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We introduce nets in rings, which turn out to describe right flat modules
and left flat modules over a fixed ring R at the same time. As an application
we prove that for a finitely generated projective right R/J(R)-module P ,
there exists a finitely generated flat right R-module M with M/M J(R) iso-
morphic to P if and only if there exists a projective left R-module P ′ with
P ′/J(R)P ′ isomorphic to the dual of P .

1. Introduction

Although there is a close relation between finitely generated projective right R-
modules and finitely generated projective left R-modules given by the duality
HomR(−, R), there does not seem to be such an evident relation between finitely
generated flat right R-modules and finitely generated flat left R-modules. In this
paper we define an algebraic object that allows us to describe right flat modules and
left flat modules at the same time. We call this algebraic object a net, because its
definition recalls the definition of nets encountered in topology. Our concept finds
its origin in [Vasconcelos 1969, proof of Theorem 2.1], and was implicitly used
in [Lazard 1974; Sakhaev 1987; 1993; 1996]. As an application of our theory,
we study how projective modules over the ring R/J (R) lift to projective or flat
modules over R. For instance, we find that for a finitely generated projective right
R/J (R)-module P , there exists a finitely generated flat right R-module M with
M/M J (R) isomorphic to P if and only if there exists a projective left R-module P ′

with P ′/J (R)P ′ isomorphic to the dual HomR/J (R)(P, R/J (R)) of P (Theorem
7.1).
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The paper is organized as follows. In the next two sections we give our basic
definitions and constructions. We define nets in rings and show how it is possible
to associate to each net both a flat cyclic right module and a flat cyclic left module.
In Section 4 we prove that this construction allows us to describe all flat right or
left modules.

In Section 5 we give a couple of examples. The first one is the flat module
introduced in [Bass 1960]. The second one is based on [Sakhaev 1987; 1993;
1996] and is the key tool in the last two sections to study finitely generated flat
modules that are projective modulo the Jacobson radical.

Our rings are associative and have an identity. Modules are unital. For every
module MR , we denote by L(MR) the set of all submodules of MR . The Jacobson
radical of a ring R is denoted by J (R).

2. Nets in rings

In this section we introduce the concepts that will be used freely throughout the
paper.

Let A be a set with a transitive relation < . (We denote the relation by < , not
≤ , to stress that it is not necessarily reflexive.)

Definition 2.1. A net in A is a pair (3, ϕ), where

(1) 3 is a nonempty partially ordered set, without a greatest element, without a
least element, and with 3 upward directed and downward directed (that is,
for each pair λ,µ in 3 there exist ν and ξ in 3 such that λ≤ ν, µ≤ ν, ξ ≤ λ

and ξ ≤ µ);

(2) ϕ :3→ A is a strictly increasing map, that is, for every λ,µ ∈3, λ≤ µ and
λ 6= µ implies ϕ(λ) < ϕ(µ).

For every λ,µ∈3, we shall write λ<µ whenever λ≤µ and λ 6=µ. Whenever
(3, ϕ) is a net in A, we will usually write aλ instead of ϕ(λ). The standard notation
for the net will be (aλ)λ∈3.

Let S be a ring. Let < be the relation on S defined by s < t if ts = s for s, t ∈ S.

Proposition 2.2. Let S be a ring with the relation just defined.

(i) The relation < is transitive.

(ii) If s, t ∈ S and t is idempotent, then s < t if and only if sS ⊆ t S.

(iii) For every s, t ∈ S, s < t and t < s if and only if s and t are both idempotent
and sS = t S. In particular, for every s ∈ S, s< s if and only if s is idempotent.

(iv) For every s, t ∈ S, s < t in S if and only if 1 − t < 1 − s in the opposite ring
Sop of S.
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Proof. Properties (i), (ii) and (iv) are trivial. For (iii), suppose that s < t and t < s.
Then ts = s and st = t , so that s2

= s(ts) = ts = s. By symmetry, t also is
idempotent. Now (iii) follows from (ii). �

Let (sλ)λ∈3 be a net in a ring S with the transitive relation < just defined. Then:

(1) From sµsλ = sλ it follows that sλS ⊆ sµS whenever λ ≤ µ, so that (sλS)λ∈3
is a net in the set L(SS) with the transitive relation ⊆.

(2) The canonical projections S/sλS → S/sµS give a direct system of right S-
modules over the upward directed set 3. We shall denote the direct limit
S/

⋃
λ∈3 sλS of this direct system by limS (sλ)λ∈3, and call it the upper limit

of the net (sλ)λ∈3.

(3) From Proposition 2.2(iv) it follows that (1−sλ)λ∈3op is a net in Sop defined
on the opposite partially ordered set 3op of 3. Thus in the ring S we have
that S(1−sµ) ⊆ S(1−sλ) for λ ≤ µ in 3, so that the canonical projections
S/S(1−sµ) → S/S(1−sλ) give a direct system of left S-modules over 3op

(3op is upward directed because 3 is downward directed). The direct limit
of this direct system of left S-modules is S/

⋃
λ∈3 S(1− sλ). We shall denote

it by limS (sλ)λ∈3, and call it the lower limit of the net (sλ)λ∈3. It coincides
with the upper limit of the net (1 − sλ)λ∈3op , which is a right Sop-module.

Proposition 2.3. Let (sλ)λ∈3 be a net in a ring S. Then:

(i) The upper limit limS (sλ)λ∈3 is a cyclic flat right S-module.

(ii) The exact sequence

0 →

⋃
λ∈3

sλS → S → limS (sλ)λ∈3 → 0

is pure, and
⋃
λ∈3 sλS is a flat right ideal of S.

(iii) The upper limit limS (sλ)λ∈3 is projective if and only if there exists λ0 ∈ 3

such that sλ0 S = sλS for any λ∈3, λ≥ λ0. In this case, s2
λ = sλ for any λ∈3,

λ > λ0.

(iv) The lower limit limS (sλ)λ∈3 is a cyclic flat left S-module.

(v) The exact sequence

0 →

⋃
λ∈3

S(1 − sλ)→ S → limS (sλ)λ∈3 → 0

is pure, and
⋃
λ∈3 S(1 − sλ) is a flat left ideal of S.

(vi) The lower limit limS (sλ)λ∈3 is projective if and only if there exists µ0 ∈ 3

such that S(1 − sµ0)= S(1 − sλ) for any λ ∈3, λ ≤ µ0. In this case, s2
λ = sλ

for any λ ∈3, λ < µ0.
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Proof. In order to show that limS (sλ)λ∈3 = S/
⋃
λ∈3 sλS is flat, it is enough to

prove that
(⋃

λ∈3 sλS
)

L =
(⋃

λ∈3 sλS
)
∩ L for any left ideal L [Anderson and

Fuller 1992, Lemma 19.18]. The inclusion
(⋃

λ∈3 sλS
)

L ⊆
(⋃

λ∈3 sλS
)
∩L always

holds. If x ∈
(⋃

λ∈3 sλS
)
∩ L , then x = sµy for suitable µ ∈ 3 and y ∈ S. As 3

does not have a greatest element, there exists ν > µ, so that x = sµy = sνsµy =

sνx ∈
(⋃

λ∈3 sλS
)

L . This shows (i).
Statement (ii) follows from (i), because every short exact sequence that ends

with a flat module is pure.
To prove (iii), assume that λ0 ∈ 3 is such that sλ0 S = sλS for λ ∈ 3, λ ≥ λ0.

Then, for every λ > λ0, there exists a ∈ S such that sλ = sλ0a = sλsλ0a = s2
λ.

Thus
⋃
λ∈3 sλS is generated by an idempotent, hence it is a direct summand of S.

Conversely, if limS (sλ)λ∈3 is projective, then
⋃
λ∈3 sλS is principal, so that there

is a λ0 with sλ0 S = sλS for every λ≥ λ0.
The proofs of statements (iv) to (vi) are similar. �

Notice that every countable partially ordered set 3 satisfying condition (1) of
Definition 2.1 contains an upward and downward cofinal subset order-isomorphic
to the ordered set Z. Thus we can always suppose 3 = Z for every countably
infinite net.

Examples 2.4. Let S be a ring, and let 3 be a partially ordered set satisfying
condition (1) of Definition 2.1.

(1) Let e ∈ S be an idempotent. Then the constant map 3 → S defined by
λ 7→ e for every λ ∈ 3 is a net whose upper limit is the projective right module
S/eS ∼= (1−e)S and whose lower limit is the projective left module S/S(1−e)∼= Se.

(2) More generally, let ϕ : 3→ S be a net such that, for every λ ∈ 3, ϕ(λ) =

eλ is an idempotent of S. Equivalently, {eλ}λ∈3 is a family of, not necessarily
distinct, idempotents of S such that eλS ⊆ eµS for any pair λ < µ in 3. The
upper limit of this net is S/

⋃
λ∈3 eλS and the lower limit is S/

⋃
λ∈3 S(1 − eλ).

Moreover, the upper limit is projective if and only if the family {eλS}λ∈3 has a
greatest element, eλ0 S say, and in this case limS (eλ)λ∈3 ∼= (1 − eλ0)S. Dually, the
lower limit is projective if and only if {eλS}λ∈3 has a least element, eλ1 S say, and
then limS (eλ)λ∈3 ∼= Seλ1 .

3. Tensoring nets with bimodules

Now we study how elements of nets act on bimodules producing interesting pure
exact sequences.

Proposition 3.1. Let R and S be rings, let S MR be an S-R-bimodule, and let R NS

be an R-S-bimodule. Assume (sλ)λ∈3 is a net in the ring S. Then:
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(i) (sλM)λ∈3 is a net in L(MR)with the transitive relation ⊆ , and (M/sλM)λ∈3
is a directed system of right R-modules.

(ii) There is an exact sequence

0 →

( ⋃
λ∈3

sλS
)

⊗S M → S ⊗S M →
(

limS (sλ)λ∈3
)
⊗S M → 0,

which is a pure sequence of right R-modules.

(iii) lim
−→

M/sλM ∼= M/
∑

λ∈3 sλM ∼= limS (sλ)λ∈3 ⊗S M .

(iv) The module MR is flat if and only if both M/
∑

λ∈3 sλM and
∑

λ∈3 sλM are
flat.

(v) (N (1 − sλ))λ∈3 is a net in L(R N ) with the transitive relation ⊆ , and

(N/N (1 − sλ))λ∈3

is a directed system of left R-modules.

(vi) There is an exact sequence

0 → N ⊗S

( ⋃
λ∈3

S(1 − sλ)
)

→ N ⊗S S → N ⊗S
(
limS (sλ)λ∈3

)
→ 0,

which is a pure sequence of left R-modules.

(vii) lim
−→

N/N (1 − sλ)∼= N/
∑

λ∈3 N (1 − sλ)∼= N ⊗S limS (sλ)λ∈3.

(viii) The left module R N is flat if and only if both N/
∑

λ∈3 N (1 − sλ) and∑
λ∈3 N (1 − sλ) are flat.

Proof. (i) follows easily from the fact that (sλ)λ∈3 is a net in S. (ii) follows from
Proposition 2.3(ii) and the associativity of tensor product.

Let {eλ}λ∈3 be the canonical basis of the free right S-module S(3). Setting
f (eλ)= sλ we obtain from Proposition 2.3(ii) an exact sequence

S(3)
f

→S → limS (sλ)λ∈3 → 0.

Tensoring this exact sequence with M , we get that limS (sλ)λ∈3⊗S M is isomorphic
to the cokernel of f ⊗S 1M : S(3) ⊗S M → S ⊗S M . Thus (iii) follows from (ii).

To prove (iv) notice that the sequence

0 →

⋃
λ∈3

sλS ⊗S M ∼=

∑
λ∈3

sλM → S ⊗S M ∼= M → limS (sλ)λ∈3 ⊗S M → 0

is pure.
The proof of statements (v) to (viii) is similar. �

In the next examples we apply Proposition 3.1 to Examples 2.4(2).
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Examples 3.2. Let MR be an arbitrary right module over a ring R. Let S be the
endomorphism ring End(MR), so that S MR is a bimodule.
(1) As in Examples 2.4(2), let (eλ)λ∈3 be a net of idempotents of S. Then, for
each λ ∈ 3, eλM is a direct summand of M and eλSS ∼= HomR(M, eλM)S . In
view of Proposition 2.3, K =

⋃
λ∈3 HomR(M, eλM)S is a pure flat right ideal of

S and S/K is a cyclic flat S-module. By Proposition 3.1, we obtain a pure exact
sequence of right R-modules

0 →

∑
λ∈3

eλM → M → M
/ ∑

λ∈3

eλM → 0.

(2) Nets as in (1) can be also constructed directly from a suitable family of direct
summands of M . Let 3′ be a nonempty, upward directed and downward directed
subset of L(MR) whose elements are direct summands of MR . Let 3 = 3′

× Z

be partially ordered with the lexicographic order, so that 3 is upward directed and
downward directed and does not have a greatest element and a least element. For
every λ ∈3′ fix an idempotent eλ ∈ S with image λ. Let ϕ :3→ S be defined by
ϕ : (λ, n) 7→ eλ for every (λ, n) ∈3. Then (eλ)λ∈3 is a net of idempotents of S.

(3) Assume M =
⊕

α∈A Mα. Let 3 be the set of all finite subsets of A. For each
subset λ of A, let Mλ =

⊕
α∈λ Mα, and let eλ be the idempotent endomorphism of

M with image Mλ and kernel MA\λ. Then

K =

∑
λ∈3

eλS =

∑
λ∈3

HomR(M, eλM)=

⊕
α∈A

e{α}S

is a pure and projective right ideal of S. Note that, if Mα is nonzero for every α∈ A,
then K = S if and only if A is finite, but in any case S/K ⊗S M ∼= M/

⊕
α∈A Mα=0.

The set 3 has a least element ∅, and, when A is finite, a greatest element A.
However, taking 3′

= 3× Z with the lexicographic order, we obtain a partially
ordered set with the properties required for index sets of nets.

4. All flat right modules and all flat left modules arise from suitable nets

Let I be a nonempty set, and let R be a ring. Let FR ={ f : I ×{1}→ R | f ((i, 1))=
0 for almost all i ∈ I }. Then FR is a free right R-module isomorphic to R(I )R , and
we will rather think of it as the right R-module of all columns indexed by I , with
entries in R, and at most finitely many nonzero entries. Let {ei | i ∈ I } be the
canonical basis of FR .

Let F0
= { f : {1} × I → R | f ((1, i)) = 0 for almost all i ∈ I }. Then F0 is

a free left R-module isomorphic to R R(I ), and we will think of it as the set of all
rows indexed by I , with entries in R, and at most finitely many nonzero entries.
Also denote by {ei | i ∈ I } the canonical basis of R F0.
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Let RCF(I, R) denote the ring of all square matrices indexed by I × I with only
a finite number of nonzero entries in each row and each column. Then RCF(I,−)
is a functor of the category of associative rings with identity into itself. Let B(I, R)
be the set of all square matrices indexed by I × I , with entries from R, with at most
finitely many nonzero entries. The set B(I, R) is a two-sided ideal in RCF(I, R).
If I is finite of cardinality n, RCF(I, R) = B(I, R) is the ring of all n × n square
matrices over R.

Let S(I,−) be a subfunctor of RCF(I,−) with the following property: for ev-
ery ring R, the subring S(I, R) of RCF(I, R) contains B(I, R) (and contains the
identity of RCF(I, R)). For instance, S(I, R) could be the ring RCF(I, R) itself;
or the subring B(I, R)+ 1RCF(I,R) · R, where 1RCF(I,R) · R is the set of all scalar
matrices; or S(I, R)= B(I, R)+ 1RCF(I,R) · Z.

From now on, in this section, we specialize nets to the rings S = S(I, R). Notice
that F is an S-R-bimodule and F0 is an R-S-bimodule.

Let (Aλ)λ∈3 be a net in S. We can apply Proposition 3.1 and obtain a flat right
R-module limS (Aλ)λ∈3 ⊗S F ∼= FR/

⋃
λ∈3 AλFR with presentation

0 →

⋃
λ∈3

AλS ⊗S F ∼=

∑
λ∈3

AλF → S ⊗S F ∼= F → limS (Aλ)λ∈3 ⊗S F → 0

and a flat left R-module F0
⊗S limS (Aλ)λ∈3 ∼= F0/

⋃
λ∈3 F0(1 − Aλ) with pre-

sentation

0 → F0
⊗S

⋃
λ∈3

S(1 − Aλ)∼=

∑
λ∈3

F0(1 − Aλ)→ F0
⊗S S ∼= F0

→

→ F0
⊗S limS (Aλ)λ∈3 → 0.

In the following theorem we show that all flat right R-modules and all flat left
R-modules arise in this way from a net in S = S(I, R) for a suitable set I .

Theorem 4.1. Let FR → MR be an epimorphism of the free right R-module FR ∼=

R(I )R onto a flat right R-module MR . Then there exists a net (Aλ)λ∈3 in S = S(I, R)
with Aλ ∈ B(I, R) for every λ ∈ 3 and limS (Aλ)λ∈3 ⊗S F ∼= MR . Dually, let
R F0

→ R N be an epimorphism of the free left R-module R F0 ∼= R R(I ) onto a flat
left R-module R N . Then there exists a net (Bλ)λ∈3 in S = S(I, R) with 1 − Bλ ∈

B(I, R) for every λ ∈3 and F0
⊗S limS (Bλ)λ∈3 ∼= R N .

Proof. For the proof, we need the following result, which is a corollary of a theorem
due to O. Villamayor [Lam 1999, Theorem 4.23].

Proposition 4.2. Let ψ : FR → MR be an epimorphism of the free right R-module
FR ∼= R(I )R onto a flat right R-module MR . Then for any finitely generated submod-
ule C of kerψ there exists A ∈ B(I, R) such that ψ(AFR) = 0 and Ax = x for
every x ∈ C .
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Proof. The proof of [Lam 1999, Theorem 4.23 (1)⇒(2)] shows that for any c ∈

kerψ there exists ϑ ∈ Hom(F, kerψ) with ϑ(c)= c such that ϑ(ei )= 0 for almost
all i ∈ I . The proof by induction of [Lam 1999, Theorem 4.23, (2) ⇒ (3)] shows
that for any c1, . . . , cn ∈ kerψ there exists ϑ ∈ Hom(F, kerψ) with ϑ(c j )= c j for
all j = 1, . . . , n and such that ϑ(ei )= 0 for almost all i ∈ I . If c1, . . . , cn generate
the submodule C of kerψ , then the matrix A associated to ϑ with respect to the
basis {ei | i ∈ I } has the required properties. �

We are now ready for the proof of Theorem 4.1. Let ψ : FR → MR be an
epimorphism of FR onto a flat right R-module MR , and let K be the kernel of ψ .

Suppose that K is not finitely generated. Let G be a set of generators of K . Let
Pfin(G) denote the set of all finite subsets of G, partially ordered by set inclusion.
Let Z− be the set of negative integers with its usual order, and let 3 be the disjoint
union of Z− and Pfin(G). Define z< H for every z ∈ Z− and every H ∈ Pfin(G), so
that 3 turns out to be upward directed and downward directed, without a greatest
element and without a least element. In order to define a net { Aλ | λ ∈ 3} in S,
first of all set Az = 0 for z ∈ Z−. Then define, for each H ∈ Pfin(G), a matrix
AH ∈ B(I, R) by induction on the cardinality |H | of H . For H = ∅, set A∅ = 0.
Let H ∈ Pfin(G) with |H | > 0 and suppose that AH ′ has already been defined
for every H ′

∈ Pfin(G) with |H ′
| < |H |. Since H has only finitely many proper

subsets, the submodule C of K generated by H and by all AH ′ FR when H ′ ranges
in the set of all proper subsets of H is a finitely generated submodule of K . By
Proposition 4.2, there exists AH ∈ B(I, R) such that AH x = x for every x ∈ C
and AH FR ⊆ K . This completes the definition of the matrix AH . Notice that
AH ′ FR ⊆ C , so that AH AH ′ = AH ′ whenever H ′

⊂ H . Thus (Aλ)λ∈3 is a net with
the required properties.

If the module K is finitely generated, there is a finite subset J of I with K ⊆⊕
i∈J ei R. Now MR is flat and

MR ∼= FR/K ∼=

( ⊕
i∈J

ei R/K
)

⊕

( ⊕
i∈I\J

ei R
)
.

Thus
(⊕

i∈J ei R
)
/K is flat and finitely presented, hence projective. It follows that

K is a direct summand of
⊕

i∈J ei R. Thus K is a direct summand of FR and
there is an idempotent endomorphism ε of FR with image K . Let A be the matrix
associated to ε with respect to the basis {ei | i ∈ I } of FR . Then the partially
ordered set Z of the integers with the matrices Az = A for every z ∈ Z form a net in
S with upper limit limS(Az)z∈Z ⊗S F ∼= F/

∑
z∈Z Az F ∼= MR; cf. Examples 2.4(1).

This concludes the case of K finitely generated.
Dually, let R F0

→ R N be an epimorphism of R F0 onto a flat left R-module
R N . Passing to the opposite ring Rop of R, one has an epimorphism F → N of
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the free right Rop-module F onto the flat right Rop-module N . By applying to this
epimorphism the first part of the statement, which we have just proved, we see that
there exists a net (Cλ)λ∈3 in S(I, Rop)with lim (Cλ)λ∈3⊗F ∼= F/

∑
λ∈3 CλF ∼= N

as right Rop-modules. In particular, the Cλ’s belong to S(I, Rop), and CµCλ = Cλ
whenever λ,µ ∈3 and λ<µ. Viewing these objects as left R-modules again and
remarking that transposition is an isomorphism tr : S(I, Rop) → (S(I, R))op, we
have that the C tr

λ ’s belong to S(I, R), that C tr
λC tr

µ = C tr
λ in S(I, R) whenever λ<µ,

and R N ∼= R F0/
∑

λ∈3(R F0)C tr
λ . From C tr

λC tr
µ = C tr

λ for λ < µ, we obtain that
(1−C tr

λ )(1−C tr
µ)= 1−C tr

µ in S = S(I, R) for λ<µ. Denoting the set 3 with the
inverse order by 3op, we see that there is a net (1 − C tr

λ )λ∈3op in S and

F0
⊗S limS(1 − C tr

λ )λ∈3op ∼= R F0
/ ∑

λ∈3

R F0C tr
λ

∼= R N . �

Remark 4.3. Let S and S′ be rings. A ring homomorphism f : S → S′ induces for
every net (sλ)λ∈3 in S a net ( f (sλ))λ∈3 in S′.

For instance, a ring homomorphism g : R → R′ induces a ring homomorphism
g̃ = S(I, g) : S = S(I, R)→ S′

= S(I, R′). If (Aλ)λ∈3 is a net in S, then

(1)
(

limS (Aλ)λ∈3 ⊗S FR
)
⊗R R′ ∼= limS′ (g̃(Aλ))λ∈3 ⊗S′ F ′

R′

and

(2) R′
⊗R

(
R F0

⊗S limS (Aλ)λ∈3
)
∼= R′(F ′)0 ⊗S′ limS′ (g̃(Aλ))λ∈3,

where we have denoted by F ′

R′ the free right R′-module of rank |I | and by R′(F ′)0

the free left R′-module of same rank.
We will be particularly interested in the case in which g : R → R/J (R) is the

canonical projection.

5. Two examples of flat modules

As a first example, we shall consider the flat module FR/G introduced in the
seminal paper [Bass 1960]. Fix a sequence an (n ≥ 1) of elements of a given
ring R, let FR be the free right R-module with basis {en | n ≥ 1}, and let G be
the submodule of FR generated by the elements yn = en − en+1an , for n ≥ 1. It
is known that G is a free R-module with basis { yn | n ≥ 1} and FR/G is a flat
module [Bass 1960; Anderson and Fuller 1992, Lemma 28.1]. The module FR/G
is projective, that is, G is a direct summand of FR , if and only if all the descending
chains Ran ⊇ Ran+1an ⊇ Ran+2an+1an ⊇ · · · , for n ≥ 1, are stationary [Azumaya
1987, Theorem 26].
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Let S be the ring S(Z+, R), where Z+ denotes the set of all positive integers.
Let (An)n∈Z be the net in S defined by An = 0 for n ≤ 0, and

An =



1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0

0 0 · · · 1

−an . . . a2a1 −an . . . a2 · · · −an

0
0


for n ≥ 1. An easy computation shows that A2

n = An for any n ∈ Z. In particular,
An FR is a direct summand of FR .

Proposition 5.1. For every n ≥ 1 the right R-module An FR is the free submodule
of G generated by y1, . . . , yn .

Proof. We must show that the right R-module An FR , generated by

e1 − en+1an . . . a2a1, . . . , en − en+1an

coincides with the right module generated by y1 = e1 −e2a1, . . . , yn = en −en+1an .

ei − en+1an . . . ai+1ai = (ei − ei+1ai )+ (ei+1 − ei+2ai+1)ai

+ (ei+2 − ei+3ai+2)ai+1ai + · · · + (en − en+1an)an−1an−2 . . . ai .

Conversely, for i < n, we see that yi = ei − ei+1ai = (ei − en+1an . . . ai+1ai )−

(ei+1 − en+1an . . . ai+1)ai . �

Thus
∑

n∈Z An FR = G and limS (Aλ)λ∈3 ⊗S F ∼= FR/G.
Let E = EndR(FR). Let K1 =

⋃
∞

n=1 HomR(F,
∑n

j=1 e j R), and let K2 =⋃
∞

n=1 HomR(F, An F). In view of Examples 3.2, K1 and K2 are pure right ideals
of E . Note that they are also projective [Lazard 1969, Théorème 3.2].

Proposition 5.2. The cyclic right E-modules E/K1 and E/K2 are flat and non-
isomorphic. If the elements of the sequence an (n ≥ 1) belong to J (R), then
E/K1 ⊗E E/J (E)∼= E/K2 ⊗E E/J (E).

Proof. Applying the functor − ⊗E F to the pure exact sequence

0 → K1 → E → E/K1 → 0,

it follows that E/K1⊗E F = 0 (Examples 3.2). While applying the functor −⊗E F
to the pure exact sequence

0 → K2 → E → E/K2 → 0,
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it follows that K2 ⊗E F ∼= G, hence E/K2 ⊗E F ∼= F/G.
If an (n ≥ 1) is a sequence of elements in J (R) and g : R → R/J (R) denotes

the canonical projection, then g̃(K1)= g̃(K2), so

E/K1 ⊗E E/J (E)∼= E/K2 ⊗E E/J (E)

in view of Remark 4.3. �

The isomorphism f : F → G defined by f (en)= yn for every n ≥ 1 induces an
isomorphism between the projective ideals K1 and K2.

In the next proposition we give an example that was our initial motivation to
define nets. We construct a countable net whose upper limit is nontrivial if and
only and only if its lower limit is nontrivial; that is, the net produces a nontrivial
right flat module if and only if it produces a nontrivial left flat module. This idea
will be further developed and applied in the proof of Theorem 7.1.

Proposition 5.3. Let S be a ring. Let s and u be elements of S such that u is
invertible and s2

=us. For every m ∈Z, set sm =u−m(u−1s)um . Let I =
∑

m∈Z sm S,
and let L =

∑
m∈Z S(1 − sm). Then:

(i) (sm)m∈Z is a net.

(ii) The right ideal I and the left ideal L are projective. The right S-module S/I
and the left S-module S/L are flat.

(iii) There exists m ∈ Z such that s2
m = sm if and only if su−1s = s, if and only if

s2
m = sm for all m ∈ Z.

(iv) The right ideal I is finitely generated if and only if the left ideal L is finitely
generated, if and only if su−2s = u−1s.

Proof. (i) Direct computation shows that sm = snsm for m < n.
(ii) Note that S/I = limS (sm)m∈Z and S/L = limS (sm)m∈Z. By Proposition 2.3,

S/I is a flat right module and S/L is a flat left module. Since, by [Lazard 1969,
Théorème 3.2], countably presented flat modules have projective dimension 1, I
and L are projective.

To prove (iii), observe that s2
m = sm if and only if

u−m(u−1s)um
· u−m(u−1s)um

= u−m(u−1s)um,

if and only if su−1s = s, as claimed. As this condition does not depend on m, if
one sm is idempotent all must be idempotent.

(iv) First observe that the identity smsm+1 = sm+1 holds for some m if and only
if su−2s = u−1s. As this condition does not depend on m, this happens if and only
if smsm+1 = sm+1 for all m.
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Since always sm S ⊆ sm+1S for every m, su−2s = u−1s implies that sm S = sm+1S
for all m. Hence I is principal.

Conversely, if IS is finitely generated, then S/I is flat and finitely presented,
hence projective, so by Proposition 2.3(iii) there exists m such that s2

m = sm and
I = sm S. Then sm S = sm+1S implies smsm+1 = sm+1, hence su−2s = u−1s.

Similar arguments show the statement for L . �

The symmetry in the conclusions of Proposition 5.3 can be explained through the
following lemma, which is an observation based on [Zöschinger 1981, Satz 1.2].
See also [Puninski 2004, Section 3].

Lemma 5.4. Let S be a ring, and let s ∈ S. There exists a unit u such that s2
= us

if and only if there exists t ∈ S such that ts = 0 and s + t is a unit. In this situation,
there exists a unit v ∈ S such that t2

= tv.

Proof. Assume there exists a unit u such that s2
= us. Then t = u − s satisfies the

required properties. Conversely, if there exists t ∈ S such that ts = 0 and s + t is a
unit, then taking u = s + t we have that us = s2. Note that then also tu = t2. �

6. Lifting projective modules modulo the Jacobson radical

In this section and the next we apply the theory developed earlier to the lifting of
finitely generated projective modules modulo the Jacobson radical.

For every right (left) R-module MR (R N ), let M∗
= HomR(MR, RR) (N ∗

=

HomR(R N , R R)) denote the dual of the module MR (R N ), which is a left (right)
R-module. This defines a duality, that is, a contravariant equivalence, between
the full subcategory of finitely generated projective right R-modules and the full
subcategory of finitely generated projective left R-modules.

Consider a direct sum decomposition P ⊕ Q = (R/J (R))n of the free right
R/J (R)-module (R/J (R))n , so that P and Q are two projective right R/J (R)-
modules. It is easy to see that there exists a finitely generated projective right R-
module MR such that M/M J (R)∼= P if and only if there exists a finitely generated
projective right R-module Q′

R such that Q′/Q′ J (R) ∼= Q, if and only if there
exists a finitely generated projective left R-module R N such that N/J (R)N ∼=

HomR(Q, R/J (R)), if and only if there exists a finitely generated projective left
R-module R P ′ such that P ′/J (R)P ′ ∼= HomR(P, R/J (R)). (To prove this, let MR

be a finitely generated projective right R-module such that P ∼= M/M J (R). Then
M/M J (R)⊕Q ∼= (R/J (R))n . By [Anderson and Fuller 1992, Lemma 17.17] there
exists a finitely generated projective right R-module Q′ such that Q′/Q′ J (R)∼= Q
and M ⊕ Q′ ∼= Rn . Take N = HomR(Q′, R).)

In this section we consider the problem of lifting these projective R/J (R)-
modules to projective R-modules, not necessarily finitely generated. We need the
following result of Bergman [Jøndrup 1976, Lemma 2.2].
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Proposition 6.1. Let Q and Q′ be projective right R-modules, and let ϕ : Q′
→ Q

be a homomorphism. If the mapping ϕ : Q′/Q′ J (R) → Q/Q J (R) induced by ϕ
is a pure monomorphism, then ϕ is a pure monomorphism.

Proof. First choose an R-module P ′ such that Q′
⊕ P ′ is free, then an R-module

P such that (Q ⊕ P ′)⊕ P is free. Let ε : P ′
→ P ′

⊕ P denote the embedding.
Substituting ϕ : Q′

→ Q with ϕ ⊕ ε : Q′
⊕ P ′

→ Q ⊕ P ′
⊕ P , we may suppose

that Q and Q′ are free. In order to show that ϕ is a pure monomorphism, fix a
finitely generated free direct summand N ′ of Q′. Let N be a finitely generated
free direct summand of Q containing ϕ(N ′). Let f : N → Q and f ′

: N ′
→

Q′ be the inclusions, and g : Q → N , g′
: Q′

→ N ′ be homomorphisms such
that g f = 1N and g′ f ′

= 1N ′ . If ϕ|N ′ : N ′
→ N denotes the restriction of ϕ :

Q′
→ Q, then f ϕ|N ′ = ϕ f ′. If denotes reduction modulo J (R), then f ′ is

a pure monomorphism, so that ϕ f ′ is a pure monomorphism. From f ϕ|N ′ =

ϕ f ′, it follows that ϕ|N ′ is a pure monomorphism. Thus the cokernel of ϕ|N ′ is
a flat finitely presented module, that is, a projective finitely generated module. In
particular, ϕ|N ′ is a split monomorphism. Let h : N → N ′ be a homomorphism
such that 1N ′/N ′ J (R)= hϕ|N ′ . Then hϕ|N ′ is an automorphism of N ′, so that ϕ|N ′ is
a split monomorphism. In particular, ϕ is injective, and ϕ(N ′) is a direct summand
of Q for every finitely generated free direct summand N ′ of Q. As ϕ(Q′) is the
directed union of all these direct summands ϕ(N ′), ϕ(Q′) is a pure submodule
of Q. �

Corollary 6.2. Let R be a ring with the property that for every projective right
R/J (R)-module P there exists a projective right R-module Q with Q/Q J (R)∼= P .
For every flat right R/J (R)-module M of projective dimension pdR/J (R)(M) ≤ 1
there exists a flat right R-module N of projective dimension pdR(N ) ≤ 1 with
N/N J (R) ∼= M . Moreover, if M is finitely generated, then N can also be chosen
finitely generated.

Proof. Apply Proposition 6.1 to a presentation

0 - Q′/Q′ J (R)
ϕ- Q/Q J (R) - M - 0

of the R/J (R)-module M with Q and Q′ projective R-modules. �

The hypothesis of Corollary 6.2 applies to all rings R for which every projective
right R/J (R)-module is free, and to all exchange rings R.

Proposition 6.3. Let R be a ring and X a set. Let P⊕Q = (R/J (R))(X) be a direct
sum decomposition of the free right R/J (R)-module (R/J (R))(X) as a direct sum
of two projective right R/J (R)-modules P and Q, and let π : (R/J (R))(X) → P
be the projection with kernel Q. The following statements are equivalent:
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(i) There exist a flat right R-module MR of projective dimension at most 1, an
epimorphism ψ : R(X) → MR and an isomorphism α : MR/MR J (R) → P
such that α ◦ (ψ ⊗ R/J (R))= π .

(ii) There exists a projective right R-module Q′

R such that Q′/Q′ J (R)∼= Q.

Proof. (i) ⇒ (ii) Let MR , ψ and α have the properties stated in (i). We will show
that the projective module Q′

= kerψ has the property required in (ii). From the
exact sequence

0 - Q′ - R(X)
ψ- MR - 0,

we get the exact sequence

0 - Q′/Q′ J (R) - (R/J (R))(X)
ψ⊗R/J (R)- MR/MR J (R) - 0.

Thus Q = kerπ = ker(α ◦ (ψ ⊗ R/J (R)))= ker(ψ ⊗ R/J (R))∼= Q′/Q′ J (R).
(ii) ⇒ (i) Let Q′

R be a projective R-module such that Q′/Q′ J (R) ∼= Q. Let
ρ : Q′

→ Q be an epimorphism with kernel Q′ J (R). Denote by

ε : Q → (R/J (R))(X)

the embedding, which is a split monomorphism. As ερ : Q′

R → (R/J (R))(X)

factors through the canonical projection of R(X) onto (R/J (R))(X), there is a
commutative diagram

Q′

R
ϕ - R(X)

Q

ρ

?
ε - (R/J (R))(X)

?

By Proposition 6.1 the mapping ϕ is a pure monomorphism, so that its cokernel
MR is a flat module of projective dimension ≤ 1. Let ψ : R(X) → MR be the
canonical projection. Applying − ⊗R R/J (R) to the pure exact sequence

0 - Q′

R
ϕ- R(X)

ψ- MR → 0,

we obtain an exact sequence that is the upper row of the commutative diagram

0 - Q′

R/Q′

R J (R) - (R/J (R))(X)
ψ⊗R/J (R)- MR/MR J (R) - 0

0 - Q
?

- (R/J (R))(X)
?

π - P - 0.

Here the two vertical arrows are isomorphisms (the vertical arrow on the right is
the identity). Thus there is an isomorphism α : MR/MR J (R)→ P that completes
the commutative diagram; that is, α ◦ (ψ ⊗ R/J (R))= π . �
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7. Lifting finitely generated projective modules

Theorem 7.1. Let P⊕Q = (R/J (R))n be a direct sum decomposition of the finitely
generated free right R/J (R)-module (R/J (R))n as a direct sum of two projective
right R/J (R)-modules P and Q. Then the following statements are equivalent:

(i) There exists a finitely generated flat right R-module MR such that M/M J (R)
is isomorphic to P .

(ii) There exists a finitely generated, countably presented, flat right R-module
MR such that M/M J (R)∼= P .

(iii) There exists a projective right R-module Q′

R such that Q′/Q′ J (R)∼= Q.

(iv) There exists a finitely generated flat left R-module R N such that N/J (R)N ∼=

HomR(Q, R/J (R)).

(v) There exists a finitely generated, countably presented, flat left R-module R N
such that N/J (R)N ∼= HomR(Q, R/J (R)).

(vi) There exists a projective left R-module R P ′ such that P ′/J (R)P ′ is isomor-
phic to HomR(P, R/J (R)).

Proof. Suppose that (i) holds. Let MR be a finitely generated flat right R-module
such that M/M J (R)∼= P , where P ⊕ Q = (R/J (R))n . Let α : M/M J (R)→ P be
an isomorphism, and let π : (R/J (R))n → P be the projection with kernel Q. The
onto mapping α−1π : (R/J (R))n → M/M J (R) can be lifted to a homomorphism
of right R-modules ψ : Rn

R → MR , which is necessarily onto by Nakayama’s
Lemma. Let K = kerψ and consider the pure exact sequence of right R-modules

0 - K ε- Rn
R

ψ- MR - 0.

Tensoring by R/J (R), this induces the exact sequence

(3) 0 - K/K J (R) ε- (R/J (R))n α−1π- M/M J (R) - 0,

which splits because M/M J (R) ∼= P is projective. Moreover, Q = kerπ =

ker(α−1π)∼= K/K J (R). As (3) splits, there exists a left inverse

ϕ : (R/J (R))n → K/K J (R)

of ε with kernel isomorphic to M/M J (R) ∼= P . As Rn is projective, ϕ can be
lifted to a map ϕ : Rn

→ K making the diagram

K ε - Rn
R

ϕ - K

K/K J (R)
?

ε- (R/J (R))n
?

ϕ- K/K J (R),
?
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commute. In this diagram the vertical arrows are the natural projections. By
Proposition 4.2, there exists ω : Rn

→ K such that εω is the identity over εϕ(Rn).
Equivalently, ωεϕ=ϕ. Denote by ω : (R/J (R))n → K/K J (R) the induced homo-
morphism. Then ωεϕ = ϕ. As ϕε is the identity mapping, ω−ϕεω = ω−ω = 0,
so that (ω− ϕεω)(Rn)⊆ K J (R), from which ε(ω− ϕεω)(Rn)⊆ (J (R))n . Thus
ε(ω − ϕεω) ∈ J (End(Rn)) [Anderson and Fuller 1992, Corollary 17.12]. Set
β = 1 − ε(ω − ϕεω), and note that β is an invertible element of End(Rn). As
ωεϕ = ϕ, it is easy to see that βεϕ = (εϕ)2. Observe that β induces the identity
endomorphism on (R/J (R))n and also that εϕ induces the idempotent endomor-
phism εϕ on (R/J (R))n , whose image is K/K J (R) ∼= Q and whose kernel is
isomorphic to P . For any m ∈ Z, let Am be the matrix associated to the en-
domorphism β−m−1εϕβm

: Rn
R → Rn

R . By Proposition 5.3(i), (Am)m∈Z is a net
in the ring S = S(n, R) of n × n matrices over R. Hence the left R-module
R N = Rn/

⋃
m∈Z Rn(1− Am) is flat. By Remark 4.3, if we apply isomorphism (2)

with R′
= R/J (R) and g the canonical projection, and using that (g̃(Am))m∈Z is the

net in S′
= S(n, R/J (R)) constantly equal to the matrix A of the endomorphism

εϕ of (R/J (R))n , we see that

(R/J (R))n ⊗S′ limS′ (g̃(Am))m∈Z
∼= (R/J (R))n ⊗S′ limS′ (A)m∈Z.

By Examples 2.4(1), limS′ (A)m∈Z
∼= S′ A. Thus

N/J (R)N ∼= R/J (R)⊗R N ∼= (R/J (R))n ⊗S′ limS′ (g̃(Am))m∈Z
∼=

∼= (R/J (R))n ⊗S′ limS′ (A)m∈Z
∼= (R/J (R))n ⊗S′ S′ A ∼= (R/J (R))n(A).

Since Q ∼= A(R/J (R))n , we can conclude N/J (R)N ∼= HomR(Q, R/J (R)). As
N is a finitely generated, countably presented, flat module, this shows that (iv) and
(v) hold.

By symmetry, that is, applying (i) implies (iv) and (v) to the opposite ring Rop,
we see that (iv) implies (i) and (ii). Hence (i), (ii), (iv) and (v) are equivalent
statements.

By Proposition 6.3, (iii) implies (i). Assume that (ii) holds, so that there exist a
finitely generated, countably presented, flat right R-module M and an isomorphism
α : M/M J (R)→ P . The module M has projective dimension ≤ 1 [Lazard 1969,
Théorème 3.2]. Let π : (R/J (R))n → P be the projection with kernel Q. The onto
mapping α−1π : (R/J (R))n → M/M J (R) can be lifted to a homomorphism of
right R-modules ψ : Rn

R → MR , which is necessarily onto by Nakayama’s Lemma.
As the conditions of Proposition 6.3(i) are satisfied, we deduce the existence of a
right projective module Q′ such that Q′/Q′ J (R)∼= Q. This proves that (ii) implies
(iii), so that (ii) and (iii) are equivalent statements. By symmetry, (v) and (vi) are
also equivalent. �
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Recall that a projective module P is a direct sum of countably generated sub-
modules, and that P =0 if and only if P/P J (R)=0. Hence, if a projective module
is finitely generated modulo the Jacobson radical, it must be countably generated.
Thus the modules P ′ and Q′ in the statement of Theorem 7.1 are necessarily count-
ably generated.

It would be interesting to know whether the module M in Theorem 7.1(ii) is
uniquely determined up to isomorphism. In Proposition 5.2 we saw an example of
countably presented nonisomorphic cyclic flat modules that are isomorphic modulo
the Jacobson radical, but the cyclic modules in that example are not projective
modulo the Jacobson radical.

We conclude with two results related to this question, the first of which appears
as [Lam 1999, p. 161, Exercise 20]. We give a proof for the sake of completeness.

Lemma 7.2. Let M be a finitely generated flat right module over a ring R, and let
P be a projective right R-module. If γ : P → M is a projective cover, then γ is an
isomorphism.

Proof. The module P is finitely generated because M is finitely generated and
ker γ is small in P . Hence there exist n and a projective module Q such that
P ⊕ Q ∼= Rn . As γ ⊕ 1Q : P ⊕ Q → M ⊕ Q is a projective cover, and γ is an
isomorphism if and only if so is γ ⊕1Q , we may assume without loss of generality
that P is Rn and that γ : Rn

→ M is a projective cover.
Let x ∈ ker γ . By Proposition 4.2, there exists A ∈ Mn(R) such that Ax = x and

ARn
⊆ ker γ ⊆ Rn J (R). This implies that (1 − A)x = 0 and that A ∈ Mn(J (R)),

thus x = 0. This shows that ker γ = 0, hence γ is an isomorphism. �

Proposition 7.3. Let M be a finitely generated flat right module over a ring R, and
let P be a projective module. If M/M J (R)∼= P/P J (R), then M ∼= P .

Proof. As M/M J (R) ∼= P/P J (R), the module P/P J (R) is finitely generated.
We will prove that P is, in fact, finitely generated.

By Theorem 7.1, there exists a finitely generated, countably presented, flat mod-
ule M ′ such that P/P J (R)∼= M ′/M ′ J (R). Let α : P/P J (R)→ M ′/M ′ J (R) be
an isomorphism. Let π : P → P/P J (R) and π ′

: M ′
→ M ′/M ′ J (R) denote the

canonical projections. Since P is projective, there exists β : P → M ′ such that the
diagram

P
β - M ′

P/P J (R)

π

?
α- M ′/M ′ J (R)

π ′

?
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is commutative. Since kerπ ′ is small in M ′, β is onto. As M ′ has projective
dimension 1, kerβ is projective. Applying − ⊗R R/J (R) to the exact sequence

0 - kerβ → P
β- M ′ - 0,

we obtain the exact sequence

0 - kerβ⊗R R/J (R)→ P/P J (R) α- M ′/M ′ J (R) - 0.

Since α is an isomorphism, we have 0 = kerβ ⊗R R/J (R) ∼= kerβ/(kerβ)J (R).
But kerβ is projective, hence β is an isomorphism. This proves that P is a finitely
generated projective module.

Let ρ : M → M/M J (R) denote the canonical projection. Since P is projective,
there exists γ : P → M such that the diagram

P
γ - M

P/P J (R)

π

?
∼=- M/M J (R),

ρ

?

is commutative. Since ker ρ is small in M , γ is onto. Since P is finitely generated
and ker γ ⊆ P J (R), ker γ is small in P . Hence γ : P → M is a projective cover.
By Lemma 7.2, γ is an isomorphism. �

Thus if a finitely generated projective right R/J (R)-module P satisfies condi-
tion (i) of Theorem 7.1 (that is, P ∼= M/M J (R) for some finitely generated flat
right R-module M) and the right/left symmetric of condition (vi) of Theorem 7.1
(that is, P ∼= P ′/P ′ J (R) for some projective right R-module P ′), then M ∼= P ′ is
a projective cover of P .
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