by

τ1 = (1+ ζ )2
(
−1+ l + ζ − ζ 2)

≈ 1.79303− 0.321884i,

τ2 = (1+ ζ )
(
−1+ 2l − l ζ + ζ 2

+ l ζ 2
− l ζ 3)

≈ 1.26139+ 1.31433i,

τ2/τ1 =
−1+ ζ 2

+ (1+ ζ−1)l
−1+ ζ−2+ (1+ ζ )l

= ζ̄ ·
l − ζ(1− ζ )
l − ζ̄ (1− ζ̄ )

≈ 0.554051+ 0.832482i.

Proof. We have to show that the periods π j , π̃ j of ω=ω1+ω2+ω3+ω4 constitute
this lattice. By Lemma 5.1 we have π̃ j =π j and π0= τ1, π1= τ2, π2=−2τ1+τ2,
π3 = 0, π4 = τ1− 2τ2. �

Remark. The specific value of l is only defined by the condition that our euclidean
quadrilateral has to be a square. This also means that the formulas above do not
make sense for any other surface.

We have computed the Jacobian of 6 and found at least three different quotient
maps from 6 to tori. The relationship between all these tori will now be clarified.

Lemma 5.4. Let 0 be a lattice in Cn and α1, . . . , αn be n linearly independent
linear functionals on Cn such that 0i = αi (0) is a lattice in C. Then Cn/0 is
isogenous to the product C/01× · · ·×C/0n .

Proof. The regular linear map α1×· · ·×αn :C
n
→Cn induces a holomorphic Lie

group homomorphism Cn/0→C/01×· · ·×C/0n . If this map had a nondiscrete
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kernel, there would be a v ∈ Cn
− {0} such that αi (v) = 0 for all i , contradicting

the linear independence of the αi . �

Corollary 5.5. Jac6 is isogenous to the product T × T × T × T .

Proof. The idea is to conjugate the map φ by ρ to obtain enough different quotient
maps to the same torus. In our base of the lattice, the functional z 7→ z1+z2+z3+z4

describes the map to the quotient torus induced by the quotient map 6→6/〈φ〉.
Now we can as well consider the quotient maps associated to the conjugate maps
ρ−kφρk which are different quotient maps to the same torus. By the definition of
the ωi , ρ acts on them by multiplication as

ωi 7→ ζ 2i
ωi .

Thus ρ−1φρ acts as

ω1 7→ ζ 8ω2, ω2 7→ ζ 6ω3, ω3 7→ ζ 2ω4, ω4 7→ ζ 4ω1

and hence the induced map from Jac6→ Jac T is described by the functional z 7→
ζ 4z1+ζ

8z2+ζ
6z3+ζ

2z4. Similarly, the functionals z 7→ ζ 8z1+ζ
6z2+ζ

2z3+ζ
4z4

and z 7→ ζ 2z1 + ζ
4z2 + ζ

8z3 + ζ
6z4 describe the maps induced by ρ−2φρ2 and

ρ−3φρ3. These 4 functionals are clearly independent, and the claim follows from
the previous lemma. �

Corollary 5.6. All holomorphic image tori of 6 are isogenous.

Proof. Any holomorphic surjective map f : 6→ E to an elliptic curve induces a
group homomorphism f : Jac6→ Jac E = E . This map cannot be trivial on all
factors of Jac6; hence there is a nontrivial restriction f1 :T→ E that is necessarily
a covering. �

6. An algebraic equation for the quotient torus

In this section we derive an algebraic equation for the quotient torus T = 6/〈φ〉
and compute its modular invariant. The arithmetic nature of this torus has been
investigated by Serre [1980], and an equation is given (without proof) in [Slodowy
1986].

Our strategy for producing such an equation is as follows: Using the represen-
tation of 6 as a branched covering over the four-punctured sphere, we construct a
degree-3 function y and a degree-4 function w on 6 having poles of order at most
2 and 3, respectively, and only at the branch points of the covering π :6→6/〈ρ〉.
Averaging this function over the action of φ yields functions of degrees 2 and 3 on
the quotient torus T . To determine an equation, we investigate these functions at
their poles.
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To start, we need to understand the action of φ in terms of the equation

y5
= (x + 1)x2(x − 1)−1

(see Section 3). Recall that y represents a function on 6 with divisor P1+ 2P2−

P3 − 2P4 and x has branch points of order 5 with values −1, 0, 1,∞ at the Pi .
This implies that the new function

z = y2/x

has divisor 2P1 − P2 − 2P3 + P4 and is therefore proportional to the function π2

from Section 5. From the two equations above one easily obtains

(∗) yz2
=

y2
+ z

y2− z

and this equation reflects the order-4 automorphism φ as the map

y 7→ z z 7→ −1/y.

Hence the average
Y = y+ z− 1/y− 1/z

of Y will descend to T as a function with one double-order pole at the image of
the Pi . Similarly, the function

w = y/z

on 6 has divisor −P1+ 3P2+ P3− 3P4 and the average

W =
y
z
−

1
yz
+

z
y
− yz

descends to T as a function with one triple-order pole at the image of the Pi . We
keep the names Y and W for the functions on T .

This means that there are constants a, b, c, d, e, f ∈ C such that

(∗∗) (W − aY )2− bY 3
− cY 2

− dW − eY − f ≡ 0.

To determine them, we compute this expression on 6 in a neighborhood of P1,
using y as a local coordinate. Note that

z =−y2
+ O(y7)

because x = z/y2 has a branch point of order-5 with value −1 at P1. This leads to

1−b
y6 +

−2 a+3 b
y5 +

−2+2 a+a2
−3 b−c

y4 +
2 a−2 a2

−2 b+2 c−d
y3

+
−1−4 a+a2

+9 b−c−e
y2 +O(y−1) = 0,
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which determines the first 5 constants as

a = 3
2 , b = 1, c = 1

4 , d =−3, e = 4.

Putting this back into (∗∗) gives

h = (y3
+y z+y5 z+y2 z2

+y3 z2
−y4 z2

+z3
+y2 z3

−4 y3 z3
−y4 z3

−y6 z3

−y2 z4
−y3 z4

+y4 z4
+y z5

+y5 z5
−y3 z6)/(y3 z3),

which reduces to −4 using (∗).
Hence we obtain the desired equation in Y and W :

4− 4 Y − Y 2

4
− Y 3

+ 3 W +
(
−3 Y

2
+W

)2
= 0.

In new variables this equation can be brought into the form

y2
= 4x3

− 75x − 1475.

These equations allow to compute the modular invariant λ of T as the cross ratio
of∞ and the three algebraic numbers

1
8

(( 11
5

)1/3
(59− 24

√
6)1/3+ 52/3(59+ 24

√
6)1/3− 13

)
,

(52/3/16)
(
(−1+ i

√
3)(59− 24

√
6)1/3− (1+ i

√
3)(59+ 24

√
6)1/3− 26

)
,

(52/3/16)
(
−(1+ i

√
3)(59− 24

√
6)1/3− (1− i

√
3)(59+ 24

√
6)1/3− 26

)
,

which gives roughly

λ≈ 0.660609− 0.75073i.

This modular invariant can be used to compute the periods of the quotient torus
in a different way. One obtains the period quotient τ2/τ1 of T as a quotient of two
hypergeometric integrals, but this time as

τ2

τ1
=

∫
∞

1 u−1/2(u− 1)−1/2(u− λ)−1/2du∫ 1
0 u−1/2(u− 1)−1/2(u− λ)−1/2du

.

Combining this expression with Corollary 5.3 gives an unexpected identity between
hypergeometric integrals.
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SHARP ISOPERIMETRIC INEQUALITIES
AND SPHERE THEOREMS

SHIHSHU WALTER WEI AND MEIJUN ZHU

Various relations between sharp isoperimetric inequalities and volumes of
manifolds are studied. In particular, we introduce and estimate sharp iso-
perimetric constants τ ∗ and γ ∗ corresponding to two types of isoperimetric
inequalities. We show that for a complete n-dimensional manifold M with
Ricci curvature Ric(M) ≥ n−1, the volume of M is close to that of Sn if and
only if τ ∗ is close to n(n−1)/

(
2(n+2)ω

2/n
n

)
and M is simply connected (for

n = 2 or 3), or γ ∗ is close to 1 (for any n ≥ 2).

1. Introduction

A sharp Sobolev inequality of Aubin and Li [1999] states that on an n-dimensional
smooth, compact, connected Riemannian manifold M , for p ∈ (1, n) if n ≥ 4, or
for p ∈ (1,

√
n )∪(2, n) if n= 2 or 3, and for r > r∗= np/(n+ 2− p), there exists

a constant A(p, r) > 0 depending only on n, the bound on the injectivity radius,
and the bound on the curvature tensor and its covariant derivatives on M such that,
for all ϕ ∈W 1,p(M),

(1–1)
(∫

M
|ϕ|p

∗

dv
)p/p∗

≤ K (n, p)p
∫

M
|∇ϕ|pdv + A(p, r)

(∫
M
|ϕ|r dv

)p/r

,

where p∗ = np/(n−p) and

K (n, p)=
1
n

(
n(p−1)

n−p

)(p−1)/p
 0(n+ 1)

0
( n

p

)
0
(

n+1− n
p

)
nωn

1/n

,

for 0 the gamma function, ωn the volume of the unit ball in Rn , and dv the volume
element of M . This inequality solves a conjecture raised by Aubin in the late
1970’s; similar results were obtained independently in [Druet 1998]. It is natural

MSC2000: 58E35, 53C20, 53A99.
Keywords: isoperimetric inequality, Ricci curvature, sectional curvature, Sobolev inequality.
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to ask whether (1–1) holds for p = 1 and r = r∗. Equivalently, does there exist,
for every domain �⊂ M , a constant C(M) depending on M such that

(1–2) Pn
≥ nnωnV n−1 (1−C(M)V 2/n),

where P = voln−1 ∂� and V = voln �? It is well known that (1–2) does hold for
a geodesic ball with small volume; see (2–2), for example.

The case p = 1 in (1–1) is not addressed in [Aubin and Li 1999]. On the other
hand, an elegant local inequality due to Morgan and Johnson [2000] implies:

Theorem A. If the sectional curvature K of M is less than K0, then an enclosure
of small volume V has perimeter P satisfying

(1–3) P ≥
(
1−C K0V 2/n)P∗,

where C is a constant and P∗ is the perimeter of the Euclidean ball of volume V .

This local result was previously only known for small geodesic balls — see (1–2)
and (2–2). Equation (1–3) improved on the bound P≥

(
1−C ′V 2/(n(n+3))

)
P∗ found

in [Bérard and Meyer 1982] and valid for small volume V .
As a consequence of (1–3) we can make the following statement, valid even

when V is not small, extending the Aubin–Li inequality (1–1) to the case p = 1
and r = r∗, and initiating the study of the isoperimetric inequality (1–4):

Theorem 1.1 (An isoperimetric inequality). For every domain�⊂ M , there exists
a constant C(M) depending on M such that

(1–4) Pn
≥ nnωnV n−1 (1−C(M)V 2/n),

where P = voln−1 ∂�, V = voln �, and ωn is the volume of the unit ball in Rn .
(One can take, for example, C(M) = max

{
nC K0, ε0(M)−2/n

}
, where C K0 is as

in (1–3) and ε0(M) > 0 is a constant depending on M so that (1–3) holds for small
V ≤ ε0.)

Remark. After we completed our work, we learned that Druet [2002] had given
another proof of (1–4) by a different approach.

By a standard technique involving the coarea formula and Cavalieri’s principle,
we see that (1–4) is equivalent to the following:

Theorem 1.2 (A Sobolev inequality). There exists a constant A= A(M) such that
for all ϕ ∈W 1,1(M),(∫

M
|ϕ|n/(n−1) dv

)(n−1)/n

≤ K (n, 1)
∫

M
|∇ϕ| dv

+ A(M)
(∫

M
|ϕ|n/(n+1) dv

)(n+1)/n

,

where K (n, 1)= lim
p→1

K (n, p)= (nωn)
−1/n .
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The isoperimetric inequality (1–4) has its roots in global analysis and partial
differential equations (see, for example, [Aubin and Li 1999]). The optimal con-
stants in (1–4), too, will have geometric and even topological applications. An
immediate example is that a sharp estimate on C(M) in (1–4) in two dimensions
will recapture the Bernstein isoperimetric inequality [1905] on S2,

(1–5) L2
≥ 4π A

(
1− 1

4π
A
)
,

with equality if and only if the domain in question is a disk; see Theorem 1.3(I).

Now introduce, for an n-dimensional, smooth, compact, connected Riemannian
manifold M , the isoperimetric constant τ ∗= τ ∗(M), defined as the constant C(M)
that makes (1–4) sharp:

(1–6) τ ∗ := inf
{
C(M) : C(M) is a constant such that (1–4) holds

}
.

The constant τ ∗ depends deeply on the geometric properties of the underlying
manifold M . In turn, it may even completely determine the metric of M :

Theorem 1.3. Let M be a complete, simply connected Riemannian manifold with
Ric(M)≥ n− 1.

(I) The isoperimetric constant τ ∗ satisfies

(1–7) τ ∗ ≥ τ0 :=
n(n− 1)

2(n+ 2)ω2/n
n
.

For n = 2 or 3, we have τ ∗ = τ0 if and only if M is isometric to Sn with the
standard metric.

(II) For n = 2 or 3, if the isoperimetric constant τ ∗ is close to τ0, then vol M is
close to vol Sn .

This theorem is sharp, and generalizes the Bernstein inequality (1–5). Also, the
assumption of simple connectedness is necessary for the last sentence of (I), as
can be seen from the example of three-dimensional real projective space, which is
complete, not simply connected, and satisfies τ ∗ = τ0.)

Open Problem. For M of dimension n ≥ 4, complete and simply connected, with
Ric(M) ≥ n− 1, does τ ∗ = τ0 still imply that M is isometric to the standard unit
sphere Sn?

In Section 5 we prove that τ ∗ = τ0 also for M = S4 and S5:

Theorem 1.4. For any domain � of volume V and perimeter P in Sn , where
n = 2, 3, 4 or 5, and with τ0 as in (1–7), we have

(1–8) Pn
≥ nnωnV n−1(1− τ0V 2/n).
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Open Problem. Is the isoperimetric constant still τ0 on the standard unit sphere
Sn , for all n ≥ 6? That is, does (1–8) (or equivalently (5–3) below) hold for n ≥ 6?

Remark. For a complete manifold M with Ric(M) ≥ n− 1, the equality τ ∗ = τ0

implies that M is (positive) Einstein (see the proof of Theorem 1.3). This opens up
the perspective of studying positive Einstein metrics via isoperimetric constants.

In high dimensions, we have an analog of Toponogov’s version of S. Y. Cheng’s
Maximum Diameter Theorem, in the setting of the sharp isoperimetric inequality
Theorem 1.3 being realized on the sphere:

Theorem 1.5. If M is a complete, simply connected n-manifold of sectional curva-
ture Sec(M)≥ 1 and such that τ ∗(Mn) is close to τ0, then vol M is close to vol Sn

for all n ≥ 2.

Open Problem. Does Theorem 1.5 remain true in dimensions n≥4 if one weakens
the assumption that Sec(M)≥ 1 to the assumption that Ric(M)≥ n− 1?

One may also investigate the converse of Theorem 1.3(II) on the estimates of τ ∗

under some assumptions on the Ricci curvature and volume of the manifold. This
is related to the study of the second constant of sharp Sobolev inequalities (see, for
example, [Hebey 1999]). However, we will show by an example that τ ∗ might not
be close to τ0 even if C ≥Ric(M)≥ n−1 and vol M is close to vol Sn . Therefore,
under the assumption that M has bounded Ricci curvature, saying that vol M is
close to vol Sn is not equivalent to saying that τ ∗ is close to τ0. In an attempt to
solve this problem of searching for a new equivalence, we turn to the isoperimetric
inequality of Gromov [1980] (see also [Chavel 1993, Theorem 6.6]):

Theorem B (Gromov’s isoperimetric inequality). Given an n-dimensional com-
pact manifold M with Ric (M)≥ n−1 and a domain�⊂M with smooth boundary
∂�, let �0 ⊂ Sn be a spherical cap such that

(1–9)
vol�0

vol Sn =
vol�
vol M

.

Then

vol ∂�≥
vol M
vol Sn · vol ∂�0.

Thus it makes sense to consider, for a complete manifold M with Ric(M)≥n−1,
Gromov’s isoperimetric constant γ ∗ = γ ∗(M), defined by

(1–10) γ ∗ := sup {γ (M) : vol ∂�≥ γ (M) vol ∂�0 for any domain �⊂ M},

where ∂� is smooth and �0 ⊂ Sn is a spherical cap satisfying (1–9).
The isoperimetric constants τ ∗(M) and γ ∗(M) open up a new perspective on

complete manifolds M with Ric(M) ≥ n − 1. In particular, there are a variety of
equivalent ways of stating that γ ∗ is close to 1, such as the following:
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Theorem 1.6. Assume that M is complete with Ric(M) ≥ n− 1. Then γ ∗ is close
to 1 if and only if vol M is close to vol Sn for all n ≥ 2.

This provides a new approach to the relation vol M ∼ vol Sn . Other equivalent
relations [Colding 1996a; 1996b; Petersen 1999] involve the Gromov–Hausdorff
distance, the radius, and the (n+1)-st eigenvalue. As a consequence of this work,
Theorem 1.5, and work of Cheeger and Colding [1997], one can conclude:

Theorem 1.7. Let M be complete with Ric(M)≥ n−1. For all n≥ 2, the following
properties (1)–(5) are equivalent and each of them implies property (6):

(1) γ ∗ is close to 1.

(2) vol M is close to vol Sn .

(3) M is Gromov–Hausdorff close to Sn .

(4) M has radius close to Sn , where the radius of M is that of the smallest closed
metric ball that covers M.

(5) The (n+1)-st eigenvalue is close to n.

(6) M is diffeomorphic to Sn .

Corollary 1.8. Let M be complete and simply connected with Sec(M)≥ 1 if n≥ 2,
or Ric(M)≥ n−1 if n = 2 or 3. Then the properties (2)–(6) below are equivalent,
each of them is implied by property (1), and each implies properties (7)–(9):

(1) τ ∗ is close to the constant τ0 :=
n(n−1)

2(n+2)ω2/n
n

.

(2) γ ∗ is close to 1.

(3) vol M is close to vol Sn .

(4) M is Gromov–Hausdorff close to Sn .

(5) M has radius close to Sn .

(6) The (n+1)-st eigenvalue is close to n.

(7) M is diffeomorphic to Sn .

(8) M has diameter close to Sn .

(9) The first eigenvalue is close to n.

2. Proof of Theorem 1.3

We begin with the asymptotic formulas for the perimeter P and volume V of a
geodesic ball Br (x) of scalar curvature Scalx(M) about a point x (see, for example,
[Gallot et al. 1987, Theorem 3.98]):

(2–1)
Pn

V n−1 = nnωn

(
1−

Scalx(M)
2(n+ 2)

r2
+ O(r4)

)
.
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Thus, for a domain that is a geodesic ball Br (x) with small volume,

(2–2) Pn
= nnωnV n−1

(
1−

Scalx(M)

2(n+ 2)ω2/n
n

V 2/n
+ o(1)V 3/n

)
,

where o(1) is small and tends to 0 as V → 0.
Since Ric(M) ≥ n − 1, we have Scalx(M) ≥ n(n − 1) at any point of M ; thus

by (1–4) and (1–6),

(2–3) τ ∗ ≥
Scalx(M)

2(n+ 2)ω2/n
n
≥

n(n− 1)

2(n+ 2)ω2/n
n
= τ0.

For n=2 or 3, if τ ∗= τ0 we know from (2–3) that Scalx(M)≤n(n−1) at any point
x in M ; thus Ric(M) = n− 1. This in turn implies that M has constant sectional
curvature K = 1, and is therefore isometric to the standard unit sphere. On the
other hand, for S2, due to Gromov’s isoperimetric inequality (Theorem B), we
need only prove that for any spherical cap domain �, the equality in (1–7) holds.
This is obvious, since in terms of the spherical coordinate θ (which measures down
from the north pole) we have L = 2π sin θ and A= 2π

∫ θ
0 sinα dα for 0≤ θ ≤ π .

It follows that τ ∗ = 1/4π , and we recapture the standard Bernstein isoperimetric
inequality (1–5). In the case of S3, due to Theorem B, it suffices to prove that, for
any spherical cap domain �,

(2–4) P3
≥ 36πV 2

(
1− 3

5

(4π
3

)−2/3
V 2/3

)
.

In terms of the spherical coordinate function, for 0≤ θ ≤ π ,

P = 4π sin2 θ and V = 4π
∫ θ

0
sin2 α dα.

Viewing P as a function of V , we define

f (V )= P3
− 36πV 2

(
1− 3

5

(4π
3

)−2/3
V 2/3

)
.

Direct computation yields

d P
dV
=

2 cos θ
sin θ

,
d2 P
dV 2 =

−8π

(4π sin2 θ)2
=
−8π
P2 ,

so that

d f (V )
dV

= 24π2
(

4 sin3 θ cos θ − 3(2θ − sin 2θ)+ 12
5

(4
3

)−2/3
(2θ − sin 2θ)5/3

)
and

d2 f (V )
dV 2 =−96π

(
sin2 θ −

(4
3

)−2/3
(2θ − sin 2θ)2/3

)
.
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Specializing for θ = 0 (so V = 0 and P = 0) we have

f (0)=
d f
dV

(0)=
d2 f
dV 2 (0)= 0,

Note that d2 f (V )/dV 2 has the same sign as

µ(θ)= 2θ − sin 2θ − 4
3 sin3 θ.

One easily checks that µ(0) = 0, and µ′(θ) = 4 sin2 θ − 4 sin2 θ cos θ > 0 for
θ ∈ (0, π). It follows that f (V )≥ 0. This completes the proof of part (I).

To prove part (II), first observe that vol M ≤ vol Sn by the Bishop volume com-
parison theorem [Bishop and Crittenden 1964]. For n = 2, if the statement were
not true, there would exist δ > 0 such that vol M2

≤ 4π−δ for some manifold M2

with

τ ∗(M2)−
1

4π
≤

δ

8π(4π − δ)
.

We then choose � = M \ Bε , where Bε is a small geodesic ball of radius ε in M .
For such a domain �,

P2
≥ 4πV

(
1−

(
1

4π
+

δ

8π(4π − δ)

)
V
)

which would imply that 0≥ 1
2δV > 0 as ε→ 0, a contradiction.

For n = 3, we need the following lemma, which is a slight variation on a con-
vergence theorem due to Petersen [1998, 10.5.4, Theorem 5.10]:

Lemma 2.1. Given n ≥ 2 and λ > 0, there is an ε = ε(n, λ) > 0 such that any
closed, simply connected Riemannian n-manifold (M, g) with |Sec(M)− λ| ≤ ε is
C1,α-close to a metric of constant curvature λ.

Proof of Lemma 2.1. By the Bonnet Theorem [1855], Sec(M) ≥ λ − ε implies
diam(M)≤ π/

√
λ− ε. Then, for n ≥ 3, replacing Cheeger’s lemma (see [Petersen

1998, pages 300–301]) by Klingenberg’s Theorem [1959], which implies that the
injectivity radius is at least π/

√
λ+ ε, one may readily modify [Petersen 1998,

proof on page 312] to deduce the conclusion. For n = 2 instead of Klingenberg’s
Theorem one can use Synge’s Theorem and [Carmo 1992, Proposition 3.4, p. 281].

�

From (2–3) we can see that Ric(M) → 2 as τ ∗ → 3
5

( 3
4π

)2/3
. This implies

that Sec(M)→ 1, since on a 3-manifold M and for some constant K0, there is
equivalence between Ric(M) ≡ 2K0 and Sec(M) ≡ K0. Then from Lemma 2.1
we know that the metric of M converges to the standard metric of S3 in the C1,α

topology as τ ∗→ 3
5

( 3
4π

)2/3
. This implies that vol M→ vol S3

= 2π2, completing
the proof of part (II) and of Theorem 1.3.



190 SHIHSHU WALTER WEI AND MEIJUN ZHU

Remark. Conceivably, estimates on τ ∗ may yield estimates on the first eigen-
value. For instance, assuming that M is complete and simply connected, and that
Ric(M) ≥ n − 1, then λ1 is close to n if τ ∗ is close to τ0 for n = 2 or 3. This
can be proved as follows. According to Theorem 1.3 we know that vol M is close
to vol Sn , thus rad(M) is close to π (see, for example, [Petersen 1999]). This of
course yields that diam(M) is close to π . Then due to a theorem of Cheng [1975]
we know that λ1 is close to n (see Corollary 1.8).

3. A small manifold with large isoperimetric constant

We show that the converse of Theorem 1.3(II) is not true. Assume that Ric(M)≥
n− 1. For a geodesic ball Br (x) with small volume, we recall (2–2)

Pn
= nnωnV n−1

(
1−

Scalx(M)

2(n+ 2)ω2/n
n

V 2/n
+ o(1)V 3/n

)
,

where Scalx(M) is the scalar curvature at point x and o(1)→ 0 as V → 0.
One can check that, for n = 2,

n(n− 1)

2(n+ 2)ω2/n
n
= ((n+ 1)ωn+1)

−2/n .

If vol M→ vol S2 implied that τ ∗→ 1/4π , then Scalx(M) would be less than 2+δ
as vol M → vol S2, for any δ > 0. But the following example shows that this is
impossible.

Example 3.1. For any small positive ε (less than 1
100 , say), define a C2-smooth

function by

fε(x)=


√

1− (x − ε)2 if −1+ ε ≤ x ≤−ε,

hε(x) if −ε ≤ x ≤ ε,√
1− (x + ε)2 if ε ≤ x ≤ 1− ε,

where hε is a symmetric function to be determined. Direct computation shows that

(3–1)
f ′ε(−ε) = − f ′ε(ε) = 2ε+ oε(1)ε2,

f ′′ε (ε) = f ′′ε (−ε) = −1+ oε(1)ε,

where oε(1) is small and tends to 0 as ε → 0. For a small ε > 0, we choose a
negative continuous symmetric function gε satisfying gε(±ε)= f ′′ε (ε)= f ′′ε (−ε),
g′ε(x) < 0 for −ε ≤ x < 0,

−5≤ min
−ε≤x≤ε

gε(x)≤−2 and
∫ ε

−ε

gε dx = 2 f ′ε(ε).
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The existence of such a function is guaranteed by (3–1). We then define hε to be
a symmetric function such that hε(−ε)=

√
1− 4ε2 and

h′ε(x)=
∫ x

−ε

gε(s) ds+ f ′ε(−ε) for −ε < x ≤ 0.

Let Mε be the surface obtaining by rotating y= fε(x) around the x-axis. Recall
that the Gaussian curvature Kε is given by

Kε =−
f ′′ε

fε(1+ ( f ′ε)2)2
,

where differentiation is with respect to x . It is easy to check that Kε ≥ 1+ oε(1)
and vol Mε = vol S2

+oε(1), but Kε is greater than 3
2+oε(1) at the equator of Mε ,

so the scalar curvature Scalx(Mε) is at least 3+ oε(1) at the equator of Mε . By
rescaling, one easily obtains a sequence of manifolds Mε with Gaussian curvatures
Kε ≥ 1 and volumes vol Mε → vol S2, but with scalar curvatures Scalx(Mε) >

5
2

at some points.

4. Proof of proximity results

Proof of Theorem 1.5. In view of (2–3), Sec(M)→ 1 as τ ∗→ τ0. It then follows
from Lemma 2.1 that the metric of M converges to the standard metric of Sn in
the C1,α topology as τ ∗→ τ0. This implies that vol M→ vol Sn . �

Proof of Theorem 1.6. Let M be complete with Ric(M)≥ n− 1. We claim that

(4–1) γ ∗ ≤ 1.

If not, there is δ > 0 such that

(4–2) vol ∂�≥ (1+ δ) vol ∂�0

for any smooth domain � ⊂ M . Now, [Morgan and Johnson 2000, Theorem 3.4]
says that given V , the manifold M has regions of volume V and perimeter at most
equal to the perimeter P0(V ) of a ball of volume V in Sn . Choose V = 1

2 vol M ;
since vol M ≤ vol Sn , we know that

P(V )≤ P0(V )≤ vol Sn−1.

However, from (4–2) we have

P(V )≥ (1+ δ) vol Sn−1,

which is a contradiction. This proves (4–1).
If vol M is close to vol Sn , we know from Theorem B that

γ ∗ ≥
vol M
vol Sn → 1.
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Combining this with (4–1) we get γ ∗→ 1.
Conversely, if γ ∗ → 1, we claim vol M → vol Sn . Otherwise, there is δ > 0

such that vol M ≤ vol Sn
− δ. Choose V = 1

2 vol M in [Morgan and Johnson 2000,
Theorem 3.4] and let R be the region whose perimeter is P(V ); then

P(V )≤ P0(V )≤ (1− ε) vol Sn−1

for some fixed ε = ε(δ) > 0, since vol M ≤ vol Sn
− δ. Thus

vol ∂R ≤ (1− ε) vol ∂R0,

which contradicts the fact that γ ∗→ 1. �

5. Spheres in dimensions up to 5: Proof of Theorem 1.4

Thanks to Gromov’s isoperimetric inequality, to prove Theorem 1.4 we need only
show that (1–8) holds for any spherical cap domain � in Sn for n = 4 or 5 (the
cases n = 2, 3 being covered by Theorem 1.3.

For n = 4, we must prove P4
≥ 44ω4V 3

(
1− ω−1/2

4 V 1/2
)
, where ω4 = π

2/2.
Using the spherical coordinate θ that measures angles down from the north pole,
we know that, for 0≤ θ ≤ π ,

P = 2π2 sin3 θ and V = 2π2
∫ θ

0
sin3 α dα.

Viewing P as a function of V , we define

f (V )= P4
− 44ω4V 3 (1− (ω4)

−1/2V 1/2) .
Direct computation yields

d f (V )
dV

= 32π6 (3 sin8 θ cos θ − 48A2
+ 112A5/2) ,

where A = A(θ) =
∫ θ

0 sin3 α dα. Since f (0) = 0 and dV/dθ ≥ 0, it suffices to
show that f1(θ) := d f (V )/dV ≥ 0 for any θ ∈ (0, π).

Again, since f1(0) = 0, it is enough to show that d f1(θ)/dθ ≥ 0 for any θ ∈
(0, π). Equivalently, it suffices to show, for any θ ∈ (0, π), that

f2(θ) := 24 sin4 θ cos2 θ − 3 sin6 θ − 96A+ 280A3/2
≥ 0.

Note again that since f2(0) = 0, it is enough to show that d f2(θ)/dθ ≥ 0 for any
θ ∈ (0, π). Equivalently, we only need to show

(5–1) f3(θ) := 162 cos3 θ − 66 cos θ − 96+ 420A1/2
≥ 0
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for θ ∈ (0, π). Since A is an increasing function of θ , we can check, for θ ≥ π/2,
that

f3(θ)≥ 420A1/2π/2− 258≥ 0.

To prove (5–1) for θ ≤ π/2, it is sufficient to show that

g1(θ)= 4202 A− (162 cos3 θ − 66 cos θ − 96)2 ≥ 0,

for θ ∈ (0, π/2). Again, since g1(0)= 0, it is enough to prove that dg1/dθ ≥ 0 for
θ ∈ (0, π/2). Equivalently, we need only show, for θ ∈ (0, π/2), that

(5–2) g2(θ) := 4202 sin2 θ −2(162 cos3 θ −66 cos θ −96)(66−486 cos2 θ)≥ 0.

To check this, we have, for θ ∈ (0, π/2), and setting s := sin θ , c := cos θ ,

4202 s2
− 2(162c3

− 66c− 96)(66− 486c2)

= 4202 s2
− 2

(
−162cs2

+ 96(c− 1)
)
(66− 486c2)

= 4202 s2
+ 324 · 66cs2

− 324 · 486c3 s2
− 192(1− c)(486c2

− 66)

≥ 4202 s2
+ 324 · 66cs2

− 324 · 486cs2
− 192(1− c)(486c2

− 66)

= 4202 s2
− 324 · 420cs2

− 192(1− c)(486c2
− 66)

≥ 4202 s2
− 324 · 420s2

− 192(1− c)(486c2
− 66c2)

= 420 · 96 ·
(
s2
− 2(1− c)c

)
= 420 · 96 · 4 sin2(θ/2) ·

(
cos2(θ/2) − c2)

≥ 0,

proving the case n = 4.
For general n, we note that (1–8) is equivalent to the integral inequality

(5–3) sinn(n−1) θ ≥ nn−1 An−1
−

nn+(2/n) (n− 1)
2(n+ 2)

An−1+(2/n)

for θ ∈ [0, π], where

A =
∫ θ

0
sinn−1 α dα.

For n = 5, we can follow the same argument used for n = 4 and find that it is
enough to show that

f4(θ)= 128 sin4 θ − 187 sin2 θ + 52/5
· 11 · 17 · A2/5

≥ 0

for θ ∈ [0, π]. Notice that 128 sin4 θ − 187 sin2 θ ≤ 0, and so it suffices to prove

g(θ)= 52
· 115
· 175
· A2
+ (128 sin4 θ − 187 sin2 θ)5 ≥ 0 for θ ∈ [0, π].

Since g(0)= 0, it is enough to show that, for θ ∈ [0, π], and with s, c as before,

g′(θ)= 2 · 52
· 115
· 175
· A · s4

+ 5(128s4
− 187s2)4 · (4 · 128s3 c− 2 · 187sc)≥ 0.
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Let g1(θ) = 5 · 115
· 175
· A+ (128s3

− 187s)4 · (2 · 128s3 c− 187sc). Note that
g1(θ) has the same sign as g′(θ) and that g1(0) = 0, so we need only show that
g′1(θ)≥ 0. Let

g2(θ)= 5 · 115
· 175
+ 4 · (128s2

− 187)3(3 · 128s2c− 187c)(2 · 128s2 c− 187c)

+ (128s2
− 187)4(6 · 128s2 c2

− 2 · 128s4
− 187c2

+ 187s2).

Note that g2(θ) has the same sign as g′1(θ) for θ ∈ [0, π]. Then, by means of some
delicate computations, we can check that g2(θ) ≥ 0 for θ ∈ [0, π]. It should be
pointed out that g′2(θ) is no longer nonnegative for θ ∈ [0, π].
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CORRECTION TO:
EGGERT’S CONJECTURE ON THE DIMENSIONS

OF NILPOTENT ALGEBRAS

LAKHDAR HAMMOUDI

Volume 202:1 (2002), 93–97

The author acknowledges that the Theorem in the paper in question does not
solve Eggert’s conjecture completely, because it uses the fact that R∩(A⊕K)={0}.
Indeed, in the proof of the Theorem (page 96, lines 19 to 24), we assume that the
unions in lines 17 and 18 are disjoint. If we add this hypothesis to the Theorem,
which is fulfilled by graded algebras for example, the result is correct.

Therefore, the proof of the Theorem yields only a particular case of Eggert’s
conjecture. Eggert’s conjecture in general remains open.

The author thanks Professors B. Amberg and L. Kazarin for pointing out the
mistake and for the valuable discussions.
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CORRECTION TO:
MODULAR DIOPHANTINE INEQUALITIES

AND NUMERICAL SEMIGROUPS

J. C. ROSALES, P. A. GARCÍA-SÁNCHEZ AND J. M. URBANO-BLANCO

Volume 218:2 (2005), 379–398

The modular numerical semigroup S(2, 6)=〈3, 4, 5〉 is pseudo-symmetric. Thus
Corollary 60 of the paper is false, since it asserts that S(a, ab) is not pseudo-
symmetric for any positive integers a, b > 1. The mistake comes from part (ii) of
Proposition 58, which should read

S is pseudo-symmetric if and only if (a−1, b)+ (a−1) mod b = b− 1.

(The sign on right-hand side of this equality was incorrect.)
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UNIVERSIDAD DE GRANADA

E-18071 GRANADA

SPAIN

jurbano@ugr.es

199



Guidelines for Authors

Authors may submit manuscripts for publication to any of the editors. Submission of a
manuscript acknowledges that the paper is original and has not been submitted elsewhere.
Information regarding the preparation of manuscripts is provided below. For further infor-
mation, write to pacific@math.berkeley.edu or to Pacific Journal of Mathematics, Univer-
sity of California, Los Angeles, CA 90095–1555. Correspondence by email is requested
for convenience and speed.

Manuscripts must be in English, French or German. A brief abstract of about 150 words or
less in English must be included. The abstract should be self-contained and not make any
reference to the bibliography. Also required are keywords and subject classification for the
article, and, for each author, postal address, affiliation (if appropriate) and email address if
available. A home-page URL is optional.

Authors are encouraged to use LATEX, but submissions in other varieties of TEX, and excep-
tionally in other formats, are acceptable. Electronic submissions are strongly encouraged;
the editors’ email addresses are listed inside the front cover. Papers submitted in hard copy
should be sent in triplicate and authors should keep a copy.

Bibliographical references should be listed alphabetically at the end of the paper. All
references in the bibliography should be cited in the text. Use of BibTEX is preferred but
not required. Any bibliographical citation style may be used but tags will be converted to
the house format (see a current issue for examples).

Figures, whether prepared electronically or hand-drawn, must be of publication quality.
Figures prepared electronically should be submitted in Encapsulated PostScript (EPS) or
in a form that can be converted to EPS, such as GnuPlot, Maple or Mathematica. Many
drawing tools such as Adobe Illustrator and Aldus FreeHand can produce EPS output.
Figures containing bitmaps should be generated at the highest possible resolution. If there
is doubt whether a particular figure is in an acceptable format, the authors should check
with production by sending an email to pacific@math.berkeley.edu.

Each figure should be captioned and numbered, so that it can float. Small figures occupying
no more than three lines of vertical space can be kept in the text (“the curve looks like
this:”). It is acceptable to submit a manuscript will all figures at the end, if their placement
is specified in the text by means of comments such as “Place Figure 1 here”. The same
considerations apply to tables, which should be used sparingly.

Forced line breaks or page breaks should not be inserted in the document. There is no point
in your trying to optimize line and page breaks in the original manuscript. The manuscript
will be reformatted to use the journal’s preferred fonts and layout.

Page proofs will be made available to authors (or to the designated corresponding author)
at a Web site in PDF format. Failure to acknowledge the receipt of proofs or to return
corrections within the requested deadline may cause publication to be postponed.



PACIFIC JOURNAL OF MATHEMATICS

Volume 220 No. 1 May 2005

Orthogonal functions in H∞ 1
CHRISTOPHER J. BISHOP

Bases of quantized enveloping algebras 33
BANGMING DENG AND JIE DU

Flat modules and lifting of finitely generated projective modules 49
ALBERTO FACCHINI, DOLORS HERBERA AND ISKHAK SAKHAJEV

Maximal tori determining the algebraic groups 69
SHRIPAD M. GARGE

Knot mutation: 4-genus of knots and algebraic concordance 87
SE-GOO KIM AND CHARLES LIVINGSTON

Rational jet dependence of formal equivalences between real-analytic
hypersurfaces in C2 107

R. TRAVIS KOWALSKI

Weakly regular embeddings of Stein spaces with isolated singularities 141
JASNA PREZELJ

A de Rham theorem for symplectic quotients 153
REYER SJAMAAR

Kepler’s small stellated dodecahedron as a Riemann surface 167
MATTHIAS WEBER

Sharp isoperimetric inequalities and sphere theorems 183
SHIHSHU WALTER WEI AND MEIJUN ZHU

Correction to “Eggert’s conjecture on the dimensions of nilpotent algebras” 197
LAKHDAR HAMMOUDI

Correction to “Modular diophantine inequalities and numerical semigroups” 199
J. C. ROSALES, P. A. GARCÍA-SÁNCHEZ AND J. M. URBANO-BLANCO

0030-8730(200505)220:1;1-N

Pacific
JournalofM

athem
atics

2005
Vol.220,N

o.1

Pacific
Journal of
Mathematics

Volume 220 No. 1 May 2005


	Pacific Journal of Mathematics Vol 220 Issue 1, May 2005
	Copyright and Masthead
	Orthogonal functions in H
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31

	Bases of quantized enveloping algebras
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16

	Flat modules and lifting of finitely generated projective modules
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19

	Maximal tori determining the algebraic groups
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17

	Knot mutation: 4-genus of knots and algebraic concordance
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19

	Rational jet dependence of formal equivalences between real-analytic hypersurfaces in C2
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33

	Weakly regular embeddings of Stein spaces with isolated singularities
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12

	A de Rham theorem for symplectic quotients
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14

	Kepler's small stellated dodecahedronas a Riemann surface
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16

	Sharp isoperimetric inequalitiesand sphere theorems
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13

	Correction to:Eggert's conjecture on the dimensionsof nilpotent algebras
	Correction to:Modular Diophantine inequalitiesand numerical semigroups
	Guidelines for Authors
	Table of Contents

